mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-14 16:55:13 -05:00
Compare commits
13 Commits
add-llm-ma
...
otto/secrt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
79748ca7fa | ||
|
|
f3df841ea3 | ||
|
|
6cb794cbf8 | ||
|
|
b8f5c208d0 | ||
|
|
ca216dfd7f | ||
|
|
f9f358c526 | ||
|
|
52b3aebf71 | ||
|
|
965b7d3e04 | ||
|
|
c2368f15ff | ||
|
|
9ac3f64d56 | ||
|
|
5035b69c79 | ||
|
|
86af8fc856 | ||
|
|
dfa517300b |
1229
.github/scripts/detect_overlaps.py
vendored
Normal file
1229
.github/scripts/detect_overlaps.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
42
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
42
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
@@ -40,6 +40,48 @@ jobs:
|
||||
git checkout -b "$BRANCH_NAME"
|
||||
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
|
||||
|
||||
# Backend Python/Poetry setup (so Claude can run linting/tests)
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
cd autogpt_platform/backend
|
||||
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
|
||||
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Install Python dependencies
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry install
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Get CI failure details
|
||||
id: failure_details
|
||||
uses: actions/github-script@v8
|
||||
|
||||
22
.github/workflows/claude-dependabot.yml
vendored
22
.github/workflows/claude-dependabot.yml
vendored
@@ -77,27 +77,15 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
|
||||
22
.github/workflows/claude.yml
vendored
22
.github/workflows/claude.yml
vendored
@@ -93,27 +93,15 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
|
||||
4
.github/workflows/codeql.yml
vendored
4
.github/workflows/codeql.yml
vendored
@@ -62,7 +62,7 @@ jobs:
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v3
|
||||
uses: github/codeql-action/init@v4
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
build-mode: ${{ matrix.build-mode }}
|
||||
@@ -93,6 +93,6 @@ jobs:
|
||||
exit 1
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v3
|
||||
uses: github/codeql-action/analyze@v4
|
||||
with:
|
||||
category: "/language:${{matrix.language}}"
|
||||
|
||||
34
.github/workflows/docs-claude-review.yml
vendored
34
.github/workflows/docs-claude-review.yml
vendored
@@ -7,6 +7,10 @@ on:
|
||||
- "docs/integrations/**"
|
||||
- "autogpt_platform/backend/backend/blocks/**"
|
||||
|
||||
concurrency:
|
||||
group: claude-docs-review-${{ github.event.pull_request.number }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
claude-review:
|
||||
# Only run for PRs from members/collaborators
|
||||
@@ -91,5 +95,35 @@ jobs:
|
||||
3. Read corresponding documentation files to verify accuracy
|
||||
4. Provide your feedback as a PR comment
|
||||
|
||||
## IMPORTANT: Comment Marker
|
||||
Start your PR comment with exactly this HTML comment marker on its own line:
|
||||
<!-- CLAUDE_DOCS_REVIEW -->
|
||||
|
||||
This marker is used to identify and replace your comment on subsequent runs.
|
||||
|
||||
Be constructive and specific. If everything looks good, say so!
|
||||
If there are issues, explain what's wrong and suggest how to fix it.
|
||||
|
||||
- name: Delete old Claude review comments
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
# Get all comment IDs with our marker, sorted by creation date (oldest first)
|
||||
COMMENT_IDS=$(gh api \
|
||||
repos/${{ github.repository }}/issues/${{ github.event.pull_request.number }}/comments \
|
||||
--jq '[.[] | select(.body | contains("<!-- CLAUDE_DOCS_REVIEW -->"))] | sort_by(.created_at) | .[].id')
|
||||
|
||||
# Count comments
|
||||
COMMENT_COUNT=$(echo "$COMMENT_IDS" | grep -c . || true)
|
||||
|
||||
if [ "$COMMENT_COUNT" -gt 1 ]; then
|
||||
# Delete all but the last (newest) comment
|
||||
echo "$COMMENT_IDS" | head -n -1 | while read -r COMMENT_ID; do
|
||||
if [ -n "$COMMENT_ID" ]; then
|
||||
echo "Deleting old review comment: $COMMENT_ID"
|
||||
gh api -X DELETE repos/${{ github.repository }}/issues/comments/$COMMENT_ID
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "No old review comments to clean up"
|
||||
fi
|
||||
|
||||
39
.github/workflows/pr-overlap-check.yml
vendored
Normal file
39
.github/workflows/pr-overlap-check.yml
vendored
Normal file
@@ -0,0 +1,39 @@
|
||||
name: PR Overlap Detection
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
check-overlaps:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Need full history for merge testing
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Configure git
|
||||
run: |
|
||||
git config user.email "github-actions[bot]@users.noreply.github.com"
|
||||
git config user.name "github-actions[bot]"
|
||||
|
||||
- name: Run overlap detection
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# Always succeed - this check informs contributors, it shouldn't block merging
|
||||
continue-on-error: true
|
||||
run: |
|
||||
python .github/scripts/detect_overlaps.py ${{ github.event.pull_request.number }}
|
||||
@@ -104,6 +104,12 @@ TWITTER_CLIENT_SECRET=
|
||||
# Make a new workspace for your OAuth APP -- trust me
|
||||
# https://linear.app/settings/api/applications/new
|
||||
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
|
||||
LINEAR_API_KEY=
|
||||
# Linear project and team IDs for the feature request tracker.
|
||||
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
|
||||
# and in team settings. Used by the chat copilot to file and search feature requests.
|
||||
LINEAR_FEATURE_REQUEST_PROJECT_ID=
|
||||
LINEAR_FEATURE_REQUEST_TEAM_ID=
|
||||
LINEAR_CLIENT_ID=
|
||||
LINEAR_CLIENT_SECRET=
|
||||
|
||||
|
||||
@@ -66,13 +66,19 @@ ENV POETRY_HOME=/opt/poetry \
|
||||
DEBIAN_FRONTEND=noninteractive
|
||||
ENV PATH=/opt/poetry/bin:$PATH
|
||||
|
||||
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
|
||||
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
|
||||
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
|
||||
# for the bash_exec MCP tool.
|
||||
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
imagemagick \
|
||||
jq \
|
||||
ripgrep \
|
||||
tree \
|
||||
bubblewrap \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
|
||||
|
||||
@@ -122,24 +122,6 @@ class ConnectionManager:
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
|
||||
"""Broadcast a message to all active websocket connections."""
|
||||
message = WSMessage(
|
||||
method=method,
|
||||
data=data,
|
||||
).model_dump_json()
|
||||
|
||||
connections = tuple(self.active_connections)
|
||||
if not connections:
|
||||
return 0
|
||||
|
||||
await asyncio.gather(
|
||||
*(connection.send_text(message) for connection in connections),
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
return len(connections)
|
||||
|
||||
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
|
||||
if channel_key not in self.subscriptions:
|
||||
self.subscriptions[channel_key] = set()
|
||||
|
||||
@@ -176,64 +176,30 @@ async def get_execution_analytics_config(
|
||||
# Return with provider prefix for clarity
|
||||
return f"{provider_name}: {model_name}"
|
||||
|
||||
# Get all models from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
|
||||
# Get the recommended model from the database (configurable via admin UI)
|
||||
recommended_model_slug = await llm_db.get_recommended_model_slug()
|
||||
|
||||
# Build the available models list
|
||||
first_enabled_slug = None
|
||||
for registry_model in llm_registry.iter_dynamic_models():
|
||||
# Only include enabled models in the list
|
||||
if not registry_model.is_enabled:
|
||||
continue
|
||||
|
||||
# Track first enabled model as fallback
|
||||
if first_enabled_slug is None:
|
||||
first_enabled_slug = registry_model.slug
|
||||
|
||||
model = LlmModel(registry_model.slug)
|
||||
# Include all LlmModel values (no more filtering by hardcoded list)
|
||||
recommended_model = LlmModel.GPT4O_MINI.value
|
||||
for model in LlmModel:
|
||||
label = generate_model_label(model)
|
||||
# Add "(Recommended)" suffix to the recommended model
|
||||
if registry_model.slug == recommended_model_slug:
|
||||
if model.value == recommended_model:
|
||||
label += " (Recommended)"
|
||||
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value=registry_model.slug,
|
||||
value=model.value,
|
||||
label=label,
|
||||
provider=registry_model.metadata.provider,
|
||||
provider=model.provider,
|
||||
)
|
||||
)
|
||||
|
||||
# Sort models by provider and name for better UX
|
||||
available_models.sort(key=lambda x: (x.provider, x.label))
|
||||
|
||||
# Handle case where no models are available
|
||||
if not available_models:
|
||||
logger.warning(
|
||||
"No enabled LLM models found in registry. "
|
||||
"Ensure models are configured and enabled in the LLM Registry."
|
||||
)
|
||||
# Provide a placeholder entry so admins see meaningful feedback
|
||||
available_models.append(
|
||||
ModelInfo(
|
||||
value="",
|
||||
label="No models available - configure in LLM Registry",
|
||||
provider="none",
|
||||
)
|
||||
)
|
||||
|
||||
# Use the DB recommended model, or fallback to first enabled model
|
||||
final_recommended = recommended_model_slug or first_enabled_slug or ""
|
||||
|
||||
return ExecutionAnalyticsConfig(
|
||||
available_models=available_models,
|
||||
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
|
||||
default_user_prompt=DEFAULT_USER_PROMPT,
|
||||
recommended_model=final_recommended,
|
||||
recommended_model=recommended_model,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -1,593 +0,0 @@
|
||||
import logging
|
||||
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
tags=["llm", "admin"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
|
||||
)
|
||||
|
||||
|
||||
async def _refresh_runtime_state() -> None:
|
||||
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
|
||||
logger.info("Refreshing LLM registry runtime state...")
|
||||
try:
|
||||
# Refresh registry from database
|
||||
await llm_registry.refresh_llm_registry()
|
||||
await refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated model options
|
||||
from backend.blocks._base import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
logger.info("Cleared all block schema caches")
|
||||
|
||||
# Clear the /blocks endpoint cache so frontend gets updated schemas
|
||||
try:
|
||||
from backend.api.features.v1 import _get_cached_blocks
|
||||
|
||||
_get_cached_blocks.cache_clear()
|
||||
logger.info("Cleared /blocks endpoint cache")
|
||||
except Exception as e:
|
||||
logger.warning("Failed to clear /blocks cache: %s", e)
|
||||
|
||||
# Clear the v2 builder caches
|
||||
try:
|
||||
from backend.api.features.builder import db as builder_db
|
||||
|
||||
builder_db._get_all_providers.cache_clear()
|
||||
logger.info("Cleared v2 builder providers cache")
|
||||
builder_db._build_cached_search_results.cache_clear()
|
||||
logger.info("Cleared v2 builder search results cache")
|
||||
except Exception as e:
|
||||
logger.debug("Could not clear v2 builder cache: %s", e)
|
||||
|
||||
# Notify all executor services to refresh their registry cache
|
||||
from backend.data.llm_registry import publish_registry_refresh_notification
|
||||
|
||||
await publish_registry_refresh_notification()
|
||||
logger.info("Published registry refresh notification")
|
||||
except Exception as exc:
|
||||
logger.exception(
|
||||
"LLM runtime state refresh failed; caches may be stale: %s", exc
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/providers",
|
||||
summary="List LLM providers",
|
||||
response_model=llm_model.LlmProvidersResponse,
|
||||
)
|
||||
async def list_llm_providers(include_models: bool = True):
|
||||
providers = await llm_db.list_providers(include_models=include_models)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/providers",
|
||||
summary="Create LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
|
||||
provider = await llm_db.upsert_provider(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/providers/{provider_id}",
|
||||
summary="Update LLM provider",
|
||||
response_model=llm_model.LlmProvider,
|
||||
)
|
||||
async def update_llm_provider(
|
||||
provider_id: str,
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
):
|
||||
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
|
||||
await _refresh_runtime_state()
|
||||
return provider
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/providers/{provider_id}",
|
||||
summary="Delete LLM provider",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_provider(provider_id: str):
|
||||
"""
|
||||
Delete an LLM provider.
|
||||
|
||||
A provider can only be deleted if it has no associated models.
|
||||
Delete all models from the provider first before deleting the provider.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_provider(provider_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted LLM provider '%s'", provider_id)
|
||||
return {"success": True, "message": "Provider deleted successfully"}
|
||||
except ValueError as e:
|
||||
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(e))
|
||||
except Exception as e:
|
||||
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
|
||||
raise fastapi.HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models",
|
||||
summary="List LLM models",
|
||||
response_model=llm_model.LlmModelsResponse,
|
||||
)
|
||||
async def list_llm_models(
|
||||
provider_id: str | None = fastapi.Query(default=None),
|
||||
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, ge=1, le=100, description="Number of models per page"
|
||||
),
|
||||
):
|
||||
return await llm_db.list_models(
|
||||
provider_id=provider_id, page=page, page_size=page_size
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/models",
|
||||
summary="Create LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
|
||||
model = await llm_db.create_model(request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}",
|
||||
summary="Update LLM model",
|
||||
response_model=llm_model.LlmModel,
|
||||
)
|
||||
async def update_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
):
|
||||
model = await llm_db.update_model(model_id=model_id, request=request)
|
||||
await _refresh_runtime_state()
|
||||
return model
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/models/{model_id}/toggle",
|
||||
summary="Toggle LLM model availability",
|
||||
response_model=llm_model.ToggleLlmModelResponse,
|
||||
)
|
||||
async def toggle_llm_model(
|
||||
model_id: str,
|
||||
request: llm_model.ToggleLlmModelRequest,
|
||||
):
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
If disabling a model and `migrate_to_slug` is provided, all workflows using
|
||||
this model will be migrated to the specified replacement model before disabling.
|
||||
A migration record is created which can be reverted later using the revert endpoint.
|
||||
|
||||
Optional fields:
|
||||
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
|
||||
- `custom_credit_cost`: Custom pricing override for billing during migration
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.toggle_model(
|
||||
model_id=model_id,
|
||||
is_enabled=request.is_enabled,
|
||||
migrate_to_slug=request.migrate_to_slug,
|
||||
migration_reason=request.migration_reason,
|
||||
custom_credit_cost=request.custom_credit_cost,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
if result.nodes_migrated > 0:
|
||||
logger.info(
|
||||
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
|
||||
result.model.slug,
|
||||
"enabled" if request.is_enabled else "disabled",
|
||||
result.nodes_migrated,
|
||||
result.migrated_to_slug,
|
||||
result.migration_id,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Model toggle validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to toggle model availability",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/models/{model_id}/usage",
|
||||
summary="Get model usage count",
|
||||
response_model=llm_model.LlmModelUsageResponse,
|
||||
)
|
||||
async def get_llm_model_usage(model_id: str):
|
||||
"""Get the number of workflow nodes using this model."""
|
||||
try:
|
||||
return await llm_db.get_model_usage(model_id=model_id)
|
||||
except ValueError as exc:
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get model usage %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get model usage",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/models/{model_id}",
|
||||
summary="Delete LLM model and migrate workflows",
|
||||
response_model=llm_model.DeleteLlmModelResponse,
|
||||
)
|
||||
async def delete_llm_model(
|
||||
model_id: str,
|
||||
replacement_model_slug: str | None = fastapi.Query(
|
||||
default=None,
|
||||
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Delete a model and optionally migrate workflows using it to a replacement model.
|
||||
|
||||
If no workflows are using this model, it can be deleted without providing a
|
||||
replacement. If workflows exist, replacement_model_slug is required.
|
||||
|
||||
This endpoint:
|
||||
1. Counts how many workflow nodes use the model being deleted
|
||||
2. If nodes exist, validates the replacement model and migrates them
|
||||
3. Deletes the model record
|
||||
4. Refreshes all caches and notifies executors
|
||||
|
||||
Example: DELETE /api/llm/admin/models/{id}?replacement_model_slug=gpt-4o
|
||||
Example (no usage): DELETE /api/llm/admin/models/{id}
|
||||
"""
|
||||
try:
|
||||
result = await llm_db.delete_model(
|
||||
model_id=model_id, replacement_model_slug=replacement_model_slug
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Deleted model '%s' and migrated %d nodes to '%s'",
|
||||
result.deleted_model_slug,
|
||||
result.nodes_migrated,
|
||||
result.replacement_model_slug,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
# Validation errors (model not found, replacement invalid, etc.)
|
||||
logger.warning("Model deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete model and migrate workflows",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Migration Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations",
|
||||
summary="List model migrations",
|
||||
response_model=llm_model.LlmMigrationsResponse,
|
||||
)
|
||||
async def list_llm_migrations(
|
||||
include_reverted: bool = fastapi.Query(
|
||||
default=False, description="Include reverted migrations in the list"
|
||||
),
|
||||
):
|
||||
"""
|
||||
List all model migrations.
|
||||
|
||||
Migrations are created when disabling a model with the migrate_to_slug option.
|
||||
They can be reverted to restore the original model configuration.
|
||||
"""
|
||||
try:
|
||||
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
|
||||
return llm_model.LlmMigrationsResponse(migrations=migrations)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list migrations: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list migrations",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/migrations/{migration_id}",
|
||||
summary="Get migration details",
|
||||
response_model=llm_model.LlmModelMigration,
|
||||
)
|
||||
async def get_llm_migration(migration_id: str):
|
||||
"""Get details of a specific migration."""
|
||||
try:
|
||||
migration = await llm_db.get_migration(migration_id)
|
||||
if not migration:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Migration '{migration_id}' not found"
|
||||
)
|
||||
return migration
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get migration",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/migrations/{migration_id}/revert",
|
||||
summary="Revert a model migration",
|
||||
response_model=llm_model.RevertMigrationResponse,
|
||||
)
|
||||
async def revert_llm_migration(
|
||||
migration_id: str,
|
||||
request: llm_model.RevertMigrationRequest | None = None,
|
||||
):
|
||||
"""
|
||||
Revert a model migration, restoring affected workflows to their original model.
|
||||
|
||||
This only reverts the specific nodes that were part of the migration.
|
||||
The source model must exist for the revert to succeed.
|
||||
|
||||
Options:
|
||||
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
|
||||
|
||||
Response includes:
|
||||
- `nodes_reverted`: Number of nodes successfully reverted
|
||||
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
|
||||
- `source_model_re_enabled`: Whether the source model was re-enabled
|
||||
|
||||
Requirements:
|
||||
- Migration must not already be reverted
|
||||
- Source model must exist
|
||||
"""
|
||||
try:
|
||||
re_enable = request.re_enable_source_model if request else True
|
||||
result = await llm_db.revert_migration(
|
||||
migration_id,
|
||||
re_enable_source_model=re_enable,
|
||||
)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
|
||||
"(%d already changed, source re-enabled=%s)",
|
||||
migration_id,
|
||||
result.nodes_reverted,
|
||||
result.target_model_slug,
|
||||
result.source_model_slug,
|
||||
result.nodes_already_changed,
|
||||
result.source_model_re_enabled,
|
||||
)
|
||||
return result
|
||||
except ValueError as exc:
|
||||
logger.warning("Migration revert validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to revert migration",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator Management Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators",
|
||||
summary="List model creators",
|
||||
response_model=llm_model.LlmCreatorsResponse,
|
||||
)
|
||||
async def list_llm_creators():
|
||||
"""
|
||||
List all model creators.
|
||||
|
||||
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
|
||||
This is distinct from providers who host/serve the models (e.g., OpenRouter).
|
||||
"""
|
||||
try:
|
||||
creators = await llm_db.list_creators()
|
||||
return llm_model.LlmCreatorsResponse(creators=creators)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to list creators: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to list creators",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.get(
|
||||
"/creators/{creator_id}",
|
||||
summary="Get creator details",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def get_llm_creator(creator_id: str):
|
||||
"""Get details of a specific model creator."""
|
||||
try:
|
||||
creator = await llm_db.get_creator(creator_id)
|
||||
if not creator:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=404, detail=f"Creator '{creator_id}' not found"
|
||||
)
|
||||
return creator
|
||||
except fastapi.HTTPException:
|
||||
raise
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/creators",
|
||||
summary="Create model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
|
||||
"""
|
||||
Create a new model creator.
|
||||
|
||||
A creator represents an organization that creates/trains AI models,
|
||||
such as OpenAI, Anthropic, Meta, or Google.
|
||||
"""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to create creator: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to create creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/creators/{creator_id}",
|
||||
summary="Update model creator",
|
||||
response_model=llm_model.LlmModelCreator,
|
||||
)
|
||||
async def update_llm_creator(
|
||||
creator_id: str,
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
):
|
||||
"""Update an existing model creator."""
|
||||
try:
|
||||
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
|
||||
return creator
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to update creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to update creator",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/creators/{creator_id}",
|
||||
summary="Delete model creator",
|
||||
response_model=dict,
|
||||
)
|
||||
async def delete_llm_creator(creator_id: str):
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will remove the creator association from all models that reference it
|
||||
(sets creatorId to NULL), but will not delete the models themselves.
|
||||
"""
|
||||
try:
|
||||
await llm_db.delete_creator(creator_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info("Deleted model creator '%s'", creator_id)
|
||||
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
|
||||
except ValueError as exc:
|
||||
logger.warning("Creator deletion validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to delete creator",
|
||||
) from exc
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Recommended Model Endpoints
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@router.get(
|
||||
"/recommended-model",
|
||||
summary="Get recommended model",
|
||||
response_model=llm_model.RecommendedModelResponse,
|
||||
)
|
||||
async def get_recommended_model():
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
The recommended model is shown to users as the default/suggested option
|
||||
in model selection dropdowns.
|
||||
"""
|
||||
try:
|
||||
model = await llm_db.get_recommended_model()
|
||||
return llm_model.RecommendedModelResponse(
|
||||
model=model,
|
||||
slug=model.slug if model else None,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to get recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to get recommended model",
|
||||
) from exc
|
||||
|
||||
|
||||
@router.post(
|
||||
"/recommended-model",
|
||||
summary="Set recommended model",
|
||||
response_model=llm_model.SetRecommendedModelResponse,
|
||||
)
|
||||
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This clears the recommended flag from any other model and sets it on
|
||||
the specified model. The model must be enabled to be set as recommended.
|
||||
|
||||
The recommended model is displayed to users as the default/suggested
|
||||
option in model selection dropdowns throughout the platform.
|
||||
"""
|
||||
try:
|
||||
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
|
||||
await _refresh_runtime_state()
|
||||
logger.info(
|
||||
"Set recommended model to '%s' (previous: %s)",
|
||||
model.slug,
|
||||
previous_slug or "none",
|
||||
)
|
||||
return llm_model.SetRecommendedModelResponse(
|
||||
model=model,
|
||||
previous_recommended_slug=previous_slug,
|
||||
message=f"Model '{model.display_name}' is now the recommended model",
|
||||
)
|
||||
except ValueError as exc:
|
||||
logger.warning("Set recommended model validation failed: %s", exc)
|
||||
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
|
||||
except Exception as exc:
|
||||
logger.exception("Failed to set recommended model: %s", exc)
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Failed to set recommended model",
|
||||
) from exc
|
||||
@@ -1,491 +0,0 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import fastapi
|
||||
import fastapi.testclient
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
|
||||
import backend.api.features.admin.llm_routes as llm_routes
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
from backend.util.models import Pagination
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(llm_routes.router, prefix="/admin/llm")
|
||||
|
||||
client = fastapi.testclient.TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_app_admin_auth(mock_jwt_admin):
|
||||
"""Setup admin auth overrides for all tests in this module"""
|
||||
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
|
||||
yield
|
||||
app.dependency_overrides.clear()
|
||||
|
||||
|
||||
def test_list_llm_providers_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM providers"""
|
||||
# Mock the database function
|
||||
mock_providers = [
|
||||
{
|
||||
"id": "provider-1",
|
||||
"name": "openai",
|
||||
"display_name": "OpenAI",
|
||||
"description": "OpenAI LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
{
|
||||
"id": "provider-2",
|
||||
"name": "anthropic",
|
||||
"display_name": "Anthropic",
|
||||
"description": "Anthropic LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": True,
|
||||
"metadata": {},
|
||||
"models": [],
|
||||
},
|
||||
]
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_providers",
|
||||
new=AsyncMock(return_value=mock_providers),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/providers")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["providers"]) == 2
|
||||
assert response_data["providers"][0]["name"] == "openai"
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_providers_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_list_llm_models_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful listing of LLM models with pagination"""
|
||||
# Mock the database function - now returns LlmModelsResponse
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=True,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[
|
||||
llm_model.LlmModelCost(
|
||||
id="cost-1",
|
||||
credit_cost=10,
|
||||
credential_provider="openai",
|
||||
metadata={},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
mock_response = llm_model.LlmModelsResponse(
|
||||
models=[mock_model],
|
||||
pagination=Pagination(
|
||||
total_items=1,
|
||||
total_pages=1,
|
||||
current_page=1,
|
||||
page_size=50,
|
||||
),
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.list_models",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
response = client.get("/admin/llm/models")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert len(response_data["models"]) == 1
|
||||
assert response_data["models"][0]["slug"] == "gpt-4o"
|
||||
assert response_data["pagination"]["total_items"] == 1
|
||||
assert response_data["pagination"]["page_size"] == 50
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"list_llm_models_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_provider_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM provider"""
|
||||
mock_provider = {
|
||||
"id": "new-provider-id",
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
|
||||
new=AsyncMock(return_value=mock_provider),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"name": "groq",
|
||||
"display_name": "Groq",
|
||||
"description": "Groq LLM provider",
|
||||
"supports_tools": True,
|
||||
"supports_json_output": True,
|
||||
"supports_reasoning": False,
|
||||
"supports_parallel_tool": False,
|
||||
"metadata": {},
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/providers", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["name"] == "groq"
|
||||
assert response_data["display_name"] == "Groq"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_provider_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_create_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful creation of LLM model"""
|
||||
mock_model = {
|
||||
"id": "new-model-id",
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-id",
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.create_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"slug": "gpt-4.1-mini",
|
||||
"display_name": "GPT-4.1 Mini",
|
||||
"description": "Latest GPT-4.1 Mini model",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 128000,
|
||||
"max_output_tokens": 16384,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"credit_cost": 5,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
response = client.post("/admin/llm/models", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["slug"] == "gpt-4.1-mini"
|
||||
assert response_data["is_enabled"] is True
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"create_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_update_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful update of LLM model"""
|
||||
mock_model = {
|
||||
"id": "model-1",
|
||||
"slug": "gpt-4o",
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"provider_id": "provider-1",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
"is_enabled": True,
|
||||
"capabilities": {},
|
||||
"metadata": {},
|
||||
"costs": [
|
||||
{
|
||||
"id": "cost-1",
|
||||
"credit_cost": 15,
|
||||
"credential_provider": "openai",
|
||||
"metadata": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.update_model",
|
||||
new=AsyncMock(return_value=mock_model),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"display_name": "GPT-4o Updated",
|
||||
"description": "Updated description",
|
||||
"context_window": 256000,
|
||||
"max_output_tokens": 32768,
|
||||
}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["display_name"] == "GPT-4o Updated"
|
||||
assert response_data["context_window"] == 256000
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"update_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_toggle_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful toggling of LLM model enabled status"""
|
||||
# Create a proper mock model object
|
||||
mock_model = llm_model.LlmModel(
|
||||
id="model-1",
|
||||
slug="gpt-4o",
|
||||
display_name="GPT-4o",
|
||||
description="GPT-4 Optimized",
|
||||
provider_id="provider-1",
|
||||
context_window=128000,
|
||||
max_output_tokens=16384,
|
||||
is_enabled=False,
|
||||
capabilities={},
|
||||
metadata={},
|
||||
costs=[],
|
||||
)
|
||||
|
||||
# Create a proper ToggleLlmModelResponse
|
||||
mock_response = llm_model.ToggleLlmModelResponse(
|
||||
model=mock_model,
|
||||
nodes_migrated=0,
|
||||
migrated_to_slug=None,
|
||||
migration_id=None,
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
request_data = {"is_enabled": False}
|
||||
|
||||
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["model"]["is_enabled"] is False
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"toggle_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
configured_snapshot: Snapshot,
|
||||
) -> None:
|
||||
"""Test successful deletion of LLM model with migration"""
|
||||
# Create a proper DeleteLlmModelResponse
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="gpt-3.5-turbo",
|
||||
deleted_model_display_name="GPT-3.5 Turbo",
|
||||
replacement_model_slug="gpt-4o-mini",
|
||||
nodes_migrated=42,
|
||||
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
|
||||
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete(
|
||||
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
|
||||
assert response_data["nodes_migrated"] == 42
|
||||
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
|
||||
|
||||
# Verify refresh was called
|
||||
mock_refresh.assert_called_once()
|
||||
|
||||
# Snapshot test the response (must be string)
|
||||
configured_snapshot.assert_match(
|
||||
json.dumps(response_data, indent=2, sort_keys=True),
|
||||
"delete_llm_model_success.json",
|
||||
)
|
||||
|
||||
|
||||
def test_delete_llm_model_validation_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails with proper error when validation fails"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Replacement model 'invalid' not found" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_with_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion fails when nodes exist but no replacement is provided"""
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(
|
||||
side_effect=ValueError(
|
||||
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
|
||||
"Please provide a replacement_model_slug to migrate them."
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "workflow node(s) are using it" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_delete_llm_model_no_replacement_no_usage(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
) -> None:
|
||||
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
|
||||
mock_response = llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug="unused-model",
|
||||
deleted_model_display_name="Unused Model",
|
||||
replacement_model_slug=None,
|
||||
nodes_migrated=0,
|
||||
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
|
||||
)
|
||||
|
||||
mocker.patch(
|
||||
"backend.api.features.admin.llm_routes.llm_db.delete_model",
|
||||
new=AsyncMock(return_value=mock_response),
|
||||
)
|
||||
|
||||
mock_refresh = mocker.patch(
|
||||
"backend.api.features.admin.llm_routes._refresh_runtime_state",
|
||||
new=AsyncMock(),
|
||||
)
|
||||
|
||||
response = client.delete("/admin/llm/models/model-1")
|
||||
|
||||
assert response.status_code == 200
|
||||
response_data = response.json()
|
||||
assert response_data["deleted_model_slug"] == "unused-model"
|
||||
assert response_data["nodes_migrated"] == 0
|
||||
assert response_data["replacement_model_slug"] is None
|
||||
mock_refresh.assert_called_once()
|
||||
@@ -20,7 +20,6 @@ from backend.blocks._base import (
|
||||
)
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.data.llm_registry import get_all_model_slugs_for_validation
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
from backend.util.models import Pagination
|
||||
@@ -37,14 +36,7 @@ from .model import (
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _get_llm_models() -> list[str]:
|
||||
"""Get LLM model names for search matching from the registry."""
|
||||
return [
|
||||
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
|
||||
]
|
||||
|
||||
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
|
||||
|
||||
MAX_LIBRARY_AGENT_RESULTS = 100
|
||||
MAX_MARKETPLACE_AGENT_RESULTS = 100
|
||||
@@ -509,10 +501,8 @@ async def _get_static_counts():
|
||||
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
for field in schema_cls.model_fields.values():
|
||||
if field.annotation == LlmModel:
|
||||
# Normalize query same as model slugs (lowercase, hyphens to spaces)
|
||||
normalized_model_query = query.lower().replace("-", " ")
|
||||
# Check if query matches any value in llm_models from registry
|
||||
if any(normalized_model_query in name for name in _get_llm_models()):
|
||||
# Check if query matches any value in llm_models
|
||||
if any(query in name for name in llm_models):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
@@ -27,12 +27,11 @@ class ChatConfig(BaseSettings):
|
||||
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
||||
|
||||
# Streaming Configuration
|
||||
max_context_messages: int = Field(
|
||||
default=50, ge=1, le=200, description="Maximum context messages"
|
||||
)
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_retries: int = Field(
|
||||
default=3,
|
||||
description="Max retries for fallback path (SDK handles retries internally)",
|
||||
)
|
||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=30, description="Maximum number of agent schedules"
|
||||
@@ -93,6 +92,31 @@ class ChatConfig(BaseSettings):
|
||||
description="Name of the prompt in Langfuse to fetch",
|
||||
)
|
||||
|
||||
# Claude Agent SDK Configuration
|
||||
use_claude_agent_sdk: bool = Field(
|
||||
default=True,
|
||||
description="Use Claude Agent SDK for chat completions",
|
||||
)
|
||||
claude_agent_model: str | None = Field(
|
||||
default=None,
|
||||
description="Model for the Claude Agent SDK path. If None, derives from "
|
||||
"the `model` field by stripping the OpenRouter provider prefix.",
|
||||
)
|
||||
claude_agent_max_buffer_size: int = Field(
|
||||
default=10 * 1024 * 1024, # 10MB (default SDK is 1MB)
|
||||
description="Max buffer size in bytes for Claude Agent SDK JSON message parsing. "
|
||||
"Increase if tool outputs exceed the limit.",
|
||||
)
|
||||
claude_agent_max_subtasks: int = Field(
|
||||
default=10,
|
||||
description="Max number of sub-agent Tasks the SDK can spawn per session.",
|
||||
)
|
||||
claude_agent_use_resume: bool = Field(
|
||||
default=True,
|
||||
description="Use --resume for multi-turn conversations instead of "
|
||||
"history compression. Falls back to compression when unavailable.",
|
||||
)
|
||||
|
||||
# Extended thinking configuration for Claude models
|
||||
thinking_enabled: bool = Field(
|
||||
default=True,
|
||||
@@ -138,6 +162,17 @@ class ChatConfig(BaseSettings):
|
||||
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||
return v
|
||||
|
||||
@field_validator("use_claude_agent_sdk", mode="before")
|
||||
@classmethod
|
||||
def get_use_claude_agent_sdk(cls, v):
|
||||
"""Get use_claude_agent_sdk from environment if not provided."""
|
||||
# Check environment variable - default to True if not set
|
||||
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
|
||||
if env_val:
|
||||
return env_val in ("true", "1", "yes", "on")
|
||||
# Default to True (SDK enabled by default)
|
||||
return True if v is None else v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
|
||||
@@ -334,9 +334,8 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
try:
|
||||
session = ChatSession.model_validate_json(raw_session)
|
||||
logger.info(
|
||||
f"Loading session {session_id} from cache: "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
|
||||
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
|
||||
)
|
||||
return session
|
||||
except Exception as e:
|
||||
@@ -378,11 +377,9 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
return None
|
||||
|
||||
messages = prisma_session.Messages
|
||||
logger.info(
|
||||
f"Loading session {session_id} from DB: "
|
||||
f"has_messages={messages is not None}, "
|
||||
f"message_count={len(messages) if messages else 0}, "
|
||||
f"roles={[m.role for m in messages] if messages else []}"
|
||||
logger.debug(
|
||||
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
|
||||
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
|
||||
)
|
||||
|
||||
return ChatSession.from_db(prisma_session, messages)
|
||||
@@ -433,10 +430,9 @@ async def _save_session_to_db(
|
||||
"function_call": msg.function_call,
|
||||
}
|
||||
)
|
||||
logger.info(
|
||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
||||
f"roles={[m['role'] for m in messages_data]}, "
|
||||
f"start_sequence={existing_message_count}"
|
||||
logger.debug(
|
||||
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
|
||||
f"roles={[m['role'] for m in messages_data]}"
|
||||
)
|
||||
await chat_db.add_chat_messages_batch(
|
||||
session_id=session.session_id,
|
||||
@@ -476,7 +472,7 @@ async def get_chat_session(
|
||||
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
||||
|
||||
# Fall back to database
|
||||
logger.info(f"Session {session_id} not in cache, checking database")
|
||||
logger.debug(f"Session {session_id} not in cache, checking database")
|
||||
session = await _get_session_from_db(session_id)
|
||||
|
||||
if session is None:
|
||||
@@ -493,7 +489,6 @@ async def get_chat_session(
|
||||
# Cache the session from DB
|
||||
try:
|
||||
await _cache_session(session)
|
||||
logger.info(f"Cached session {session_id} from database")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to cache session {session_id}: {e}")
|
||||
|
||||
@@ -558,6 +553,40 @@ async def upsert_chat_session(
|
||||
return session
|
||||
|
||||
|
||||
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
|
||||
"""Atomically append a message to a session and persist it.
|
||||
|
||||
Acquires the session lock, re-fetches the latest session state,
|
||||
appends the message, and saves — preventing message loss when
|
||||
concurrent requests modify the same session.
|
||||
"""
|
||||
lock = await _get_session_lock(session_id)
|
||||
|
||||
async with lock:
|
||||
session = await get_chat_session(session_id)
|
||||
if session is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
session.messages.append(message)
|
||||
existing_message_count = await chat_db.get_chat_session_message_count(
|
||||
session_id
|
||||
)
|
||||
|
||||
try:
|
||||
await _save_session_to_db(session, existing_message_count)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to persist message to session {session_id}"
|
||||
) from e
|
||||
|
||||
try:
|
||||
await _cache_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(f"Cache write failed for session {session_id}: {e}")
|
||||
|
||||
return session
|
||||
|
||||
|
||||
async def create_chat_session(user_id: str) -> ChatSession:
|
||||
"""Create a new chat session and persist it.
|
||||
|
||||
@@ -664,13 +693,19 @@ async def update_session_title(session_id: str, title: str) -> bool:
|
||||
logger.warning(f"Session {session_id} not found for title update")
|
||||
return False
|
||||
|
||||
# Invalidate cache so next fetch gets updated title
|
||||
# Update title in cache if it exists (instead of invalidating).
|
||||
# This prevents race conditions where cache invalidation causes
|
||||
# the frontend to see stale DB data while streaming is still in progress.
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
cached = await _get_session_from_cache(session_id)
|
||||
if cached:
|
||||
cached.title = title
|
||||
await _cache_session(cached)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
||||
# Not critical - title will be correct on next full cache refresh
|
||||
logger.warning(
|
||||
f"Failed to update title in cache for session {session_id}: {e}"
|
||||
)
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
@@ -11,13 +12,22 @@ from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.util.exceptions import NotFoundError
|
||||
from backend.util.feature_flag import Flag, is_feature_enabled
|
||||
|
||||
from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
from .response_model import StreamFinish, StreamHeartbeat
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
append_and_save_message,
|
||||
create_chat_session,
|
||||
get_chat_session,
|
||||
get_user_sessions,
|
||||
)
|
||||
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
|
||||
from .sdk import service as sdk_service
|
||||
from .tools.models import (
|
||||
AgentDetailsResponse,
|
||||
AgentOutputResponse,
|
||||
@@ -41,6 +51,7 @@ from .tools.models import (
|
||||
SetupRequirementsResponse,
|
||||
UnderstandingUpdatedResponse,
|
||||
)
|
||||
from .tracking import track_user_message
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
@@ -232,6 +243,10 @@ async def get_session(
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
logger.info(
|
||||
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
|
||||
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
@@ -301,10 +316,9 @@ async def stream_chat_post(
|
||||
f"user={user_id}, message_len={len(request.message)}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
logger.info(
|
||||
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time)*1000:.1f}ms",
|
||||
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
@@ -313,6 +327,25 @@ async def stream_chat_post(
|
||||
},
|
||||
)
|
||||
|
||||
# Atomically append user message to session BEFORE creating task to avoid
|
||||
# race condition where GET_SESSION sees task as "running" but message isn't
|
||||
# saved yet. append_and_save_message re-fetches inside a lock to prevent
|
||||
# message loss from concurrent requests.
|
||||
if request.message:
|
||||
message = ChatMessage(
|
||||
role="user" if request.is_user_message else "assistant",
|
||||
content=request.message,
|
||||
)
|
||||
if request.is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
message_length=len(request.message),
|
||||
)
|
||||
logger.info(f"[STREAM] Saving user message to session {session_id}")
|
||||
session = await append_and_save_message(session_id, message)
|
||||
logger.info(f"[STREAM] User message saved for session {session_id}")
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
@@ -328,7 +361,7 @@ async def stream_chat_post(
|
||||
operation_id=operation_id,
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start)*1000:.1f}ms",
|
||||
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
@@ -349,15 +382,47 @@ async def stream_chat_post(
|
||||
first_chunk_time, ttfc = None, None
|
||||
chunk_count = 0
|
||||
try:
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
# Emit a start event with task_id for reconnection
|
||||
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
|
||||
await stream_registry.publish_chunk(task_id, start_chunk)
|
||||
logger.info(
|
||||
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
|
||||
* 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Choose service based on LaunchDarkly flag (falls back to config default)
|
||||
use_sdk = await is_feature_enabled(
|
||||
Flag.COPILOT_SDK,
|
||||
user_id or "anonymous",
|
||||
default=config.use_claude_agent_sdk,
|
||||
)
|
||||
stream_fn = (
|
||||
sdk_service.stream_chat_completion_sdk
|
||||
if use_sdk
|
||||
else chat_service.stream_chat_completion
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
# Pass message=None since we already added it to the session above
|
||||
async for chunk in stream_fn(
|
||||
session_id,
|
||||
request.message,
|
||||
None, # Message already in session
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
session=session, # Pass session with message already added
|
||||
context=request.context,
|
||||
_task_id=task_id, # Pass task_id so service emits start with taskId for reconnection
|
||||
):
|
||||
# Skip duplicate StreamStart — we already published one above
|
||||
if isinstance(chunk, StreamStart):
|
||||
continue
|
||||
chunk_count += 1
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time_module.perf_counter()
|
||||
@@ -378,7 +443,7 @@ async def stream_chat_post(
|
||||
gen_end_time = time_module.perf_counter()
|
||||
total_time = (gen_end_time - gen_start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] run_ai_generation FINISHED in {total_time/1000:.1f}s; "
|
||||
f"[TIMING] run_ai_generation FINISHED in {total_time / 1000:.1f}s; "
|
||||
f"task={task_id}, session={session_id}, "
|
||||
f"ttfc={ttfc or -1:.2f}s, n_chunks={chunk_count}",
|
||||
extra={
|
||||
@@ -405,6 +470,17 @@ async def stream_chat_post(
|
||||
}
|
||||
},
|
||||
)
|
||||
# Publish a StreamError so the frontend can display an error message
|
||||
try:
|
||||
await stream_registry.publish_chunk(
|
||||
task_id,
|
||||
StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="stream_error",
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
pass # Best-effort; mark_task_completed will publish StreamFinish
|
||||
await stream_registry.mark_task_completed(task_id, "failed")
|
||||
|
||||
# Start the AI generation in a background task
|
||||
@@ -507,8 +583,14 @@ async def stream_chat_post(
|
||||
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
|
||||
},
|
||||
)
|
||||
# Surface error to frontend so it doesn't appear stuck
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="stream_error",
|
||||
).to_sse()
|
||||
yield StreamFinish().to_sse()
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends to prevent resource leak
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
@@ -752,8 +834,6 @@ async def stream_task(
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import asyncio
|
||||
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
|
||||
@@ -0,0 +1,14 @@
|
||||
"""Claude Agent SDK integration for CoPilot.
|
||||
|
||||
This module provides the integration layer between the Claude Agent SDK
|
||||
and the existing CoPilot tool system, enabling drop-in replacement of
|
||||
the current LLM orchestration with the battle-tested Claude Agent SDK.
|
||||
"""
|
||||
|
||||
from .service import stream_chat_completion_sdk
|
||||
from .tool_adapter import create_copilot_mcp_server
|
||||
|
||||
__all__ = [
|
||||
"stream_chat_completion_sdk",
|
||||
"create_copilot_mcp_server",
|
||||
]
|
||||
@@ -0,0 +1,203 @@
|
||||
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This module provides the adapter layer that converts streaming messages from
|
||||
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
|
||||
the frontend expects.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
from claude_agent_sdk import (
|
||||
AssistantMessage,
|
||||
Message,
|
||||
ResultMessage,
|
||||
SystemMessage,
|
||||
TextBlock,
|
||||
ToolResultBlock,
|
||||
ToolUseBlock,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
from backend.api.features.chat.response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamFinishStep,
|
||||
StreamStart,
|
||||
StreamStartStep,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from backend.api.features.chat.sdk.tool_adapter import (
|
||||
MCP_TOOL_PREFIX,
|
||||
pop_pending_tool_output,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SDKResponseAdapter:
|
||||
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This class maintains state during a streaming session to properly track
|
||||
text blocks, tool calls, and message lifecycle.
|
||||
"""
|
||||
|
||||
def __init__(self, message_id: str | None = None):
|
||||
self.message_id = message_id or str(uuid.uuid4())
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_started_text = False
|
||||
self.has_ended_text = False
|
||||
self.current_tool_calls: dict[str, dict[str, str]] = {}
|
||||
self.task_id: str | None = None
|
||||
self.step_open = False
|
||||
|
||||
def set_task_id(self, task_id: str) -> None:
|
||||
"""Set the task ID for reconnection support."""
|
||||
self.task_id = task_id
|
||||
|
||||
def convert_message(self, sdk_message: Message) -> list[StreamBaseResponse]:
|
||||
"""Convert a single SDK message to Vercel AI SDK format."""
|
||||
responses: list[StreamBaseResponse] = []
|
||||
|
||||
if isinstance(sdk_message, SystemMessage):
|
||||
if sdk_message.subtype == "init":
|
||||
responses.append(
|
||||
StreamStart(messageId=self.message_id, taskId=self.task_id)
|
||||
)
|
||||
# Open the first step (matches non-SDK: StreamStart then StreamStartStep)
|
||||
responses.append(StreamStartStep())
|
||||
self.step_open = True
|
||||
|
||||
elif isinstance(sdk_message, AssistantMessage):
|
||||
# After tool results, the SDK sends a new AssistantMessage for the
|
||||
# next LLM turn. Open a new step if the previous one was closed.
|
||||
if not self.step_open:
|
||||
responses.append(StreamStartStep())
|
||||
self.step_open = True
|
||||
|
||||
for block in sdk_message.content:
|
||||
if isinstance(block, TextBlock):
|
||||
if block.text:
|
||||
self._ensure_text_started(responses)
|
||||
responses.append(
|
||||
StreamTextDelta(id=self.text_block_id, delta=block.text)
|
||||
)
|
||||
|
||||
elif isinstance(block, ToolUseBlock):
|
||||
self._end_text_if_open(responses)
|
||||
|
||||
# Strip MCP prefix so frontend sees "find_block"
|
||||
# instead of "mcp__copilot__find_block".
|
||||
tool_name = block.name.removeprefix(MCP_TOOL_PREFIX)
|
||||
|
||||
responses.append(
|
||||
StreamToolInputStart(toolCallId=block.id, toolName=tool_name)
|
||||
)
|
||||
responses.append(
|
||||
StreamToolInputAvailable(
|
||||
toolCallId=block.id,
|
||||
toolName=tool_name,
|
||||
input=block.input,
|
||||
)
|
||||
)
|
||||
self.current_tool_calls[block.id] = {"name": tool_name}
|
||||
|
||||
elif isinstance(sdk_message, UserMessage):
|
||||
# UserMessage carries tool results back from tool execution.
|
||||
content = sdk_message.content
|
||||
blocks = content if isinstance(content, list) else []
|
||||
for block in blocks:
|
||||
if isinstance(block, ToolResultBlock) and block.tool_use_id:
|
||||
tool_info = self.current_tool_calls.get(block.tool_use_id, {})
|
||||
tool_name = tool_info.get("name", "unknown")
|
||||
|
||||
# Prefer the stashed full output over the SDK's
|
||||
# (potentially truncated) ToolResultBlock content.
|
||||
# The SDK truncates large results, writing them to disk,
|
||||
# which breaks frontend widget parsing.
|
||||
output = pop_pending_tool_output(tool_name) or (
|
||||
_extract_tool_output(block.content)
|
||||
)
|
||||
|
||||
responses.append(
|
||||
StreamToolOutputAvailable(
|
||||
toolCallId=block.tool_use_id,
|
||||
toolName=tool_name,
|
||||
output=output,
|
||||
success=not (block.is_error or False),
|
||||
)
|
||||
)
|
||||
|
||||
# Close the current step after tool results — the next
|
||||
# AssistantMessage will open a new step for the continuation.
|
||||
if self.step_open:
|
||||
responses.append(StreamFinishStep())
|
||||
self.step_open = False
|
||||
|
||||
elif isinstance(sdk_message, ResultMessage):
|
||||
self._end_text_if_open(responses)
|
||||
# Close the step before finishing.
|
||||
if self.step_open:
|
||||
responses.append(StreamFinishStep())
|
||||
self.step_open = False
|
||||
|
||||
if sdk_message.subtype == "success":
|
||||
responses.append(StreamFinish())
|
||||
elif sdk_message.subtype in ("error", "error_during_execution"):
|
||||
error_msg = getattr(sdk_message, "result", None) or "Unknown error"
|
||||
responses.append(
|
||||
StreamError(errorText=str(error_msg), code="sdk_error")
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
else:
|
||||
logger.warning(
|
||||
f"Unexpected ResultMessage subtype: {sdk_message.subtype}"
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
|
||||
else:
|
||||
logger.debug(f"Unhandled SDK message type: {type(sdk_message).__name__}")
|
||||
|
||||
return responses
|
||||
|
||||
def _ensure_text_started(self, responses: list[StreamBaseResponse]) -> None:
|
||||
"""Start (or restart) a text block if needed."""
|
||||
if not self.has_started_text or self.has_ended_text:
|
||||
if self.has_ended_text:
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_ended_text = False
|
||||
responses.append(StreamTextStart(id=self.text_block_id))
|
||||
self.has_started_text = True
|
||||
|
||||
def _end_text_if_open(self, responses: list[StreamBaseResponse]) -> None:
|
||||
"""End the current text block if one is open."""
|
||||
if self.has_started_text and not self.has_ended_text:
|
||||
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||
self.has_ended_text = True
|
||||
|
||||
|
||||
def _extract_tool_output(content: str | list[dict[str, str]] | None) -> str:
|
||||
"""Extract a string output from a ToolResultBlock's content field."""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
if isinstance(content, list):
|
||||
parts = [item.get("text", "") for item in content if item.get("type") == "text"]
|
||||
if parts:
|
||||
return "".join(parts)
|
||||
try:
|
||||
return json.dumps(content)
|
||||
except (TypeError, ValueError):
|
||||
return str(content)
|
||||
if content is None:
|
||||
return ""
|
||||
try:
|
||||
return json.dumps(content)
|
||||
except (TypeError, ValueError):
|
||||
return str(content)
|
||||
@@ -0,0 +1,366 @@
|
||||
"""Unit tests for the SDK response adapter."""
|
||||
|
||||
from claude_agent_sdk import (
|
||||
AssistantMessage,
|
||||
ResultMessage,
|
||||
SystemMessage,
|
||||
TextBlock,
|
||||
ToolResultBlock,
|
||||
ToolUseBlock,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
from backend.api.features.chat.response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamFinishStep,
|
||||
StreamStart,
|
||||
StreamStartStep,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
|
||||
from .response_adapter import SDKResponseAdapter
|
||||
from .tool_adapter import MCP_TOOL_PREFIX
|
||||
|
||||
|
||||
def _adapter() -> SDKResponseAdapter:
|
||||
a = SDKResponseAdapter(message_id="msg-1")
|
||||
a.set_task_id("task-1")
|
||||
return a
|
||||
|
||||
|
||||
# -- SystemMessage -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_system_init_emits_start_and_step():
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(SystemMessage(subtype="init", data={}))
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamStart)
|
||||
assert results[0].messageId == "msg-1"
|
||||
assert results[0].taskId == "task-1"
|
||||
assert isinstance(results[1], StreamStartStep)
|
||||
|
||||
|
||||
def test_system_non_init_emits_nothing():
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(SystemMessage(subtype="other", data={}))
|
||||
assert results == []
|
||||
|
||||
|
||||
# -- AssistantMessage with TextBlock -----------------------------------------
|
||||
|
||||
|
||||
def test_text_block_emits_step_start_and_delta():
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(content=[TextBlock(text="hello")], model="test")
|
||||
results = adapter.convert_message(msg)
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamTextStart)
|
||||
assert isinstance(results[2], StreamTextDelta)
|
||||
assert results[2].delta == "hello"
|
||||
|
||||
|
||||
def test_empty_text_block_emits_only_step():
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(content=[TextBlock(text="")], model="test")
|
||||
results = adapter.convert_message(msg)
|
||||
# Empty text skipped, but step still opens
|
||||
assert len(results) == 1
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
|
||||
|
||||
def test_multiple_text_deltas_reuse_block_id():
|
||||
adapter = _adapter()
|
||||
msg1 = AssistantMessage(content=[TextBlock(text="a")], model="test")
|
||||
msg2 = AssistantMessage(content=[TextBlock(text="b")], model="test")
|
||||
r1 = adapter.convert_message(msg1)
|
||||
r2 = adapter.convert_message(msg2)
|
||||
# First gets step+start+delta, second only delta (block & step already started)
|
||||
assert len(r1) == 3
|
||||
assert isinstance(r1[0], StreamStartStep)
|
||||
assert isinstance(r1[1], StreamTextStart)
|
||||
assert len(r2) == 1
|
||||
assert isinstance(r2[0], StreamTextDelta)
|
||||
assert r1[1].id == r2[0].id # same block ID
|
||||
|
||||
|
||||
# -- AssistantMessage with ToolUseBlock --------------------------------------
|
||||
|
||||
|
||||
def test_tool_use_emits_input_start_and_available():
|
||||
"""Tool names arrive with MCP prefix and should be stripped for the frontend."""
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(
|
||||
id="tool-1",
|
||||
name=f"{MCP_TOOL_PREFIX}find_agent",
|
||||
input={"q": "x"},
|
||||
)
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamToolInputStart)
|
||||
assert results[1].toolCallId == "tool-1"
|
||||
assert results[1].toolName == "find_agent" # prefix stripped
|
||||
assert isinstance(results[2], StreamToolInputAvailable)
|
||||
assert results[2].toolName == "find_agent" # prefix stripped
|
||||
assert results[2].input == {"q": "x"}
|
||||
|
||||
|
||||
def test_text_then_tool_ends_text_block():
|
||||
adapter = _adapter()
|
||||
text_msg = AssistantMessage(content=[TextBlock(text="thinking...")], model="test")
|
||||
tool_msg = AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
adapter.convert_message(text_msg) # opens step + text
|
||||
results = adapter.convert_message(tool_msg)
|
||||
# Step already open, so: TextEnd, ToolInputStart, ToolInputAvailable
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamTextEnd)
|
||||
assert isinstance(results[1], StreamToolInputStart)
|
||||
|
||||
|
||||
# -- UserMessage with ToolResultBlock ----------------------------------------
|
||||
|
||||
|
||||
def test_tool_result_emits_output_and_finish_step():
|
||||
adapter = _adapter()
|
||||
# First register the tool call (opens step) — SDK sends prefixed name
|
||||
tool_msg = AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}find_agent", input={})],
|
||||
model="test",
|
||||
)
|
||||
adapter.convert_message(tool_msg)
|
||||
|
||||
# Now send tool result
|
||||
result_msg = UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="found 3 agents")]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].toolCallId == "t1"
|
||||
assert results[0].toolName == "find_agent" # prefix stripped
|
||||
assert results[0].output == "found 3 agents"
|
||||
assert results[0].success is True
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_tool_result_error():
|
||||
adapter = _adapter()
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}run_agent", input={})
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
result_msg = UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="timeout", is_error=True)]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].success is False
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_tool_result_list_content():
|
||||
adapter = _adapter()
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
result_msg = UserMessage(
|
||||
content=[
|
||||
ToolResultBlock(
|
||||
tool_use_id="t1",
|
||||
content=[
|
||||
{"type": "text", "text": "line1"},
|
||||
{"type": "text", "text": "line2"},
|
||||
],
|
||||
)
|
||||
]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].output == "line1line2"
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_string_user_message_ignored():
|
||||
"""A plain string UserMessage (not tool results) produces no output."""
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(UserMessage(content="hello"))
|
||||
assert results == []
|
||||
|
||||
|
||||
# -- ResultMessage -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_result_success_emits_finish_step_and_finish():
|
||||
adapter = _adapter()
|
||||
# Start some text first (opens step)
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="done")], model="test")
|
||||
)
|
||||
msg = ResultMessage(
|
||||
subtype="success",
|
||||
duration_ms=100,
|
||||
duration_api_ms=50,
|
||||
is_error=False,
|
||||
num_turns=1,
|
||||
session_id="s1",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
# TextEnd + FinishStep + StreamFinish
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamTextEnd)
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
assert isinstance(results[2], StreamFinish)
|
||||
|
||||
|
||||
def test_result_error_emits_error_and_finish():
|
||||
adapter = _adapter()
|
||||
msg = ResultMessage(
|
||||
subtype="error",
|
||||
duration_ms=100,
|
||||
duration_api_ms=50,
|
||||
is_error=True,
|
||||
num_turns=0,
|
||||
session_id="s1",
|
||||
result="API rate limited",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
# No step was open, so no FinishStep — just Error + Finish
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamError)
|
||||
assert "API rate limited" in results[0].errorText
|
||||
assert isinstance(results[1], StreamFinish)
|
||||
|
||||
|
||||
# -- Text after tools (new block ID) ----------------------------------------
|
||||
|
||||
|
||||
def test_text_after_tool_gets_new_block_id():
|
||||
adapter = _adapter()
|
||||
# Text -> Tool -> ToolResult -> Text should get a new text block ID and step
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="before")], model="test")
|
||||
)
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
# Send tool result (closes step)
|
||||
adapter.convert_message(
|
||||
UserMessage(content=[ToolResultBlock(tool_use_id="t1", content="ok")])
|
||||
)
|
||||
results = adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="after")], model="test")
|
||||
)
|
||||
# Should get StreamStartStep (new step) + StreamTextStart (new block) + StreamTextDelta
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamTextStart)
|
||||
assert isinstance(results[2], StreamTextDelta)
|
||||
assert results[2].delta == "after"
|
||||
|
||||
|
||||
# -- Full conversation flow --------------------------------------------------
|
||||
|
||||
|
||||
def test_full_conversation_flow():
|
||||
"""Simulate a complete conversation: init -> text -> tool -> result -> text -> finish."""
|
||||
adapter = _adapter()
|
||||
all_responses: list[StreamBaseResponse] = []
|
||||
|
||||
# 1. Init
|
||||
all_responses.extend(
|
||||
adapter.convert_message(SystemMessage(subtype="init", data={}))
|
||||
)
|
||||
# 2. Assistant text
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="Let me search")], model="test")
|
||||
)
|
||||
)
|
||||
# 3. Tool use
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(
|
||||
id="t1",
|
||||
name=f"{MCP_TOOL_PREFIX}find_agent",
|
||||
input={"query": "email"},
|
||||
)
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
)
|
||||
# 4. Tool result
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="Found 2 agents")]
|
||||
)
|
||||
)
|
||||
)
|
||||
# 5. More text
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="I found 2")], model="test")
|
||||
)
|
||||
)
|
||||
# 6. Result
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
ResultMessage(
|
||||
subtype="success",
|
||||
duration_ms=500,
|
||||
duration_api_ms=400,
|
||||
is_error=False,
|
||||
num_turns=2,
|
||||
session_id="s1",
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
types = [type(r).__name__ for r in all_responses]
|
||||
assert types == [
|
||||
"StreamStart",
|
||||
"StreamStartStep", # step 1: text + tool call
|
||||
"StreamTextStart",
|
||||
"StreamTextDelta", # "Let me search"
|
||||
"StreamTextEnd", # closed before tool
|
||||
"StreamToolInputStart",
|
||||
"StreamToolInputAvailable",
|
||||
"StreamToolOutputAvailable", # tool result
|
||||
"StreamFinishStep", # step 1 closed after tool result
|
||||
"StreamStartStep", # step 2: continuation text
|
||||
"StreamTextStart", # new block after tool
|
||||
"StreamTextDelta", # "I found 2"
|
||||
"StreamTextEnd", # closed by result
|
||||
"StreamFinishStep", # step 2 closed
|
||||
"StreamFinish",
|
||||
]
|
||||
@@ -0,0 +1,335 @@
|
||||
"""Security hooks for Claude Agent SDK integration.
|
||||
|
||||
This module provides security hooks that validate tool calls before execution,
|
||||
ensuring multi-user isolation and preventing unauthorized operations.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from collections.abc import Callable
|
||||
from typing import Any, cast
|
||||
|
||||
from backend.api.features.chat.sdk.tool_adapter import MCP_TOOL_PREFIX
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Tools that are blocked entirely (CLI/system access).
|
||||
# "Bash" (capital) is the SDK built-in — it's NOT in allowed_tools but blocked
|
||||
# here as defence-in-depth. The agent uses mcp__copilot__bash_exec instead,
|
||||
# which has kernel-level network isolation (unshare --net).
|
||||
BLOCKED_TOOLS = {
|
||||
"Bash",
|
||||
"bash",
|
||||
"shell",
|
||||
"exec",
|
||||
"terminal",
|
||||
"command",
|
||||
}
|
||||
|
||||
# Tools allowed only when their path argument stays within the SDK workspace.
|
||||
# The SDK uses these to handle oversized tool results (writes to tool-results/
|
||||
# files, then reads them back) and for workspace file operations.
|
||||
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
|
||||
|
||||
# Dangerous patterns in tool inputs
|
||||
DANGEROUS_PATTERNS = [
|
||||
r"sudo",
|
||||
r"rm\s+-rf",
|
||||
r"dd\s+if=",
|
||||
r"/etc/passwd",
|
||||
r"/etc/shadow",
|
||||
r"chmod\s+777",
|
||||
r"curl\s+.*\|.*sh",
|
||||
r"wget\s+.*\|.*sh",
|
||||
r"eval\s*\(",
|
||||
r"exec\s*\(",
|
||||
r"__import__",
|
||||
r"os\.system",
|
||||
r"subprocess",
|
||||
]
|
||||
|
||||
|
||||
def _deny(reason: str) -> dict[str, Any]:
|
||||
"""Return a hook denial response."""
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": reason,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _validate_workspace_path(
|
||||
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that a workspace-scoped tool only accesses allowed paths.
|
||||
|
||||
Allowed directories:
|
||||
- The SDK working directory (``/tmp/copilot-<session>/``)
|
||||
- The SDK tool-results directory (``~/.claude/projects/…/tool-results/``)
|
||||
"""
|
||||
path = tool_input.get("file_path") or tool_input.get("path") or ""
|
||||
if not path:
|
||||
# Glob/Grep without a path default to cwd which is already sandboxed
|
||||
return {}
|
||||
|
||||
# Resolve relative paths against sdk_cwd (the SDK sets cwd so the LLM
|
||||
# naturally uses relative paths like "test.txt" instead of absolute ones).
|
||||
# Tilde paths (~/) are home-dir references, not relative — expand first.
|
||||
if path.startswith("~"):
|
||||
resolved = os.path.realpath(os.path.expanduser(path))
|
||||
elif not os.path.isabs(path) and sdk_cwd:
|
||||
resolved = os.path.realpath(os.path.join(sdk_cwd, path))
|
||||
else:
|
||||
resolved = os.path.realpath(path)
|
||||
|
||||
# Allow access within the SDK working directory
|
||||
if sdk_cwd:
|
||||
norm_cwd = os.path.realpath(sdk_cwd)
|
||||
if resolved.startswith(norm_cwd + os.sep) or resolved == norm_cwd:
|
||||
return {}
|
||||
|
||||
# Allow access to ~/.claude/projects/*/tool-results/ (big tool results)
|
||||
claude_dir = os.path.realpath(os.path.expanduser("~/.claude/projects"))
|
||||
tool_results_seg = os.sep + "tool-results" + os.sep
|
||||
if resolved.startswith(claude_dir + os.sep) and tool_results_seg in resolved:
|
||||
return {}
|
||||
|
||||
logger.warning(
|
||||
f"Blocked {tool_name} outside workspace: {path} (resolved={resolved})"
|
||||
)
|
||||
workspace_hint = f" Allowed workspace: {sdk_cwd}" if sdk_cwd else ""
|
||||
return _deny(
|
||||
f"[SECURITY] Tool '{tool_name}' can only access files within the workspace "
|
||||
f"directory.{workspace_hint} "
|
||||
"This is enforced by the platform and cannot be bypassed."
|
||||
)
|
||||
|
||||
|
||||
def _validate_tool_access(
|
||||
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that a tool call is allowed.
|
||||
|
||||
Returns:
|
||||
Empty dict to allow, or dict with hookSpecificOutput to deny
|
||||
"""
|
||||
# Block forbidden tools
|
||||
if tool_name in BLOCKED_TOOLS:
|
||||
logger.warning(f"Blocked tool access attempt: {tool_name}")
|
||||
return _deny(
|
||||
f"[SECURITY] Tool '{tool_name}' is blocked for security. "
|
||||
"This is enforced by the platform and cannot be bypassed. "
|
||||
"Use the CoPilot-specific MCP tools instead."
|
||||
)
|
||||
|
||||
# Workspace-scoped tools: allowed only within the SDK workspace directory
|
||||
if tool_name in WORKSPACE_SCOPED_TOOLS:
|
||||
return _validate_workspace_path(tool_name, tool_input, sdk_cwd)
|
||||
|
||||
# Check for dangerous patterns in tool input
|
||||
# Use json.dumps for predictable format (str() produces Python repr)
|
||||
input_str = json.dumps(tool_input) if tool_input else ""
|
||||
|
||||
for pattern in DANGEROUS_PATTERNS:
|
||||
if re.search(pattern, input_str, re.IGNORECASE):
|
||||
logger.warning(
|
||||
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
|
||||
)
|
||||
return _deny(
|
||||
"[SECURITY] Input contains a blocked pattern. "
|
||||
"This is enforced by the platform and cannot be bypassed."
|
||||
)
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def _validate_user_isolation(
|
||||
tool_name: str, tool_input: dict[str, Any], user_id: str | None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that tool calls respect user isolation."""
|
||||
# For workspace file tools, ensure path doesn't escape
|
||||
if "workspace" in tool_name.lower():
|
||||
path = tool_input.get("path", "") or tool_input.get("file_path", "")
|
||||
if path:
|
||||
# Check for path traversal
|
||||
if ".." in path or path.startswith("/"):
|
||||
logger.warning(
|
||||
f"Blocked path traversal attempt: {path} by user {user_id}"
|
||||
)
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": "Path traversal not allowed",
|
||||
}
|
||||
}
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def create_security_hooks(
|
||||
user_id: str | None,
|
||||
sdk_cwd: str | None = None,
|
||||
max_subtasks: int = 3,
|
||||
on_stop: Callable[[str, str], None] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create the security hooks configuration for Claude Agent SDK.
|
||||
|
||||
Includes security validation and observability hooks:
|
||||
- PreToolUse: Security validation before tool execution
|
||||
- PostToolUse: Log successful tool executions
|
||||
- PostToolUseFailure: Log and handle failed tool executions
|
||||
- PreCompact: Log context compaction events (SDK handles compaction automatically)
|
||||
- Stop: Capture transcript path for stateless resume (when *on_stop* is provided)
|
||||
|
||||
Args:
|
||||
user_id: Current user ID for isolation validation
|
||||
sdk_cwd: SDK working directory for workspace-scoped tool validation
|
||||
max_subtasks: Maximum Task (sub-agent) spawns allowed per session
|
||||
on_stop: Callback ``(transcript_path, sdk_session_id)`` invoked when
|
||||
the SDK finishes processing — used to read the JSONL transcript
|
||||
before the CLI process exits.
|
||||
|
||||
Returns:
|
||||
Hooks configuration dict for ClaudeAgentOptions
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import HookMatcher
|
||||
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||
|
||||
# Per-session counter for Task sub-agent spawns
|
||||
task_spawn_count = 0
|
||||
|
||||
async def pre_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Combined pre-tool-use validation hook."""
|
||||
nonlocal task_spawn_count
|
||||
_ = context # unused but required by signature
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||
|
||||
# Rate-limit Task (sub-agent) spawns per session
|
||||
if tool_name == "Task":
|
||||
task_spawn_count += 1
|
||||
if task_spawn_count > max_subtasks:
|
||||
logger.warning(
|
||||
f"[SDK] Task limit reached ({max_subtasks}), user={user_id}"
|
||||
)
|
||||
return cast(
|
||||
SyncHookJSONOutput,
|
||||
_deny(
|
||||
f"Maximum {max_subtasks} sub-tasks per session. "
|
||||
"Please continue in the main conversation."
|
||||
),
|
||||
)
|
||||
|
||||
# Strip MCP prefix for consistent validation
|
||||
is_copilot_tool = tool_name.startswith(MCP_TOOL_PREFIX)
|
||||
clean_name = tool_name.removeprefix(MCP_TOOL_PREFIX)
|
||||
|
||||
# Only block non-CoPilot tools; our MCP-registered tools
|
||||
# (including Read for oversized results) are already sandboxed.
|
||||
if not is_copilot_tool:
|
||||
result = _validate_tool_access(clean_name, tool_input, sdk_cwd)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
# Validate user isolation
|
||||
result = _validate_user_isolation(clean_name, tool_input, user_id)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log successful tool executions for observability."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_failure_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log failed tool executions for debugging."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
error = input_data.get("error", "Unknown error")
|
||||
logger.warning(
|
||||
f"[SDK] Tool failed: {tool_name}, error={error}, "
|
||||
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def pre_compact_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log when SDK triggers context compaction.
|
||||
|
||||
The SDK automatically compacts conversation history when it grows too large.
|
||||
This hook provides visibility into when compaction happens.
|
||||
"""
|
||||
_ = context, tool_use_id
|
||||
trigger = input_data.get("trigger", "auto")
|
||||
logger.info(
|
||||
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
# --- Stop hook: capture transcript path for stateless resume ---
|
||||
async def stop_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Capture transcript path when SDK finishes processing.
|
||||
|
||||
The Stop hook fires while the CLI process is still alive, giving us
|
||||
a reliable window to read the JSONL transcript before SIGTERM.
|
||||
"""
|
||||
_ = context, tool_use_id
|
||||
transcript_path = cast(str, input_data.get("transcript_path", ""))
|
||||
sdk_session_id = cast(str, input_data.get("session_id", ""))
|
||||
|
||||
if transcript_path and on_stop:
|
||||
logger.info(
|
||||
f"[SDK] Stop hook: transcript_path={transcript_path}, "
|
||||
f"sdk_session_id={sdk_session_id[:12]}..."
|
||||
)
|
||||
on_stop(transcript_path, sdk_session_id)
|
||||
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
hooks: dict[str, Any] = {
|
||||
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
|
||||
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
|
||||
"PostToolUseFailure": [
|
||||
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
|
||||
],
|
||||
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
|
||||
}
|
||||
|
||||
if on_stop is not None:
|
||||
hooks["Stop"] = [HookMatcher(matcher=None, hooks=[stop_hook])]
|
||||
|
||||
return hooks
|
||||
except ImportError:
|
||||
# Fallback for when SDK isn't available - return empty hooks
|
||||
logger.warning("claude-agent-sdk not available, security hooks disabled")
|
||||
return {}
|
||||
@@ -0,0 +1,165 @@
|
||||
"""Unit tests for SDK security hooks."""
|
||||
|
||||
import os
|
||||
|
||||
from .security_hooks import _validate_tool_access, _validate_user_isolation
|
||||
|
||||
SDK_CWD = "/tmp/copilot-abc123"
|
||||
|
||||
|
||||
def _is_denied(result: dict) -> bool:
|
||||
hook = result.get("hookSpecificOutput", {})
|
||||
return hook.get("permissionDecision") == "deny"
|
||||
|
||||
|
||||
# -- Blocked tools -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_blocked_tools_denied():
|
||||
for tool in ("bash", "shell", "exec", "terminal", "command"):
|
||||
result = _validate_tool_access(tool, {})
|
||||
assert _is_denied(result), f"{tool} should be blocked"
|
||||
|
||||
|
||||
def test_unknown_tool_allowed():
|
||||
result = _validate_tool_access("SomeCustomTool", {})
|
||||
assert result == {}
|
||||
|
||||
|
||||
# -- Workspace-scoped tools --------------------------------------------------
|
||||
|
||||
|
||||
def test_read_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_write_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Write", {"file_path": f"{SDK_CWD}/output.json"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_edit_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Edit", {"file_path": f"{SDK_CWD}/src/main.py"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_glob_within_workspace_allowed():
|
||||
result = _validate_tool_access("Glob", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_grep_within_workspace_allowed():
|
||||
result = _validate_tool_access("Grep", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_outside_workspace_denied():
|
||||
result = _validate_tool_access(
|
||||
"Read", {"file_path": "/etc/passwd"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_write_outside_workspace_denied():
|
||||
result = _validate_tool_access(
|
||||
"Write", {"file_path": "/home/user/secrets.txt"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_traversal_attack_denied():
|
||||
result = _validate_tool_access(
|
||||
"Read",
|
||||
{"file_path": f"{SDK_CWD}/../../etc/passwd"},
|
||||
sdk_cwd=SDK_CWD,
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_no_path_allowed():
|
||||
"""Glob/Grep without a path argument defaults to cwd — should pass."""
|
||||
result = _validate_tool_access("Glob", {}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_no_cwd_denies_absolute():
|
||||
"""If no sdk_cwd is set, absolute paths are denied."""
|
||||
result = _validate_tool_access("Read", {"file_path": "/tmp/anything"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Tool-results directory --------------------------------------------------
|
||||
|
||||
|
||||
def test_read_tool_results_allowed():
|
||||
home = os.path.expanduser("~")
|
||||
path = f"{home}/.claude/projects/-tmp-copilot-abc123/tool-results/12345.txt"
|
||||
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_claude_projects_without_tool_results_denied():
|
||||
home = os.path.expanduser("~")
|
||||
path = f"{home}/.claude/projects/-tmp-copilot-abc123/settings.json"
|
||||
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Built-in Bash is blocked (use bash_exec MCP tool instead) ---------------
|
||||
|
||||
|
||||
def test_bash_builtin_always_blocked():
|
||||
"""SDK built-in Bash is blocked — bash_exec MCP tool with bubblewrap is used instead."""
|
||||
result = _validate_tool_access("Bash", {"command": "echo hello"}, sdk_cwd=SDK_CWD)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Dangerous patterns ------------------------------------------------------
|
||||
|
||||
|
||||
def test_dangerous_pattern_blocked():
|
||||
result = _validate_tool_access("SomeTool", {"cmd": "sudo rm -rf /"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_subprocess_pattern_blocked():
|
||||
result = _validate_tool_access("SomeTool", {"code": "subprocess.run(...)"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- User isolation ----------------------------------------------------------
|
||||
|
||||
|
||||
def test_workspace_path_traversal_blocked():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "../../../etc/shadow"}, user_id="user-1"
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_workspace_absolute_path_blocked():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "/etc/passwd"}, user_id="user-1"
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_workspace_normal_path_allowed():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "src/main.py"}, user_id="user-1"
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_non_workspace_tool_passes_isolation():
|
||||
result = _validate_user_isolation(
|
||||
"find_agent", {"query": "email"}, user_id="user-1"
|
||||
)
|
||||
assert result == {}
|
||||
@@ -0,0 +1,751 @@
|
||||
"""Claude Agent SDK service layer for CoPilot chat completions."""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from .. import stream_registry
|
||||
from ..config import ChatConfig
|
||||
from ..model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
get_chat_session,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
)
|
||||
from ..response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from ..service import (
|
||||
_build_system_prompt,
|
||||
_execute_long_running_tool_with_streaming,
|
||||
_generate_session_title,
|
||||
)
|
||||
from ..tools.models import OperationPendingResponse, OperationStartedResponse
|
||||
from ..tools.sandbox import WORKSPACE_PREFIX, make_session_path
|
||||
from ..tracking import track_user_message
|
||||
from .response_adapter import SDKResponseAdapter
|
||||
from .security_hooks import create_security_hooks
|
||||
from .tool_adapter import (
|
||||
COPILOT_TOOL_NAMES,
|
||||
LongRunningCallback,
|
||||
create_copilot_mcp_server,
|
||||
set_execution_context,
|
||||
)
|
||||
from .transcript import (
|
||||
download_transcript,
|
||||
read_transcript_file,
|
||||
upload_transcript,
|
||||
validate_transcript,
|
||||
write_transcript_to_tempfile,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Set to hold background tasks to prevent garbage collection
|
||||
_background_tasks: set[asyncio.Task[Any]] = set()
|
||||
|
||||
|
||||
@dataclass
|
||||
class CapturedTranscript:
|
||||
"""Info captured by the SDK Stop hook for stateless --resume."""
|
||||
|
||||
path: str = ""
|
||||
sdk_session_id: str = ""
|
||||
|
||||
@property
|
||||
def available(self) -> bool:
|
||||
return bool(self.path)
|
||||
|
||||
|
||||
_SDK_CWD_PREFIX = WORKSPACE_PREFIX
|
||||
|
||||
# Appended to the system prompt to inform the agent about available tools.
|
||||
# The SDK built-in Bash is NOT available — use mcp__copilot__bash_exec instead,
|
||||
# which has kernel-level network isolation (unshare --net).
|
||||
_SDK_TOOL_SUPPLEMENT = """
|
||||
|
||||
## Tool notes
|
||||
|
||||
- The SDK built-in Bash tool is NOT available. Use the `bash_exec` MCP tool
|
||||
for shell commands — it runs in a network-isolated sandbox.
|
||||
- **Shared workspace**: The SDK Read/Write tools and `bash_exec` share the
|
||||
same working directory. Files created by one are readable by the other.
|
||||
These files are **ephemeral** — they exist only for the current session.
|
||||
- **Persistent storage**: Use `write_workspace_file` / `read_workspace_file`
|
||||
for files that should persist across sessions (stored in cloud storage).
|
||||
- Long-running tools (create_agent, edit_agent, etc.) are handled
|
||||
asynchronously. You will receive an immediate response; the actual result
|
||||
is delivered to the user via a background stream.
|
||||
"""
|
||||
|
||||
|
||||
def _build_long_running_callback(user_id: str | None) -> LongRunningCallback:
|
||||
"""Build a callback that delegates long-running tools to the non-SDK infrastructure.
|
||||
|
||||
Long-running tools (create_agent, edit_agent, etc.) are delegated to the
|
||||
existing background infrastructure: stream_registry (Redis Streams),
|
||||
database persistence, and SSE reconnection. This means results survive
|
||||
page refreshes / pod restarts, and the frontend shows the proper loading
|
||||
widget with progress updates.
|
||||
|
||||
The returned callback matches the ``LongRunningCallback`` signature:
|
||||
``(tool_name, args, session) -> MCP response dict``.
|
||||
"""
|
||||
|
||||
async def _callback(
|
||||
tool_name: str, args: dict[str, Any], session: ChatSession
|
||||
) -> dict[str, Any]:
|
||||
operation_id = str(uuid.uuid4())
|
||||
task_id = str(uuid.uuid4())
|
||||
tool_call_id = f"sdk-{uuid.uuid4().hex[:12]}"
|
||||
session_id = session.session_id
|
||||
|
||||
# --- Build user-friendly messages (matches non-SDK service) ---
|
||||
if tool_name == "create_agent":
|
||||
desc = args.get("description", "")
|
||||
desc_preview = (desc[:100] + "...") if len(desc) > 100 else desc
|
||||
pending_msg = (
|
||||
f"Creating your agent: {desc_preview}"
|
||||
if desc_preview
|
||||
else "Creating agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent creation started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
elif tool_name == "edit_agent":
|
||||
changes = args.get("changes", "")
|
||||
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
|
||||
pending_msg = (
|
||||
f"Editing agent: {changes_preview}"
|
||||
if changes_preview
|
||||
else "Editing agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent edit started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
else:
|
||||
pending_msg = f"Running {tool_name}... This may take a few minutes."
|
||||
started_msg = (
|
||||
f"{tool_name} started. You can close this tab - "
|
||||
"check back in a few minutes."
|
||||
)
|
||||
|
||||
# --- Register task in Redis for SSE reconnection ---
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# --- Save OperationPendingResponse to chat history ---
|
||||
pending_message = ChatMessage(
|
||||
role="tool",
|
||||
content=OperationPendingResponse(
|
||||
message=pending_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
).model_dump_json(),
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
session.messages.append(pending_message)
|
||||
await upsert_chat_session(session)
|
||||
|
||||
# --- Spawn background task (reuses non-SDK infrastructure) ---
|
||||
bg_task = asyncio.create_task(
|
||||
_execute_long_running_tool_with_streaming(
|
||||
tool_name=tool_name,
|
||||
parameters=args,
|
||||
tool_call_id=tool_call_id,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
)
|
||||
_background_tasks.add(bg_task)
|
||||
bg_task.add_done_callback(_background_tasks.discard)
|
||||
await stream_registry.set_task_asyncio_task(task_id, bg_task)
|
||||
|
||||
logger.info(
|
||||
f"[SDK] Long-running tool {tool_name} delegated to background "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
|
||||
# --- Return OperationStartedResponse as MCP tool result ---
|
||||
# This flows through SDK → response adapter → frontend, triggering
|
||||
# the loading widget with SSE reconnection support.
|
||||
started_json = OperationStartedResponse(
|
||||
message=started_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
task_id=task_id,
|
||||
).model_dump_json()
|
||||
|
||||
return {
|
||||
"content": [{"type": "text", "text": started_json}],
|
||||
"isError": False,
|
||||
}
|
||||
|
||||
return _callback
|
||||
|
||||
|
||||
def _resolve_sdk_model() -> str | None:
|
||||
"""Resolve the model name for the Claude Agent SDK CLI.
|
||||
|
||||
Uses ``config.claude_agent_model`` if set, otherwise derives from
|
||||
``config.model`` by stripping the OpenRouter provider prefix (e.g.,
|
||||
``"anthropic/claude-opus-4.6"`` → ``"claude-opus-4.6"``).
|
||||
"""
|
||||
if config.claude_agent_model:
|
||||
return config.claude_agent_model
|
||||
model = config.model
|
||||
if "/" in model:
|
||||
return model.split("/", 1)[1]
|
||||
return model
|
||||
|
||||
|
||||
def _build_sdk_env() -> dict[str, str]:
|
||||
"""Build env vars for the SDK CLI process.
|
||||
|
||||
Routes API calls through OpenRouter (or a custom base_url) using
|
||||
the same ``config.api_key`` / ``config.base_url`` as the non-SDK path.
|
||||
This gives per-call token and cost tracking on the OpenRouter dashboard.
|
||||
|
||||
Only overrides ``ANTHROPIC_API_KEY`` when a valid proxy URL and auth
|
||||
token are both present — otherwise returns an empty dict so the SDK
|
||||
falls back to its default credentials.
|
||||
"""
|
||||
env: dict[str, str] = {}
|
||||
if config.api_key and config.base_url:
|
||||
# Strip /v1 suffix — SDK expects the base URL without a version path
|
||||
base = config.base_url.rstrip("/")
|
||||
if base.endswith("/v1"):
|
||||
base = base[:-3]
|
||||
if not base or not base.startswith("http"):
|
||||
# Invalid base_url — don't override SDK defaults
|
||||
return env
|
||||
env["ANTHROPIC_BASE_URL"] = base
|
||||
env["ANTHROPIC_AUTH_TOKEN"] = config.api_key
|
||||
# Must be explicitly empty so the CLI uses AUTH_TOKEN instead
|
||||
env["ANTHROPIC_API_KEY"] = ""
|
||||
return env
|
||||
|
||||
|
||||
def _make_sdk_cwd(session_id: str) -> str:
|
||||
"""Create a safe, session-specific working directory path.
|
||||
|
||||
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
|
||||
(single source of truth for path sanitization) and adds a defence-in-depth
|
||||
assertion.
|
||||
"""
|
||||
cwd = make_session_path(session_id)
|
||||
# Defence-in-depth: normpath + startswith is a CodeQL-recognised sanitizer
|
||||
cwd = os.path.normpath(cwd)
|
||||
if not cwd.startswith(_SDK_CWD_PREFIX):
|
||||
raise ValueError(f"SDK cwd escaped prefix: {cwd}")
|
||||
return cwd
|
||||
|
||||
|
||||
def _cleanup_sdk_tool_results(cwd: str) -> None:
|
||||
"""Remove SDK tool-result files for a specific session working directory.
|
||||
|
||||
The SDK creates tool-result files under ~/.claude/projects/<encoded-cwd>/tool-results/.
|
||||
We clean only the specific cwd's results to avoid race conditions between
|
||||
concurrent sessions.
|
||||
|
||||
Security: cwd MUST be created by _make_sdk_cwd() which sanitizes session_id.
|
||||
"""
|
||||
import shutil
|
||||
|
||||
# Validate cwd is under the expected prefix
|
||||
normalized = os.path.normpath(cwd)
|
||||
if not normalized.startswith(_SDK_CWD_PREFIX):
|
||||
logger.warning(f"[SDK] Rejecting cleanup for path outside workspace: {cwd}")
|
||||
return
|
||||
|
||||
# SDK encodes the cwd path by replacing '/' with '-'
|
||||
encoded_cwd = normalized.replace("/", "-")
|
||||
|
||||
# Construct the project directory path (known-safe home expansion)
|
||||
claude_projects = os.path.expanduser("~/.claude/projects")
|
||||
project_dir = os.path.join(claude_projects, encoded_cwd)
|
||||
|
||||
# Security check 3: Validate project_dir is under ~/.claude/projects
|
||||
project_dir = os.path.normpath(project_dir)
|
||||
if not project_dir.startswith(claude_projects):
|
||||
logger.warning(
|
||||
f"[SDK] Rejecting cleanup for escaped project path: {project_dir}"
|
||||
)
|
||||
return
|
||||
|
||||
results_dir = os.path.join(project_dir, "tool-results")
|
||||
if os.path.isdir(results_dir):
|
||||
for filename in os.listdir(results_dir):
|
||||
file_path = os.path.join(results_dir, filename)
|
||||
try:
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
# Also clean up the temp cwd directory itself
|
||||
try:
|
||||
shutil.rmtree(normalized, ignore_errors=True)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
|
||||
async def _compress_conversation_history(
|
||||
session: ChatSession,
|
||||
) -> list[ChatMessage]:
|
||||
"""Compress prior conversation messages if they exceed the token threshold.
|
||||
|
||||
Uses the shared compress_context() from prompt.py which supports:
|
||||
- LLM summarization of old messages (keeps recent ones intact)
|
||||
- Progressive content truncation as fallback
|
||||
- Middle-out deletion as last resort
|
||||
|
||||
Returns the compressed prior messages (everything except the current message).
|
||||
"""
|
||||
prior = session.messages[:-1]
|
||||
if len(prior) < 2:
|
||||
return prior
|
||||
|
||||
from backend.util.prompt import compress_context
|
||||
|
||||
# Convert ChatMessages to dicts for compress_context
|
||||
messages_dict = []
|
||||
for msg in prior:
|
||||
msg_dict: dict[str, Any] = {"role": msg.role}
|
||||
if msg.content:
|
||||
msg_dict["content"] = msg.content
|
||||
if msg.tool_calls:
|
||||
msg_dict["tool_calls"] = msg.tool_calls
|
||||
if msg.tool_call_id:
|
||||
msg_dict["tool_call_id"] = msg.tool_call_id
|
||||
messages_dict.append(msg_dict)
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
async with openai.AsyncOpenAI(
|
||||
api_key=config.api_key, base_url=config.base_url, timeout=30.0
|
||||
) as client:
|
||||
result = await compress_context(
|
||||
messages=messages_dict,
|
||||
model=config.model,
|
||||
client=client,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"[SDK] Context compression with LLM failed: {e}")
|
||||
# Fall back to truncation-only (no LLM summarization)
|
||||
result = await compress_context(
|
||||
messages=messages_dict,
|
||||
model=config.model,
|
||||
client=None,
|
||||
)
|
||||
|
||||
if result.was_compacted:
|
||||
logger.info(
|
||||
f"[SDK] Context compacted: {result.original_token_count} -> "
|
||||
f"{result.token_count} tokens "
|
||||
f"({result.messages_summarized} summarized, "
|
||||
f"{result.messages_dropped} dropped)"
|
||||
)
|
||||
# Convert compressed dicts back to ChatMessages
|
||||
return [
|
||||
ChatMessage(
|
||||
role=m["role"],
|
||||
content=m.get("content"),
|
||||
tool_calls=m.get("tool_calls"),
|
||||
tool_call_id=m.get("tool_call_id"),
|
||||
)
|
||||
for m in result.messages
|
||||
]
|
||||
|
||||
return prior
|
||||
|
||||
|
||||
def _format_conversation_context(messages: list[ChatMessage]) -> str | None:
|
||||
"""Format conversation messages into a context prefix for the user message.
|
||||
|
||||
Returns a string like:
|
||||
<conversation_history>
|
||||
User: hello
|
||||
You responded: Hi! How can I help?
|
||||
</conversation_history>
|
||||
|
||||
Returns None if there are no messages to format.
|
||||
"""
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
lines: list[str] = []
|
||||
for msg in messages:
|
||||
if not msg.content:
|
||||
continue
|
||||
if msg.role == "user":
|
||||
lines.append(f"User: {msg.content}")
|
||||
elif msg.role == "assistant":
|
||||
lines.append(f"You responded: {msg.content}")
|
||||
# Skip tool messages — they're internal details
|
||||
|
||||
if not lines:
|
||||
return None
|
||||
|
||||
return "<conversation_history>\n" + "\n".join(lines) + "\n</conversation_history>"
|
||||
|
||||
|
||||
async def stream_chat_completion_sdk(
|
||||
session_id: str,
|
||||
message: str | None = None,
|
||||
tool_call_response: str | None = None, # noqa: ARG001
|
||||
is_user_message: bool = True,
|
||||
user_id: str | None = None,
|
||||
retry_count: int = 0, # noqa: ARG001
|
||||
session: ChatSession | None = None,
|
||||
context: dict[str, str] | None = None, # noqa: ARG001
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Stream chat completion using Claude Agent SDK.
|
||||
|
||||
Drop-in replacement for stream_chat_completion with improved reliability.
|
||||
"""
|
||||
|
||||
if session is None:
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
|
||||
if not session:
|
||||
raise NotFoundError(
|
||||
f"Session {session_id} not found. Please create a new session first."
|
||||
)
|
||||
|
||||
if message:
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="user" if is_user_message else "assistant", content=message
|
||||
)
|
||||
)
|
||||
if is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id, session_id=session_id, message_length=len(message)
|
||||
)
|
||||
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
# Generate title for new sessions (first user message)
|
||||
if is_user_message and not session.title:
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
if len(user_messages) == 1:
|
||||
first_message = user_messages[0].content or message or ""
|
||||
if first_message:
|
||||
task = asyncio.create_task(
|
||||
_update_title_async(session_id, first_message, user_id)
|
||||
)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
|
||||
# Build system prompt (reuses non-SDK path with Langfuse support)
|
||||
has_history = len(session.messages) > 1
|
||||
system_prompt, _ = await _build_system_prompt(
|
||||
user_id, has_conversation_history=has_history
|
||||
)
|
||||
system_prompt += _SDK_TOOL_SUPPLEMENT
|
||||
message_id = str(uuid.uuid4())
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
yield StreamStart(messageId=message_id, taskId=task_id)
|
||||
|
||||
stream_completed = False
|
||||
# Initialise sdk_cwd before the try so the finally can reference it
|
||||
# even if _make_sdk_cwd raises (in that case it stays as "").
|
||||
sdk_cwd = ""
|
||||
use_resume = False
|
||||
|
||||
try:
|
||||
# Use a session-specific temp dir to avoid cleanup race conditions
|
||||
# between concurrent sessions.
|
||||
sdk_cwd = _make_sdk_cwd(session_id)
|
||||
os.makedirs(sdk_cwd, exist_ok=True)
|
||||
|
||||
set_execution_context(
|
||||
user_id,
|
||||
session,
|
||||
long_running_callback=_build_long_running_callback(user_id),
|
||||
)
|
||||
try:
|
||||
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
|
||||
|
||||
# Fail fast when no API credentials are available at all
|
||||
sdk_env = _build_sdk_env()
|
||||
if not sdk_env and not os.environ.get("ANTHROPIC_API_KEY"):
|
||||
raise RuntimeError(
|
||||
"No API key configured. Set OPEN_ROUTER_API_KEY "
|
||||
"(or CHAT_API_KEY) for OpenRouter routing, "
|
||||
"or ANTHROPIC_API_KEY for direct Anthropic access."
|
||||
)
|
||||
|
||||
mcp_server = create_copilot_mcp_server()
|
||||
|
||||
sdk_model = _resolve_sdk_model()
|
||||
|
||||
# --- Transcript capture via Stop hook ---
|
||||
captured_transcript = CapturedTranscript()
|
||||
|
||||
def _on_stop(transcript_path: str, sdk_session_id: str) -> None:
|
||||
captured_transcript.path = transcript_path
|
||||
captured_transcript.sdk_session_id = sdk_session_id
|
||||
|
||||
security_hooks = create_security_hooks(
|
||||
user_id,
|
||||
sdk_cwd=sdk_cwd,
|
||||
max_subtasks=config.claude_agent_max_subtasks,
|
||||
on_stop=_on_stop if config.claude_agent_use_resume else None,
|
||||
)
|
||||
|
||||
# --- Resume strategy: download transcript from bucket ---
|
||||
resume_file: str | None = None
|
||||
use_resume = False
|
||||
|
||||
if config.claude_agent_use_resume and user_id and len(session.messages) > 1:
|
||||
transcript_content = await download_transcript(user_id, session_id)
|
||||
if transcript_content and validate_transcript(transcript_content):
|
||||
resume_file = write_transcript_to_tempfile(
|
||||
transcript_content, session_id, sdk_cwd
|
||||
)
|
||||
if resume_file:
|
||||
use_resume = True
|
||||
logger.info(
|
||||
f"[SDK] Using --resume with transcript "
|
||||
f"({len(transcript_content)} bytes)"
|
||||
)
|
||||
|
||||
sdk_options_kwargs: dict[str, Any] = {
|
||||
"system_prompt": system_prompt,
|
||||
"mcp_servers": {"copilot": mcp_server},
|
||||
"allowed_tools": COPILOT_TOOL_NAMES,
|
||||
"disallowed_tools": ["Bash"],
|
||||
"hooks": security_hooks,
|
||||
"cwd": sdk_cwd,
|
||||
"max_buffer_size": config.claude_agent_max_buffer_size,
|
||||
}
|
||||
if sdk_env:
|
||||
sdk_options_kwargs["model"] = sdk_model
|
||||
sdk_options_kwargs["env"] = sdk_env
|
||||
if use_resume and resume_file:
|
||||
sdk_options_kwargs["resume"] = resume_file
|
||||
|
||||
options = ClaudeAgentOptions(**sdk_options_kwargs) # type: ignore[arg-type]
|
||||
|
||||
adapter = SDKResponseAdapter(message_id=message_id)
|
||||
adapter.set_task_id(task_id)
|
||||
|
||||
async with ClaudeSDKClient(options=options) as client:
|
||||
current_message = message or ""
|
||||
if not current_message and session.messages:
|
||||
last_user = [m for m in session.messages if m.role == "user"]
|
||||
if last_user:
|
||||
current_message = last_user[-1].content or ""
|
||||
|
||||
if not current_message.strip():
|
||||
yield StreamError(
|
||||
errorText="Message cannot be empty.",
|
||||
code="empty_prompt",
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# Build query: with --resume the CLI already has full
|
||||
# context, so we only send the new message. Without
|
||||
# resume, compress history into a context prefix.
|
||||
query_message = current_message
|
||||
if not use_resume and len(session.messages) > 1:
|
||||
logger.warning(
|
||||
f"[SDK] Using compression fallback for session "
|
||||
f"{session_id} ({len(session.messages)} messages) — "
|
||||
f"no transcript available for --resume"
|
||||
)
|
||||
compressed = await _compress_conversation_history(session)
|
||||
history_context = _format_conversation_context(compressed)
|
||||
if history_context:
|
||||
query_message = (
|
||||
f"{history_context}\n\n"
|
||||
f"Now, the user says:\n{current_message}"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"[SDK] Sending query ({len(session.messages)} msgs in session)"
|
||||
)
|
||||
logger.debug(f"[SDK] Query preview: {current_message[:80]!r}")
|
||||
await client.query(query_message, session_id=session_id)
|
||||
|
||||
assistant_response = ChatMessage(role="assistant", content="")
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
has_appended_assistant = False
|
||||
has_tool_results = False
|
||||
|
||||
async for sdk_msg in client.receive_messages():
|
||||
logger.debug(
|
||||
f"[SDK] Received: {type(sdk_msg).__name__} "
|
||||
f"{getattr(sdk_msg, 'subtype', '')}"
|
||||
)
|
||||
for response in adapter.convert_message(sdk_msg):
|
||||
if isinstance(response, StreamStart):
|
||||
continue
|
||||
|
||||
yield response
|
||||
|
||||
if isinstance(response, StreamTextDelta):
|
||||
delta = response.delta or ""
|
||||
# After tool results, start a new assistant
|
||||
# message for the post-tool text.
|
||||
if has_tool_results and has_appended_assistant:
|
||||
assistant_response = ChatMessage(
|
||||
role="assistant", content=delta
|
||||
)
|
||||
accumulated_tool_calls = []
|
||||
has_appended_assistant = False
|
||||
has_tool_results = False
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
else:
|
||||
assistant_response.content = (
|
||||
assistant_response.content or ""
|
||||
) + delta
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
elif isinstance(response, StreamToolInputAvailable):
|
||||
accumulated_tool_calls.append(
|
||||
{
|
||||
"id": response.toolCallId,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response.toolName,
|
||||
"arguments": json.dumps(response.input or {}),
|
||||
},
|
||||
}
|
||||
)
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
elif isinstance(response, StreamToolOutputAvailable):
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=(
|
||||
response.output
|
||||
if isinstance(response.output, str)
|
||||
else str(response.output)
|
||||
),
|
||||
tool_call_id=response.toolCallId,
|
||||
)
|
||||
)
|
||||
has_tool_results = True
|
||||
|
||||
elif isinstance(response, StreamFinish):
|
||||
stream_completed = True
|
||||
|
||||
if stream_completed:
|
||||
break
|
||||
|
||||
if (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
) and not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
|
||||
# --- Capture transcript while CLI is still alive ---
|
||||
# Must happen INSIDE async with: close() sends SIGTERM
|
||||
# which kills the CLI before it can flush the JSONL.
|
||||
if (
|
||||
config.claude_agent_use_resume
|
||||
and user_id
|
||||
and captured_transcript.available
|
||||
):
|
||||
# Give CLI time to flush JSONL writes before we read
|
||||
await asyncio.sleep(0.5)
|
||||
raw_transcript = read_transcript_file(captured_transcript.path)
|
||||
if raw_transcript:
|
||||
task = asyncio.create_task(
|
||||
_upload_transcript_bg(user_id, session_id, raw_transcript)
|
||||
)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
else:
|
||||
logger.debug("[SDK] Stop hook fired but transcript not usable")
|
||||
|
||||
except ImportError:
|
||||
raise RuntimeError(
|
||||
"claude-agent-sdk is not installed. "
|
||||
"Disable SDK mode (CHAT_USE_CLAUDE_AGENT_SDK=false) "
|
||||
"to use the OpenAI-compatible fallback."
|
||||
)
|
||||
|
||||
await upsert_chat_session(session)
|
||||
logger.debug(
|
||||
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
|
||||
)
|
||||
if not stream_completed:
|
||||
yield StreamFinish()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[SDK] Error: {e}", exc_info=True)
|
||||
try:
|
||||
await upsert_chat_session(session)
|
||||
except Exception as save_err:
|
||||
logger.error(f"[SDK] Failed to save session on error: {save_err}")
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="sdk_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
finally:
|
||||
if sdk_cwd:
|
||||
_cleanup_sdk_tool_results(sdk_cwd)
|
||||
|
||||
|
||||
async def _upload_transcript_bg(
|
||||
user_id: str, session_id: str, raw_content: str
|
||||
) -> None:
|
||||
"""Background task to strip progress entries and upload transcript."""
|
||||
try:
|
||||
await upload_transcript(user_id, session_id, raw_content)
|
||||
except Exception as e:
|
||||
logger.error(f"[SDK] Failed to upload transcript for {session_id}: {e}")
|
||||
|
||||
|
||||
async def _update_title_async(
|
||||
session_id: str, message: str, user_id: str | None = None
|
||||
) -> None:
|
||||
"""Background task to update session title."""
|
||||
try:
|
||||
title = await _generate_session_title(
|
||||
message, user_id=user_id, session_id=session_id
|
||||
)
|
||||
if title:
|
||||
await update_session_title(session_id, title)
|
||||
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
|
||||
except Exception as e:
|
||||
logger.warning(f"[SDK] Failed to update session title: {e}")
|
||||
@@ -0,0 +1,322 @@
|
||||
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
|
||||
|
||||
This module provides the adapter layer that converts existing BaseTool implementations
|
||||
into in-process MCP tools that can be used with the Claude Agent SDK.
|
||||
|
||||
Long-running tools (``is_long_running=True``) are delegated to the non-SDK
|
||||
background infrastructure (stream_registry, Redis persistence, SSE reconnection)
|
||||
via a callback provided by the service layer. This avoids wasteful SDK polling
|
||||
and makes results survive page refreshes.
|
||||
"""
|
||||
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import Awaitable, Callable
|
||||
from contextvars import ContextVar
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools import TOOL_REGISTRY
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Allowed base directory for the Read tool (SDK saves oversized tool results here).
|
||||
# Restricted to ~/.claude/projects/ and further validated to require "tool-results"
|
||||
# in the path — prevents reading settings, credentials, or other sensitive files.
|
||||
_SDK_PROJECTS_DIR = os.path.expanduser("~/.claude/projects/")
|
||||
|
||||
# MCP server naming - the SDK prefixes tool names as "mcp__{server_name}__{tool}"
|
||||
MCP_SERVER_NAME = "copilot"
|
||||
MCP_TOOL_PREFIX = f"mcp__{MCP_SERVER_NAME}__"
|
||||
|
||||
# Context variables to pass user/session info to tool execution
|
||||
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
|
||||
_current_session: ContextVar[ChatSession | None] = ContextVar(
|
||||
"current_session", default=None
|
||||
)
|
||||
# Stash for MCP tool outputs before the SDK potentially truncates them.
|
||||
# Keyed by tool_name → full output string. Consumed (popped) by the
|
||||
# response adapter when it builds StreamToolOutputAvailable.
|
||||
_pending_tool_outputs: ContextVar[dict[str, str]] = ContextVar(
|
||||
"pending_tool_outputs", default=None # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
# Callback type for delegating long-running tools to the non-SDK infrastructure.
|
||||
# Args: (tool_name, arguments, session) → MCP-formatted response dict.
|
||||
LongRunningCallback = Callable[
|
||||
[str, dict[str, Any], ChatSession], Awaitable[dict[str, Any]]
|
||||
]
|
||||
|
||||
# ContextVar so the service layer can inject the callback per-request.
|
||||
_long_running_callback: ContextVar[LongRunningCallback | None] = ContextVar(
|
||||
"long_running_callback", default=None
|
||||
)
|
||||
|
||||
|
||||
def set_execution_context(
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
long_running_callback: LongRunningCallback | None = None,
|
||||
) -> None:
|
||||
"""Set the execution context for tool calls.
|
||||
|
||||
This must be called before streaming begins to ensure tools have access
|
||||
to user_id and session information.
|
||||
|
||||
Args:
|
||||
user_id: Current user's ID.
|
||||
session: Current chat session.
|
||||
long_running_callback: Optional callback to delegate long-running tools
|
||||
to the non-SDK background infrastructure (stream_registry + Redis).
|
||||
"""
|
||||
_current_user_id.set(user_id)
|
||||
_current_session.set(session)
|
||||
_pending_tool_outputs.set({})
|
||||
_long_running_callback.set(long_running_callback)
|
||||
|
||||
|
||||
def get_execution_context() -> tuple[str | None, ChatSession | None]:
|
||||
"""Get the current execution context."""
|
||||
return (
|
||||
_current_user_id.get(),
|
||||
_current_session.get(),
|
||||
)
|
||||
|
||||
|
||||
def pop_pending_tool_output(tool_name: str) -> str | None:
|
||||
"""Pop and return the stashed full output for *tool_name*.
|
||||
|
||||
The SDK CLI may truncate large tool results (writing them to disk and
|
||||
replacing the content with a file reference). This stash keeps the
|
||||
original MCP output so the response adapter can forward it to the
|
||||
frontend for proper widget rendering.
|
||||
|
||||
Returns ``None`` if nothing was stashed for *tool_name*.
|
||||
"""
|
||||
pending = _pending_tool_outputs.get(None)
|
||||
if pending is None:
|
||||
return None
|
||||
return pending.pop(tool_name, None)
|
||||
|
||||
|
||||
async def _execute_tool_sync(
|
||||
base_tool: BaseTool,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
args: dict[str, Any],
|
||||
) -> dict[str, Any]:
|
||||
"""Execute a tool synchronously and return MCP-formatted response."""
|
||||
effective_id = f"sdk-{uuid.uuid4().hex[:12]}"
|
||||
result = await base_tool.execute(
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
tool_call_id=effective_id,
|
||||
**args,
|
||||
)
|
||||
|
||||
text = (
|
||||
result.output if isinstance(result.output, str) else json.dumps(result.output)
|
||||
)
|
||||
|
||||
# Stash the full output before the SDK potentially truncates it.
|
||||
pending = _pending_tool_outputs.get(None)
|
||||
if pending is not None:
|
||||
pending[base_tool.name] = text
|
||||
|
||||
return {
|
||||
"content": [{"type": "text", "text": text}],
|
||||
"isError": not result.success,
|
||||
}
|
||||
|
||||
|
||||
def _mcp_error(message: str) -> dict[str, Any]:
|
||||
return {
|
||||
"content": [
|
||||
{"type": "text", "text": json.dumps({"error": message, "type": "error"})}
|
||||
],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
|
||||
def create_tool_handler(base_tool: BaseTool):
|
||||
"""Create an async handler function for a BaseTool.
|
||||
|
||||
This wraps the existing BaseTool._execute method to be compatible
|
||||
with the Claude Agent SDK MCP tool format.
|
||||
|
||||
Long-running tools (``is_long_running=True``) are delegated to the
|
||||
non-SDK background infrastructure via a callback set in the execution
|
||||
context. The callback persists the operation in Redis (stream_registry)
|
||||
so results survive page refreshes and pod restarts.
|
||||
"""
|
||||
|
||||
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Execute the wrapped tool and return MCP-formatted response."""
|
||||
user_id, session = get_execution_context()
|
||||
|
||||
if session is None:
|
||||
return _mcp_error("No session context available")
|
||||
|
||||
# --- Long-running: delegate to non-SDK background infrastructure ---
|
||||
if base_tool.is_long_running:
|
||||
callback = _long_running_callback.get(None)
|
||||
if callback:
|
||||
try:
|
||||
return await callback(base_tool.name, args, session)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Long-running callback failed for {base_tool.name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
return _mcp_error(f"Failed to start {base_tool.name}: {e}")
|
||||
# No callback — fall through to synchronous execution
|
||||
logger.warning(
|
||||
f"[SDK] No long-running callback for {base_tool.name}, "
|
||||
f"executing synchronously (may block)"
|
||||
)
|
||||
|
||||
# --- Normal (fast) tool: execute synchronously ---
|
||||
try:
|
||||
return await _execute_tool_sync(base_tool, user_id, session, args)
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
|
||||
return _mcp_error(f"Failed to execute {base_tool.name}: {e}")
|
||||
|
||||
return tool_handler
|
||||
|
||||
|
||||
def _build_input_schema(base_tool: BaseTool) -> dict[str, Any]:
|
||||
"""Build a JSON Schema input schema for a tool."""
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": base_tool.parameters.get("properties", {}),
|
||||
"required": base_tool.parameters.get("required", []),
|
||||
}
|
||||
|
||||
|
||||
async def _read_file_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Read a file with optional offset/limit. Restricted to SDK working directory.
|
||||
|
||||
After reading, the file is deleted to prevent accumulation in long-running pods.
|
||||
"""
|
||||
file_path = args.get("file_path", "")
|
||||
offset = args.get("offset", 0)
|
||||
limit = args.get("limit", 2000)
|
||||
|
||||
# Security: only allow reads under ~/.claude/projects/**/tool-results/
|
||||
real_path = os.path.realpath(file_path)
|
||||
if not real_path.startswith(_SDK_PROJECTS_DIR) or "tool-results" not in real_path:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"Access denied: {file_path}"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
try:
|
||||
with open(real_path) as f:
|
||||
selected = list(itertools.islice(f, offset, offset + limit))
|
||||
content = "".join(selected)
|
||||
# Cleanup happens in _cleanup_sdk_tool_results after session ends;
|
||||
# don't delete here — the SDK may read in multiple chunks.
|
||||
return {"content": [{"type": "text", "text": content}], "isError": False}
|
||||
except FileNotFoundError:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"File not found: {file_path}"}],
|
||||
"isError": True,
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"Error reading file: {e}"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
|
||||
_READ_TOOL_NAME = "Read"
|
||||
_READ_TOOL_DESCRIPTION = (
|
||||
"Read a file from the local filesystem. "
|
||||
"Use offset and limit to read specific line ranges for large files."
|
||||
)
|
||||
_READ_TOOL_SCHEMA = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "The absolute path to the file to read",
|
||||
},
|
||||
"offset": {
|
||||
"type": "integer",
|
||||
"description": "Line number to start reading from (0-indexed). Default: 0",
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Number of lines to read. Default: 2000",
|
||||
},
|
||||
},
|
||||
"required": ["file_path"],
|
||||
}
|
||||
|
||||
|
||||
# Create the MCP server configuration
|
||||
def create_copilot_mcp_server():
|
||||
"""Create an in-process MCP server configuration for CoPilot tools.
|
||||
|
||||
This can be passed to ClaudeAgentOptions.mcp_servers.
|
||||
|
||||
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
|
||||
package being available. This function returns the configuration that
|
||||
can be used with the SDK.
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import create_sdk_mcp_server, tool
|
||||
|
||||
# Create decorated tool functions
|
||||
sdk_tools = []
|
||||
|
||||
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||
handler = create_tool_handler(base_tool)
|
||||
decorated = tool(
|
||||
tool_name,
|
||||
base_tool.description,
|
||||
_build_input_schema(base_tool),
|
||||
)(handler)
|
||||
sdk_tools.append(decorated)
|
||||
|
||||
# Add the Read tool so the SDK can read back oversized tool results
|
||||
read_tool = tool(
|
||||
_READ_TOOL_NAME,
|
||||
_READ_TOOL_DESCRIPTION,
|
||||
_READ_TOOL_SCHEMA,
|
||||
)(_read_file_handler)
|
||||
sdk_tools.append(read_tool)
|
||||
|
||||
server = create_sdk_mcp_server(
|
||||
name=MCP_SERVER_NAME,
|
||||
version="1.0.0",
|
||||
tools=sdk_tools,
|
||||
)
|
||||
|
||||
return server
|
||||
|
||||
except ImportError:
|
||||
# Let ImportError propagate so service.py handles the fallback
|
||||
raise
|
||||
|
||||
|
||||
# SDK built-in tools allowed within the workspace directory.
|
||||
# Security hooks validate that file paths stay within sdk_cwd.
|
||||
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
|
||||
# which provides kernel-level network isolation via unshare --net.
|
||||
# Task allows spawning sub-agents (rate-limited by security hooks).
|
||||
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task"]
|
||||
|
||||
# List of tool names for allowed_tools configuration
|
||||
# Include MCP tools, the MCP Read tool for oversized results,
|
||||
# and SDK built-in file tools for workspace operations.
|
||||
COPILOT_TOOL_NAMES = [
|
||||
*[f"{MCP_TOOL_PREFIX}{name}" for name in TOOL_REGISTRY.keys()],
|
||||
f"{MCP_TOOL_PREFIX}{_READ_TOOL_NAME}",
|
||||
*_SDK_BUILTIN_TOOLS,
|
||||
]
|
||||
@@ -0,0 +1,356 @@
|
||||
"""JSONL transcript management for stateless multi-turn resume.
|
||||
|
||||
The Claude Code CLI persists conversations as JSONL files (one JSON object per
|
||||
line). When the SDK's ``Stop`` hook fires we read this file, strip bloat
|
||||
(progress entries, metadata), and upload the result to bucket storage. On the
|
||||
next turn we download the transcript, write it to a temp file, and pass
|
||||
``--resume`` so the CLI can reconstruct the full conversation.
|
||||
|
||||
Storage is handled via ``WorkspaceStorageBackend`` (GCS in prod, local
|
||||
filesystem for self-hosted) — no DB column needed.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# UUIDs are hex + hyphens; strip everything else to prevent path injection.
|
||||
_SAFE_ID_RE = re.compile(r"[^0-9a-fA-F-]")
|
||||
|
||||
# Entry types that can be safely removed from the transcript without breaking
|
||||
# the parentUuid conversation tree that ``--resume`` relies on.
|
||||
# - progress: UI progress ticks, no message content (avg 97KB for agent_progress)
|
||||
# - file-history-snapshot: undo tracking metadata
|
||||
# - queue-operation: internal queue bookkeeping
|
||||
# - summary: session summaries
|
||||
# - pr-link: PR link metadata
|
||||
STRIPPABLE_TYPES = frozenset(
|
||||
{"progress", "file-history-snapshot", "queue-operation", "summary", "pr-link"}
|
||||
)
|
||||
|
||||
# Workspace storage constants — deterministic path from session_id.
|
||||
TRANSCRIPT_STORAGE_PREFIX = "chat-transcripts"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Progress stripping
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def strip_progress_entries(content: str) -> str:
|
||||
"""Remove progress/metadata entries from a JSONL transcript.
|
||||
|
||||
Removes entries whose ``type`` is in ``STRIPPABLE_TYPES`` and reparents
|
||||
any remaining child entries so the ``parentUuid`` chain stays intact.
|
||||
Typically reduces transcript size by ~30%.
|
||||
"""
|
||||
lines = content.strip().split("\n")
|
||||
|
||||
entries: list[dict] = []
|
||||
for line in lines:
|
||||
try:
|
||||
entries.append(json.loads(line))
|
||||
except json.JSONDecodeError:
|
||||
# Keep unparseable lines as-is (safety)
|
||||
entries.append({"_raw": line})
|
||||
|
||||
stripped_uuids: set[str] = set()
|
||||
uuid_to_parent: dict[str, str] = {}
|
||||
kept: list[dict] = []
|
||||
|
||||
for entry in entries:
|
||||
if "_raw" in entry:
|
||||
kept.append(entry)
|
||||
continue
|
||||
uid = entry.get("uuid", "")
|
||||
parent = entry.get("parentUuid", "")
|
||||
entry_type = entry.get("type", "")
|
||||
|
||||
if uid:
|
||||
uuid_to_parent[uid] = parent
|
||||
|
||||
if entry_type in STRIPPABLE_TYPES:
|
||||
if uid:
|
||||
stripped_uuids.add(uid)
|
||||
else:
|
||||
kept.append(entry)
|
||||
|
||||
# Reparent: walk up chain through stripped entries to find surviving ancestor
|
||||
for entry in kept:
|
||||
if "_raw" in entry:
|
||||
continue
|
||||
parent = entry.get("parentUuid", "")
|
||||
original_parent = parent
|
||||
while parent in stripped_uuids:
|
||||
parent = uuid_to_parent.get(parent, "")
|
||||
if parent != original_parent:
|
||||
entry["parentUuid"] = parent
|
||||
|
||||
result_lines: list[str] = []
|
||||
for entry in kept:
|
||||
if "_raw" in entry:
|
||||
result_lines.append(entry["_raw"])
|
||||
else:
|
||||
result_lines.append(json.dumps(entry, separators=(",", ":")))
|
||||
|
||||
return "\n".join(result_lines) + "\n"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Local file I/O (read from CLI's JSONL, write temp file for --resume)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def read_transcript_file(transcript_path: str) -> str | None:
|
||||
"""Read a JSONL transcript file from disk.
|
||||
|
||||
Returns the raw JSONL content, or ``None`` if the file is missing, empty,
|
||||
or only contains metadata (≤2 lines with no conversation messages).
|
||||
"""
|
||||
if not transcript_path or not os.path.isfile(transcript_path):
|
||||
logger.debug(f"[Transcript] File not found: {transcript_path}")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(transcript_path) as f:
|
||||
content = f.read()
|
||||
|
||||
if not content.strip():
|
||||
logger.debug(f"[Transcript] Empty file: {transcript_path}")
|
||||
return None
|
||||
|
||||
lines = content.strip().split("\n")
|
||||
if len(lines) < 3:
|
||||
# Raw files with ≤2 lines are metadata-only
|
||||
# (queue-operation + file-history-snapshot, no conversation).
|
||||
logger.debug(
|
||||
f"[Transcript] Too few lines ({len(lines)}): {transcript_path}"
|
||||
)
|
||||
return None
|
||||
|
||||
# Quick structural validation — parse first and last lines.
|
||||
json.loads(lines[0])
|
||||
json.loads(lines[-1])
|
||||
|
||||
logger.info(
|
||||
f"[Transcript] Read {len(lines)} lines, "
|
||||
f"{len(content)} bytes from {transcript_path}"
|
||||
)
|
||||
return content
|
||||
|
||||
except (json.JSONDecodeError, OSError) as e:
|
||||
logger.warning(f"[Transcript] Failed to read {transcript_path}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def _sanitize_id(raw_id: str, max_len: int = 36) -> str:
|
||||
"""Sanitize an ID for safe use in file paths.
|
||||
|
||||
Session/user IDs are expected to be UUIDs (hex + hyphens). Strip
|
||||
everything else and truncate to *max_len* so the result cannot introduce
|
||||
path separators or other special characters.
|
||||
"""
|
||||
cleaned = _SAFE_ID_RE.sub("", raw_id or "")[:max_len]
|
||||
return cleaned or "unknown"
|
||||
|
||||
|
||||
_SAFE_CWD_PREFIX = os.path.realpath("/tmp/copilot-")
|
||||
|
||||
|
||||
def write_transcript_to_tempfile(
|
||||
transcript_content: str,
|
||||
session_id: str,
|
||||
cwd: str,
|
||||
) -> str | None:
|
||||
"""Write JSONL transcript to a temp file inside *cwd* for ``--resume``.
|
||||
|
||||
The file lives in the session working directory so it is cleaned up
|
||||
automatically when the session ends.
|
||||
|
||||
Returns the absolute path to the file, or ``None`` on failure.
|
||||
"""
|
||||
# Validate cwd is under the expected sandbox prefix (CodeQL sanitizer).
|
||||
real_cwd = os.path.realpath(cwd)
|
||||
if not real_cwd.startswith(_SAFE_CWD_PREFIX):
|
||||
logger.warning(f"[Transcript] cwd outside sandbox: {cwd}")
|
||||
return None
|
||||
|
||||
try:
|
||||
os.makedirs(real_cwd, exist_ok=True)
|
||||
safe_id = _sanitize_id(session_id, max_len=8)
|
||||
jsonl_path = os.path.realpath(
|
||||
os.path.join(real_cwd, f"transcript-{safe_id}.jsonl")
|
||||
)
|
||||
if not jsonl_path.startswith(real_cwd):
|
||||
logger.warning(f"[Transcript] Path escaped cwd: {jsonl_path}")
|
||||
return None
|
||||
|
||||
with open(jsonl_path, "w") as f:
|
||||
f.write(transcript_content)
|
||||
|
||||
logger.info(f"[Transcript] Wrote resume file: {jsonl_path}")
|
||||
return jsonl_path
|
||||
|
||||
except OSError as e:
|
||||
logger.warning(f"[Transcript] Failed to write resume file: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def validate_transcript(content: str | None) -> bool:
|
||||
"""Check that a transcript has actual conversation messages.
|
||||
|
||||
A valid transcript for resume needs at least one user message and one
|
||||
assistant message (not just queue-operation / file-history-snapshot
|
||||
metadata).
|
||||
"""
|
||||
if not content or not content.strip():
|
||||
return False
|
||||
|
||||
lines = content.strip().split("\n")
|
||||
if len(lines) < 2:
|
||||
return False
|
||||
|
||||
has_user = False
|
||||
has_assistant = False
|
||||
|
||||
for line in lines:
|
||||
try:
|
||||
entry = json.loads(line)
|
||||
msg_type = entry.get("type")
|
||||
if msg_type == "user":
|
||||
has_user = True
|
||||
elif msg_type == "assistant":
|
||||
has_assistant = True
|
||||
except json.JSONDecodeError:
|
||||
return False
|
||||
|
||||
return has_user and has_assistant
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Bucket storage (GCS / local via WorkspaceStorageBackend)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def _storage_path_parts(user_id: str, session_id: str) -> tuple[str, str, str]:
|
||||
"""Return (workspace_id, file_id, filename) for a session's transcript.
|
||||
|
||||
Path structure: ``chat-transcripts/{user_id}/{session_id}.jsonl``
|
||||
IDs are sanitized to hex+hyphen to prevent path traversal.
|
||||
"""
|
||||
return (
|
||||
TRANSCRIPT_STORAGE_PREFIX,
|
||||
_sanitize_id(user_id),
|
||||
f"{_sanitize_id(session_id)}.jsonl",
|
||||
)
|
||||
|
||||
|
||||
def _build_storage_path(user_id: str, session_id: str, backend: object) -> str:
|
||||
"""Build the full storage path string that ``retrieve()`` expects.
|
||||
|
||||
``store()`` returns a path like ``gcs://bucket/workspaces/...`` or
|
||||
``local://workspace_id/file_id/filename``. Since we use deterministic
|
||||
arguments we can reconstruct the same path for download/delete without
|
||||
having stored the return value.
|
||||
"""
|
||||
from backend.util.workspace_storage import GCSWorkspaceStorage
|
||||
|
||||
wid, fid, fname = _storage_path_parts(user_id, session_id)
|
||||
|
||||
if isinstance(backend, GCSWorkspaceStorage):
|
||||
blob = f"workspaces/{wid}/{fid}/{fname}"
|
||||
return f"gcs://{backend.bucket_name}/{blob}"
|
||||
else:
|
||||
# LocalWorkspaceStorage returns local://{relative_path}
|
||||
return f"local://{wid}/{fid}/{fname}"
|
||||
|
||||
|
||||
async def upload_transcript(user_id: str, session_id: str, content: str) -> None:
|
||||
"""Strip progress entries and upload transcript to bucket storage.
|
||||
|
||||
Safety: only overwrites when the new (stripped) transcript is larger than
|
||||
what is already stored. Since JSONL is append-only, the latest transcript
|
||||
is always the longest. This prevents a slow/stale background task from
|
||||
clobbering a newer upload from a concurrent turn.
|
||||
"""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
stripped = strip_progress_entries(content)
|
||||
if not validate_transcript(stripped):
|
||||
logger.warning(
|
||||
f"[Transcript] Skipping upload — stripped content is not a valid "
|
||||
f"transcript for session {session_id}"
|
||||
)
|
||||
return
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
wid, fid, fname = _storage_path_parts(user_id, session_id)
|
||||
encoded = stripped.encode("utf-8")
|
||||
new_size = len(encoded)
|
||||
|
||||
# Check existing transcript size to avoid overwriting newer with older
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
try:
|
||||
existing = await storage.retrieve(path)
|
||||
if len(existing) >= new_size:
|
||||
logger.info(
|
||||
f"[Transcript] Skipping upload — existing transcript "
|
||||
f"({len(existing)}B) >= new ({new_size}B) for session "
|
||||
f"{session_id}"
|
||||
)
|
||||
return
|
||||
except (FileNotFoundError, Exception):
|
||||
pass # No existing transcript or retrieval error — proceed with upload
|
||||
|
||||
await storage.store(
|
||||
workspace_id=wid,
|
||||
file_id=fid,
|
||||
filename=fname,
|
||||
content=encoded,
|
||||
)
|
||||
logger.info(
|
||||
f"[Transcript] Uploaded {new_size} bytes "
|
||||
f"(stripped from {len(content)}) for session {session_id}"
|
||||
)
|
||||
|
||||
|
||||
async def download_transcript(user_id: str, session_id: str) -> str | None:
|
||||
"""Download transcript from bucket storage.
|
||||
|
||||
Returns the JSONL content string, or ``None`` if not found.
|
||||
"""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
|
||||
try:
|
||||
data = await storage.retrieve(path)
|
||||
content = data.decode("utf-8")
|
||||
logger.info(
|
||||
f"[Transcript] Downloaded {len(content)} bytes for session {session_id}"
|
||||
)
|
||||
return content
|
||||
except FileNotFoundError:
|
||||
logger.debug(f"[Transcript] No transcript in storage for {session_id}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"[Transcript] Failed to download transcript: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def delete_transcript(user_id: str, session_id: str) -> None:
|
||||
"""Delete transcript from bucket storage (e.g. after resume failure)."""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
|
||||
try:
|
||||
await storage.delete(path)
|
||||
logger.info(f"[Transcript] Deleted transcript for session {session_id}")
|
||||
except Exception as e:
|
||||
logger.warning(f"[Transcript] Failed to delete transcript: {e}")
|
||||
@@ -245,12 +245,16 @@ async def _get_system_prompt_template(context: str) -> str:
|
||||
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
|
||||
|
||||
|
||||
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
async def _build_system_prompt(
|
||||
user_id: str | None, has_conversation_history: bool = False
|
||||
) -> tuple[str, Any]:
|
||||
"""Build the full system prompt including business understanding if available.
|
||||
|
||||
Args:
|
||||
user_id: The user ID for fetching business understanding
|
||||
If "default" and this is the user's first session, will use "onboarding" instead.
|
||||
user_id: The user ID for fetching business understanding.
|
||||
has_conversation_history: Whether there's existing conversation history.
|
||||
If True, we don't tell the model to greet/introduce (since they're
|
||||
already in a conversation).
|
||||
|
||||
Returns:
|
||||
Tuple of (compiled prompt string, business understanding object)
|
||||
@@ -266,6 +270,8 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
|
||||
if understanding:
|
||||
context = format_understanding_for_prompt(understanding)
|
||||
elif has_conversation_history:
|
||||
context = "No prior understanding saved yet. Continue the existing conversation naturally."
|
||||
else:
|
||||
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
|
||||
|
||||
@@ -374,7 +380,6 @@ async def stream_chat_completion(
|
||||
|
||||
Raises:
|
||||
NotFoundError: If session_id is invalid
|
||||
ValueError: If max_context_messages is exceeded
|
||||
|
||||
"""
|
||||
completion_start = time.monotonic()
|
||||
@@ -459,8 +464,9 @@ async def stream_chat_completion(
|
||||
|
||||
# Generate title for new sessions on first user message (non-blocking)
|
||||
# Check: is_user_message, no title yet, and this is the first user message
|
||||
if is_user_message and message and not session.title:
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
first_user_msg = message or (user_messages[0].content if user_messages else None)
|
||||
if is_user_message and first_user_msg and not session.title:
|
||||
if len(user_messages) == 1:
|
||||
# First user message - generate title in background
|
||||
import asyncio
|
||||
@@ -468,7 +474,7 @@ async def stream_chat_completion(
|
||||
# Capture only the values we need (not the session object) to avoid
|
||||
# stale data issues when the main flow modifies the session
|
||||
captured_session_id = session_id
|
||||
captured_message = message
|
||||
captured_message = first_user_msg
|
||||
captured_user_id = user_id
|
||||
|
||||
async def _update_title():
|
||||
@@ -1237,7 +1243,7 @@ async def _stream_chat_chunks(
|
||||
|
||||
total_time = (time_module.perf_counter() - stream_chunks_start) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] _stream_chat_chunks COMPLETED in {total_time/1000:.1f}s; "
|
||||
f"[TIMING] _stream_chat_chunks COMPLETED in {total_time / 1000:.1f}s; "
|
||||
f"session={session.session_id}, user={session.user_id}",
|
||||
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
|
||||
)
|
||||
@@ -1245,6 +1251,7 @@ async def _stream_chat_chunks(
|
||||
return
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
|
||||
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
|
||||
retry_count += 1
|
||||
# Calculate delay with exponential backoff
|
||||
@@ -1260,12 +1267,27 @@ async def _stream_chat_chunks(
|
||||
continue # Retry the stream
|
||||
else:
|
||||
# Non-retryable error or max retries exceeded
|
||||
logger.error(
|
||||
f"Error in stream (not retrying): {e!s}",
|
||||
exc_info=True,
|
||||
_log_api_error(
|
||||
error=e,
|
||||
context="stream (not retrying)",
|
||||
session_id=session.session_id if session else None,
|
||||
message_count=len(messages) if messages else None,
|
||||
model=model,
|
||||
retry_count=retry_count,
|
||||
)
|
||||
error_code = None
|
||||
error_text = str(e)
|
||||
|
||||
error_details = _extract_api_error_details(e)
|
||||
if error_details.get("response_body"):
|
||||
body = error_details["response_body"]
|
||||
if isinstance(body, dict):
|
||||
err = body.get("error")
|
||||
if isinstance(err, dict) and err.get("message"):
|
||||
error_text = err["message"]
|
||||
elif body.get("message"):
|
||||
error_text = body["message"]
|
||||
|
||||
if _is_region_blocked_error(e):
|
||||
error_code = "MODEL_NOT_AVAILABLE_REGION"
|
||||
error_text = (
|
||||
@@ -1282,9 +1304,13 @@ async def _stream_chat_chunks(
|
||||
|
||||
# If we exit the retry loop without returning, it means we exhausted retries
|
||||
if last_error:
|
||||
logger.error(
|
||||
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
|
||||
exc_info=True,
|
||||
_log_api_error(
|
||||
error=last_error,
|
||||
context=f"stream (max retries {MAX_RETRIES} exceeded)",
|
||||
session_id=session.session_id if session else None,
|
||||
message_count=len(messages) if messages else None,
|
||||
model=model,
|
||||
retry_count=MAX_RETRIES,
|
||||
)
|
||||
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
|
||||
yield StreamFinish()
|
||||
@@ -1857,6 +1883,7 @@ async def _generate_llm_continuation(
|
||||
break # Success, exit retry loop
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
|
||||
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
|
||||
retry_count += 1
|
||||
delay = min(
|
||||
@@ -1870,17 +1897,25 @@ async def _generate_llm_continuation(
|
||||
await asyncio.sleep(delay)
|
||||
continue
|
||||
else:
|
||||
# Non-retryable error - log and exit gracefully
|
||||
logger.error(
|
||||
f"Non-retryable error in LLM continuation: {e!s}",
|
||||
exc_info=True,
|
||||
# Non-retryable error - log details and exit gracefully
|
||||
_log_api_error(
|
||||
error=e,
|
||||
context="LLM continuation (not retrying)",
|
||||
session_id=session_id,
|
||||
message_count=len(messages) if messages else None,
|
||||
model=config.model,
|
||||
retry_count=retry_count,
|
||||
)
|
||||
return
|
||||
|
||||
if last_error:
|
||||
logger.error(
|
||||
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
|
||||
f"Last error: {last_error!s}"
|
||||
_log_api_error(
|
||||
error=last_error,
|
||||
context=f"LLM continuation (max retries {MAX_RETRIES} exceeded)",
|
||||
session_id=session_id,
|
||||
message_count=len(messages) if messages else None,
|
||||
model=config.model,
|
||||
retry_count=MAX_RETRIES,
|
||||
)
|
||||
return
|
||||
|
||||
@@ -1920,6 +1955,91 @@ async def _generate_llm_continuation(
|
||||
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
|
||||
|
||||
|
||||
def _log_api_error(
|
||||
error: Exception,
|
||||
context: str,
|
||||
session_id: str | None = None,
|
||||
message_count: int | None = None,
|
||||
model: str | None = None,
|
||||
retry_count: int = 0,
|
||||
) -> None:
|
||||
"""Log detailed API error information for debugging."""
|
||||
details = _extract_api_error_details(error)
|
||||
details["context"] = context
|
||||
details["session_id"] = session_id
|
||||
details["message_count"] = message_count
|
||||
details["model"] = model
|
||||
details["retry_count"] = retry_count
|
||||
|
||||
if isinstance(error, RateLimitError):
|
||||
logger.warning(f"Rate limit error in {context}: {details}", exc_info=error)
|
||||
elif isinstance(error, APIConnectionError):
|
||||
logger.warning(f"API connection error in {context}: {details}", exc_info=error)
|
||||
elif isinstance(error, APIStatusError) and error.status_code >= 500:
|
||||
logger.error(f"API server error (5xx) in {context}: {details}", exc_info=error)
|
||||
else:
|
||||
logger.error(f"API error in {context}: {details}", exc_info=error)
|
||||
|
||||
|
||||
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
|
||||
"""Extract detailed information from OpenAI/OpenRouter API errors."""
|
||||
error_msg = str(error)
|
||||
details: dict[str, Any] = {
|
||||
"error_type": type(error).__name__,
|
||||
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
|
||||
}
|
||||
|
||||
if hasattr(error, "code"):
|
||||
details["code"] = getattr(error, "code", None)
|
||||
if hasattr(error, "param"):
|
||||
details["param"] = getattr(error, "param", None)
|
||||
|
||||
if isinstance(error, APIStatusError):
|
||||
details["status_code"] = error.status_code
|
||||
details["request_id"] = getattr(error, "request_id", None)
|
||||
|
||||
if hasattr(error, "body") and error.body:
|
||||
details["response_body"] = _sanitize_error_body(error.body)
|
||||
|
||||
if hasattr(error, "response") and error.response:
|
||||
headers = error.response.headers
|
||||
details["openrouter_provider"] = headers.get("x-openrouter-provider")
|
||||
details["openrouter_model"] = headers.get("x-openrouter-model")
|
||||
details["retry_after"] = headers.get("retry-after")
|
||||
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
|
||||
|
||||
return details
|
||||
|
||||
|
||||
def _sanitize_error_body(
|
||||
body: Any, max_length: int = 2000
|
||||
) -> dict[str, Any] | str | None:
|
||||
"""Extract only safe fields from error response body to avoid logging sensitive data."""
|
||||
if not isinstance(body, dict):
|
||||
# Non-dict bodies (e.g., HTML error pages) - return truncated string
|
||||
if body is not None:
|
||||
body_str = str(body)
|
||||
if len(body_str) > max_length:
|
||||
return body_str[:max_length] + "...[truncated]"
|
||||
return body_str
|
||||
return None
|
||||
|
||||
safe_fields = ("message", "type", "code", "param", "error")
|
||||
sanitized: dict[str, Any] = {}
|
||||
|
||||
for field in safe_fields:
|
||||
if field in body:
|
||||
value = body[field]
|
||||
if field == "error" and isinstance(value, dict):
|
||||
sanitized[field] = _sanitize_error_body(value, max_length)
|
||||
elif isinstance(value, str) and len(value) > max_length:
|
||||
sanitized[field] = value[:max_length] + "...[truncated]"
|
||||
else:
|
||||
sanitized[field] = value
|
||||
|
||||
return sanitized if sanitized else None
|
||||
|
||||
|
||||
async def _generate_llm_continuation_with_streaming(
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from os import getenv
|
||||
|
||||
@@ -11,6 +12,8 @@ from .response_model import (
|
||||
StreamTextDelta,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from .sdk import service as sdk_service
|
||||
from .sdk.transcript import download_transcript
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -80,3 +83,96 @@ async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user
|
||||
session = await get_chat_session(session.session_id)
|
||||
assert session, "Session not found"
|
||||
assert session.usage, "Usage is empty"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_sdk_resume_multi_turn(setup_test_user, test_user_id):
|
||||
"""Test that the SDK --resume path captures and uses transcripts across turns.
|
||||
|
||||
Turn 1: Send a message containing a unique keyword.
|
||||
Turn 2: Ask the model to recall that keyword — proving the transcript was
|
||||
persisted and restored via --resume.
|
||||
"""
|
||||
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
|
||||
if not api_key:
|
||||
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
|
||||
|
||||
from .config import ChatConfig
|
||||
|
||||
cfg = ChatConfig()
|
||||
if not cfg.claude_agent_use_resume:
|
||||
return pytest.skip("CLAUDE_AGENT_USE_RESUME is not enabled, skipping test")
|
||||
|
||||
session = await create_chat_session(test_user_id)
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
# --- Turn 1: send a message with a unique keyword ---
|
||||
keyword = "ZEPHYR42"
|
||||
turn1_msg = (
|
||||
f"Please remember this special keyword: {keyword}. "
|
||||
"Just confirm you've noted it, keep your response brief."
|
||||
)
|
||||
turn1_text = ""
|
||||
turn1_errors: list[str] = []
|
||||
turn1_ended = False
|
||||
|
||||
async for chunk in sdk_service.stream_chat_completion_sdk(
|
||||
session.session_id,
|
||||
turn1_msg,
|
||||
user_id=test_user_id,
|
||||
):
|
||||
if isinstance(chunk, StreamTextDelta):
|
||||
turn1_text += chunk.delta
|
||||
elif isinstance(chunk, StreamError):
|
||||
turn1_errors.append(chunk.errorText)
|
||||
elif isinstance(chunk, StreamFinish):
|
||||
turn1_ended = True
|
||||
|
||||
assert turn1_ended, "Turn 1 did not finish"
|
||||
assert not turn1_errors, f"Turn 1 errors: {turn1_errors}"
|
||||
assert turn1_text, "Turn 1 produced no text"
|
||||
|
||||
# Wait for background upload task to complete (retry up to 5s)
|
||||
transcript = None
|
||||
for _ in range(10):
|
||||
await asyncio.sleep(0.5)
|
||||
transcript = await download_transcript(test_user_id, session.session_id)
|
||||
if transcript:
|
||||
break
|
||||
assert transcript, (
|
||||
"Transcript was not uploaded to bucket after turn 1 — "
|
||||
"Stop hook may not have fired or transcript was too small"
|
||||
)
|
||||
logger.info(f"Turn 1 transcript uploaded: {len(transcript)} bytes")
|
||||
|
||||
# Reload session for turn 2
|
||||
session = await get_chat_session(session.session_id, test_user_id)
|
||||
assert session, "Session not found after turn 1"
|
||||
|
||||
# --- Turn 2: ask model to recall the keyword ---
|
||||
turn2_msg = "What was the special keyword I asked you to remember?"
|
||||
turn2_text = ""
|
||||
turn2_errors: list[str] = []
|
||||
turn2_ended = False
|
||||
|
||||
async for chunk in sdk_service.stream_chat_completion_sdk(
|
||||
session.session_id,
|
||||
turn2_msg,
|
||||
user_id=test_user_id,
|
||||
session=session,
|
||||
):
|
||||
if isinstance(chunk, StreamTextDelta):
|
||||
turn2_text += chunk.delta
|
||||
elif isinstance(chunk, StreamError):
|
||||
turn2_errors.append(chunk.errorText)
|
||||
elif isinstance(chunk, StreamFinish):
|
||||
turn2_ended = True
|
||||
|
||||
assert turn2_ended, "Turn 2 did not finish"
|
||||
assert not turn2_errors, f"Turn 2 errors: {turn2_errors}"
|
||||
assert turn2_text, "Turn 2 produced no text"
|
||||
assert keyword in turn2_text, (
|
||||
f"Model did not recall keyword '{keyword}' in turn 2. "
|
||||
f"Response: {turn2_text[:200]}"
|
||||
)
|
||||
logger.info(f"Turn 2 recalled keyword successfully: {turn2_text[:100]}")
|
||||
|
||||
@@ -814,6 +814,28 @@ async def get_active_task_for_session(
|
||||
if task_user_id and user_id != task_user_id:
|
||||
continue
|
||||
|
||||
# Auto-expire stale tasks that exceeded stream_timeout
|
||||
created_at_str = meta.get("created_at", "")
|
||||
if created_at_str:
|
||||
try:
|
||||
created_at = datetime.fromisoformat(created_at_str)
|
||||
age_seconds = (
|
||||
datetime.now(timezone.utc) - created_at
|
||||
).total_seconds()
|
||||
if age_seconds > config.stream_timeout:
|
||||
logger.warning(
|
||||
f"[TASK_LOOKUP] Auto-expiring stale task {task_id[:8]}... "
|
||||
f"(age={age_seconds:.0f}s > timeout={config.stream_timeout}s)"
|
||||
)
|
||||
await mark_task_completed(task_id, "failed")
|
||||
continue
|
||||
except (ValueError, TypeError):
|
||||
pass
|
||||
|
||||
logger.info(
|
||||
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
|
||||
)
|
||||
|
||||
# Get the last message ID from Redis Stream
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
last_id = "0-0"
|
||||
|
||||
@@ -9,9 +9,12 @@ from backend.api.features.chat.tracking import track_tool_called
|
||||
from .add_understanding import AddUnderstandingTool
|
||||
from .agent_output import AgentOutputTool
|
||||
from .base import BaseTool
|
||||
from .bash_exec import BashExecTool
|
||||
from .check_operation_status import CheckOperationStatusTool
|
||||
from .create_agent import CreateAgentTool
|
||||
from .customize_agent import CustomizeAgentTool
|
||||
from .edit_agent import EditAgentTool
|
||||
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .find_block import FindBlockTool
|
||||
from .find_library_agent import FindLibraryAgentTool
|
||||
@@ -19,6 +22,7 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .web_fetch import WebFetchTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
@@ -43,8 +47,17 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"run_agent": RunAgentTool(),
|
||||
"run_block": RunBlockTool(),
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"check_operation_status": CheckOperationStatusTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Web fetch for safe URL retrieval
|
||||
"web_fetch": WebFetchTool(),
|
||||
# Sandboxed code execution (bubblewrap)
|
||||
"bash_exec": BashExecTool(),
|
||||
# Persistent workspace tools (cloud storage, survives across sessions)
|
||||
# Feature request tools
|
||||
"search_feature_requests": SearchFeatureRequestsTool(),
|
||||
"create_feature_request": CreateFeatureRequestTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
|
||||
@@ -0,0 +1,131 @@
|
||||
"""Bash execution tool — run shell commands in a bubblewrap sandbox.
|
||||
|
||||
Full Bash scripting is allowed (loops, conditionals, pipes, functions, etc.).
|
||||
Safety comes from OS-level isolation (bubblewrap): only system dirs visible
|
||||
read-only, writable workspace only, clean env, no network.
|
||||
|
||||
Requires bubblewrap (``bwrap``) — the tool is disabled when bwrap is not
|
||||
available (e.g. macOS development).
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BashExecResponse,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.api.features.chat.tools.sandbox import (
|
||||
get_workspace_dir,
|
||||
has_full_sandbox,
|
||||
run_sandboxed,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BashExecTool(BaseTool):
|
||||
"""Execute Bash commands in a bubblewrap sandbox."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "bash_exec"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
if not has_full_sandbox():
|
||||
return (
|
||||
"Bash execution is DISABLED — bubblewrap sandbox is not "
|
||||
"available on this platform. Do not call this tool."
|
||||
)
|
||||
return (
|
||||
"Execute a Bash command or script in a bubblewrap sandbox. "
|
||||
"Full Bash scripting is supported (loops, conditionals, pipes, "
|
||||
"functions, etc.). "
|
||||
"The sandbox shares the same working directory as the SDK Read/Write "
|
||||
"tools — files created by either are accessible to both. "
|
||||
"SECURITY: Only system directories (/usr, /bin, /lib, /etc) are "
|
||||
"visible read-only, the per-session workspace is the only writable "
|
||||
"path, environment variables are wiped (no secrets), all network "
|
||||
"access is blocked at the kernel level, and resource limits are "
|
||||
"enforced (max 64 processes, 512MB memory, 50MB file size). "
|
||||
"Application code, configs, and other directories are NOT accessible. "
|
||||
"To fetch web content, use the web_fetch tool instead. "
|
||||
"Execution is killed after the timeout (default 30s, max 120s). "
|
||||
"Returns stdout and stderr. "
|
||||
"Useful for file manipulation, data processing with Unix tools "
|
||||
"(grep, awk, sed, jq, etc.), and running shell scripts."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"command": {
|
||||
"type": "string",
|
||||
"description": "Bash command or script to execute.",
|
||||
},
|
||||
"timeout": {
|
||||
"type": "integer",
|
||||
"description": (
|
||||
"Max execution time in seconds (default 30, max 120)."
|
||||
),
|
||||
"default": 30,
|
||||
},
|
||||
},
|
||||
"required": ["command"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs: Any,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not has_full_sandbox():
|
||||
return ErrorResponse(
|
||||
message="bash_exec requires bubblewrap sandbox (Linux only).",
|
||||
error="sandbox_unavailable",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
command: str = (kwargs.get("command") or "").strip()
|
||||
timeout: int = kwargs.get("timeout", 30)
|
||||
|
||||
if not command:
|
||||
return ErrorResponse(
|
||||
message="No command provided.",
|
||||
error="empty_command",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
workspace = get_workspace_dir(session_id or "default")
|
||||
|
||||
stdout, stderr, exit_code, timed_out = await run_sandboxed(
|
||||
command=["bash", "-c", command],
|
||||
cwd=workspace,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
return BashExecResponse(
|
||||
message=(
|
||||
"Execution timed out"
|
||||
if timed_out
|
||||
else f"Command executed (exit {exit_code})"
|
||||
),
|
||||
stdout=stdout,
|
||||
stderr=stderr,
|
||||
exit_code=exit_code,
|
||||
timed_out=timed_out,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -0,0 +1,127 @@
|
||||
"""CheckOperationStatusTool — query the status of a long-running operation."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
ResponseType,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperationStatusResponse(ToolResponseBase):
|
||||
"""Response for check_operation_status tool."""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STATUS
|
||||
task_id: str
|
||||
operation_id: str
|
||||
status: str # "running", "completed", "failed"
|
||||
tool_name: str | None = None
|
||||
message: str = ""
|
||||
|
||||
|
||||
class CheckOperationStatusTool(BaseTool):
|
||||
"""Check the status of a long-running operation (create_agent, edit_agent, etc.).
|
||||
|
||||
The CoPilot uses this tool to report back to the user whether an
|
||||
operation that was started earlier has completed, failed, or is still
|
||||
running.
|
||||
"""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "check_operation_status"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Check the current status of a long-running operation such as "
|
||||
"create_agent or edit_agent. Accepts either an operation_id or "
|
||||
"task_id from a previous operation_started response. "
|
||||
"Returns the current status: running, completed, or failed."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"operation_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The operation_id from an operation_started response."
|
||||
),
|
||||
},
|
||||
"task_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The task_id from an operation_started response. "
|
||||
"Used as fallback if operation_id is not provided."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
from backend.api.features.chat import stream_registry
|
||||
|
||||
operation_id = (kwargs.get("operation_id") or "").strip()
|
||||
task_id = (kwargs.get("task_id") or "").strip()
|
||||
|
||||
if not operation_id and not task_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide an operation_id or task_id.",
|
||||
error="missing_parameter",
|
||||
)
|
||||
|
||||
task = None
|
||||
if operation_id:
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None and task_id:
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
# Task not in Redis — it may have already expired (TTL).
|
||||
# Check conversation history for the result instead.
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Operation not found — it may have already completed and "
|
||||
"expired from the status tracker. Check the conversation "
|
||||
"history for the result."
|
||||
),
|
||||
error="not_found",
|
||||
)
|
||||
|
||||
status_messages = {
|
||||
"running": (
|
||||
f"The {task.tool_name or 'operation'} is still running. "
|
||||
"Please wait for it to complete."
|
||||
),
|
||||
"completed": (
|
||||
f"The {task.tool_name or 'operation'} has completed successfully."
|
||||
),
|
||||
"failed": f"The {task.tool_name or 'operation'} has failed.",
|
||||
}
|
||||
|
||||
return OperationStatusResponse(
|
||||
task_id=task.task_id,
|
||||
operation_id=task.operation_id,
|
||||
status=task.status,
|
||||
tool_name=task.tool_name,
|
||||
message=status_messages.get(task.status, f"Status: {task.status}"),
|
||||
)
|
||||
@@ -0,0 +1,448 @@
|
||||
"""Feature request tools - search and create feature requests via Linear."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
FeatureRequestCreatedResponse,
|
||||
FeatureRequestInfo,
|
||||
FeatureRequestSearchResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.blocks.linear._api import LinearClient
|
||||
from backend.data.model import APIKeyCredentials
|
||||
from backend.data.user import get_user_email_by_id
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_SEARCH_RESULTS = 10
|
||||
|
||||
# GraphQL queries/mutations
|
||||
SEARCH_ISSUES_QUERY = """
|
||||
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
|
||||
searchIssues(term: $term, filter: $filter, first: $first) {
|
||||
nodes {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
description
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
CUSTOMER_UPSERT_MUTATION = """
|
||||
mutation CustomerUpsert($input: CustomerUpsertInput!) {
|
||||
customerUpsert(input: $input) {
|
||||
success
|
||||
customer {
|
||||
id
|
||||
name
|
||||
externalIds
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
ISSUE_CREATE_MUTATION = """
|
||||
mutation IssueCreate($input: IssueCreateInput!) {
|
||||
issueCreate(input: $input) {
|
||||
success
|
||||
issue {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
url
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
CUSTOMER_NEED_CREATE_MUTATION = """
|
||||
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
|
||||
customerNeedCreate(input: $input) {
|
||||
success
|
||||
need {
|
||||
id
|
||||
body
|
||||
customer {
|
||||
id
|
||||
name
|
||||
}
|
||||
issue {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
url
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
_settings: Settings | None = None
|
||||
|
||||
|
||||
def _get_settings() -> Settings:
|
||||
global _settings
|
||||
if _settings is None:
|
||||
_settings = Settings()
|
||||
return _settings
|
||||
|
||||
|
||||
def _get_linear_config() -> tuple[LinearClient, str, str]:
|
||||
"""Return a configured Linear client, project ID, and team ID.
|
||||
|
||||
Raises RuntimeError if any required setting is missing.
|
||||
"""
|
||||
secrets = _get_settings().secrets
|
||||
if not secrets.linear_api_key:
|
||||
raise RuntimeError("LINEAR_API_KEY is not configured")
|
||||
if not secrets.linear_feature_request_project_id:
|
||||
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
|
||||
if not secrets.linear_feature_request_team_id:
|
||||
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
|
||||
|
||||
credentials = APIKeyCredentials(
|
||||
id="system-linear",
|
||||
provider="linear",
|
||||
api_key=SecretStr(secrets.linear_api_key),
|
||||
title="System Linear API Key",
|
||||
)
|
||||
client = LinearClient(credentials=credentials)
|
||||
return (
|
||||
client,
|
||||
secrets.linear_feature_request_project_id,
|
||||
secrets.linear_feature_request_team_id,
|
||||
)
|
||||
|
||||
|
||||
class SearchFeatureRequestsTool(BaseTool):
|
||||
"""Tool for searching existing feature requests in Linear."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "search_feature_requests"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Search existing feature requests to check if a similar request "
|
||||
"already exists before creating a new one. Returns matching feature "
|
||||
"requests with their ID, title, and description."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "Search term to find matching feature requests.",
|
||||
},
|
||||
},
|
||||
"required": ["query"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
query = kwargs.get("query", "").strip()
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not query:
|
||||
return ErrorResponse(
|
||||
message="Please provide a search query.",
|
||||
error="Missing query parameter",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client, project_id, _team_id = _get_linear_config()
|
||||
data = await client.query(
|
||||
SEARCH_ISSUES_QUERY,
|
||||
{
|
||||
"term": query,
|
||||
"filter": {
|
||||
"project": {"id": {"eq": project_id}},
|
||||
},
|
||||
"first": MAX_SEARCH_RESULTS,
|
||||
},
|
||||
)
|
||||
|
||||
nodes = data.get("searchIssues", {}).get("nodes", [])
|
||||
|
||||
if not nodes:
|
||||
return NoResultsResponse(
|
||||
message=f"No feature requests found matching '{query}'.",
|
||||
suggestions=[
|
||||
"Try different keywords",
|
||||
"Use broader search terms",
|
||||
"You can create a new feature request if none exists",
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
results = [
|
||||
FeatureRequestInfo(
|
||||
id=node["id"],
|
||||
identifier=node["identifier"],
|
||||
title=node["title"],
|
||||
description=node.get("description"),
|
||||
)
|
||||
for node in nodes
|
||||
]
|
||||
|
||||
return FeatureRequestSearchResponse(
|
||||
message=f"Found {len(results)} feature request(s) matching '{query}'.",
|
||||
results=results,
|
||||
count=len(results),
|
||||
query=query,
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to search feature requests")
|
||||
return ErrorResponse(
|
||||
message="Failed to search feature requests.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class CreateFeatureRequestTool(BaseTool):
|
||||
"""Tool for creating feature requests (or adding needs to existing ones)."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "create_feature_request"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Create a new feature request or add a customer need to an existing one. "
|
||||
"Always search first with search_feature_requests to avoid duplicates. "
|
||||
"If a matching request exists, pass its ID as existing_issue_id to add "
|
||||
"the user's need to it instead of creating a duplicate."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"title": {
|
||||
"type": "string",
|
||||
"description": "Title for the feature request.",
|
||||
},
|
||||
"description": {
|
||||
"type": "string",
|
||||
"description": "Detailed description of what the user wants and why.",
|
||||
},
|
||||
"existing_issue_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"If adding a need to an existing feature request, "
|
||||
"provide its Linear issue ID (from search results). "
|
||||
"Omit to create a new feature request."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["title", "description"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _find_or_create_customer(
|
||||
self, client: LinearClient, user_id: str, name: str
|
||||
) -> dict:
|
||||
"""Find existing customer by user_id or create a new one via upsert.
|
||||
|
||||
Args:
|
||||
client: Linear API client.
|
||||
user_id: Stable external ID used to deduplicate customers.
|
||||
name: Human-readable display name (e.g. the user's email).
|
||||
"""
|
||||
data = await client.mutate(
|
||||
CUSTOMER_UPSERT_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"name": name,
|
||||
"externalId": user_id,
|
||||
},
|
||||
},
|
||||
)
|
||||
result = data.get("customerUpsert", {})
|
||||
if not result.get("success"):
|
||||
raise RuntimeError(f"Failed to upsert customer: {data}")
|
||||
return result["customer"]
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
title = kwargs.get("title", "").strip()
|
||||
description = kwargs.get("description", "").strip()
|
||||
existing_issue_id = kwargs.get("existing_issue_id")
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not title or not description:
|
||||
return ErrorResponse(
|
||||
message="Both title and description are required.",
|
||||
error="Missing required parameters",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required to create feature requests.",
|
||||
error="Missing user_id",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client, project_id, team_id = _get_linear_config()
|
||||
except Exception as e:
|
||||
logger.exception("Failed to initialize Linear client")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Resolve a human-readable name (email) for the Linear customer record.
|
||||
# Fall back to user_id if the lookup fails or returns None.
|
||||
try:
|
||||
customer_display_name = await get_user_email_by_id(user_id) or user_id
|
||||
except Exception:
|
||||
customer_display_name = user_id
|
||||
|
||||
# Step 1: Find or create customer for this user
|
||||
try:
|
||||
customer = await self._find_or_create_customer(
|
||||
client, user_id, customer_display_name
|
||||
)
|
||||
customer_id = customer["id"]
|
||||
customer_name = customer["name"]
|
||||
except Exception as e:
|
||||
logger.exception("Failed to upsert customer in Linear")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 2: Create or reuse issue
|
||||
issue_id: str | None = None
|
||||
issue_identifier: str | None = None
|
||||
if existing_issue_id:
|
||||
# Add need to existing issue - we still need the issue details for response
|
||||
is_new_issue = False
|
||||
issue_id = existing_issue_id
|
||||
else:
|
||||
# Create new issue in the feature requests project
|
||||
try:
|
||||
data = await client.mutate(
|
||||
ISSUE_CREATE_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"title": title,
|
||||
"description": description,
|
||||
"teamId": team_id,
|
||||
"projectId": project_id,
|
||||
},
|
||||
},
|
||||
)
|
||||
result = data.get("issueCreate", {})
|
||||
if not result.get("success"):
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request issue.",
|
||||
error=str(data),
|
||||
session_id=session_id,
|
||||
)
|
||||
issue = result["issue"]
|
||||
issue_id = issue["id"]
|
||||
issue_identifier = issue.get("identifier")
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create feature request issue")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
is_new_issue = True
|
||||
|
||||
# Step 3: Create customer need on the issue
|
||||
try:
|
||||
data = await client.mutate(
|
||||
CUSTOMER_NEED_CREATE_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"customerId": customer_id,
|
||||
"issueId": issue_id,
|
||||
"body": description,
|
||||
"priority": 0,
|
||||
},
|
||||
},
|
||||
)
|
||||
need_result = data.get("customerNeedCreate", {})
|
||||
if not need_result.get("success"):
|
||||
orphaned = (
|
||||
{"issue_id": issue_id, "issue_identifier": issue_identifier}
|
||||
if is_new_issue
|
||||
else None
|
||||
)
|
||||
return ErrorResponse(
|
||||
message="Failed to attach customer need to the feature request.",
|
||||
error=str(data),
|
||||
details=orphaned,
|
||||
session_id=session_id,
|
||||
)
|
||||
need = need_result["need"]
|
||||
issue_info = need["issue"]
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create customer need")
|
||||
orphaned = (
|
||||
{"issue_id": issue_id, "issue_identifier": issue_identifier}
|
||||
if is_new_issue
|
||||
else None
|
||||
)
|
||||
return ErrorResponse(
|
||||
message="Failed to attach customer need to the feature request.",
|
||||
error=str(e),
|
||||
details=orphaned,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return FeatureRequestCreatedResponse(
|
||||
message=(
|
||||
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
|
||||
f"{issue_info['title']}."
|
||||
),
|
||||
issue_id=issue_info["id"],
|
||||
issue_identifier=issue_info["identifier"],
|
||||
issue_title=issue_info["title"],
|
||||
issue_url=issue_info.get("url", ""),
|
||||
is_new_issue=is_new_issue,
|
||||
customer_name=customer_name,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -0,0 +1,615 @@
|
||||
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.feature_requests import (
|
||||
CreateFeatureRequestTool,
|
||||
SearchFeatureRequestsTool,
|
||||
)
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
FeatureRequestCreatedResponse,
|
||||
FeatureRequestSearchResponse,
|
||||
NoResultsResponse,
|
||||
)
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-feature-requests"
|
||||
_TEST_USER_EMAIL = "testuser@example.com"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Helpers
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
_FAKE_PROJECT_ID = "test-project-id"
|
||||
_FAKE_TEAM_ID = "test-team-id"
|
||||
|
||||
|
||||
def _mock_linear_config(*, query_return=None, mutate_return=None):
|
||||
"""Return a patched _get_linear_config that yields a mock LinearClient."""
|
||||
client = AsyncMock()
|
||||
if query_return is not None:
|
||||
client.query.return_value = query_return
|
||||
if mutate_return is not None:
|
||||
client.mutate.return_value = mutate_return
|
||||
return (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
|
||||
),
|
||||
client,
|
||||
)
|
||||
|
||||
|
||||
def _search_response(nodes: list[dict]) -> dict:
|
||||
return {"searchIssues": {"nodes": nodes}}
|
||||
|
||||
|
||||
def _customer_upsert_response(
|
||||
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
|
||||
) -> dict:
|
||||
return {
|
||||
"customerUpsert": {
|
||||
"success": success,
|
||||
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _issue_create_response(
|
||||
issue_id: str = "issue-1",
|
||||
identifier: str = "FR-1",
|
||||
title: str = "New Feature",
|
||||
success: bool = True,
|
||||
) -> dict:
|
||||
return {
|
||||
"issueCreate": {
|
||||
"success": success,
|
||||
"issue": {
|
||||
"id": issue_id,
|
||||
"identifier": identifier,
|
||||
"title": title,
|
||||
"url": f"https://linear.app/issue/{identifier}",
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _need_create_response(
|
||||
need_id: str = "need-1",
|
||||
issue_id: str = "issue-1",
|
||||
identifier: str = "FR-1",
|
||||
title: str = "New Feature",
|
||||
success: bool = True,
|
||||
) -> dict:
|
||||
return {
|
||||
"customerNeedCreate": {
|
||||
"success": success,
|
||||
"need": {
|
||||
"id": need_id,
|
||||
"body": "description",
|
||||
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
|
||||
"issue": {
|
||||
"id": issue_id,
|
||||
"identifier": identifier,
|
||||
"title": title,
|
||||
"url": f"https://linear.app/issue/{identifier}",
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# ===========================================================================
|
||||
# SearchFeatureRequestsTool
|
||||
# ===========================================================================
|
||||
|
||||
|
||||
class TestSearchFeatureRequestsTool:
|
||||
"""Tests for SearchFeatureRequestsTool._execute."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_successful_search(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
nodes = [
|
||||
{
|
||||
"id": "id-1",
|
||||
"identifier": "FR-1",
|
||||
"title": "Dark mode",
|
||||
"description": "Add dark mode support",
|
||||
},
|
||||
{
|
||||
"id": "id-2",
|
||||
"identifier": "FR-2",
|
||||
"title": "Dark theme",
|
||||
"description": None,
|
||||
},
|
||||
]
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="dark mode"
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestSearchResponse)
|
||||
assert resp.count == 2
|
||||
assert resp.results[0].id == "id-1"
|
||||
assert resp.results[1].identifier == "FR-2"
|
||||
assert resp.query == "dark mode"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_no_results(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response([]))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="nonexistent"
|
||||
)
|
||||
|
||||
assert isinstance(resp, NoResultsResponse)
|
||||
assert "nonexistent" in resp.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_empty_query_returns_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "query" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_query_returns_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_api_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.query.side_effect = RuntimeError("Linear API down")
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Linear API down" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_malformed_node_returns_error(self):
|
||||
"""A node missing required keys should be caught by the try/except."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
# Node missing 'identifier' key
|
||||
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_linear_client_init_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
side_effect=RuntimeError("No API key"),
|
||||
):
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "No API key" in resp.error
|
||||
|
||||
|
||||
# ===========================================================================
|
||||
# CreateFeatureRequestTool
|
||||
# ===========================================================================
|
||||
|
||||
|
||||
class TestCreateFeatureRequestTool:
|
||||
"""Tests for CreateFeatureRequestTool._execute."""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _patch_email_lookup(self):
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
|
||||
new_callable=AsyncMock,
|
||||
return_value=_TEST_USER_EMAIL,
|
||||
):
|
||||
yield
|
||||
|
||||
# ---- Happy paths -------------------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_create_new_issue(self):
|
||||
"""Full happy path: upsert customer -> create issue -> attach need."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(),
|
||||
_need_create_response(),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="New Feature",
|
||||
description="Please add this",
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestCreatedResponse)
|
||||
assert resp.is_new_issue is True
|
||||
assert resp.issue_identifier == "FR-1"
|
||||
assert resp.customer_name == _TEST_USER_EMAIL
|
||||
assert client.mutate.call_count == 3
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_add_need_to_existing_issue(self):
|
||||
"""When existing_issue_id is provided, skip issue creation."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_need_create_response(issue_id="existing-1", identifier="FR-99"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Existing Feature",
|
||||
description="Me too",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestCreatedResponse)
|
||||
assert resp.is_new_issue is False
|
||||
assert resp.issue_id == "existing-1"
|
||||
# Only 2 mutations: customer upsert + need create (no issue create)
|
||||
assert client.mutate.call_count == 2
|
||||
|
||||
# ---- Validation errors -------------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_title(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="",
|
||||
description="some desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "required" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_description(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Some title",
|
||||
description="",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "required" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_user_id(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=None,
|
||||
session=session,
|
||||
title="Some title",
|
||||
description="Some desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "user_id" in resp.error.lower()
|
||||
|
||||
# ---- Linear client init failure ----------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_linear_client_init_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
side_effect=RuntimeError("No API key"),
|
||||
):
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "No API key" in resp.error
|
||||
|
||||
# ---- Customer upsert failures ------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_upsert_api_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = RuntimeError("Customer API error")
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Customer API error" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_upsert_not_success(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.return_value = _customer_upsert_response(success=False)
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_malformed_response(self):
|
||||
"""Customer dict missing 'id' key should be caught."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
# success=True but customer has no 'id'
|
||||
client.mutate.return_value = {
|
||||
"customerUpsert": {
|
||||
"success": True,
|
||||
"customer": {"name": _TEST_USER_ID},
|
||||
}
|
||||
}
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
# ---- Issue creation failures -------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_api_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
RuntimeError("Issue create failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Issue create failed" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_not_success(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert "Failed to create feature request issue" in resp.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_malformed_response(self):
|
||||
"""issueCreate success=True but missing 'issue' key."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
{"issueCreate": {"success": True}}, # no 'issue' key
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
# ---- Customer need attachment failures ---------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_api_error_new_issue(self):
|
||||
"""Need creation fails after new issue was created -> orphaned issue info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
|
||||
RuntimeError("Need attach failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Need attach failed" in resp.error
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "orphan-1"
|
||||
assert resp.details["issue_identifier"] == "FR-10"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_api_error_existing_issue(self):
|
||||
"""Need creation fails on existing issue -> no orphaned info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
RuntimeError("Need attach failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_not_success_includes_orphaned_info(self):
|
||||
"""customerNeedCreate returns success=False -> includes orphaned issue."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
|
||||
_need_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "orphan-2"
|
||||
assert resp.details["issue_identifier"] == "FR-20"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_not_success_existing_issue_no_details(self):
|
||||
"""customerNeedCreate fails on existing issue -> no orphaned info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_need_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_malformed_response(self):
|
||||
"""need_result missing 'need' key after success=True."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(),
|
||||
{"customerNeedCreate": {"success": True}}, # no 'need' key
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "issue-1"
|
||||
@@ -146,6 +146,7 @@ class FindBlockTool(BaseTool):
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=[c.value for c in block.categories],
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@@ -41,6 +41,15 @@ class ResponseType(str, Enum):
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
# Input validation
|
||||
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||
# Web fetch
|
||||
WEB_FETCH = "web_fetch"
|
||||
# Code execution
|
||||
BASH_EXEC = "bash_exec"
|
||||
# Operation status check
|
||||
OPERATION_STATUS = "operation_status"
|
||||
# Feature request types
|
||||
FEATURE_REQUEST_SEARCH = "feature_request_search"
|
||||
FEATURE_REQUEST_CREATED = "feature_request_created"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -335,6 +344,19 @@ class BlockInfoSummary(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
description: str
|
||||
categories: list[str]
|
||||
input_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block inputs",
|
||||
)
|
||||
output_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block outputs",
|
||||
)
|
||||
required_inputs: list[BlockInputFieldInfo] = Field(
|
||||
default_factory=list,
|
||||
description="List of input fields for this block",
|
||||
)
|
||||
|
||||
|
||||
class BlockListResponse(ToolResponseBase):
|
||||
@@ -344,6 +366,10 @@ class BlockListResponse(ToolResponseBase):
|
||||
blocks: list[BlockInfoSummary]
|
||||
count: int
|
||||
query: str
|
||||
usage_hint: str = Field(
|
||||
default="To execute a block, call run_block with block_id set to the block's "
|
||||
"'id' field and input_data containing the fields listed in required_inputs."
|
||||
)
|
||||
|
||||
|
||||
class BlockDetails(BaseModel):
|
||||
@@ -430,3 +456,55 @@ class AsyncProcessingResponse(ToolResponseBase):
|
||||
status: str = "accepted" # Must be "accepted" for detection
|
||||
operation_id: str | None = None
|
||||
task_id: str | None = None
|
||||
|
||||
|
||||
class WebFetchResponse(ToolResponseBase):
|
||||
"""Response for web_fetch tool."""
|
||||
|
||||
type: ResponseType = ResponseType.WEB_FETCH
|
||||
url: str
|
||||
status_code: int
|
||||
content_type: str
|
||||
content: str
|
||||
truncated: bool = False
|
||||
|
||||
|
||||
class BashExecResponse(ToolResponseBase):
|
||||
"""Response for bash_exec tool."""
|
||||
|
||||
type: ResponseType = ResponseType.BASH_EXEC
|
||||
stdout: str
|
||||
stderr: str
|
||||
exit_code: int
|
||||
timed_out: bool = False
|
||||
|
||||
|
||||
# Feature request models
|
||||
class FeatureRequestInfo(BaseModel):
|
||||
"""Information about a feature request issue."""
|
||||
|
||||
id: str
|
||||
identifier: str
|
||||
title: str
|
||||
description: str | None = None
|
||||
|
||||
|
||||
class FeatureRequestSearchResponse(ToolResponseBase):
|
||||
"""Response for search_feature_requests tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
|
||||
results: list[FeatureRequestInfo]
|
||||
count: int
|
||||
query: str
|
||||
|
||||
|
||||
class FeatureRequestCreatedResponse(ToolResponseBase):
|
||||
"""Response for create_feature_request tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
|
||||
issue_id: str
|
||||
issue_identifier: str
|
||||
issue_title: str
|
||||
issue_url: str
|
||||
is_new_issue: bool # False if added to existing
|
||||
customer_name: str
|
||||
|
||||
@@ -0,0 +1,265 @@
|
||||
"""Sandbox execution utilities for code execution tools.
|
||||
|
||||
Provides filesystem + network isolated command execution using **bubblewrap**
|
||||
(``bwrap``): whitelist-only filesystem (only system dirs visible read-only),
|
||||
writable workspace only, clean environment, network blocked.
|
||||
|
||||
Tools that call :func:`run_sandboxed` must first check :func:`has_full_sandbox`
|
||||
and refuse to run if bubblewrap is not available.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import platform
|
||||
import shutil
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_DEFAULT_TIMEOUT = 30
|
||||
_MAX_TIMEOUT = 120
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Sandbox capability detection (cached at first call)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
_BWRAP_AVAILABLE: bool | None = None
|
||||
|
||||
|
||||
def has_full_sandbox() -> bool:
|
||||
"""Return True if bubblewrap is available (filesystem + network isolation).
|
||||
|
||||
On non-Linux platforms (macOS), always returns False.
|
||||
"""
|
||||
global _BWRAP_AVAILABLE
|
||||
if _BWRAP_AVAILABLE is None:
|
||||
_BWRAP_AVAILABLE = (
|
||||
platform.system() == "Linux" and shutil.which("bwrap") is not None
|
||||
)
|
||||
return _BWRAP_AVAILABLE
|
||||
|
||||
|
||||
WORKSPACE_PREFIX = "/tmp/copilot-"
|
||||
|
||||
|
||||
def make_session_path(session_id: str) -> str:
|
||||
"""Build a sanitized, session-specific path under :data:`WORKSPACE_PREFIX`.
|
||||
|
||||
Shared by both the SDK working-directory setup and the sandbox tools so
|
||||
they always resolve to the same directory for a given session.
|
||||
|
||||
Steps:
|
||||
1. Strip all characters except ``[A-Za-z0-9-]``.
|
||||
2. Construct ``/tmp/copilot-<safe_id>``.
|
||||
3. Validate via ``os.path.normpath`` + ``startswith`` (CodeQL-recognised
|
||||
sanitizer) to prevent path traversal.
|
||||
|
||||
Raises:
|
||||
ValueError: If the resulting path escapes the prefix.
|
||||
"""
|
||||
import re
|
||||
|
||||
safe_id = re.sub(r"[^A-Za-z0-9-]", "", session_id)
|
||||
if not safe_id:
|
||||
safe_id = "default"
|
||||
path = os.path.normpath(f"{WORKSPACE_PREFIX}{safe_id}")
|
||||
if not path.startswith(WORKSPACE_PREFIX):
|
||||
raise ValueError(f"Session path escaped prefix: {path}")
|
||||
return path
|
||||
|
||||
|
||||
def get_workspace_dir(session_id: str) -> str:
|
||||
"""Get or create the workspace directory for a session.
|
||||
|
||||
Uses :func:`make_session_path` — the same path the SDK uses — so that
|
||||
bash_exec shares the workspace with the SDK file tools.
|
||||
"""
|
||||
workspace = make_session_path(session_id)
|
||||
os.makedirs(workspace, exist_ok=True)
|
||||
return workspace
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Bubblewrap command builder
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
# System directories mounted read-only inside the sandbox.
|
||||
# ONLY these are visible — /app, /root, /home, /opt, /var etc. are NOT accessible.
|
||||
_SYSTEM_RO_BINDS = [
|
||||
"/usr", # binaries, libraries, Python interpreter
|
||||
"/etc", # system config: ld.so, locale, passwd, alternatives
|
||||
]
|
||||
|
||||
# Compat paths: symlinks to /usr/* on modern Debian, real dirs on older systems.
|
||||
# On Debian 13 these are symlinks (e.g. /bin -> usr/bin). bwrap --ro-bind
|
||||
# can't create a symlink target, so we detect and use --symlink instead.
|
||||
# /lib64 is critical: the ELF dynamic linker lives at /lib64/ld-linux-x86-64.so.2.
|
||||
_COMPAT_PATHS = [
|
||||
("/bin", "usr/bin"), # -> /usr/bin on Debian 13
|
||||
("/sbin", "usr/sbin"), # -> /usr/sbin on Debian 13
|
||||
("/lib", "usr/lib"), # -> /usr/lib on Debian 13
|
||||
("/lib64", "usr/lib64"), # 64-bit libraries / ELF interpreter
|
||||
]
|
||||
|
||||
# Resource limits to prevent fork bombs, memory exhaustion, and disk abuse.
|
||||
# Applied via ulimit inside the sandbox before exec'ing the user command.
|
||||
_RESOURCE_LIMITS = (
|
||||
"ulimit -u 64" # max 64 processes (prevents fork bombs)
|
||||
" -v 524288" # 512 MB virtual memory
|
||||
" -f 51200" # 50 MB max file size (1024-byte blocks)
|
||||
" -n 256" # 256 open file descriptors
|
||||
" 2>/dev/null"
|
||||
)
|
||||
|
||||
|
||||
def _build_bwrap_command(
|
||||
command: list[str], cwd: str, env: dict[str, str]
|
||||
) -> list[str]:
|
||||
"""Build a bubblewrap command with strict filesystem + network isolation.
|
||||
|
||||
Security model:
|
||||
- **Whitelist-only filesystem**: only system directories (``/usr``, ``/etc``,
|
||||
``/bin``, ``/lib``) are mounted read-only. Application code (``/app``),
|
||||
home directories, ``/var``, ``/opt``, etc. are NOT accessible at all.
|
||||
- **Writable workspace only**: the per-session workspace is the sole
|
||||
writable path.
|
||||
- **Clean environment**: ``--clearenv`` wipes all inherited env vars.
|
||||
Only the explicitly-passed safe env vars are set inside the sandbox.
|
||||
- **Network isolation**: ``--unshare-net`` blocks all network access.
|
||||
- **Resource limits**: ulimit caps on processes (64), memory (512MB),
|
||||
file size (50MB), and open FDs (256) to prevent fork bombs and abuse.
|
||||
- **New session**: prevents terminal control escape.
|
||||
- **Die with parent**: prevents orphaned sandbox processes.
|
||||
"""
|
||||
cmd = [
|
||||
"bwrap",
|
||||
# Create a new user namespace so bwrap can set up sandboxing
|
||||
# inside unprivileged Docker containers (no CAP_SYS_ADMIN needed).
|
||||
"--unshare-user",
|
||||
# Wipe all inherited environment variables (API keys, secrets, etc.)
|
||||
"--clearenv",
|
||||
]
|
||||
|
||||
# Set only the safe env vars inside the sandbox
|
||||
for key, value in env.items():
|
||||
cmd.extend(["--setenv", key, value])
|
||||
|
||||
# System directories: read-only
|
||||
for path in _SYSTEM_RO_BINDS:
|
||||
cmd.extend(["--ro-bind", path, path])
|
||||
|
||||
# Compat paths: use --symlink when host path is a symlink (Debian 13),
|
||||
# --ro-bind when it's a real directory (older distros).
|
||||
for path, symlink_target in _COMPAT_PATHS:
|
||||
if os.path.islink(path):
|
||||
cmd.extend(["--symlink", symlink_target, path])
|
||||
elif os.path.exists(path):
|
||||
cmd.extend(["--ro-bind", path, path])
|
||||
|
||||
# Wrap the user command with resource limits:
|
||||
# sh -c 'ulimit ...; exec "$@"' -- <original command>
|
||||
# `exec "$@"` replaces the shell so there's no extra process overhead,
|
||||
# and properly handles arguments with spaces.
|
||||
limited_command = [
|
||||
"sh",
|
||||
"-c",
|
||||
f'{_RESOURCE_LIMITS}; exec "$@"',
|
||||
"--",
|
||||
*command,
|
||||
]
|
||||
|
||||
cmd.extend(
|
||||
[
|
||||
# Fresh virtual filesystems
|
||||
"--dev",
|
||||
"/dev",
|
||||
"--proc",
|
||||
"/proc",
|
||||
"--tmpfs",
|
||||
"/tmp",
|
||||
# Workspace bind AFTER --tmpfs /tmp so it's visible through the tmpfs.
|
||||
# (workspace lives under /tmp/copilot-<session>)
|
||||
"--bind",
|
||||
cwd,
|
||||
cwd,
|
||||
# Isolation
|
||||
"--unshare-net",
|
||||
"--die-with-parent",
|
||||
"--new-session",
|
||||
"--chdir",
|
||||
cwd,
|
||||
"--",
|
||||
*limited_command,
|
||||
]
|
||||
)
|
||||
|
||||
return cmd
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Public API
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
async def run_sandboxed(
|
||||
command: list[str],
|
||||
cwd: str,
|
||||
timeout: int = _DEFAULT_TIMEOUT,
|
||||
env: dict[str, str] | None = None,
|
||||
) -> tuple[str, str, int, bool]:
|
||||
"""Run a command inside a bubblewrap sandbox.
|
||||
|
||||
Callers **must** check :func:`has_full_sandbox` before calling this
|
||||
function. If bubblewrap is not available, this function raises
|
||||
:class:`RuntimeError` rather than running unsandboxed.
|
||||
|
||||
Returns:
|
||||
(stdout, stderr, exit_code, timed_out)
|
||||
"""
|
||||
if not has_full_sandbox():
|
||||
raise RuntimeError(
|
||||
"run_sandboxed() requires bubblewrap but bwrap is not available. "
|
||||
"Callers must check has_full_sandbox() before calling this function."
|
||||
)
|
||||
|
||||
timeout = min(max(timeout, 1), _MAX_TIMEOUT)
|
||||
|
||||
safe_env = {
|
||||
"PATH": "/usr/local/bin:/usr/bin:/bin",
|
||||
"HOME": cwd,
|
||||
"TMPDIR": cwd,
|
||||
"LANG": "en_US.UTF-8",
|
||||
"PYTHONDONTWRITEBYTECODE": "1",
|
||||
"PYTHONIOENCODING": "utf-8",
|
||||
}
|
||||
if env:
|
||||
safe_env.update(env)
|
||||
|
||||
full_command = _build_bwrap_command(command, cwd, safe_env)
|
||||
|
||||
try:
|
||||
proc = await asyncio.create_subprocess_exec(
|
||||
*full_command,
|
||||
stdout=asyncio.subprocess.PIPE,
|
||||
stderr=asyncio.subprocess.PIPE,
|
||||
cwd=cwd,
|
||||
env=safe_env,
|
||||
)
|
||||
|
||||
try:
|
||||
stdout_bytes, stderr_bytes = await asyncio.wait_for(
|
||||
proc.communicate(), timeout=timeout
|
||||
)
|
||||
stdout = stdout_bytes.decode("utf-8", errors="replace")
|
||||
stderr = stderr_bytes.decode("utf-8", errors="replace")
|
||||
return stdout, stderr, proc.returncode or 0, False
|
||||
except asyncio.TimeoutError:
|
||||
proc.kill()
|
||||
await proc.communicate()
|
||||
return "", f"Execution timed out after {timeout}s", -1, True
|
||||
|
||||
except RuntimeError:
|
||||
raise
|
||||
except Exception as e:
|
||||
return "", f"Sandbox error: {e}", -1, False
|
||||
@@ -15,6 +15,7 @@ from backend.data.model import (
|
||||
OAuth2Credentials,
|
||||
)
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -359,7 +360,7 @@ async def match_user_credentials_to_graph(
|
||||
_,
|
||||
_,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider, type, and scopes
|
||||
# Find first matching credential by provider, type, scopes, and host/URL
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
@@ -374,6 +375,10 @@ async def match_user_credentials_to_graph(
|
||||
cred.type != "host_scoped"
|
||||
or _credential_is_for_host(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.provider != ProviderName.MCP
|
||||
or _credential_is_for_mcp_server(cred, credential_requirements)
|
||||
)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -444,6 +449,22 @@ def _credential_is_for_host(
|
||||
return credential.matches_url(list(requirements.discriminator_values)[0])
|
||||
|
||||
|
||||
def _credential_is_for_mcp_server(
|
||||
credential: Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an MCP OAuth credential matches the required server URL."""
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
server_url = (
|
||||
credential.metadata.get("mcp_server_url")
|
||||
if isinstance(credential, OAuth2Credentials)
|
||||
else None
|
||||
)
|
||||
return server_url in requirements.discriminator_values if server_url else False
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
|
||||
@@ -0,0 +1,151 @@
|
||||
"""Web fetch tool — safely retrieve public web page content."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import aiohttp
|
||||
import html2text
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
WebFetchResponse,
|
||||
)
|
||||
from backend.util.request import Requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Limits
|
||||
_MAX_CONTENT_BYTES = 102_400 # 100 KB download cap
|
||||
_REQUEST_TIMEOUT = aiohttp.ClientTimeout(total=15)
|
||||
|
||||
# Content types we'll read as text
|
||||
_TEXT_CONTENT_TYPES = {
|
||||
"text/html",
|
||||
"text/plain",
|
||||
"text/xml",
|
||||
"text/csv",
|
||||
"text/markdown",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/xhtml+xml",
|
||||
"application/rss+xml",
|
||||
"application/atom+xml",
|
||||
}
|
||||
|
||||
|
||||
def _is_text_content(content_type: str) -> bool:
|
||||
base = content_type.split(";")[0].strip().lower()
|
||||
return base in _TEXT_CONTENT_TYPES or base.startswith("text/")
|
||||
|
||||
|
||||
def _html_to_text(html: str) -> str:
|
||||
h = html2text.HTML2Text()
|
||||
h.ignore_links = False
|
||||
h.ignore_images = True
|
||||
h.body_width = 0
|
||||
return h.handle(html)
|
||||
|
||||
|
||||
class WebFetchTool(BaseTool):
|
||||
"""Safely fetch content from a public URL using SSRF-protected HTTP."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "web_fetch"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Fetch the content of a public web page by URL. "
|
||||
"Returns readable text extracted from HTML by default. "
|
||||
"Useful for reading documentation, articles, and API responses. "
|
||||
"Only supports HTTP/HTTPS GET requests to public URLs "
|
||||
"(private/internal network addresses are blocked)."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "The public HTTP/HTTPS URL to fetch.",
|
||||
},
|
||||
"extract_text": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true (default), extract readable text from HTML. "
|
||||
"If false, return raw content."
|
||||
),
|
||||
"default": True,
|
||||
},
|
||||
},
|
||||
"required": ["url"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs: Any,
|
||||
) -> ToolResponseBase:
|
||||
url: str = (kwargs.get("url") or "").strip()
|
||||
extract_text: bool = kwargs.get("extract_text", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not url:
|
||||
return ErrorResponse(
|
||||
message="Please provide a URL to fetch.",
|
||||
error="missing_url",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client = Requests(raise_for_status=False, retry_max_attempts=1)
|
||||
response = await client.get(url, timeout=_REQUEST_TIMEOUT)
|
||||
except ValueError as e:
|
||||
# validate_url raises ValueError for SSRF / blocked IPs
|
||||
return ErrorResponse(
|
||||
message=f"URL blocked: {e}",
|
||||
error="url_blocked",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"[web_fetch] Request failed for {url}: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Failed to fetch URL: {e}",
|
||||
error="fetch_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
content_type = response.headers.get("content-type", "")
|
||||
if not _is_text_content(content_type):
|
||||
return ErrorResponse(
|
||||
message=f"Non-text content type: {content_type.split(';')[0]}",
|
||||
error="unsupported_content_type",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
raw = response.content[:_MAX_CONTENT_BYTES]
|
||||
text = raw.decode("utf-8", errors="replace")
|
||||
|
||||
if extract_text and "html" in content_type.lower():
|
||||
text = _html_to_text(text)
|
||||
|
||||
return WebFetchResponse(
|
||||
message=f"Fetched {url}",
|
||||
url=response.url,
|
||||
status_code=response.status,
|
||||
content_type=content_type.split(";")[0].strip(),
|
||||
content=text,
|
||||
truncated=False,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -88,7 +88,9 @@ class ListWorkspaceFilesTool(BaseTool):
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's workspace. "
|
||||
"List files in the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Read/Glob tools instead. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
@@ -204,7 +206,9 @@ class ReadWorkspaceFileTool(BaseTool):
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's workspace. "
|
||||
"Read a file from the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Read tool instead. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
@@ -378,7 +382,9 @@ class WriteWorkspaceFileTool(BaseTool):
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's workspace. "
|
||||
"Write or create a file in the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Write tool instead. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
@@ -523,7 +529,7 @@ class DeleteWorkspaceFileTool(BaseTool):
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's workspace. "
|
||||
"Delete a file from the user's persistent workspace (cloud storage). "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TYPE_CHECKING, Annotated, List, Literal
|
||||
from typing import TYPE_CHECKING, Annotated, Any, List, Literal
|
||||
|
||||
from autogpt_libs.auth import get_user_id
|
||||
from fastapi import (
|
||||
@@ -14,7 +14,7 @@ from fastapi import (
|
||||
Security,
|
||||
status,
|
||||
)
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr, model_validator
|
||||
from starlette.status import HTTP_500_INTERNAL_SERVER_ERROR, HTTP_502_BAD_GATEWAY
|
||||
|
||||
from backend.api.features.library.db import set_preset_webhook, update_preset
|
||||
@@ -39,7 +39,11 @@ from backend.data.onboarding import OnboardingStep, complete_onboarding_step
|
||||
from backend.data.user import get_user_integrations
|
||||
from backend.executor.utils import add_graph_execution
|
||||
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.credentials_store import provider_matches
|
||||
from backend.integrations.creds_manager import (
|
||||
IntegrationCredentialsManager,
|
||||
create_mcp_oauth_handler,
|
||||
)
|
||||
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.integrations.webhooks import get_webhook_manager
|
||||
@@ -102,9 +106,37 @@ class CredentialsMetaResponse(BaseModel):
|
||||
scopes: list[str] | None
|
||||
username: str | None
|
||||
host: str | None = Field(
|
||||
default=None, description="Host pattern for host-scoped credentials"
|
||||
default=None,
|
||||
description="Host pattern for host-scoped or MCP server URL for MCP credentials",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def _normalize_provider(cls, data: Any) -> Any:
|
||||
"""Fix ``ProviderName.X`` format from Python 3.13 ``str(Enum)`` bug."""
|
||||
if isinstance(data, dict):
|
||||
prov = data.get("provider", "")
|
||||
if isinstance(prov, str) and prov.startswith("ProviderName."):
|
||||
member = prov.removeprefix("ProviderName.")
|
||||
try:
|
||||
data = {**data, "provider": ProviderName[member].value}
|
||||
except KeyError:
|
||||
pass
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def get_host(cred: Credentials) -> str | None:
|
||||
"""Extract host from credential: HostScoped host or MCP server URL."""
|
||||
if isinstance(cred, HostScopedCredentials):
|
||||
return cred.host
|
||||
if isinstance(cred, OAuth2Credentials) and cred.provider in (
|
||||
ProviderName.MCP,
|
||||
ProviderName.MCP.value,
|
||||
"ProviderName.MCP",
|
||||
):
|
||||
return (cred.metadata or {}).get("mcp_server_url")
|
||||
return None
|
||||
|
||||
|
||||
@router.post("/{provider}/callback", summary="Exchange OAuth code for tokens")
|
||||
async def callback(
|
||||
@@ -179,9 +211,7 @@ async def callback(
|
||||
title=credentials.title,
|
||||
scopes=credentials.scopes,
|
||||
username=credentials.username,
|
||||
host=(
|
||||
credentials.host if isinstance(credentials, HostScopedCredentials) else None
|
||||
),
|
||||
host=(CredentialsMetaResponse.get_host(credentials)),
|
||||
)
|
||||
|
||||
|
||||
@@ -199,7 +229,7 @@ async def list_credentials(
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
host=CredentialsMetaResponse.get_host(cred),
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
@@ -222,7 +252,7 @@ async def list_credentials_by_provider(
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
host=CredentialsMetaResponse.get_host(cred),
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
@@ -322,7 +352,11 @@ async def delete_credentials(
|
||||
|
||||
tokens_revoked = None
|
||||
if isinstance(creds, OAuth2Credentials):
|
||||
handler = _get_provider_oauth_handler(request, provider)
|
||||
if provider_matches(provider.value, ProviderName.MCP.value):
|
||||
# MCP uses dynamic per-server OAuth — create handler from metadata
|
||||
handler = create_mcp_oauth_handler(creds)
|
||||
else:
|
||||
handler = _get_provider_oauth_handler(request, provider)
|
||||
tokens_revoked = await handler.revoke_tokens(creds)
|
||||
|
||||
return CredentialsDeletionResponse(revoked=tokens_revoked)
|
||||
|
||||
404
autogpt_platform/backend/backend/api/features/mcp/routes.py
Normal file
404
autogpt_platform/backend/backend/api/features/mcp/routes.py
Normal file
@@ -0,0 +1,404 @@
|
||||
"""
|
||||
MCP (Model Context Protocol) API routes.
|
||||
|
||||
Provides endpoints for MCP tool discovery and OAuth authentication so the
|
||||
frontend can list available tools on an MCP server before placing a block.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Annotated, Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth import get_user_id
|
||||
from fastapi import Security
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.api.features.integrations.router import CredentialsMetaResponse
|
||||
from backend.blocks.mcp.client import MCPClient, MCPClientError
|
||||
from backend.blocks.mcp.oauth import MCPOAuthHandler
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import HTTPClientError, Requests
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
settings = Settings()
|
||||
router = fastapi.APIRouter(tags=["mcp"])
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
|
||||
|
||||
# ====================== Tool Discovery ====================== #
|
||||
|
||||
|
||||
class DiscoverToolsRequest(BaseModel):
|
||||
"""Request to discover tools on an MCP server."""
|
||||
|
||||
server_url: str = Field(description="URL of the MCP server")
|
||||
auth_token: str | None = Field(
|
||||
default=None,
|
||||
description="Optional Bearer token for authenticated MCP servers",
|
||||
)
|
||||
|
||||
|
||||
class MCPToolResponse(BaseModel):
|
||||
"""A single MCP tool returned by discovery."""
|
||||
|
||||
name: str
|
||||
description: str
|
||||
input_schema: dict[str, Any]
|
||||
|
||||
|
||||
class DiscoverToolsResponse(BaseModel):
|
||||
"""Response containing the list of tools available on an MCP server."""
|
||||
|
||||
tools: list[MCPToolResponse]
|
||||
server_name: str | None = None
|
||||
protocol_version: str | None = None
|
||||
|
||||
|
||||
@router.post(
|
||||
"/discover-tools",
|
||||
summary="Discover available tools on an MCP server",
|
||||
response_model=DiscoverToolsResponse,
|
||||
)
|
||||
async def discover_tools(
|
||||
request: DiscoverToolsRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> DiscoverToolsResponse:
|
||||
"""
|
||||
Connect to an MCP server and return its available tools.
|
||||
|
||||
If the user has a stored MCP credential for this server URL, it will be
|
||||
used automatically — no need to pass an explicit auth token.
|
||||
"""
|
||||
auth_token = request.auth_token
|
||||
|
||||
# Auto-use stored MCP credential when no explicit token is provided.
|
||||
if not auth_token:
|
||||
mcp_creds = await creds_manager.store.get_creds_by_provider(
|
||||
user_id, ProviderName.MCP.value
|
||||
)
|
||||
# Find the freshest credential for this server URL
|
||||
best_cred: OAuth2Credentials | None = None
|
||||
for cred in mcp_creds:
|
||||
if (
|
||||
isinstance(cred, OAuth2Credentials)
|
||||
and (cred.metadata or {}).get("mcp_server_url") == request.server_url
|
||||
):
|
||||
if best_cred is None or (
|
||||
(cred.access_token_expires_at or 0)
|
||||
> (best_cred.access_token_expires_at or 0)
|
||||
):
|
||||
best_cred = cred
|
||||
if best_cred:
|
||||
# Refresh the token if expired before using it
|
||||
best_cred = await creds_manager.refresh_if_needed(user_id, best_cred)
|
||||
logger.info(
|
||||
f"Using MCP credential {best_cred.id} for {request.server_url}, "
|
||||
f"expires_at={best_cred.access_token_expires_at}"
|
||||
)
|
||||
auth_token = best_cred.access_token.get_secret_value()
|
||||
|
||||
client = MCPClient(request.server_url, auth_token=auth_token)
|
||||
|
||||
try:
|
||||
init_result = await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
except HTTPClientError as e:
|
||||
if e.status_code in (401, 403):
|
||||
raise fastapi.HTTPException(
|
||||
status_code=401,
|
||||
detail="This MCP server requires authentication. "
|
||||
"Please provide a valid auth token.",
|
||||
)
|
||||
raise fastapi.HTTPException(status_code=502, detail=str(e))
|
||||
except MCPClientError as e:
|
||||
raise fastapi.HTTPException(status_code=502, detail=str(e))
|
||||
except Exception as e:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=502,
|
||||
detail=f"Failed to connect to MCP server: {e}",
|
||||
)
|
||||
|
||||
return DiscoverToolsResponse(
|
||||
tools=[
|
||||
MCPToolResponse(
|
||||
name=t.name,
|
||||
description=t.description,
|
||||
input_schema=t.input_schema,
|
||||
)
|
||||
for t in tools
|
||||
],
|
||||
server_name=(
|
||||
init_result.get("serverInfo", {}).get("name")
|
||||
or urlparse(request.server_url).hostname
|
||||
or "MCP"
|
||||
),
|
||||
protocol_version=init_result.get("protocolVersion"),
|
||||
)
|
||||
|
||||
|
||||
# ======================== OAuth Flow ======================== #
|
||||
|
||||
|
||||
class MCPOAuthLoginRequest(BaseModel):
|
||||
"""Request to start an OAuth flow for an MCP server."""
|
||||
|
||||
server_url: str = Field(description="URL of the MCP server that requires OAuth")
|
||||
|
||||
|
||||
class MCPOAuthLoginResponse(BaseModel):
|
||||
"""Response with the OAuth login URL for the user to authenticate."""
|
||||
|
||||
login_url: str
|
||||
state_token: str
|
||||
|
||||
|
||||
@router.post(
|
||||
"/oauth/login",
|
||||
summary="Initiate OAuth login for an MCP server",
|
||||
)
|
||||
async def mcp_oauth_login(
|
||||
request: MCPOAuthLoginRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> MCPOAuthLoginResponse:
|
||||
"""
|
||||
Discover OAuth metadata from the MCP server and return a login URL.
|
||||
|
||||
1. Discovers the protected-resource metadata (RFC 9728)
|
||||
2. Fetches the authorization server metadata (RFC 8414)
|
||||
3. Performs Dynamic Client Registration (RFC 7591) if available
|
||||
4. Returns the authorization URL for the frontend to open in a popup
|
||||
"""
|
||||
client = MCPClient(request.server_url)
|
||||
|
||||
# Step 1: Discover protected-resource metadata (RFC 9728)
|
||||
protected_resource = await client.discover_auth()
|
||||
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
if protected_resource and protected_resource.get("authorization_servers"):
|
||||
auth_server_url = protected_resource["authorization_servers"][0]
|
||||
resource_url = protected_resource.get("resource", request.server_url)
|
||||
|
||||
# Step 2a: Discover auth-server metadata (RFC 8414)
|
||||
metadata = await client.discover_auth_server_metadata(auth_server_url)
|
||||
else:
|
||||
# Fallback: Some MCP servers (e.g. Linear) are their own auth server
|
||||
# and serve OAuth metadata directly without protected-resource metadata.
|
||||
# Don't assume a resource_url — omitting it lets the auth server choose
|
||||
# the correct audience for the token (RFC 8707 resource is optional).
|
||||
resource_url = None
|
||||
metadata = await client.discover_auth_server_metadata(request.server_url)
|
||||
|
||||
if (
|
||||
not metadata
|
||||
or "authorization_endpoint" not in metadata
|
||||
or "token_endpoint" not in metadata
|
||||
):
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail="This MCP server does not advertise OAuth support. "
|
||||
"You may need to provide an auth token manually.",
|
||||
)
|
||||
|
||||
authorize_url = metadata["authorization_endpoint"]
|
||||
token_url = metadata["token_endpoint"]
|
||||
registration_endpoint = metadata.get("registration_endpoint")
|
||||
revoke_url = metadata.get("revocation_endpoint")
|
||||
|
||||
# Step 3: Dynamic Client Registration (RFC 7591) if available
|
||||
frontend_base_url = settings.config.frontend_base_url
|
||||
if not frontend_base_url:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Frontend base URL is not configured.",
|
||||
)
|
||||
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
|
||||
|
||||
client_id = ""
|
||||
client_secret = ""
|
||||
if registration_endpoint:
|
||||
reg_result = await _register_mcp_client(
|
||||
registration_endpoint, redirect_uri, request.server_url
|
||||
)
|
||||
if reg_result:
|
||||
client_id = reg_result.get("client_id", "")
|
||||
client_secret = reg_result.get("client_secret", "")
|
||||
|
||||
if not client_id:
|
||||
client_id = "autogpt-platform"
|
||||
|
||||
# Step 4: Store state token with OAuth metadata for the callback
|
||||
scopes = (protected_resource or {}).get("scopes_supported") or metadata.get(
|
||||
"scopes_supported", []
|
||||
)
|
||||
state_token, code_challenge = await creds_manager.store.store_state_token(
|
||||
user_id,
|
||||
ProviderName.MCP.value,
|
||||
scopes,
|
||||
state_metadata={
|
||||
"authorize_url": authorize_url,
|
||||
"token_url": token_url,
|
||||
"revoke_url": revoke_url,
|
||||
"resource_url": resource_url,
|
||||
"server_url": request.server_url,
|
||||
"client_id": client_id,
|
||||
"client_secret": client_secret,
|
||||
},
|
||||
)
|
||||
|
||||
# Step 5: Build and return the login URL
|
||||
handler = MCPOAuthHandler(
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
redirect_uri=redirect_uri,
|
||||
authorize_url=authorize_url,
|
||||
token_url=token_url,
|
||||
resource_url=resource_url,
|
||||
)
|
||||
login_url = handler.get_login_url(
|
||||
scopes, state_token, code_challenge=code_challenge
|
||||
)
|
||||
|
||||
return MCPOAuthLoginResponse(login_url=login_url, state_token=state_token)
|
||||
|
||||
|
||||
class MCPOAuthCallbackRequest(BaseModel):
|
||||
"""Request to exchange an OAuth code for tokens."""
|
||||
|
||||
code: str = Field(description="Authorization code from OAuth callback")
|
||||
state_token: str = Field(description="State token for CSRF verification")
|
||||
|
||||
|
||||
class MCPOAuthCallbackResponse(BaseModel):
|
||||
"""Response after successfully storing OAuth credentials."""
|
||||
|
||||
credential_id: str
|
||||
|
||||
|
||||
@router.post(
|
||||
"/oauth/callback",
|
||||
summary="Exchange OAuth code for MCP tokens",
|
||||
)
|
||||
async def mcp_oauth_callback(
|
||||
request: MCPOAuthCallbackRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> CredentialsMetaResponse:
|
||||
"""
|
||||
Exchange the authorization code for tokens and store the credential.
|
||||
|
||||
The frontend calls this after receiving the OAuth code from the popup.
|
||||
On success, subsequent ``/discover-tools`` calls for the same server URL
|
||||
will automatically use the stored credential.
|
||||
"""
|
||||
valid_state = await creds_manager.store.verify_state_token(
|
||||
user_id, request.state_token, ProviderName.MCP.value
|
||||
)
|
||||
if not valid_state:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail="Invalid or expired state token.",
|
||||
)
|
||||
|
||||
meta = valid_state.state_metadata
|
||||
frontend_base_url = settings.config.frontend_base_url
|
||||
if not frontend_base_url:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Frontend base URL is not configured.",
|
||||
)
|
||||
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
|
||||
|
||||
handler = MCPOAuthHandler(
|
||||
client_id=meta["client_id"],
|
||||
client_secret=meta.get("client_secret", ""),
|
||||
redirect_uri=redirect_uri,
|
||||
authorize_url=meta["authorize_url"],
|
||||
token_url=meta["token_url"],
|
||||
revoke_url=meta.get("revoke_url"),
|
||||
resource_url=meta.get("resource_url"),
|
||||
)
|
||||
|
||||
try:
|
||||
credentials = await handler.exchange_code_for_tokens(
|
||||
request.code, valid_state.scopes, valid_state.code_verifier
|
||||
)
|
||||
except Exception as e:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail=f"OAuth token exchange failed: {e}",
|
||||
)
|
||||
|
||||
# Enrich credential metadata for future lookup and token refresh
|
||||
if credentials.metadata is None:
|
||||
credentials.metadata = {}
|
||||
credentials.metadata["mcp_server_url"] = meta["server_url"]
|
||||
credentials.metadata["mcp_client_id"] = meta["client_id"]
|
||||
credentials.metadata["mcp_client_secret"] = meta.get("client_secret", "")
|
||||
credentials.metadata["mcp_token_url"] = meta["token_url"]
|
||||
credentials.metadata["mcp_resource_url"] = meta.get("resource_url", "")
|
||||
|
||||
hostname = urlparse(meta["server_url"]).hostname or meta["server_url"]
|
||||
credentials.title = f"MCP: {hostname}"
|
||||
|
||||
# Remove old MCP credentials for the same server to prevent stale token buildup.
|
||||
try:
|
||||
old_creds = await creds_manager.store.get_creds_by_provider(
|
||||
user_id, ProviderName.MCP.value
|
||||
)
|
||||
for old in old_creds:
|
||||
if (
|
||||
isinstance(old, OAuth2Credentials)
|
||||
and (old.metadata or {}).get("mcp_server_url") == meta["server_url"]
|
||||
):
|
||||
await creds_manager.store.delete_creds_by_id(user_id, old.id)
|
||||
logger.info(
|
||||
f"Removed old MCP credential {old.id} for {meta['server_url']}"
|
||||
)
|
||||
except Exception:
|
||||
logger.debug("Could not clean up old MCP credentials", exc_info=True)
|
||||
|
||||
await creds_manager.create(user_id, credentials)
|
||||
|
||||
return CredentialsMetaResponse(
|
||||
id=credentials.id,
|
||||
provider=credentials.provider,
|
||||
type=credentials.type,
|
||||
title=credentials.title,
|
||||
scopes=credentials.scopes,
|
||||
username=credentials.username,
|
||||
host=credentials.metadata.get("mcp_server_url"),
|
||||
)
|
||||
|
||||
|
||||
# ======================== Helpers ======================== #
|
||||
|
||||
|
||||
async def _register_mcp_client(
|
||||
registration_endpoint: str,
|
||||
redirect_uri: str,
|
||||
server_url: str,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Attempt Dynamic Client Registration (RFC 7591) with an MCP auth server."""
|
||||
try:
|
||||
response = await Requests(raise_for_status=True).post(
|
||||
registration_endpoint,
|
||||
json={
|
||||
"client_name": "AutoGPT Platform",
|
||||
"redirect_uris": [redirect_uri],
|
||||
"grant_types": ["authorization_code"],
|
||||
"response_types": ["code"],
|
||||
"token_endpoint_auth_method": "client_secret_post",
|
||||
},
|
||||
)
|
||||
data = response.json()
|
||||
if isinstance(data, dict) and "client_id" in data:
|
||||
return data
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"Dynamic client registration failed for {server_url}: {e}")
|
||||
return None
|
||||
436
autogpt_platform/backend/backend/api/features/mcp/test_routes.py
Normal file
436
autogpt_platform/backend/backend/api/features/mcp/test_routes.py
Normal file
@@ -0,0 +1,436 @@
|
||||
"""Tests for MCP API routes.
|
||||
|
||||
Uses httpx.AsyncClient with ASGITransport instead of fastapi.testclient.TestClient
|
||||
to avoid creating blocking portals that can corrupt pytest-asyncio's session event loop.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import fastapi
|
||||
import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from autogpt_libs.auth import get_user_id
|
||||
|
||||
from backend.api.features.mcp.routes import router
|
||||
from backend.blocks.mcp.client import MCPClientError, MCPTool
|
||||
from backend.util.request import HTTPClientError
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(router)
|
||||
app.dependency_overrides[get_user_id] = lambda: "test-user-id"
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="module")
|
||||
async def client():
|
||||
transport = httpx.ASGITransport(app=app)
|
||||
async with httpx.AsyncClient(transport=transport, base_url="http://test") as c:
|
||||
yield c
|
||||
|
||||
|
||||
class TestDiscoverTools:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_success(self, client):
|
||||
mock_tools = [
|
||||
MCPTool(
|
||||
name="get_weather",
|
||||
description="Get weather for a city",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
"required": ["city"],
|
||||
},
|
||||
),
|
||||
MCPTool(
|
||||
name="add_numbers",
|
||||
description="Add two numbers",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {"type": "number"},
|
||||
"b": {"type": "number"},
|
||||
},
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={
|
||||
"protocolVersion": "2025-03-26",
|
||||
"serverInfo": {"name": "test-server"},
|
||||
}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=mock_tools)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert len(data["tools"]) == 2
|
||||
assert data["tools"][0]["name"] == "get_weather"
|
||||
assert data["tools"][1]["name"] == "add_numbers"
|
||||
assert data["server_name"] == "test-server"
|
||||
assert data["protocol_version"] == "2025-03-26"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_with_auth_token(self, client):
|
||||
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={
|
||||
"server_url": "https://mcp.example.com/mcp",
|
||||
"auth_token": "my-secret-token",
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
MockClient.assert_called_once_with(
|
||||
"https://mcp.example.com/mcp",
|
||||
auth_token="my-secret-token",
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_auto_uses_stored_credential(self, client):
|
||||
"""When no explicit token is given, stored MCP credentials are used."""
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
stored_cred = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
title="MCP: example.com",
|
||||
access_token=SecretStr("stored-token-123"),
|
||||
refresh_token=None,
|
||||
access_token_expires_at=None,
|
||||
refresh_token_expires_at=None,
|
||||
scopes=[],
|
||||
metadata={"mcp_server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[stored_cred])
|
||||
mock_cm.refresh_if_needed = AsyncMock(return_value=stored_cred)
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
MockClient.assert_called_once_with(
|
||||
"https://mcp.example.com/mcp",
|
||||
auth_token="stored-token-123",
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_mcp_error(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=MCPClientError("Connection refused")
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://bad-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 502
|
||||
assert "Connection refused" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_generic_error(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(side_effect=Exception("Network timeout"))
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://timeout.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 502
|
||||
assert "Failed to connect" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_auth_required(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=HTTPClientError("HTTP 401 Error: Unauthorized", 401)
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://auth-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 401
|
||||
assert "requires authentication" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_forbidden(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=HTTPClientError("HTTP 403 Error: Forbidden", 403)
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://auth-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 401
|
||||
assert "requires authentication" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_missing_url(self, client):
|
||||
response = await client.post("/discover-tools", json={})
|
||||
assert response.status_code == 422
|
||||
|
||||
|
||||
class TestOAuthLogin:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_success(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch(
|
||||
"backend.api.features.mcp.routes._register_mcp_client"
|
||||
) as mock_register,
|
||||
):
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(
|
||||
return_value={
|
||||
"authorization_servers": ["https://auth.sentry.io"],
|
||||
"resource": "https://mcp.sentry.dev/mcp",
|
||||
"scopes_supported": ["openid"],
|
||||
}
|
||||
)
|
||||
instance.discover_auth_server_metadata = AsyncMock(
|
||||
return_value={
|
||||
"authorization_endpoint": "https://auth.sentry.io/authorize",
|
||||
"token_endpoint": "https://auth.sentry.io/token",
|
||||
"registration_endpoint": "https://auth.sentry.io/register",
|
||||
}
|
||||
)
|
||||
mock_register.return_value = {
|
||||
"client_id": "registered-client-id",
|
||||
"client_secret": "registered-secret",
|
||||
}
|
||||
mock_cm.store.store_state_token = AsyncMock(
|
||||
return_value=("state-token-123", "code-challenge-abc")
|
||||
)
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://mcp.sentry.dev/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "login_url" in data
|
||||
assert data["state_token"] == "state-token-123"
|
||||
assert "auth.sentry.io/authorize" in data["login_url"]
|
||||
assert "registered-client-id" in data["login_url"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_no_oauth_support(self, client):
|
||||
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(return_value=None)
|
||||
instance.discover_auth_server_metadata = AsyncMock(return_value=None)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://simple-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "does not advertise OAuth" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_fallback_to_public_client(self, client):
|
||||
"""When DCR is unavailable, falls back to default public client ID."""
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
):
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(
|
||||
return_value={
|
||||
"authorization_servers": ["https://auth.example.com"],
|
||||
"resource": "https://mcp.example.com/mcp",
|
||||
}
|
||||
)
|
||||
instance.discover_auth_server_metadata = AsyncMock(
|
||||
return_value={
|
||||
"authorization_endpoint": "https://auth.example.com/authorize",
|
||||
"token_endpoint": "https://auth.example.com/token",
|
||||
# No registration_endpoint
|
||||
}
|
||||
)
|
||||
mock_cm.store.store_state_token = AsyncMock(
|
||||
return_value=("state-abc", "challenge-xyz")
|
||||
)
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "autogpt-platform" in data["login_url"]
|
||||
|
||||
|
||||
class TestOAuthCallback:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_success(self, client):
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
mock_creds = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
title=None,
|
||||
access_token=SecretStr("access-token-xyz"),
|
||||
refresh_token=None,
|
||||
access_token_expires_at=None,
|
||||
refresh_token_expires_at=None,
|
||||
scopes=[],
|
||||
metadata={
|
||||
"mcp_token_url": "https://auth.sentry.io/token",
|
||||
"mcp_resource_url": "https://mcp.sentry.dev/mcp",
|
||||
},
|
||||
)
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
|
||||
):
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
# Mock state verification
|
||||
mock_state = AsyncMock()
|
||||
mock_state.state_metadata = {
|
||||
"authorize_url": "https://auth.sentry.io/authorize",
|
||||
"token_url": "https://auth.sentry.io/token",
|
||||
"client_id": "test-client-id",
|
||||
"client_secret": "test-secret",
|
||||
"server_url": "https://mcp.sentry.dev/mcp",
|
||||
}
|
||||
mock_state.scopes = ["openid"]
|
||||
mock_state.code_verifier = "verifier-123"
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
|
||||
mock_cm.create = AsyncMock()
|
||||
|
||||
handler_instance = MockHandler.return_value
|
||||
handler_instance.exchange_code_for_tokens = AsyncMock(
|
||||
return_value=mock_creds
|
||||
)
|
||||
|
||||
# Mock old credential cleanup
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "auth-code-abc", "state_token": "state-token-123"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "id" in data
|
||||
assert data["provider"] == "mcp"
|
||||
assert data["type"] == "oauth2"
|
||||
mock_cm.create.assert_called_once()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_invalid_state(self, client):
|
||||
with patch("backend.api.features.mcp.routes.creds_manager") as mock_cm:
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=None)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "auth-code", "state_token": "bad-state"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Invalid or expired" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_token_exchange_fails(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
|
||||
):
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
mock_state = AsyncMock()
|
||||
mock_state.state_metadata = {
|
||||
"authorize_url": "https://auth.example.com/authorize",
|
||||
"token_url": "https://auth.example.com/token",
|
||||
"client_id": "cid",
|
||||
"server_url": "https://mcp.example.com/mcp",
|
||||
}
|
||||
mock_state.scopes = []
|
||||
mock_state.code_verifier = "v"
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
|
||||
|
||||
handler_instance = MockHandler.return_value
|
||||
handler_instance.exchange_code_for_tokens = AsyncMock(
|
||||
side_effect=RuntimeError("Token exchange failed")
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "bad-code", "state_token": "state"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "token exchange failed" in response.json()["detail"].lower()
|
||||
@@ -393,7 +393,6 @@ async def get_creators(
|
||||
@router.get(
|
||||
"/creator/{username}",
|
||||
summary="Get creator details",
|
||||
operation_id="getV2GetCreatorDetails",
|
||||
tags=["store", "public"],
|
||||
response_model=store_model.CreatorDetails,
|
||||
)
|
||||
|
||||
@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
|
||||
|
||||
import backend.api.features.admin.credit_admin_routes
|
||||
import backend.api.features.admin.execution_analytics_routes
|
||||
import backend.api.features.admin.llm_routes
|
||||
import backend.api.features.admin.store_admin_routes
|
||||
import backend.api.features.builder
|
||||
import backend.api.features.builder.routes
|
||||
@@ -27,6 +26,7 @@ import backend.api.features.executions.review.routes
|
||||
import backend.api.features.library.db
|
||||
import backend.api.features.library.model
|
||||
import backend.api.features.library.routes
|
||||
import backend.api.features.mcp.routes as mcp_routes
|
||||
import backend.api.features.oauth
|
||||
import backend.api.features.otto.routes
|
||||
import backend.api.features.postmark.postmark
|
||||
@@ -39,15 +39,13 @@ import backend.data.db
|
||||
import backend.data.graph
|
||||
import backend.data.user
|
||||
import backend.integrations.webhooks.utils
|
||||
import backend.server.v2.llm.routes as public_llm_routes
|
||||
import backend.util.service
|
||||
import backend.util.settings
|
||||
from backend.api.features.chat.completion_consumer import (
|
||||
start_completion_consumer,
|
||||
stop_completion_consumer,
|
||||
)
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
@@ -118,27 +116,11 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
|
||||
AutoRegistry.patch_integrations()
|
||||
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
await llm_registry.refresh_llm_registry()
|
||||
await refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they're regenerated with updated discriminator_mapping
|
||||
from backend.blocks._base import BlockSchema
|
||||
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
await backend.data.block.initialize_blocks()
|
||||
|
||||
await backend.data.user.migrate_and_encrypt_user_integrations()
|
||||
await backend.data.graph.fix_llm_provider_credentials()
|
||||
# migrate_llm_models uses registry default model
|
||||
from backend.blocks.llm import LlmModel
|
||||
|
||||
default_model_slug = llm_registry.get_default_model_slug()
|
||||
if default_model_slug:
|
||||
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
|
||||
else:
|
||||
logger.warning("Skipping LLM model migration: no default model available")
|
||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
# Start chat completion consumer for Redis Streams notifications
|
||||
@@ -340,16 +322,6 @@ app.include_router(
|
||||
tags=["v2", "executions", "review"],
|
||||
prefix="/api/review",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.admin.llm_routes.router,
|
||||
tags=["v2", "admin", "llm"],
|
||||
prefix="/api/llm/admin",
|
||||
)
|
||||
app.include_router(
|
||||
public_llm_routes.router,
|
||||
tags=["v2", "llm"],
|
||||
prefix="/api",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
|
||||
)
|
||||
@@ -372,6 +344,11 @@ app.include_router(
|
||||
tags=["workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
mcp_routes.router,
|
||||
tags=["v2", "mcp"],
|
||||
prefix="/api/mcp",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -79,49 +79,11 @@ async def event_broadcaster(manager: ConnectionManager):
|
||||
payload=notification.payload,
|
||||
)
|
||||
|
||||
# Track registry pubsub for cleanup
|
||||
registry_pubsub = None
|
||||
|
||||
async def registry_refresh_worker():
|
||||
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
|
||||
nonlocal registry_pubsub
|
||||
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
redis = await connect_async()
|
||||
registry_pubsub = redis.pubsub()
|
||||
await registry_pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
|
||||
)
|
||||
|
||||
async for message in registry_pubsub.listen():
|
||||
if (
|
||||
message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info(
|
||||
"Broadcasting LLM registry refresh to all WebSocket clients"
|
||||
)
|
||||
await manager.broadcast_to_all(
|
||||
method=WSMethod.NOTIFICATION,
|
||||
data={
|
||||
"type": "LLM_REGISTRY_REFRESH",
|
||||
"event": "registry_updated",
|
||||
},
|
||||
)
|
||||
|
||||
await asyncio.gather(
|
||||
execution_worker(),
|
||||
notification_worker(),
|
||||
registry_refresh_worker(),
|
||||
)
|
||||
await asyncio.gather(execution_worker(), notification_worker())
|
||||
finally:
|
||||
# Ensure PubSub connections are closed on any exit to prevent leaks
|
||||
await execution_bus.close()
|
||||
await notification_bus.close()
|
||||
if registry_pubsub:
|
||||
await registry_pubsub.close()
|
||||
|
||||
|
||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||
|
||||
@@ -64,6 +64,7 @@ class BlockType(Enum):
|
||||
AI = "AI"
|
||||
AYRSHARE = "Ayrshare"
|
||||
HUMAN_IN_THE_LOOP = "Human In The Loop"
|
||||
MCP_TOOL = "MCP Tool"
|
||||
|
||||
|
||||
class BlockCategory(Enum):
|
||||
@@ -133,26 +134,7 @@ class BlockInfo(BaseModel):
|
||||
|
||||
|
||||
class BlockSchema(BaseModel):
|
||||
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
|
||||
|
||||
@classmethod
|
||||
def clear_schema_cache(cls) -> None:
|
||||
"""Clear the cached JSON schema for this class."""
|
||||
# Use None instead of {} because {} is truthy and would prevent regeneration
|
||||
cls.cached_jsonschema = None # type: ignore
|
||||
|
||||
@staticmethod
|
||||
def clear_all_schema_caches() -> None:
|
||||
"""Clear cached JSON schemas for all BlockSchema subclasses."""
|
||||
|
||||
def clear_recursive(cls: type) -> None:
|
||||
"""Recursively clear cache for class and all subclasses."""
|
||||
if hasattr(cls, "clear_schema_cache"):
|
||||
cls.clear_schema_cache()
|
||||
for subclass in cls.__subclasses__():
|
||||
clear_recursive(subclass)
|
||||
|
||||
clear_recursive(BlockSchema)
|
||||
cached_jsonschema: ClassVar[dict[str, Any]]
|
||||
|
||||
@classmethod
|
||||
def jsonschema(cls) -> dict[str, Any]:
|
||||
@@ -243,8 +225,7 @@ class BlockSchema(BaseModel):
|
||||
super().__pydantic_init_subclass__(**kwargs)
|
||||
|
||||
# Reset cached JSON schema to prevent inheriting it from parent class
|
||||
# Use None instead of {} because {} is truthy and would prevent regeneration
|
||||
cls.cached_jsonschema = None
|
||||
cls.cached_jsonschema = {}
|
||||
|
||||
credentials_fields = cls.get_credentials_fields()
|
||||
|
||||
|
||||
@@ -7,6 +7,7 @@ from backend.blocks._base import (
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.blocks.llm import (
|
||||
DEFAULT_LLM_MODEL,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
AIBlockBase,
|
||||
@@ -15,7 +16,6 @@ from backend.blocks.llm import (
|
||||
LlmModel,
|
||||
LLMResponse,
|
||||
llm_call,
|
||||
llm_model_schema_extra,
|
||||
)
|
||||
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
|
||||
|
||||
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for evaluating the condition.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
|
||||
"condition": "the input is an email address",
|
||||
"yes_value": "Valid email",
|
||||
"no_value": "Not an email",
|
||||
"model": LlmModel.default(),
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
|
||||
@@ -126,6 +126,7 @@ class PrintToConsoleBlock(Block):
|
||||
output_schema=PrintToConsoleBlock.Output,
|
||||
test_input={"text": "Hello, World!"},
|
||||
is_sensitive_action=True,
|
||||
disabled=True, # Disabled per Nick Tindle's request (OPEN-3000)
|
||||
test_output=[
|
||||
("output", "Hello, World!"),
|
||||
("status", "printed"),
|
||||
|
||||
@@ -17,6 +17,7 @@ from backend.blocks.jina._auth import (
|
||||
from backend.blocks.search import GetRequest
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.request import HTTPClientError, HTTPServerError, validate_url
|
||||
|
||||
|
||||
class SearchTheWebBlock(Block, GetRequest):
|
||||
@@ -110,7 +111,12 @@ class ExtractWebsiteContentBlock(Block, GetRequest):
|
||||
self, input_data: Input, *, credentials: JinaCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
if input_data.raw_content:
|
||||
url = input_data.url
|
||||
try:
|
||||
parsed_url, _, _ = await validate_url(input_data.url, [])
|
||||
url = parsed_url.geturl()
|
||||
except ValueError as e:
|
||||
yield "error", f"Invalid URL: {e}"
|
||||
return
|
||||
headers = {}
|
||||
else:
|
||||
url = f"https://r.jina.ai/{input_data.url}"
|
||||
@@ -119,5 +125,20 @@ class ExtractWebsiteContentBlock(Block, GetRequest):
|
||||
"Authorization": f"Bearer {credentials.api_key.get_secret_value()}",
|
||||
}
|
||||
|
||||
content = await self.get_request(url, json=False, headers=headers)
|
||||
try:
|
||||
content = await self.get_request(url, json=False, headers=headers)
|
||||
except HTTPClientError as e:
|
||||
yield "error", f"Client error ({e.status_code}) fetching {input_data.url}: {e}"
|
||||
return
|
||||
except HTTPServerError as e:
|
||||
yield "error", f"Server error ({e.status_code}) fetching {input_data.url}: {e}"
|
||||
return
|
||||
except Exception as e:
|
||||
yield "error", f"Failed to fetch {input_data.url}: {e}"
|
||||
return
|
||||
|
||||
if not content:
|
||||
yield "error", f"No content returned for {input_data.url}"
|
||||
return
|
||||
|
||||
yield "content", content
|
||||
|
||||
@@ -4,18 +4,16 @@ import logging
|
||||
import re
|
||||
import secrets
|
||||
from abc import ABC
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from enum import Enum, EnumMeta
|
||||
from json import JSONDecodeError
|
||||
from typing import Any, Iterable, List, Literal, Optional
|
||||
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
|
||||
|
||||
import anthropic
|
||||
import ollama
|
||||
import openai
|
||||
from anthropic.types import ToolParam
|
||||
from groq import AsyncGroq
|
||||
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from backend.blocks._base import (
|
||||
Block,
|
||||
@@ -24,8 +22,6 @@ from backend.blocks._base import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data import llm_registry
|
||||
from backend.data.llm_registry import ModelMetadata
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -70,123 +66,114 @@ TEST_CREDENTIALS_INPUT = {
|
||||
|
||||
|
||||
def AICredentialsField() -> AICredentials:
|
||||
"""
|
||||
Returns a CredentialsField for LLM providers.
|
||||
The discriminator_mapping will be refreshed when the schema is generated
|
||||
if it's empty, ensuring the LLM registry is loaded.
|
||||
"""
|
||||
# Get the mapping now - it may be empty initially, but will be refreshed
|
||||
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
|
||||
mapping = llm_registry.get_llm_discriminator_mapping()
|
||||
|
||||
return CredentialsField(
|
||||
description="API key for the LLM provider.",
|
||||
discriminator="model",
|
||||
discriminator_mapping=mapping, # May be empty initially, refreshed later
|
||||
discriminator_mapping={
|
||||
model.value: model.metadata.provider for model in LlmModel
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def llm_model_schema_extra() -> dict[str, Any]:
|
||||
return {"options": llm_registry.get_llm_model_schema_options()}
|
||||
class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
|
||||
|
||||
class LlmModelMeta(type):
|
||||
"""
|
||||
Metaclass for LlmModel that enables attribute-style access to dynamic models.
|
||||
|
||||
This allows code like `LlmModel.GPT4O` to work by converting the attribute
|
||||
name to a slug format:
|
||||
- GPT4O -> gpt-4o
|
||||
- GPT4O_MINI -> gpt-4o-mini
|
||||
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
|
||||
"""
|
||||
|
||||
def __getattr__(cls, name: str):
|
||||
# Don't intercept private/dunder attributes
|
||||
if name.startswith("_"):
|
||||
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
|
||||
|
||||
# Convert attribute name to slug format:
|
||||
# 1. Lowercase: GPT4O -> gpt4o
|
||||
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
|
||||
slug = name.lower().replace("_", "-")
|
||||
|
||||
# Check for exact match in registry first (e.g., "o1" stays "o1")
|
||||
registry_slugs = llm_registry.get_dynamic_model_slugs()
|
||||
if slug in registry_slugs:
|
||||
return cls(slug)
|
||||
|
||||
# If no exact match, try inserting hyphen between letter and digit
|
||||
# e.g., gpt4o -> gpt-4o
|
||||
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
|
||||
return cls(transformed_slug)
|
||||
|
||||
def __iter__(cls):
|
||||
"""Iterate over all models from the registry.
|
||||
|
||||
Yields LlmModel instances for each model in the dynamic registry.
|
||||
Used by __get_pydantic_json_schema__ to build model metadata.
|
||||
"""
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
yield cls(model.slug)
|
||||
class LlmModelMeta(EnumMeta):
|
||||
pass
|
||||
|
||||
|
||||
class LlmModel(str, metaclass=LlmModelMeta):
|
||||
"""
|
||||
Dynamic LLM model type that accepts any model slug from the registry.
|
||||
|
||||
This is a string subclass (not an Enum) that allows any model slug value.
|
||||
All models are managed via the LLM Registry in the database.
|
||||
|
||||
Usage:
|
||||
model = LlmModel("gpt-4o") # Direct construction
|
||||
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
|
||||
model.value # Returns the slug string
|
||||
model.provider # Returns the provider from registry
|
||||
"""
|
||||
|
||||
def __new__(cls, value: str):
|
||||
if isinstance(value, LlmModel):
|
||||
return value
|
||||
return str.__new__(cls, value)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, source_type: Any, handler: GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
"""
|
||||
Tell Pydantic how to validate LlmModel.
|
||||
|
||||
Accepts strings and converts them to LlmModel instances.
|
||||
"""
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls, # The validator function (LlmModel constructor)
|
||||
core_schema.str_schema(), # Accept string input
|
||||
serialization=core_schema.to_string_ser_schema(), # Serialize as string
|
||||
)
|
||||
|
||||
@property
|
||||
def value(self) -> str:
|
||||
"""Return the model slug (for compatibility with enum-style access)."""
|
||||
return str(self)
|
||||
|
||||
@classmethod
|
||||
def default(cls) -> "LlmModel":
|
||||
"""
|
||||
Get the default model from the registry.
|
||||
|
||||
Returns the recommended model if set, otherwise gpt-4o if available
|
||||
and enabled, otherwise the first enabled model from the registry.
|
||||
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
|
||||
"""
|
||||
from backend.data.llm_registry import get_default_model_slug
|
||||
|
||||
slug = get_default_model_slug()
|
||||
if slug is None:
|
||||
# Registry is empty (e.g., at module import time before DB connection).
|
||||
# Fall back to gpt-4o for backward compatibility.
|
||||
slug = "gpt-4o"
|
||||
return cls(slug)
|
||||
class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
# OpenAI models
|
||||
O3_MINI = "o3-mini"
|
||||
O3 = "o3-2025-04-16"
|
||||
O1 = "o1"
|
||||
O1_MINI = "o1-mini"
|
||||
# GPT-5 models
|
||||
GPT5_2 = "gpt-5.2-2025-12-11"
|
||||
GPT5_1 = "gpt-5.1-2025-11-13"
|
||||
GPT5 = "gpt-5-2025-08-07"
|
||||
GPT5_MINI = "gpt-5-mini-2025-08-07"
|
||||
GPT5_NANO = "gpt-5-nano-2025-08-07"
|
||||
GPT5_CHAT = "gpt-5-chat-latest"
|
||||
GPT41 = "gpt-4.1-2025-04-14"
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
GPT4O_MINI = "gpt-4o-mini"
|
||||
GPT4O = "gpt-4o"
|
||||
GPT4_TURBO = "gpt-4-turbo"
|
||||
GPT3_5_TURBO = "gpt-3.5-turbo"
|
||||
# Anthropic models
|
||||
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
|
||||
CLAUDE_4_OPUS = "claude-opus-4-20250514"
|
||||
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_4_6_OPUS = "claude-opus-4-6"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
|
||||
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
||||
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
|
||||
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
|
||||
# Groq models
|
||||
LLAMA3_3_70B = "llama-3.3-70b-versatile"
|
||||
LLAMA3_1_8B = "llama-3.1-8b-instant"
|
||||
# Ollama models
|
||||
OLLAMA_LLAMA3_3 = "llama3.3"
|
||||
OLLAMA_LLAMA3_2 = "llama3.2"
|
||||
OLLAMA_LLAMA3_8B = "llama3"
|
||||
OLLAMA_LLAMA3_405B = "llama3.1:405b"
|
||||
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
|
||||
# OpenRouter models
|
||||
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
|
||||
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
|
||||
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
|
||||
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
|
||||
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
|
||||
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
|
||||
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
|
||||
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
|
||||
MISTRAL_NEMO = "mistralai/mistral-nemo"
|
||||
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
|
||||
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
|
||||
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
|
||||
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
|
||||
PERPLEXITY_SONAR = "perplexity/sonar"
|
||||
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
|
||||
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
|
||||
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
|
||||
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
|
||||
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
|
||||
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
|
||||
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
|
||||
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
|
||||
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
|
||||
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
|
||||
GROK_4 = "x-ai/grok-4"
|
||||
GROK_4_FAST = "x-ai/grok-4-fast"
|
||||
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
|
||||
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
|
||||
KIMI_K2 = "moonshotai/kimi-k2"
|
||||
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
|
||||
QWEN3_CODER = "qwen/qwen3-coder"
|
||||
# Llama API models
|
||||
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
||||
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
|
||||
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
|
||||
# v0 by Vercel models
|
||||
V0_1_5_MD = "v0-1.5-md"
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, schema, handler):
|
||||
@@ -194,15 +181,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
llm_model_metadata = {}
|
||||
for model in cls:
|
||||
model_name = model.value
|
||||
# Skip disabled models - only show enabled models in the picker
|
||||
if not llm_registry.is_model_enabled(model_name):
|
||||
continue
|
||||
# Use registry directly with None check to gracefully handle
|
||||
# missing metadata during startup/import before registry is populated
|
||||
metadata = llm_registry.get_llm_model_metadata(model_name)
|
||||
if metadata is None:
|
||||
# Skip models without metadata (registry not yet populated)
|
||||
continue
|
||||
metadata = model.metadata
|
||||
llm_model_metadata[model_name] = {
|
||||
"creator": metadata.creator_name,
|
||||
"creator_name": metadata.creator_name,
|
||||
@@ -218,12 +197,7 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
raise ValueError(
|
||||
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
|
||||
)
|
||||
return MODEL_METADATA[self]
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
@@ -238,125 +212,300 @@ class LlmModel(str, metaclass=LlmModelMeta):
|
||||
return self.metadata.max_output_tokens
|
||||
|
||||
|
||||
# Default model constant for backward compatibility
|
||||
# Uses the dynamic registry to get the default model
|
||||
DEFAULT_LLM_MODEL = LlmModel.default()
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
|
||||
LlmModel.O3_MINI: ModelMetadata(
|
||||
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
|
||||
), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata(
|
||||
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
|
||||
), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata(
|
||||
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
|
||||
), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
|
||||
),
|
||||
LlmModel.GPT5_1: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT5: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_MINI: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_NANO: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata(
|
||||
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT41: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT41_MINI: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
|
||||
), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata(
|
||||
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
|
||||
), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-6
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
|
||||
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
|
||||
"aiml_api",
|
||||
128000,
|
||||
40000,
|
||||
"Llama 3.1 Nemotron 70B Instruct",
|
||||
"AI/ML",
|
||||
"Nvidia",
|
||||
1,
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
|
||||
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata(
|
||||
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata(
|
||||
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
|
||||
),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
|
||||
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
|
||||
),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
|
||||
"open_router",
|
||||
1050000,
|
||||
8192,
|
||||
"Gemini 2.5 Pro Preview 03.25",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
2,
|
||||
),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
65535,
|
||||
"Gemini 2.5 Flash Lite Preview 06.17",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
8192,
|
||||
"Gemini 2.0 Flash Lite 001",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
|
||||
),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
|
||||
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
|
||||
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
|
||||
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
|
||||
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
"Sonar Deep Research",
|
||||
"OpenRouter",
|
||||
"Perplexity",
|
||||
3,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router",
|
||||
131000,
|
||||
4096,
|
||||
"Hermes 3 Llama 3.1 405B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router",
|
||||
12288,
|
||||
12288,
|
||||
"Hermes 3 Llama 3.1 70B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
|
||||
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
|
||||
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
|
||||
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
|
||||
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
|
||||
),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
|
||||
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
|
||||
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.GROK_4: ModelMetadata(
|
||||
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
|
||||
),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
|
||||
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.KIMI_K2: ModelMetadata(
|
||||
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
|
||||
),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
|
||||
"open_router",
|
||||
262144,
|
||||
262144,
|
||||
"Qwen 3 235B A22B Thinking 2507",
|
||||
"OpenRouter",
|
||||
"Qwen",
|
||||
1,
|
||||
),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata(
|
||||
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
|
||||
),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Scout 17B 16E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Maverick 17B 128E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
|
||||
}
|
||||
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
class ModelUnavailableError(ValueError):
|
||||
"""Raised when a requested LLM model cannot be resolved for use."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class ResolvedModel:
|
||||
"""Result of resolving a model for an LLM call."""
|
||||
|
||||
slug: str # The actual model slug to use (may differ from requested if fallback)
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int
|
||||
used_fallback: bool = False
|
||||
original_slug: str | None = None # Set if fallback was used
|
||||
|
||||
|
||||
async def resolve_model_for_call(llm_model: LlmModel) -> ResolvedModel:
|
||||
"""
|
||||
Resolve a model for use in an LLM call.
|
||||
|
||||
Handles:
|
||||
- Checking if the model exists in the registry
|
||||
- Falling back to an enabled model from the same provider if disabled
|
||||
- Refreshing the registry cache if model not found (with DB access)
|
||||
|
||||
Args:
|
||||
llm_model: The requested LlmModel
|
||||
|
||||
Returns:
|
||||
ResolvedModel with all necessary metadata for the call
|
||||
|
||||
Raises:
|
||||
ModelUnavailableError: If model cannot be resolved (not found, disabled with no fallback)
|
||||
"""
|
||||
from backend.data.llm_registry import (
|
||||
get_fallback_model_for_disabled,
|
||||
get_model_info,
|
||||
)
|
||||
|
||||
model_info = get_model_info(llm_model.value)
|
||||
|
||||
# Case 1: Model found and disabled - try fallback
|
||||
if model_info and not model_info.is_enabled:
|
||||
fallback = get_fallback_model_for_disabled(llm_model.value)
|
||||
if fallback:
|
||||
logger.warning(
|
||||
f"Model '{llm_model.value}' is disabled. Using fallback "
|
||||
f"'{fallback.slug}' from same provider ({fallback.metadata.provider})."
|
||||
)
|
||||
return ResolvedModel(
|
||||
slug=fallback.slug,
|
||||
provider=fallback.metadata.provider,
|
||||
context_window=fallback.metadata.context_window,
|
||||
max_output_tokens=fallback.metadata.max_output_tokens or 2**15,
|
||||
used_fallback=True,
|
||||
original_slug=llm_model.value,
|
||||
)
|
||||
raise ModelUnavailableError(
|
||||
f"Model '{llm_model.value}' is disabled and no fallback from the same "
|
||||
f"provider is available. Enable the model or select a different one."
|
||||
)
|
||||
|
||||
# Case 2: Model found and enabled - use it directly
|
||||
if model_info:
|
||||
return ResolvedModel(
|
||||
slug=llm_model.value,
|
||||
provider=model_info.metadata.provider,
|
||||
context_window=model_info.metadata.context_window,
|
||||
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
|
||||
)
|
||||
|
||||
# Case 3: Model not in registry - try refresh if DB available
|
||||
logger.warning(f"Model '{llm_model.value}' not found in registry cache")
|
||||
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if not is_connected():
|
||||
raise ModelUnavailableError(
|
||||
f"Model '{llm_model.value}' not found in registry. "
|
||||
f"The registry may need to be refreshed via the admin UI."
|
||||
)
|
||||
|
||||
# Try refreshing the registry
|
||||
try:
|
||||
logger.info(f"Refreshing LLM registry for model '{llm_model.value}'")
|
||||
await llm_registry.refresh_llm_registry()
|
||||
except Exception as e:
|
||||
raise ModelUnavailableError(
|
||||
f"Model '{llm_model.value}' not found and registry refresh failed: {e}"
|
||||
) from e
|
||||
|
||||
# Check again after refresh
|
||||
model_info = get_model_info(llm_model.value)
|
||||
if not model_info:
|
||||
raise ModelUnavailableError(
|
||||
f"Model '{llm_model.value}' not found in registry. "
|
||||
f"Add it via the admin UI at /admin/llms."
|
||||
)
|
||||
|
||||
if not model_info.is_enabled:
|
||||
raise ModelUnavailableError(
|
||||
f"Model '{llm_model.value}' exists but is disabled. "
|
||||
f"Enable it via the admin UI at /admin/llms."
|
||||
)
|
||||
|
||||
logger.info(f"Model '{llm_model.value}' loaded after registry refresh")
|
||||
return ResolvedModel(
|
||||
slug=llm_model.value,
|
||||
provider=model_info.metadata.provider,
|
||||
context_window=model_info.metadata.context_window,
|
||||
max_output_tokens=model_info.metadata.max_output_tokens or 2**15,
|
||||
)
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_METADATA:
|
||||
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
@@ -382,12 +531,12 @@ class LLMResponse(BaseModel):
|
||||
|
||||
def convert_openai_tool_fmt_to_anthropic(
|
||||
openai_tools: list[dict] | None = None,
|
||||
) -> Iterable[ToolParam] | anthropic.NotGiven:
|
||||
) -> Iterable[ToolParam] | anthropic.Omit:
|
||||
"""
|
||||
Convert OpenAI tool format to Anthropic tool format.
|
||||
"""
|
||||
if not openai_tools or len(openai_tools) == 0:
|
||||
return anthropic.NOT_GIVEN
|
||||
return anthropic.omit
|
||||
|
||||
anthropic_tools = []
|
||||
for tool in openai_tools:
|
||||
@@ -449,12 +598,7 @@ def get_parallel_tool_calls_param(
|
||||
llm_model: LlmModel, parallel_tool_calls: bool | None
|
||||
) -> bool | openai.Omit:
|
||||
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
|
||||
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
|
||||
# parallel tool calls. Handle both bare slugs ("o1-mini") and provider-prefixed
|
||||
# slugs ("openai/o1-mini"). The pattern matches "o" followed by a digit at the
|
||||
# start of the string or after a "/" separator.
|
||||
is_o_series = re.search(r"(^|/)o\d", llm_model) is not None
|
||||
if is_o_series or parallel_tool_calls is None:
|
||||
if llm_model.startswith("o") or parallel_tool_calls is None:
|
||||
return openai.omit
|
||||
return parallel_tool_calls
|
||||
|
||||
@@ -490,22 +634,15 @@ async def llm_call(
|
||||
- prompt_tokens: The number of tokens used in the prompt.
|
||||
- completion_tokens: The number of tokens used in the completion.
|
||||
"""
|
||||
# Resolve the model - handles disabled models, fallbacks, and cache misses
|
||||
resolved = await resolve_model_for_call(llm_model)
|
||||
|
||||
model_to_use = resolved.slug
|
||||
provider = resolved.provider
|
||||
context_window = resolved.context_window
|
||||
model_max_output = resolved.max_output_tokens
|
||||
|
||||
# Create effective model for model-specific parameter resolution (e.g., o-series check)
|
||||
effective_model = LlmModel(model_to_use)
|
||||
provider = llm_model.metadata.provider
|
||||
context_window = llm_model.context_window
|
||||
|
||||
if compress_prompt_to_fit:
|
||||
result = await compress_context(
|
||||
messages=prompt,
|
||||
target_tokens=context_window // 2,
|
||||
target_tokens=llm_model.context_window // 2,
|
||||
client=None, # Truncation-only, no LLM summarization
|
||||
reserve=0, # Caller handles response token budget separately
|
||||
)
|
||||
if result.error:
|
||||
logger.warning(
|
||||
@@ -516,7 +653,7 @@ async def llm_call(
|
||||
|
||||
# Calculate available tokens based on context window and input length
|
||||
estimated_input_tokens = estimate_token_count(prompt)
|
||||
# model_max_output already set above
|
||||
model_max_output = llm_model.max_output_tokens or int(2**15)
|
||||
user_max = max_tokens or model_max_output
|
||||
available_tokens = max(context_window - estimated_input_tokens, 0)
|
||||
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
|
||||
@@ -527,14 +664,14 @@ async def llm_call(
|
||||
response_format = None
|
||||
|
||||
parallel_tool_calls = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
if force_json_output:
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
response = await oai_client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_completion_tokens=max_tokens,
|
||||
@@ -581,7 +718,7 @@ async def llm_call(
|
||||
)
|
||||
try:
|
||||
resp = await client.messages.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
system=sysprompt,
|
||||
messages=messages,
|
||||
max_tokens=max_tokens,
|
||||
@@ -645,7 +782,7 @@ async def llm_call(
|
||||
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
|
||||
response_format = {"type": "json_object"} if force_json_output else None
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -667,7 +804,7 @@ async def llm_call(
|
||||
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
|
||||
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
|
||||
response = await client.generate(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
prompt=f"{sys_messages}\n\n{usr_messages}",
|
||||
stream=False,
|
||||
options={"num_ctx": max_tokens},
|
||||
@@ -689,7 +826,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -697,7 +834,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -731,7 +868,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
@@ -739,7 +876,7 @@ async def llm_call(
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
tools=tools_param, # type: ignore
|
||||
@@ -766,7 +903,7 @@ async def llm_call(
|
||||
reasoning=reasoning,
|
||||
)
|
||||
elif provider == "aiml_api":
|
||||
client = openai.AsyncOpenAI(
|
||||
client = openai.OpenAI(
|
||||
base_url="https://api.aimlapi.com/v2",
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
default_headers={
|
||||
@@ -776,8 +913,8 @@ async def llm_call(
|
||||
},
|
||||
)
|
||||
|
||||
completion = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
completion = client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
@@ -805,11 +942,11 @@ async def llm_call(
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
effective_model, parallel_tool_calls
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
model=model_to_use,
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
response_format=response_format, # type: ignore
|
||||
max_tokens=max_tokens,
|
||||
@@ -860,10 +997,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
force_json_output: bool = SchemaField(
|
||||
title="Restrict LLM to pure JSON output",
|
||||
@@ -926,7 +1062,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
input_schema=AIStructuredResponseGeneratorBlock.Input,
|
||||
output_schema=AIStructuredResponseGeneratorBlock.Output,
|
||||
test_input={
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"expected_format": {
|
||||
"key1": "value1",
|
||||
@@ -1292,10 +1428,9 @@ class AITextGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
sys_prompt: str = SchemaField(
|
||||
@@ -1389,9 +1524,8 @@ class AITextSummarizerBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for summarizing the text.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
focus: str = SchemaField(
|
||||
title="Focus",
|
||||
@@ -1607,9 +1741,8 @@ class AIConversationBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for the conversation.",
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_tokens: int | None = SchemaField(
|
||||
@@ -1646,7 +1779,7 @@ class AIConversationBlock(AIBlockBase):
|
||||
},
|
||||
{"role": "user", "content": "Where was it played?"},
|
||||
],
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -1709,10 +1842,9 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=LlmModel.default,
|
||||
default=DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for generating the list.",
|
||||
advanced=True,
|
||||
json_schema_extra=llm_model_schema_extra(),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
max_retries: int = SchemaField(
|
||||
@@ -1767,7 +1899,7 @@ class AIListGeneratorBlock(AIBlockBase):
|
||||
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
|
||||
"fictional worlds."
|
||||
),
|
||||
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
|
||||
"model": DEFAULT_LLM_MODEL,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"max_retries": 3,
|
||||
"force_json_output": False,
|
||||
|
||||
300
autogpt_platform/backend/backend/blocks/mcp/block.py
Normal file
300
autogpt_platform/backend/backend/blocks/mcp/block.py
Normal file
@@ -0,0 +1,300 @@
|
||||
"""
|
||||
MCP (Model Context Protocol) Tool Block.
|
||||
|
||||
A single dynamic block that can connect to any MCP server, discover available tools,
|
||||
and execute them. Works like AgentExecutorBlock — the user selects a tool from a
|
||||
dropdown and the input/output schema adapts dynamically.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Literal
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.blocks._base import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.blocks.mcp.client import MCPClient, MCPClientError
|
||||
from backend.data.block import BlockInput, BlockOutput
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
OAuth2Credentials,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.json import validate_with_jsonschema
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
TEST_CREDENTIALS = OAuth2Credentials(
|
||||
id="test-mcp-cred",
|
||||
provider="mcp",
|
||||
access_token=SecretStr("mock-mcp-token"),
|
||||
refresh_token=SecretStr("mock-refresh"),
|
||||
scopes=[],
|
||||
title="Mock MCP credential",
|
||||
)
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
|
||||
MCPCredentials = CredentialsMetaInput[Literal[ProviderName.MCP], Literal["oauth2"]]
|
||||
|
||||
|
||||
class MCPToolBlock(Block):
|
||||
"""
|
||||
A block that connects to an MCP server, lets the user pick a tool,
|
||||
and executes it with dynamic input/output schema.
|
||||
|
||||
The flow:
|
||||
1. User provides an MCP server URL (and optional credentials)
|
||||
2. Frontend calls the backend to get tool list from that URL
|
||||
3. User selects a tool from a dropdown (available_tools)
|
||||
4. The block's input schema updates to reflect the selected tool's parameters
|
||||
5. On execution, the block calls the MCP server to run the tool
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
server_url: str = SchemaField(
|
||||
description="URL of the MCP server (Streamable HTTP endpoint)",
|
||||
placeholder="https://mcp.example.com/mcp",
|
||||
)
|
||||
credentials: MCPCredentials = CredentialsField(
|
||||
discriminator="server_url",
|
||||
description="MCP server OAuth credentials",
|
||||
default={},
|
||||
)
|
||||
selected_tool: str = SchemaField(
|
||||
description="The MCP tool to execute",
|
||||
placeholder="Select a tool",
|
||||
default="",
|
||||
)
|
||||
tool_input_schema: dict[str, Any] = SchemaField(
|
||||
description="JSON Schema for the selected tool's input parameters. "
|
||||
"Populated automatically when a tool is selected.",
|
||||
default={},
|
||||
hidden=True,
|
||||
)
|
||||
|
||||
tool_arguments: dict[str, Any] = SchemaField(
|
||||
description="Arguments to pass to the selected MCP tool. "
|
||||
"The fields here are defined by the tool's input schema.",
|
||||
default={},
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_input_schema(cls, data: BlockInput) -> dict[str, Any]:
|
||||
"""Return the tool's input schema so the builder UI renders dynamic fields."""
|
||||
return data.get("tool_input_schema", {})
|
||||
|
||||
@classmethod
|
||||
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
|
||||
"""Return the current tool_arguments as defaults for the dynamic fields."""
|
||||
return data.get("tool_arguments", {})
|
||||
|
||||
@classmethod
|
||||
def get_missing_input(cls, data: BlockInput) -> set[str]:
|
||||
"""Check which required tool arguments are missing."""
|
||||
required_fields = cls.get_input_schema(data).get("required", [])
|
||||
tool_arguments = data.get("tool_arguments", {})
|
||||
return set(required_fields) - set(tool_arguments)
|
||||
|
||||
@classmethod
|
||||
def get_mismatch_error(cls, data: BlockInput) -> str | None:
|
||||
"""Validate tool_arguments against the tool's input schema."""
|
||||
tool_schema = cls.get_input_schema(data)
|
||||
if not tool_schema:
|
||||
return None
|
||||
tool_arguments = data.get("tool_arguments", {})
|
||||
return validate_with_jsonschema(tool_schema, tool_arguments)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
result: Any = SchemaField(description="The result returned by the MCP tool")
|
||||
error: str = SchemaField(description="Error message if the tool call failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="a0a4b1c2-d3e4-4f56-a7b8-c9d0e1f2a3b4",
|
||||
description="Connect to any MCP server and execute its tools. "
|
||||
"Provide a server URL, select a tool, and pass arguments dynamically.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS},
|
||||
input_schema=MCPToolBlock.Input,
|
||||
output_schema=MCPToolBlock.Output,
|
||||
block_type=BlockType.MCP_TOOL,
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_input={
|
||||
"server_url": "https://mcp.example.com/mcp",
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"selected_tool": "get_weather",
|
||||
"tool_input_schema": {
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
"required": ["city"],
|
||||
},
|
||||
"tool_arguments": {"city": "London"},
|
||||
},
|
||||
test_output=[
|
||||
(
|
||||
"result",
|
||||
{"weather": "sunny", "temperature": 20},
|
||||
),
|
||||
],
|
||||
test_mock={
|
||||
"_call_mcp_tool": lambda *a, **kw: {
|
||||
"weather": "sunny",
|
||||
"temperature": 20,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
async def _call_mcp_tool(
|
||||
self,
|
||||
server_url: str,
|
||||
tool_name: str,
|
||||
arguments: dict[str, Any],
|
||||
auth_token: str | None = None,
|
||||
) -> Any:
|
||||
"""Call a tool on the MCP server. Extracted for easy mocking in tests."""
|
||||
client = MCPClient(server_url, auth_token=auth_token)
|
||||
await client.initialize()
|
||||
result = await client.call_tool(tool_name, arguments)
|
||||
|
||||
if result.is_error:
|
||||
error_text = ""
|
||||
for item in result.content:
|
||||
if item.get("type") == "text":
|
||||
error_text += item.get("text", "")
|
||||
raise MCPClientError(
|
||||
f"MCP tool '{tool_name}' returned an error: "
|
||||
f"{error_text or 'Unknown error'}"
|
||||
)
|
||||
|
||||
# Extract text content from the result
|
||||
output_parts = []
|
||||
for item in result.content:
|
||||
if item.get("type") == "text":
|
||||
text = item.get("text", "")
|
||||
# Try to parse as JSON for structured output
|
||||
try:
|
||||
output_parts.append(json.loads(text))
|
||||
except (json.JSONDecodeError, ValueError):
|
||||
output_parts.append(text)
|
||||
elif item.get("type") == "image":
|
||||
output_parts.append(
|
||||
{
|
||||
"type": "image",
|
||||
"data": item.get("data"),
|
||||
"mimeType": item.get("mimeType"),
|
||||
}
|
||||
)
|
||||
elif item.get("type") == "resource":
|
||||
output_parts.append(item.get("resource", {}))
|
||||
|
||||
# If single result, unwrap
|
||||
if len(output_parts) == 1:
|
||||
return output_parts[0]
|
||||
return output_parts if output_parts else None
|
||||
|
||||
@staticmethod
|
||||
async def _auto_lookup_credential(
|
||||
user_id: str, server_url: str
|
||||
) -> "OAuth2Credentials | None":
|
||||
"""Auto-lookup stored MCP credential for a server URL.
|
||||
|
||||
This is a fallback for nodes that don't have ``credentials`` explicitly
|
||||
set (e.g. nodes created before the credential field was wired up).
|
||||
"""
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
try:
|
||||
mgr = IntegrationCredentialsManager()
|
||||
mcp_creds = await mgr.store.get_creds_by_provider(
|
||||
user_id, ProviderName.MCP.value
|
||||
)
|
||||
best: OAuth2Credentials | None = None
|
||||
for cred in mcp_creds:
|
||||
if (
|
||||
isinstance(cred, OAuth2Credentials)
|
||||
and (cred.metadata or {}).get("mcp_server_url") == server_url
|
||||
):
|
||||
if best is None or (
|
||||
(cred.access_token_expires_at or 0)
|
||||
> (best.access_token_expires_at or 0)
|
||||
):
|
||||
best = cred
|
||||
if best:
|
||||
best = await mgr.refresh_if_needed(user_id, best)
|
||||
logger.info(
|
||||
"Auto-resolved MCP credential %s for %s", best.id, server_url
|
||||
)
|
||||
return best
|
||||
except Exception:
|
||||
logger.warning("Auto-lookup MCP credential failed", exc_info=True)
|
||||
return None
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
user_id: str,
|
||||
credentials: OAuth2Credentials | None = None,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.server_url:
|
||||
yield "error", "MCP server URL is required"
|
||||
return
|
||||
|
||||
if not input_data.selected_tool:
|
||||
yield "error", "No tool selected. Please select a tool from the dropdown."
|
||||
return
|
||||
|
||||
# Validate required tool arguments before calling the server.
|
||||
# The executor-level validation is bypassed for MCP blocks because
|
||||
# get_input_defaults() flattens tool_arguments, stripping tool_input_schema
|
||||
# from the validation context.
|
||||
required = set(input_data.tool_input_schema.get("required", []))
|
||||
if required:
|
||||
missing = required - set(input_data.tool_arguments.keys())
|
||||
if missing:
|
||||
yield "error", (
|
||||
f"Missing required argument(s): {', '.join(sorted(missing))}. "
|
||||
f"Please fill in all required fields marked with * in the block form."
|
||||
)
|
||||
return
|
||||
|
||||
# If no credentials were injected by the executor (e.g. legacy nodes
|
||||
# that don't have the credentials field set), try to auto-lookup
|
||||
# the stored MCP credential for this server URL.
|
||||
if credentials is None:
|
||||
credentials = await self._auto_lookup_credential(
|
||||
user_id, input_data.server_url
|
||||
)
|
||||
|
||||
auth_token = (
|
||||
credentials.access_token.get_secret_value() if credentials else None
|
||||
)
|
||||
|
||||
try:
|
||||
result = await self._call_mcp_tool(
|
||||
server_url=input_data.server_url,
|
||||
tool_name=input_data.selected_tool,
|
||||
arguments=input_data.tool_arguments,
|
||||
auth_token=auth_token,
|
||||
)
|
||||
yield "result", result
|
||||
except MCPClientError as e:
|
||||
yield "error", str(e)
|
||||
except Exception as e:
|
||||
logger.exception(f"MCP tool call failed: {e}")
|
||||
yield "error", f"MCP tool call failed: {str(e)}"
|
||||
323
autogpt_platform/backend/backend/blocks/mcp/client.py
Normal file
323
autogpt_platform/backend/backend/blocks/mcp/client.py
Normal file
@@ -0,0 +1,323 @@
|
||||
"""
|
||||
MCP (Model Context Protocol) HTTP client.
|
||||
|
||||
Implements the MCP Streamable HTTP transport for listing tools and calling tools
|
||||
on remote MCP servers. Uses JSON-RPC 2.0 over HTTP POST.
|
||||
|
||||
Handles both JSON and SSE (text/event-stream) response formats per the MCP spec.
|
||||
|
||||
Reference: https://modelcontextprotocol.io/specification/2025-03-26/basic/transports
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from backend.util.request import Requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MCPTool:
|
||||
"""Represents an MCP tool discovered from a server."""
|
||||
|
||||
name: str
|
||||
description: str
|
||||
input_schema: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass
|
||||
class MCPCallResult:
|
||||
"""Result from calling an MCP tool."""
|
||||
|
||||
content: list[dict[str, Any]] = field(default_factory=list)
|
||||
is_error: bool = False
|
||||
|
||||
|
||||
class MCPClientError(Exception):
|
||||
"""Raised when an MCP protocol error occurs."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class MCPClient:
|
||||
"""
|
||||
Async HTTP client for the MCP Streamable HTTP transport.
|
||||
|
||||
Communicates with MCP servers using JSON-RPC 2.0 over HTTP POST.
|
||||
Supports optional Bearer token authentication.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
server_url: str,
|
||||
auth_token: str | None = None,
|
||||
):
|
||||
self.server_url = server_url.rstrip("/")
|
||||
self.auth_token = auth_token
|
||||
self._request_id = 0
|
||||
self._session_id: str | None = None
|
||||
|
||||
def _next_id(self) -> int:
|
||||
self._request_id += 1
|
||||
return self._request_id
|
||||
|
||||
def _build_headers(self) -> dict[str, str]:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Accept": "application/json, text/event-stream",
|
||||
}
|
||||
if self.auth_token:
|
||||
headers["Authorization"] = f"Bearer {self.auth_token}"
|
||||
if self._session_id:
|
||||
headers["Mcp-Session-Id"] = self._session_id
|
||||
return headers
|
||||
|
||||
def _build_jsonrpc_request(
|
||||
self, method: str, params: dict[str, Any] | None = None
|
||||
) -> dict[str, Any]:
|
||||
req: dict[str, Any] = {
|
||||
"jsonrpc": "2.0",
|
||||
"method": method,
|
||||
"id": self._next_id(),
|
||||
}
|
||||
if params is not None:
|
||||
req["params"] = params
|
||||
return req
|
||||
|
||||
@staticmethod
|
||||
def _parse_sse_response(text: str) -> dict[str, Any]:
|
||||
"""Parse an SSE (text/event-stream) response body into JSON-RPC data.
|
||||
|
||||
MCP servers may return responses as SSE with format:
|
||||
event: message
|
||||
data: {"jsonrpc":"2.0","result":{...},"id":1}
|
||||
|
||||
We extract the last `data:` line that contains a JSON-RPC response
|
||||
(i.e. has an "id" field), which is the reply to our request.
|
||||
"""
|
||||
last_data: dict[str, Any] | None = None
|
||||
for line in text.splitlines():
|
||||
stripped = line.strip()
|
||||
if stripped.startswith("data:"):
|
||||
payload = stripped[len("data:") :].strip()
|
||||
if not payload:
|
||||
continue
|
||||
try:
|
||||
parsed = json.loads(payload)
|
||||
# Only keep JSON-RPC responses (have "id"), skip notifications
|
||||
if isinstance(parsed, dict) and "id" in parsed:
|
||||
last_data = parsed
|
||||
except (json.JSONDecodeError, ValueError):
|
||||
continue
|
||||
if last_data is None:
|
||||
raise MCPClientError("No JSON-RPC response found in SSE stream")
|
||||
return last_data
|
||||
|
||||
async def _send_request(
|
||||
self, method: str, params: dict[str, Any] | None = None
|
||||
) -> Any:
|
||||
"""Send a JSON-RPC request to the MCP server and return the result.
|
||||
|
||||
Handles both ``application/json`` and ``text/event-stream`` responses
|
||||
as required by the MCP Streamable HTTP transport specification.
|
||||
"""
|
||||
payload = self._build_jsonrpc_request(method, params)
|
||||
headers = self._build_headers()
|
||||
|
||||
requests = Requests(
|
||||
raise_for_status=True,
|
||||
extra_headers=headers,
|
||||
)
|
||||
response = await requests.post(self.server_url, json=payload)
|
||||
|
||||
# Capture session ID from response (MCP Streamable HTTP transport)
|
||||
session_id = response.headers.get("Mcp-Session-Id")
|
||||
if session_id:
|
||||
self._session_id = session_id
|
||||
|
||||
content_type = response.headers.get("content-type", "")
|
||||
if "text/event-stream" in content_type:
|
||||
body = self._parse_sse_response(response.text())
|
||||
else:
|
||||
try:
|
||||
body = response.json()
|
||||
except Exception as e:
|
||||
raise MCPClientError(
|
||||
f"MCP server returned non-JSON response: {e}"
|
||||
) from e
|
||||
|
||||
if not isinstance(body, dict):
|
||||
raise MCPClientError(
|
||||
f"MCP server returned unexpected JSON type: {type(body).__name__}"
|
||||
)
|
||||
|
||||
# Handle JSON-RPC error
|
||||
if "error" in body:
|
||||
error = body["error"]
|
||||
if isinstance(error, dict):
|
||||
raise MCPClientError(
|
||||
f"MCP server error [{error.get('code', '?')}]: "
|
||||
f"{error.get('message', 'Unknown error')}"
|
||||
)
|
||||
raise MCPClientError(f"MCP server error: {error}")
|
||||
|
||||
return body.get("result")
|
||||
|
||||
async def _send_notification(self, method: str) -> None:
|
||||
"""Send a JSON-RPC notification (no id, no response expected)."""
|
||||
headers = self._build_headers()
|
||||
notification = {"jsonrpc": "2.0", "method": method}
|
||||
requests = Requests(
|
||||
raise_for_status=False,
|
||||
extra_headers=headers,
|
||||
)
|
||||
await requests.post(self.server_url, json=notification)
|
||||
|
||||
async def discover_auth(self) -> dict[str, Any] | None:
|
||||
"""Probe the MCP server's OAuth metadata (RFC 9728 / MCP spec).
|
||||
|
||||
Returns ``None`` if the server doesn't require auth, otherwise returns
|
||||
a dict with:
|
||||
- ``authorization_servers``: list of authorization server URLs
|
||||
- ``resource``: the resource indicator URL (usually the MCP endpoint)
|
||||
- ``scopes_supported``: optional list of supported scopes
|
||||
|
||||
The caller can then fetch the authorization server metadata to get
|
||||
``authorization_endpoint``, ``token_endpoint``, etc.
|
||||
"""
|
||||
from urllib.parse import urlparse
|
||||
|
||||
parsed = urlparse(self.server_url)
|
||||
base = f"{parsed.scheme}://{parsed.netloc}"
|
||||
|
||||
# Build candidates for protected-resource metadata (per RFC 9728)
|
||||
path = parsed.path.rstrip("/")
|
||||
candidates = []
|
||||
if path and path != "/":
|
||||
candidates.append(f"{base}/.well-known/oauth-protected-resource{path}")
|
||||
candidates.append(f"{base}/.well-known/oauth-protected-resource")
|
||||
|
||||
requests = Requests(
|
||||
raise_for_status=False,
|
||||
)
|
||||
for url in candidates:
|
||||
try:
|
||||
resp = await requests.get(url)
|
||||
if resp.status == 200:
|
||||
data = resp.json()
|
||||
if isinstance(data, dict) and "authorization_servers" in data:
|
||||
return data
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return None
|
||||
|
||||
async def discover_auth_server_metadata(
|
||||
self, auth_server_url: str
|
||||
) -> dict[str, Any] | None:
|
||||
"""Fetch the OAuth Authorization Server Metadata (RFC 8414).
|
||||
|
||||
Given an authorization server URL, returns a dict with:
|
||||
- ``authorization_endpoint``
|
||||
- ``token_endpoint``
|
||||
- ``registration_endpoint`` (for dynamic client registration)
|
||||
- ``scopes_supported``
|
||||
- ``code_challenge_methods_supported``
|
||||
- etc.
|
||||
"""
|
||||
from urllib.parse import urlparse
|
||||
|
||||
parsed = urlparse(auth_server_url)
|
||||
base = f"{parsed.scheme}://{parsed.netloc}"
|
||||
path = parsed.path.rstrip("/")
|
||||
|
||||
# Try standard metadata endpoints (RFC 8414 and OpenID Connect)
|
||||
candidates = []
|
||||
if path and path != "/":
|
||||
candidates.append(f"{base}/.well-known/oauth-authorization-server{path}")
|
||||
candidates.append(f"{base}/.well-known/oauth-authorization-server")
|
||||
candidates.append(f"{base}/.well-known/openid-configuration")
|
||||
|
||||
requests = Requests(
|
||||
raise_for_status=False,
|
||||
)
|
||||
for url in candidates:
|
||||
try:
|
||||
resp = await requests.get(url)
|
||||
if resp.status == 200:
|
||||
data = resp.json()
|
||||
if isinstance(data, dict) and "authorization_endpoint" in data:
|
||||
return data
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return None
|
||||
|
||||
async def initialize(self) -> dict[str, Any]:
|
||||
"""
|
||||
Send the MCP initialize request.
|
||||
|
||||
This is required by the MCP protocol before any other requests.
|
||||
Returns the server's capabilities.
|
||||
"""
|
||||
result = await self._send_request(
|
||||
"initialize",
|
||||
{
|
||||
"protocolVersion": "2025-03-26",
|
||||
"capabilities": {},
|
||||
"clientInfo": {"name": "AutoGPT-Platform", "version": "1.0.0"},
|
||||
},
|
||||
)
|
||||
# Send initialized notification (no response expected)
|
||||
await self._send_notification("notifications/initialized")
|
||||
|
||||
return result or {}
|
||||
|
||||
async def list_tools(self) -> list[MCPTool]:
|
||||
"""
|
||||
Discover available tools from the MCP server.
|
||||
|
||||
Returns a list of MCPTool objects with name, description, and input schema.
|
||||
"""
|
||||
result = await self._send_request("tools/list")
|
||||
if not result or "tools" not in result:
|
||||
return []
|
||||
|
||||
tools = []
|
||||
for tool_data in result["tools"]:
|
||||
tools.append(
|
||||
MCPTool(
|
||||
name=tool_data.get("name", ""),
|
||||
description=tool_data.get("description", ""),
|
||||
input_schema=tool_data.get("inputSchema", {}),
|
||||
)
|
||||
)
|
||||
return tools
|
||||
|
||||
async def call_tool(
|
||||
self, tool_name: str, arguments: dict[str, Any]
|
||||
) -> MCPCallResult:
|
||||
"""
|
||||
Call a tool on the MCP server.
|
||||
|
||||
Args:
|
||||
tool_name: The name of the tool to call.
|
||||
arguments: The arguments to pass to the tool.
|
||||
|
||||
Returns:
|
||||
MCPCallResult with the tool's response content.
|
||||
"""
|
||||
result = await self._send_request(
|
||||
"tools/call",
|
||||
{"name": tool_name, "arguments": arguments},
|
||||
)
|
||||
if not result:
|
||||
return MCPCallResult(is_error=True)
|
||||
|
||||
return MCPCallResult(
|
||||
content=result.get("content", []),
|
||||
is_error=result.get("isError", False),
|
||||
)
|
||||
204
autogpt_platform/backend/backend/blocks/mcp/oauth.py
Normal file
204
autogpt_platform/backend/backend/blocks/mcp/oauth.py
Normal file
@@ -0,0 +1,204 @@
|
||||
"""
|
||||
MCP OAuth handler for MCP servers that use OAuth 2.1 authorization.
|
||||
|
||||
Unlike other OAuth handlers (GitHub, Google, etc.) where endpoints are fixed,
|
||||
MCP servers have dynamic endpoints discovered via RFC 9728 / RFC 8414 metadata.
|
||||
This handler accepts those endpoints at construction time.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import time
|
||||
import urllib.parse
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.oauth.base import BaseOAuthHandler
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import Requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MCPOAuthHandler(BaseOAuthHandler):
|
||||
"""
|
||||
OAuth handler for MCP servers with dynamically-discovered endpoints.
|
||||
|
||||
Construction requires the authorization and token endpoint URLs,
|
||||
which are obtained via MCP OAuth metadata discovery
|
||||
(``MCPClient.discover_auth`` + ``discover_auth_server_metadata``).
|
||||
"""
|
||||
|
||||
PROVIDER_NAME: ClassVar[ProviderName | str] = ProviderName.MCP
|
||||
DEFAULT_SCOPES: ClassVar[list[str]] = []
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
client_id: str,
|
||||
client_secret: str,
|
||||
redirect_uri: str,
|
||||
*,
|
||||
authorize_url: str,
|
||||
token_url: str,
|
||||
revoke_url: str | None = None,
|
||||
resource_url: str | None = None,
|
||||
):
|
||||
self.client_id = client_id
|
||||
self.client_secret = client_secret
|
||||
self.redirect_uri = redirect_uri
|
||||
self.authorize_url = authorize_url
|
||||
self.token_url = token_url
|
||||
self.revoke_url = revoke_url
|
||||
self.resource_url = resource_url
|
||||
|
||||
def get_login_url(
|
||||
self,
|
||||
scopes: list[str],
|
||||
state: str,
|
||||
code_challenge: Optional[str],
|
||||
) -> str:
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
params: dict[str, str] = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"state": state,
|
||||
}
|
||||
if scopes:
|
||||
params["scope"] = " ".join(scopes)
|
||||
# PKCE (S256) — included when the caller provides a code_challenge
|
||||
if code_challenge:
|
||||
params["code_challenge"] = code_challenge
|
||||
params["code_challenge_method"] = "S256"
|
||||
# MCP spec requires resource indicator (RFC 8707)
|
||||
if self.resource_url:
|
||||
params["resource"] = self.resource_url
|
||||
|
||||
return f"{self.authorize_url}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
async def exchange_code_for_tokens(
|
||||
self,
|
||||
code: str,
|
||||
scopes: list[str],
|
||||
code_verifier: Optional[str],
|
||||
) -> OAuth2Credentials:
|
||||
data: dict[str, str] = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": code,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"client_id": self.client_id,
|
||||
}
|
||||
if self.client_secret:
|
||||
data["client_secret"] = self.client_secret
|
||||
if code_verifier:
|
||||
data["code_verifier"] = code_verifier
|
||||
if self.resource_url:
|
||||
data["resource"] = self.resource_url
|
||||
|
||||
response = await Requests(raise_for_status=True).post(
|
||||
self.token_url,
|
||||
data=data,
|
||||
headers={"Content-Type": "application/x-www-form-urlencoded"},
|
||||
)
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise RuntimeError(
|
||||
f"Token exchange failed: {tokens.get('error_description', tokens['error'])}"
|
||||
)
|
||||
|
||||
if "access_token" not in tokens:
|
||||
raise RuntimeError("OAuth token response missing 'access_token' field")
|
||||
|
||||
now = int(time.time())
|
||||
expires_in = tokens.get("expires_in")
|
||||
|
||||
return OAuth2Credentials(
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=None,
|
||||
access_token=SecretStr(tokens["access_token"]),
|
||||
refresh_token=(
|
||||
SecretStr(tokens["refresh_token"])
|
||||
if tokens.get("refresh_token")
|
||||
else None
|
||||
),
|
||||
access_token_expires_at=now + expires_in if expires_in else None,
|
||||
refresh_token_expires_at=None,
|
||||
scopes=scopes,
|
||||
metadata={
|
||||
"mcp_token_url": self.token_url,
|
||||
"mcp_resource_url": self.resource_url,
|
||||
},
|
||||
)
|
||||
|
||||
async def _refresh_tokens(
|
||||
self, credentials: OAuth2Credentials
|
||||
) -> OAuth2Credentials:
|
||||
if not credentials.refresh_token:
|
||||
raise ValueError("No refresh token available for MCP OAuth credentials")
|
||||
|
||||
data: dict[str, str] = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": credentials.refresh_token.get_secret_value(),
|
||||
"client_id": self.client_id,
|
||||
}
|
||||
if self.client_secret:
|
||||
data["client_secret"] = self.client_secret
|
||||
if self.resource_url:
|
||||
data["resource"] = self.resource_url
|
||||
|
||||
response = await Requests(raise_for_status=True).post(
|
||||
self.token_url,
|
||||
data=data,
|
||||
headers={"Content-Type": "application/x-www-form-urlencoded"},
|
||||
)
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise RuntimeError(
|
||||
f"Token refresh failed: {tokens.get('error_description', tokens['error'])}"
|
||||
)
|
||||
|
||||
if "access_token" not in tokens:
|
||||
raise RuntimeError("OAuth refresh response missing 'access_token' field")
|
||||
|
||||
now = int(time.time())
|
||||
expires_in = tokens.get("expires_in")
|
||||
|
||||
return OAuth2Credentials(
|
||||
id=credentials.id,
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=credentials.title,
|
||||
access_token=SecretStr(tokens["access_token"]),
|
||||
refresh_token=(
|
||||
SecretStr(tokens["refresh_token"])
|
||||
if tokens.get("refresh_token")
|
||||
else credentials.refresh_token
|
||||
),
|
||||
access_token_expires_at=now + expires_in if expires_in else None,
|
||||
refresh_token_expires_at=credentials.refresh_token_expires_at,
|
||||
scopes=credentials.scopes,
|
||||
metadata=credentials.metadata,
|
||||
)
|
||||
|
||||
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
|
||||
if not self.revoke_url:
|
||||
return False
|
||||
|
||||
try:
|
||||
data = {
|
||||
"token": credentials.access_token.get_secret_value(),
|
||||
"token_type_hint": "access_token",
|
||||
"client_id": self.client_id,
|
||||
}
|
||||
await Requests().post(
|
||||
self.revoke_url,
|
||||
data=data,
|
||||
headers={"Content-Type": "application/x-www-form-urlencoded"},
|
||||
)
|
||||
return True
|
||||
except Exception:
|
||||
logger.warning("Failed to revoke MCP OAuth tokens", exc_info=True)
|
||||
return False
|
||||
109
autogpt_platform/backend/backend/blocks/mcp/test_e2e.py
Normal file
109
autogpt_platform/backend/backend/blocks/mcp/test_e2e.py
Normal file
@@ -0,0 +1,109 @@
|
||||
"""
|
||||
End-to-end tests against a real public MCP server.
|
||||
|
||||
These tests hit the OpenAI docs MCP server (https://developers.openai.com/mcp)
|
||||
which is publicly accessible without authentication and returns SSE responses.
|
||||
|
||||
Mark: These are tagged with ``@pytest.mark.e2e`` so they can be run/skipped
|
||||
independently of the rest of the test suite (they require network access).
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.blocks.mcp.client import MCPClient
|
||||
|
||||
# Public MCP server that requires no authentication
|
||||
OPENAI_DOCS_MCP_URL = "https://developers.openai.com/mcp"
|
||||
|
||||
# Skip all tests in this module unless RUN_E2E env var is set
|
||||
pytestmark = pytest.mark.skipif(
|
||||
not os.environ.get("RUN_E2E"), reason="set RUN_E2E=1 to run e2e tests"
|
||||
)
|
||||
|
||||
|
||||
class TestRealMCPServer:
|
||||
"""Tests against the live OpenAI docs MCP server."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_initialize(self):
|
||||
"""Verify we can complete the MCP handshake with a real server."""
|
||||
client = MCPClient(OPENAI_DOCS_MCP_URL)
|
||||
result = await client.initialize()
|
||||
|
||||
assert result["protocolVersion"] == "2025-03-26"
|
||||
assert "serverInfo" in result
|
||||
assert result["serverInfo"]["name"] == "openai-docs-mcp"
|
||||
assert "tools" in result.get("capabilities", {})
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_list_tools(self):
|
||||
"""Verify we can discover tools from a real MCP server."""
|
||||
client = MCPClient(OPENAI_DOCS_MCP_URL)
|
||||
await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
|
||||
assert len(tools) >= 3 # server has at least 5 tools as of writing
|
||||
|
||||
tool_names = {t.name for t in tools}
|
||||
# These tools are documented and should be stable
|
||||
assert "search_openai_docs" in tool_names
|
||||
assert "list_openai_docs" in tool_names
|
||||
assert "fetch_openai_doc" in tool_names
|
||||
|
||||
# Verify schema structure
|
||||
search_tool = next(t for t in tools if t.name == "search_openai_docs")
|
||||
assert "query" in search_tool.input_schema.get("properties", {})
|
||||
assert "query" in search_tool.input_schema.get("required", [])
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_list_api_endpoints(self):
|
||||
"""Call the list_api_endpoints tool and verify we get real data."""
|
||||
client = MCPClient(OPENAI_DOCS_MCP_URL)
|
||||
await client.initialize()
|
||||
result = await client.call_tool("list_api_endpoints", {})
|
||||
|
||||
assert not result.is_error
|
||||
assert len(result.content) >= 1
|
||||
assert result.content[0]["type"] == "text"
|
||||
|
||||
data = json.loads(result.content[0]["text"])
|
||||
assert "paths" in data or "urls" in data
|
||||
# The OpenAI API should have many endpoints
|
||||
total = data.get("total", len(data.get("paths", [])))
|
||||
assert total > 50
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_search(self):
|
||||
"""Search for docs and verify we get results."""
|
||||
client = MCPClient(OPENAI_DOCS_MCP_URL)
|
||||
await client.initialize()
|
||||
result = await client.call_tool(
|
||||
"search_openai_docs", {"query": "chat completions", "limit": 3}
|
||||
)
|
||||
|
||||
assert not result.is_error
|
||||
assert len(result.content) >= 1
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_sse_response_handling(self):
|
||||
"""Verify the client correctly handles SSE responses from a real server.
|
||||
|
||||
This is the key test — our local test server returns JSON,
|
||||
but real MCP servers typically return SSE. This proves the
|
||||
SSE parsing works end-to-end.
|
||||
"""
|
||||
client = MCPClient(OPENAI_DOCS_MCP_URL)
|
||||
# initialize() internally calls _send_request which must parse SSE
|
||||
result = await client.initialize()
|
||||
|
||||
# If we got here without error, SSE parsing works
|
||||
assert isinstance(result, dict)
|
||||
assert "protocolVersion" in result
|
||||
|
||||
# Also verify list_tools works (another SSE response)
|
||||
tools = await client.list_tools()
|
||||
assert len(tools) > 0
|
||||
assert all(hasattr(t, "name") for t in tools)
|
||||
389
autogpt_platform/backend/backend/blocks/mcp/test_integration.py
Normal file
389
autogpt_platform/backend/backend/blocks/mcp/test_integration.py
Normal file
@@ -0,0 +1,389 @@
|
||||
"""
|
||||
Integration tests for MCP client and MCPToolBlock against a real HTTP server.
|
||||
|
||||
These tests spin up a local MCP test server and run the full client/block flow
|
||||
against it — no mocking, real HTTP requests.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import threading
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from aiohttp import web
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.blocks.mcp.block import MCPToolBlock
|
||||
from backend.blocks.mcp.client import MCPClient
|
||||
from backend.blocks.mcp.test_server import create_test_mcp_app
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
MOCK_USER_ID = "test-user-integration"
|
||||
|
||||
|
||||
class _MCPTestServer:
|
||||
"""
|
||||
Run an MCP test server in a background thread with its own event loop.
|
||||
This avoids event loop conflicts with pytest-asyncio.
|
||||
"""
|
||||
|
||||
def __init__(self, auth_token: str | None = None):
|
||||
self.auth_token = auth_token
|
||||
self.url: str = ""
|
||||
self._runner: web.AppRunner | None = None
|
||||
self._loop: asyncio.AbstractEventLoop | None = None
|
||||
self._thread: threading.Thread | None = None
|
||||
self._started = threading.Event()
|
||||
|
||||
def _run(self):
|
||||
self._loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(self._loop)
|
||||
self._loop.run_until_complete(self._start())
|
||||
self._started.set()
|
||||
self._loop.run_forever()
|
||||
|
||||
async def _start(self):
|
||||
app = create_test_mcp_app(auth_token=self.auth_token)
|
||||
self._runner = web.AppRunner(app)
|
||||
await self._runner.setup()
|
||||
site = web.TCPSite(self._runner, "127.0.0.1", 0)
|
||||
await site.start()
|
||||
port = site._server.sockets[0].getsockname()[1] # type: ignore[union-attr]
|
||||
self.url = f"http://127.0.0.1:{port}/mcp"
|
||||
|
||||
def start(self):
|
||||
self._thread = threading.Thread(target=self._run, daemon=True)
|
||||
self._thread.start()
|
||||
if not self._started.wait(timeout=5):
|
||||
raise RuntimeError("MCP test server failed to start within 5 seconds")
|
||||
return self
|
||||
|
||||
def stop(self):
|
||||
if self._loop and self._runner:
|
||||
asyncio.run_coroutine_threadsafe(self._runner.cleanup(), self._loop).result(
|
||||
timeout=5
|
||||
)
|
||||
self._loop.call_soon_threadsafe(self._loop.stop)
|
||||
if self._thread:
|
||||
self._thread.join(timeout=5)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mcp_server():
|
||||
"""Start a local MCP test server in a background thread."""
|
||||
server = _MCPTestServer()
|
||||
server.start()
|
||||
yield server.url
|
||||
server.stop()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def mcp_server_with_auth():
|
||||
"""Start a local MCP test server with auth in a background thread."""
|
||||
server = _MCPTestServer(auth_token="test-secret-token")
|
||||
server.start()
|
||||
yield server.url, "test-secret-token"
|
||||
server.stop()
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _allow_localhost():
|
||||
"""
|
||||
Allow 127.0.0.1 through SSRF protection for integration tests.
|
||||
|
||||
The Requests class blocks private IPs by default. We patch the Requests
|
||||
constructor to always include 127.0.0.1 as a trusted origin so the local
|
||||
test server is reachable.
|
||||
"""
|
||||
from backend.util.request import Requests
|
||||
|
||||
original_init = Requests.__init__
|
||||
|
||||
def patched_init(self, *args, **kwargs):
|
||||
trusted = list(kwargs.get("trusted_origins") or [])
|
||||
trusted.append("http://127.0.0.1")
|
||||
kwargs["trusted_origins"] = trusted
|
||||
original_init(self, *args, **kwargs)
|
||||
|
||||
with patch.object(Requests, "__init__", patched_init):
|
||||
yield
|
||||
|
||||
|
||||
def _make_client(url: str, auth_token: str | None = None) -> MCPClient:
|
||||
"""Create an MCPClient for integration tests."""
|
||||
return MCPClient(url, auth_token=auth_token)
|
||||
|
||||
|
||||
# ── MCPClient integration tests ──────────────────────────────────────
|
||||
|
||||
|
||||
class TestMCPClientIntegration:
|
||||
"""Test MCPClient against a real local MCP server."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_initialize(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
result = await client.initialize()
|
||||
|
||||
assert result["protocolVersion"] == "2025-03-26"
|
||||
assert result["serverInfo"]["name"] == "test-mcp-server"
|
||||
assert "tools" in result["capabilities"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_list_tools(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
|
||||
assert len(tools) == 3
|
||||
|
||||
tool_names = {t.name for t in tools}
|
||||
assert tool_names == {"get_weather", "add_numbers", "echo"}
|
||||
|
||||
# Check get_weather schema
|
||||
weather = next(t for t in tools if t.name == "get_weather")
|
||||
assert weather.description == "Get current weather for a city"
|
||||
assert "city" in weather.input_schema["properties"]
|
||||
assert weather.input_schema["required"] == ["city"]
|
||||
|
||||
# Check add_numbers schema
|
||||
add = next(t for t in tools if t.name == "add_numbers")
|
||||
assert "a" in add.input_schema["properties"]
|
||||
assert "b" in add.input_schema["properties"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_get_weather(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
result = await client.call_tool("get_weather", {"city": "London"})
|
||||
|
||||
assert not result.is_error
|
||||
assert len(result.content) == 1
|
||||
assert result.content[0]["type"] == "text"
|
||||
|
||||
data = json.loads(result.content[0]["text"])
|
||||
assert data["city"] == "London"
|
||||
assert data["temperature"] == 22
|
||||
assert data["condition"] == "sunny"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_add_numbers(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
result = await client.call_tool("add_numbers", {"a": 3, "b": 7})
|
||||
|
||||
assert not result.is_error
|
||||
data = json.loads(result.content[0]["text"])
|
||||
assert data["result"] == 10
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_echo(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
result = await client.call_tool("echo", {"message": "Hello MCP!"})
|
||||
|
||||
assert not result.is_error
|
||||
assert result.content[0]["text"] == "Hello MCP!"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_unknown_tool(self, mcp_server):
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
result = await client.call_tool("nonexistent_tool", {})
|
||||
|
||||
assert result.is_error
|
||||
assert "Unknown tool" in result.content[0]["text"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_auth_success(self, mcp_server_with_auth):
|
||||
url, token = mcp_server_with_auth
|
||||
client = _make_client(url, auth_token=token)
|
||||
result = await client.initialize()
|
||||
|
||||
assert result["protocolVersion"] == "2025-03-26"
|
||||
|
||||
tools = await client.list_tools()
|
||||
assert len(tools) == 3
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_auth_failure(self, mcp_server_with_auth):
|
||||
url, _ = mcp_server_with_auth
|
||||
client = _make_client(url, auth_token="wrong-token")
|
||||
|
||||
with pytest.raises(Exception):
|
||||
await client.initialize()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_auth_missing(self, mcp_server_with_auth):
|
||||
url, _ = mcp_server_with_auth
|
||||
client = _make_client(url)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
await client.initialize()
|
||||
|
||||
|
||||
# ── MCPToolBlock integration tests ───────────────────────────────────
|
||||
|
||||
|
||||
class TestMCPToolBlockIntegration:
|
||||
"""Test MCPToolBlock end-to-end against a real local MCP server."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_full_flow_get_weather(self, mcp_server):
|
||||
"""Full flow: discover tools, select one, execute it."""
|
||||
# Step 1: Discover tools (simulating what the frontend/API would do)
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
assert len(tools) == 3
|
||||
|
||||
# Step 2: User selects "get_weather" and we get its schema
|
||||
weather_tool = next(t for t in tools if t.name == "get_weather")
|
||||
|
||||
# Step 3: Execute the block — no credentials (public server)
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=mcp_server,
|
||||
selected_tool="get_weather",
|
||||
tool_input_schema=weather_tool.input_schema,
|
||||
tool_arguments={"city": "Paris"},
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
result = outputs[0][1]
|
||||
assert result["city"] == "Paris"
|
||||
assert result["temperature"] == 22
|
||||
assert result["condition"] == "sunny"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_full_flow_add_numbers(self, mcp_server):
|
||||
"""Full flow for add_numbers tool."""
|
||||
client = _make_client(mcp_server)
|
||||
await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
add_tool = next(t for t in tools if t.name == "add_numbers")
|
||||
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=mcp_server,
|
||||
selected_tool="add_numbers",
|
||||
tool_input_schema=add_tool.input_schema,
|
||||
tool_arguments={"a": 42, "b": 58},
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
assert outputs[0][1]["result"] == 100
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_full_flow_echo_plain_text(self, mcp_server):
|
||||
"""Verify plain text (non-JSON) responses work."""
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=mcp_server,
|
||||
selected_tool="echo",
|
||||
tool_input_schema={
|
||||
"type": "object",
|
||||
"properties": {"message": {"type": "string"}},
|
||||
"required": ["message"],
|
||||
},
|
||||
tool_arguments={"message": "Hello from AutoGPT!"},
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
assert outputs[0][1] == "Hello from AutoGPT!"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_full_flow_unknown_tool_yields_error(self, mcp_server):
|
||||
"""Calling an unknown tool should yield an error output."""
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=mcp_server,
|
||||
selected_tool="nonexistent_tool",
|
||||
tool_arguments={},
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "error"
|
||||
assert "returned an error" in outputs[0][1]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_full_flow_with_auth(self, mcp_server_with_auth):
|
||||
"""Full flow with authentication via credentials kwarg."""
|
||||
url, token = mcp_server_with_auth
|
||||
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=url,
|
||||
selected_tool="echo",
|
||||
tool_input_schema={
|
||||
"type": "object",
|
||||
"properties": {"message": {"type": "string"}},
|
||||
"required": ["message"],
|
||||
},
|
||||
tool_arguments={"message": "Authenticated!"},
|
||||
)
|
||||
|
||||
# Pass credentials via the standard kwarg (as the executor would)
|
||||
test_creds = OAuth2Credentials(
|
||||
id="test-cred",
|
||||
provider="mcp",
|
||||
access_token=SecretStr(token),
|
||||
refresh_token=SecretStr(""),
|
||||
scopes=[],
|
||||
title="Test MCP credential",
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(
|
||||
input_data, user_id=MOCK_USER_ID, credentials=test_creds
|
||||
):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
assert outputs[0][1] == "Authenticated!"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_no_credentials_runs_without_auth(self, mcp_server):
|
||||
"""Block runs without auth when no credentials are provided."""
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url=mcp_server,
|
||||
selected_tool="echo",
|
||||
tool_input_schema={
|
||||
"type": "object",
|
||||
"properties": {"message": {"type": "string"}},
|
||||
"required": ["message"],
|
||||
},
|
||||
tool_arguments={"message": "No auth needed"},
|
||||
)
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(
|
||||
input_data, user_id=MOCK_USER_ID, credentials=None
|
||||
):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
assert outputs[0][1] == "No auth needed"
|
||||
619
autogpt_platform/backend/backend/blocks/mcp/test_mcp.py
Normal file
619
autogpt_platform/backend/backend/blocks/mcp/test_mcp.py
Normal file
@@ -0,0 +1,619 @@
|
||||
"""
|
||||
Tests for MCP client and MCPToolBlock.
|
||||
"""
|
||||
|
||||
import json
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.blocks.mcp.block import MCPToolBlock
|
||||
from backend.blocks.mcp.client import MCPCallResult, MCPClient, MCPClientError
|
||||
from backend.util.test import execute_block_test
|
||||
|
||||
# ── SSE parsing unit tests ───────────────────────────────────────────
|
||||
|
||||
|
||||
class TestSSEParsing:
|
||||
"""Tests for SSE (text/event-stream) response parsing."""
|
||||
|
||||
def test_parse_sse_simple(self):
|
||||
sse = (
|
||||
"event: message\n"
|
||||
'data: {"jsonrpc":"2.0","result":{"tools":[]},"id":1}\n'
|
||||
"\n"
|
||||
)
|
||||
body = MCPClient._parse_sse_response(sse)
|
||||
assert body["result"] == {"tools": []}
|
||||
assert body["id"] == 1
|
||||
|
||||
def test_parse_sse_with_notifications(self):
|
||||
"""SSE streams can contain notifications (no id) before the response."""
|
||||
sse = (
|
||||
"event: message\n"
|
||||
'data: {"jsonrpc":"2.0","method":"some/notification"}\n'
|
||||
"\n"
|
||||
"event: message\n"
|
||||
'data: {"jsonrpc":"2.0","result":{"ok":true},"id":2}\n'
|
||||
"\n"
|
||||
)
|
||||
body = MCPClient._parse_sse_response(sse)
|
||||
assert body["result"] == {"ok": True}
|
||||
assert body["id"] == 2
|
||||
|
||||
def test_parse_sse_error_response(self):
|
||||
sse = (
|
||||
"event: message\n"
|
||||
'data: {"jsonrpc":"2.0","error":{"code":-32600,"message":"Bad Request"},"id":1}\n'
|
||||
)
|
||||
body = MCPClient._parse_sse_response(sse)
|
||||
assert "error" in body
|
||||
assert body["error"]["code"] == -32600
|
||||
|
||||
def test_parse_sse_no_data_raises(self):
|
||||
with pytest.raises(MCPClientError, match="No JSON-RPC response found"):
|
||||
MCPClient._parse_sse_response("event: message\n\n")
|
||||
|
||||
def test_parse_sse_empty_raises(self):
|
||||
with pytest.raises(MCPClientError, match="No JSON-RPC response found"):
|
||||
MCPClient._parse_sse_response("")
|
||||
|
||||
def test_parse_sse_ignores_non_data_lines(self):
|
||||
sse = (
|
||||
": comment line\n"
|
||||
"event: message\n"
|
||||
"id: 123\n"
|
||||
'data: {"jsonrpc":"2.0","result":"ok","id":1}\n'
|
||||
"\n"
|
||||
)
|
||||
body = MCPClient._parse_sse_response(sse)
|
||||
assert body["result"] == "ok"
|
||||
|
||||
def test_parse_sse_uses_last_response(self):
|
||||
"""If multiple responses exist, use the last one."""
|
||||
sse = (
|
||||
'data: {"jsonrpc":"2.0","result":"first","id":1}\n'
|
||||
"\n"
|
||||
'data: {"jsonrpc":"2.0","result":"second","id":2}\n'
|
||||
"\n"
|
||||
)
|
||||
body = MCPClient._parse_sse_response(sse)
|
||||
assert body["result"] == "second"
|
||||
|
||||
|
||||
# ── MCPClient unit tests ─────────────────────────────────────────────
|
||||
|
||||
|
||||
class TestMCPClient:
|
||||
"""Tests for the MCP HTTP client."""
|
||||
|
||||
def test_build_headers_without_auth(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
headers = client._build_headers()
|
||||
assert "Authorization" not in headers
|
||||
assert headers["Content-Type"] == "application/json"
|
||||
|
||||
def test_build_headers_with_auth(self):
|
||||
client = MCPClient("https://mcp.example.com", auth_token="my-token")
|
||||
headers = client._build_headers()
|
||||
assert headers["Authorization"] == "Bearer my-token"
|
||||
|
||||
def test_build_jsonrpc_request(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
req = client._build_jsonrpc_request("tools/list")
|
||||
assert req["jsonrpc"] == "2.0"
|
||||
assert req["method"] == "tools/list"
|
||||
assert "id" in req
|
||||
assert "params" not in req
|
||||
|
||||
def test_build_jsonrpc_request_with_params(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
req = client._build_jsonrpc_request(
|
||||
"tools/call", {"name": "test", "arguments": {"x": 1}}
|
||||
)
|
||||
assert req["params"] == {"name": "test", "arguments": {"x": 1}}
|
||||
|
||||
def test_request_id_increments(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
req1 = client._build_jsonrpc_request("tools/list")
|
||||
req2 = client._build_jsonrpc_request("tools/list")
|
||||
assert req2["id"] > req1["id"]
|
||||
|
||||
def test_server_url_trailing_slash_stripped(self):
|
||||
client = MCPClient("https://mcp.example.com/mcp/")
|
||||
assert client.server_url == "https://mcp.example.com/mcp"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_send_request_success(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
mock_response = AsyncMock()
|
||||
mock_response.json.return_value = {
|
||||
"jsonrpc": "2.0",
|
||||
"result": {"tools": []},
|
||||
"id": 1,
|
||||
}
|
||||
|
||||
with patch.object(client, "_send_request", return_value={"tools": []}):
|
||||
result = await client._send_request("tools/list")
|
||||
assert result == {"tools": []}
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_send_request_error(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
async def mock_send(*args, **kwargs):
|
||||
raise MCPClientError("MCP server error [-32600]: Invalid Request")
|
||||
|
||||
with patch.object(client, "_send_request", side_effect=mock_send):
|
||||
with pytest.raises(MCPClientError, match="Invalid Request"):
|
||||
await client._send_request("tools/list")
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_list_tools(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
mock_result = {
|
||||
"tools": [
|
||||
{
|
||||
"name": "get_weather",
|
||||
"description": "Get current weather for a city",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
"required": ["city"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "search",
|
||||
"description": "Search the web",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {"query": {"type": "string"}},
|
||||
"required": ["query"],
|
||||
},
|
||||
},
|
||||
]
|
||||
}
|
||||
|
||||
with patch.object(client, "_send_request", return_value=mock_result):
|
||||
tools = await client.list_tools()
|
||||
|
||||
assert len(tools) == 2
|
||||
assert tools[0].name == "get_weather"
|
||||
assert tools[0].description == "Get current weather for a city"
|
||||
assert tools[0].input_schema["properties"]["city"]["type"] == "string"
|
||||
assert tools[1].name == "search"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_list_tools_empty(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
with patch.object(client, "_send_request", return_value={"tools": []}):
|
||||
tools = await client.list_tools()
|
||||
|
||||
assert tools == []
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_list_tools_none_result(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
with patch.object(client, "_send_request", return_value=None):
|
||||
tools = await client.list_tools()
|
||||
|
||||
assert tools == []
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_success(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
mock_result = {
|
||||
"content": [
|
||||
{"type": "text", "text": json.dumps({"temp": 20, "city": "London"})}
|
||||
],
|
||||
"isError": False,
|
||||
}
|
||||
|
||||
with patch.object(client, "_send_request", return_value=mock_result):
|
||||
result = await client.call_tool("get_weather", {"city": "London"})
|
||||
|
||||
assert not result.is_error
|
||||
assert len(result.content) == 1
|
||||
assert result.content[0]["type"] == "text"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_error(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
mock_result = {
|
||||
"content": [{"type": "text", "text": "City not found"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
with patch.object(client, "_send_request", return_value=mock_result):
|
||||
result = await client.call_tool("get_weather", {"city": "???"})
|
||||
|
||||
assert result.is_error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_tool_none_result(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
with patch.object(client, "_send_request", return_value=None):
|
||||
result = await client.call_tool("get_weather", {"city": "London"})
|
||||
|
||||
assert result.is_error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_initialize(self):
|
||||
client = MCPClient("https://mcp.example.com")
|
||||
|
||||
mock_result = {
|
||||
"protocolVersion": "2025-03-26",
|
||||
"capabilities": {"tools": {}},
|
||||
"serverInfo": {"name": "test-server", "version": "1.0.0"},
|
||||
}
|
||||
|
||||
with (
|
||||
patch.object(client, "_send_request", return_value=mock_result) as mock_req,
|
||||
patch.object(client, "_send_notification") as mock_notif,
|
||||
):
|
||||
result = await client.initialize()
|
||||
|
||||
mock_req.assert_called_once()
|
||||
mock_notif.assert_called_once_with("notifications/initialized")
|
||||
assert result["protocolVersion"] == "2025-03-26"
|
||||
|
||||
|
||||
# ── MCPToolBlock unit tests ──────────────────────────────────────────
|
||||
|
||||
MOCK_USER_ID = "test-user-123"
|
||||
|
||||
|
||||
class TestMCPToolBlock:
|
||||
"""Tests for the MCPToolBlock."""
|
||||
|
||||
def test_block_instantiation(self):
|
||||
block = MCPToolBlock()
|
||||
assert block.id == "a0a4b1c2-d3e4-4f56-a7b8-c9d0e1f2a3b4"
|
||||
assert block.name == "MCPToolBlock"
|
||||
|
||||
def test_input_schema_has_required_fields(self):
|
||||
block = MCPToolBlock()
|
||||
schema = block.input_schema.jsonschema()
|
||||
props = schema.get("properties", {})
|
||||
assert "server_url" in props
|
||||
assert "selected_tool" in props
|
||||
assert "tool_arguments" in props
|
||||
assert "credentials" in props
|
||||
|
||||
def test_output_schema(self):
|
||||
block = MCPToolBlock()
|
||||
schema = block.output_schema.jsonschema()
|
||||
props = schema.get("properties", {})
|
||||
assert "result" in props
|
||||
assert "error" in props
|
||||
|
||||
def test_get_input_schema_with_tool_schema(self):
|
||||
tool_schema = {
|
||||
"type": "object",
|
||||
"properties": {"query": {"type": "string"}},
|
||||
"required": ["query"],
|
||||
}
|
||||
data = {"tool_input_schema": tool_schema}
|
||||
result = MCPToolBlock.Input.get_input_schema(data)
|
||||
assert result == tool_schema
|
||||
|
||||
def test_get_input_schema_without_tool_schema(self):
|
||||
result = MCPToolBlock.Input.get_input_schema({})
|
||||
assert result == {}
|
||||
|
||||
def test_get_input_defaults(self):
|
||||
data = {"tool_arguments": {"city": "London"}}
|
||||
result = MCPToolBlock.Input.get_input_defaults(data)
|
||||
assert result == {"city": "London"}
|
||||
|
||||
def test_get_missing_input(self):
|
||||
data = {
|
||||
"tool_input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {"type": "string"},
|
||||
"units": {"type": "string"},
|
||||
},
|
||||
"required": ["city", "units"],
|
||||
},
|
||||
"tool_arguments": {"city": "London"},
|
||||
}
|
||||
missing = MCPToolBlock.Input.get_missing_input(data)
|
||||
assert missing == {"units"}
|
||||
|
||||
def test_get_missing_input_all_present(self):
|
||||
data = {
|
||||
"tool_input_schema": {
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
"required": ["city"],
|
||||
},
|
||||
"tool_arguments": {"city": "London"},
|
||||
}
|
||||
missing = MCPToolBlock.Input.get_missing_input(data)
|
||||
assert missing == set()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_with_mock(self):
|
||||
"""Test the block using the built-in test infrastructure."""
|
||||
block = MCPToolBlock()
|
||||
await execute_block_test(block)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_missing_server_url(self):
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="",
|
||||
selected_tool="test",
|
||||
)
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
assert outputs == [("error", "MCP server URL is required")]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_missing_tool(self):
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="https://mcp.example.com/mcp",
|
||||
selected_tool="",
|
||||
)
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
assert outputs == [
|
||||
("error", "No tool selected. Please select a tool from the dropdown.")
|
||||
]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_success(self):
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="https://mcp.example.com/mcp",
|
||||
selected_tool="get_weather",
|
||||
tool_input_schema={
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
},
|
||||
tool_arguments={"city": "London"},
|
||||
)
|
||||
|
||||
async def mock_call(*args, **kwargs):
|
||||
return {"temp": 20, "city": "London"}
|
||||
|
||||
block._call_mcp_tool = mock_call # type: ignore
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert len(outputs) == 1
|
||||
assert outputs[0][0] == "result"
|
||||
assert outputs[0][1] == {"temp": 20, "city": "London"}
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_mcp_error(self):
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="https://mcp.example.com/mcp",
|
||||
selected_tool="bad_tool",
|
||||
)
|
||||
|
||||
async def mock_call(*args, **kwargs):
|
||||
raise MCPClientError("Tool not found")
|
||||
|
||||
block._call_mcp_tool = mock_call # type: ignore
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert outputs[0][0] == "error"
|
||||
assert "Tool not found" in outputs[0][1]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_mcp_tool_parses_json_text(self):
|
||||
block = MCPToolBlock()
|
||||
|
||||
mock_result = MCPCallResult(
|
||||
content=[
|
||||
{"type": "text", "text": '{"temp": 20}'},
|
||||
],
|
||||
is_error=False,
|
||||
)
|
||||
|
||||
async def mock_init(self):
|
||||
return {}
|
||||
|
||||
async def mock_call(self, name, args):
|
||||
return mock_result
|
||||
|
||||
with (
|
||||
patch.object(MCPClient, "initialize", mock_init),
|
||||
patch.object(MCPClient, "call_tool", mock_call),
|
||||
):
|
||||
result = await block._call_mcp_tool(
|
||||
"https://mcp.example.com", "test_tool", {}
|
||||
)
|
||||
|
||||
assert result == {"temp": 20}
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_mcp_tool_plain_text(self):
|
||||
block = MCPToolBlock()
|
||||
|
||||
mock_result = MCPCallResult(
|
||||
content=[
|
||||
{"type": "text", "text": "Hello, world!"},
|
||||
],
|
||||
is_error=False,
|
||||
)
|
||||
|
||||
async def mock_init(self):
|
||||
return {}
|
||||
|
||||
async def mock_call(self, name, args):
|
||||
return mock_result
|
||||
|
||||
with (
|
||||
patch.object(MCPClient, "initialize", mock_init),
|
||||
patch.object(MCPClient, "call_tool", mock_call),
|
||||
):
|
||||
result = await block._call_mcp_tool(
|
||||
"https://mcp.example.com", "test_tool", {}
|
||||
)
|
||||
|
||||
assert result == "Hello, world!"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_mcp_tool_multiple_content(self):
|
||||
block = MCPToolBlock()
|
||||
|
||||
mock_result = MCPCallResult(
|
||||
content=[
|
||||
{"type": "text", "text": "Part 1"},
|
||||
{"type": "text", "text": '{"part": 2}'},
|
||||
],
|
||||
is_error=False,
|
||||
)
|
||||
|
||||
async def mock_init(self):
|
||||
return {}
|
||||
|
||||
async def mock_call(self, name, args):
|
||||
return mock_result
|
||||
|
||||
with (
|
||||
patch.object(MCPClient, "initialize", mock_init),
|
||||
patch.object(MCPClient, "call_tool", mock_call),
|
||||
):
|
||||
result = await block._call_mcp_tool(
|
||||
"https://mcp.example.com", "test_tool", {}
|
||||
)
|
||||
|
||||
assert result == ["Part 1", {"part": 2}]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_mcp_tool_error_result(self):
|
||||
block = MCPToolBlock()
|
||||
|
||||
mock_result = MCPCallResult(
|
||||
content=[{"type": "text", "text": "Something went wrong"}],
|
||||
is_error=True,
|
||||
)
|
||||
|
||||
async def mock_init(self):
|
||||
return {}
|
||||
|
||||
async def mock_call(self, name, args):
|
||||
return mock_result
|
||||
|
||||
with (
|
||||
patch.object(MCPClient, "initialize", mock_init),
|
||||
patch.object(MCPClient, "call_tool", mock_call),
|
||||
):
|
||||
with pytest.raises(MCPClientError, match="returned an error"):
|
||||
await block._call_mcp_tool("https://mcp.example.com", "test_tool", {})
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_call_mcp_tool_image_content(self):
|
||||
block = MCPToolBlock()
|
||||
|
||||
mock_result = MCPCallResult(
|
||||
content=[
|
||||
{
|
||||
"type": "image",
|
||||
"data": "base64data==",
|
||||
"mimeType": "image/png",
|
||||
}
|
||||
],
|
||||
is_error=False,
|
||||
)
|
||||
|
||||
async def mock_init(self):
|
||||
return {}
|
||||
|
||||
async def mock_call(self, name, args):
|
||||
return mock_result
|
||||
|
||||
with (
|
||||
patch.object(MCPClient, "initialize", mock_init),
|
||||
patch.object(MCPClient, "call_tool", mock_call),
|
||||
):
|
||||
result = await block._call_mcp_tool(
|
||||
"https://mcp.example.com", "test_tool", {}
|
||||
)
|
||||
|
||||
assert result == {
|
||||
"type": "image",
|
||||
"data": "base64data==",
|
||||
"mimeType": "image/png",
|
||||
}
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_with_credentials(self):
|
||||
"""Verify the block uses OAuth2Credentials and passes auth token."""
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="https://mcp.example.com/mcp",
|
||||
selected_tool="test_tool",
|
||||
)
|
||||
|
||||
captured_tokens: list[str | None] = []
|
||||
|
||||
async def mock_call(server_url, tool_name, arguments, auth_token=None):
|
||||
captured_tokens.append(auth_token)
|
||||
return "ok"
|
||||
|
||||
block._call_mcp_tool = mock_call # type: ignore
|
||||
|
||||
test_creds = OAuth2Credentials(
|
||||
id="cred-123",
|
||||
provider="mcp",
|
||||
access_token=SecretStr("resolved-token"),
|
||||
refresh_token=SecretStr(""),
|
||||
scopes=[],
|
||||
title="Test MCP credential",
|
||||
)
|
||||
|
||||
async for _ in block.run(
|
||||
input_data, user_id=MOCK_USER_ID, credentials=test_creds
|
||||
):
|
||||
pass
|
||||
|
||||
assert captured_tokens == ["resolved-token"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_without_credentials(self):
|
||||
"""Verify the block works without credentials (public server)."""
|
||||
block = MCPToolBlock()
|
||||
input_data = MCPToolBlock.Input(
|
||||
server_url="https://mcp.example.com/mcp",
|
||||
selected_tool="test_tool",
|
||||
)
|
||||
|
||||
captured_tokens: list[str | None] = []
|
||||
|
||||
async def mock_call(server_url, tool_name, arguments, auth_token=None):
|
||||
captured_tokens.append(auth_token)
|
||||
return "ok"
|
||||
|
||||
block._call_mcp_tool = mock_call # type: ignore
|
||||
|
||||
outputs = []
|
||||
async for name, data in block.run(input_data, user_id=MOCK_USER_ID):
|
||||
outputs.append((name, data))
|
||||
|
||||
assert captured_tokens == [None]
|
||||
assert outputs == [("result", "ok")]
|
||||
242
autogpt_platform/backend/backend/blocks/mcp/test_oauth.py
Normal file
242
autogpt_platform/backend/backend/blocks/mcp/test_oauth.py
Normal file
@@ -0,0 +1,242 @@
|
||||
"""
|
||||
Tests for MCP OAuth handler.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.blocks.mcp.client import MCPClient
|
||||
from backend.blocks.mcp.oauth import MCPOAuthHandler
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
|
||||
def _mock_response(json_data: dict, status: int = 200) -> MagicMock:
|
||||
"""Create a mock Response with synchronous json() (matching Requests.Response)."""
|
||||
resp = MagicMock()
|
||||
resp.status = status
|
||||
resp.ok = 200 <= status < 300
|
||||
resp.json.return_value = json_data
|
||||
return resp
|
||||
|
||||
|
||||
class TestMCPOAuthHandler:
|
||||
"""Tests for the MCPOAuthHandler."""
|
||||
|
||||
def _make_handler(self, **overrides) -> MCPOAuthHandler:
|
||||
defaults = {
|
||||
"client_id": "test-client-id",
|
||||
"client_secret": "test-client-secret",
|
||||
"redirect_uri": "https://app.example.com/callback",
|
||||
"authorize_url": "https://auth.example.com/authorize",
|
||||
"token_url": "https://auth.example.com/token",
|
||||
}
|
||||
defaults.update(overrides)
|
||||
return MCPOAuthHandler(**defaults)
|
||||
|
||||
def test_get_login_url_basic(self):
|
||||
handler = self._make_handler()
|
||||
url = handler.get_login_url(
|
||||
scopes=["read", "write"],
|
||||
state="random-state-token",
|
||||
code_challenge="S256-challenge-value",
|
||||
)
|
||||
|
||||
assert "https://auth.example.com/authorize?" in url
|
||||
assert "response_type=code" in url
|
||||
assert "client_id=test-client-id" in url
|
||||
assert "state=random-state-token" in url
|
||||
assert "code_challenge=S256-challenge-value" in url
|
||||
assert "code_challenge_method=S256" in url
|
||||
assert "scope=read+write" in url
|
||||
|
||||
def test_get_login_url_with_resource(self):
|
||||
handler = self._make_handler(resource_url="https://mcp.example.com/mcp")
|
||||
url = handler.get_login_url(
|
||||
scopes=[], state="state", code_challenge="challenge"
|
||||
)
|
||||
|
||||
assert "resource=https" in url
|
||||
|
||||
def test_get_login_url_without_pkce(self):
|
||||
handler = self._make_handler()
|
||||
url = handler.get_login_url(scopes=["read"], state="state", code_challenge=None)
|
||||
|
||||
assert "code_challenge" not in url
|
||||
assert "code_challenge_method" not in url
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_exchange_code_for_tokens(self):
|
||||
handler = self._make_handler()
|
||||
|
||||
resp = _mock_response(
|
||||
{
|
||||
"access_token": "new-access-token",
|
||||
"refresh_token": "new-refresh-token",
|
||||
"expires_in": 3600,
|
||||
"token_type": "Bearer",
|
||||
}
|
||||
)
|
||||
|
||||
with patch("backend.blocks.mcp.oauth.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.post = AsyncMock(return_value=resp)
|
||||
|
||||
creds = await handler.exchange_code_for_tokens(
|
||||
code="auth-code",
|
||||
scopes=["read"],
|
||||
code_verifier="pkce-verifier",
|
||||
)
|
||||
|
||||
assert isinstance(creds, OAuth2Credentials)
|
||||
assert creds.access_token.get_secret_value() == "new-access-token"
|
||||
assert creds.refresh_token is not None
|
||||
assert creds.refresh_token.get_secret_value() == "new-refresh-token"
|
||||
assert creds.scopes == ["read"]
|
||||
assert creds.access_token_expires_at is not None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_refresh_tokens(self):
|
||||
handler = self._make_handler()
|
||||
|
||||
existing_creds = OAuth2Credentials(
|
||||
id="existing-id",
|
||||
provider="mcp",
|
||||
access_token=SecretStr("old-token"),
|
||||
refresh_token=SecretStr("old-refresh"),
|
||||
scopes=["read"],
|
||||
title="test",
|
||||
)
|
||||
|
||||
resp = _mock_response(
|
||||
{
|
||||
"access_token": "refreshed-token",
|
||||
"refresh_token": "new-refresh",
|
||||
"expires_in": 3600,
|
||||
}
|
||||
)
|
||||
|
||||
with patch("backend.blocks.mcp.oauth.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.post = AsyncMock(return_value=resp)
|
||||
|
||||
refreshed = await handler._refresh_tokens(existing_creds)
|
||||
|
||||
assert refreshed.id == "existing-id"
|
||||
assert refreshed.access_token.get_secret_value() == "refreshed-token"
|
||||
assert refreshed.refresh_token is not None
|
||||
assert refreshed.refresh_token.get_secret_value() == "new-refresh"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_refresh_tokens_no_refresh_token(self):
|
||||
handler = self._make_handler()
|
||||
|
||||
creds = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
access_token=SecretStr("token"),
|
||||
scopes=["read"],
|
||||
title="test",
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="No refresh token"):
|
||||
await handler._refresh_tokens(creds)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_revoke_tokens_no_url(self):
|
||||
handler = self._make_handler(revoke_url=None)
|
||||
|
||||
creds = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
access_token=SecretStr("token"),
|
||||
scopes=[],
|
||||
title="test",
|
||||
)
|
||||
|
||||
result = await handler.revoke_tokens(creds)
|
||||
assert result is False
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_revoke_tokens_with_url(self):
|
||||
handler = self._make_handler(revoke_url="https://auth.example.com/revoke")
|
||||
|
||||
creds = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
access_token=SecretStr("token"),
|
||||
scopes=[],
|
||||
title="test",
|
||||
)
|
||||
|
||||
resp = _mock_response({}, status=200)
|
||||
|
||||
with patch("backend.blocks.mcp.oauth.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.post = AsyncMock(return_value=resp)
|
||||
|
||||
result = await handler.revoke_tokens(creds)
|
||||
|
||||
assert result is True
|
||||
|
||||
|
||||
class TestMCPClientDiscovery:
|
||||
"""Tests for MCPClient OAuth metadata discovery."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_auth_found(self):
|
||||
client = MCPClient("https://mcp.example.com/mcp")
|
||||
|
||||
metadata = {
|
||||
"authorization_servers": ["https://auth.example.com"],
|
||||
"resource": "https://mcp.example.com/mcp",
|
||||
}
|
||||
|
||||
resp = _mock_response(metadata, status=200)
|
||||
|
||||
with patch("backend.blocks.mcp.client.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.get = AsyncMock(return_value=resp)
|
||||
|
||||
result = await client.discover_auth()
|
||||
|
||||
assert result is not None
|
||||
assert result["authorization_servers"] == ["https://auth.example.com"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_auth_not_found(self):
|
||||
client = MCPClient("https://mcp.example.com/mcp")
|
||||
|
||||
resp = _mock_response({}, status=404)
|
||||
|
||||
with patch("backend.blocks.mcp.client.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.get = AsyncMock(return_value=resp)
|
||||
|
||||
result = await client.discover_auth()
|
||||
|
||||
assert result is None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_auth_server_metadata(self):
|
||||
client = MCPClient("https://mcp.example.com/mcp")
|
||||
|
||||
server_metadata = {
|
||||
"issuer": "https://auth.example.com",
|
||||
"authorization_endpoint": "https://auth.example.com/authorize",
|
||||
"token_endpoint": "https://auth.example.com/token",
|
||||
"registration_endpoint": "https://auth.example.com/register",
|
||||
"code_challenge_methods_supported": ["S256"],
|
||||
}
|
||||
|
||||
resp = _mock_response(server_metadata, status=200)
|
||||
|
||||
with patch("backend.blocks.mcp.client.Requests") as MockRequests:
|
||||
instance = MockRequests.return_value
|
||||
instance.get = AsyncMock(return_value=resp)
|
||||
|
||||
result = await client.discover_auth_server_metadata(
|
||||
"https://auth.example.com"
|
||||
)
|
||||
|
||||
assert result is not None
|
||||
assert result["authorization_endpoint"] == "https://auth.example.com/authorize"
|
||||
assert result["token_endpoint"] == "https://auth.example.com/token"
|
||||
162
autogpt_platform/backend/backend/blocks/mcp/test_server.py
Normal file
162
autogpt_platform/backend/backend/blocks/mcp/test_server.py
Normal file
@@ -0,0 +1,162 @@
|
||||
"""
|
||||
Minimal MCP server for integration testing.
|
||||
|
||||
Implements the MCP Streamable HTTP transport (JSON-RPC 2.0 over HTTP POST)
|
||||
with a few sample tools. Runs on localhost with a random available port.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
|
||||
from aiohttp import web
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Sample tools this test server exposes
|
||||
TEST_TOOLS = [
|
||||
{
|
||||
"name": "get_weather",
|
||||
"description": "Get current weather for a city",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "City name",
|
||||
},
|
||||
},
|
||||
"required": ["city"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "add_numbers",
|
||||
"description": "Add two numbers together",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {"type": "number", "description": "First number"},
|
||||
"b": {"type": "number", "description": "Second number"},
|
||||
},
|
||||
"required": ["a", "b"],
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "echo",
|
||||
"description": "Echo back the input message",
|
||||
"inputSchema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"message": {"type": "string", "description": "Message to echo"},
|
||||
},
|
||||
"required": ["message"],
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def _handle_initialize(params: dict) -> dict:
|
||||
return {
|
||||
"protocolVersion": "2025-03-26",
|
||||
"capabilities": {"tools": {"listChanged": False}},
|
||||
"serverInfo": {"name": "test-mcp-server", "version": "1.0.0"},
|
||||
}
|
||||
|
||||
|
||||
def _handle_tools_list(params: dict) -> dict:
|
||||
return {"tools": TEST_TOOLS}
|
||||
|
||||
|
||||
def _handle_tools_call(params: dict) -> dict:
|
||||
tool_name = params.get("name", "")
|
||||
arguments = params.get("arguments", {})
|
||||
|
||||
if tool_name == "get_weather":
|
||||
city = arguments.get("city", "Unknown")
|
||||
return {
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": json.dumps(
|
||||
{"city": city, "temperature": 22, "condition": "sunny"}
|
||||
),
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
elif tool_name == "add_numbers":
|
||||
a = arguments.get("a", 0)
|
||||
b = arguments.get("b", 0)
|
||||
return {
|
||||
"content": [{"type": "text", "text": json.dumps({"result": a + b})}],
|
||||
}
|
||||
|
||||
elif tool_name == "echo":
|
||||
message = arguments.get("message", "")
|
||||
return {
|
||||
"content": [{"type": "text", "text": message}],
|
||||
}
|
||||
|
||||
else:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"Unknown tool: {tool_name}"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
|
||||
HANDLERS = {
|
||||
"initialize": _handle_initialize,
|
||||
"tools/list": _handle_tools_list,
|
||||
"tools/call": _handle_tools_call,
|
||||
}
|
||||
|
||||
|
||||
async def handle_mcp_request(request: web.Request) -> web.Response:
|
||||
"""Handle incoming MCP JSON-RPC 2.0 requests."""
|
||||
# Check auth if configured
|
||||
expected_token = request.app.get("auth_token")
|
||||
if expected_token:
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if auth_header != f"Bearer {expected_token}":
|
||||
return web.json_response(
|
||||
{
|
||||
"jsonrpc": "2.0",
|
||||
"error": {"code": -32001, "message": "Unauthorized"},
|
||||
"id": None,
|
||||
},
|
||||
status=401,
|
||||
)
|
||||
|
||||
body = await request.json()
|
||||
|
||||
# Handle notifications (no id field) — just acknowledge
|
||||
if "id" not in body:
|
||||
return web.Response(status=202)
|
||||
|
||||
method = body.get("method", "")
|
||||
params = body.get("params", {})
|
||||
request_id = body.get("id")
|
||||
|
||||
handler = HANDLERS.get(method)
|
||||
if not handler:
|
||||
return web.json_response(
|
||||
{
|
||||
"jsonrpc": "2.0",
|
||||
"error": {
|
||||
"code": -32601,
|
||||
"message": f"Method not found: {method}",
|
||||
},
|
||||
"id": request_id,
|
||||
}
|
||||
)
|
||||
|
||||
result = handler(params)
|
||||
return web.json_response({"jsonrpc": "2.0", "result": result, "id": request_id})
|
||||
|
||||
|
||||
def create_test_mcp_app(auth_token: str | None = None) -> web.Application:
|
||||
"""Create an aiohttp app that acts as an MCP server."""
|
||||
app = web.Application()
|
||||
app.router.add_post("/mcp", handle_mcp_request)
|
||||
if auth_token:
|
||||
app["auth_token"] = auth_token
|
||||
return app
|
||||
@@ -226,10 +226,9 @@ class SmartDecisionMakerBlock(Block):
|
||||
)
|
||||
model: llm.LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default_factory=llm.LlmModel.default,
|
||||
default=llm.DEFAULT_LLM_MODEL,
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
json_schema_extra=llm.llm_model_schema_extra(),
|
||||
)
|
||||
credentials: llm.AICredentials = llm.AICredentialsField()
|
||||
multiple_tool_calls: bool = SchemaField(
|
||||
|
||||
@@ -10,13 +10,13 @@ import stagehand.main
|
||||
from stagehand import Stagehand
|
||||
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AICredentials,
|
||||
AICredentialsField,
|
||||
LlmModel,
|
||||
ModelMetadata,
|
||||
)
|
||||
from backend.blocks.stagehand._config import stagehand as stagehand_provider
|
||||
from backend.data import llm_registry
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
Returns the provider name for the model in the required format for Stagehand:
|
||||
provider/model_name
|
||||
"""
|
||||
model_metadata = self.metadata
|
||||
model_metadata = MODEL_METADATA[LlmModel(self.value)]
|
||||
model_name = self.value
|
||||
|
||||
if len(model_name.split("/")) == 1 and not self.value.startswith(
|
||||
@@ -102,28 +102,24 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
), "Logic failed and open_router provider attempted to be prepended to model name! in stagehand/_config.py"
|
||||
model_name = f"{model_metadata.provider}/{model_name}"
|
||||
|
||||
logger.debug(f"Model name: {model_name}")
|
||||
logger.error(f"Model name: {model_name}")
|
||||
return model_name
|
||||
|
||||
@property
|
||||
def provider(self) -> str:
|
||||
return self.metadata.provider
|
||||
return MODEL_METADATA[LlmModel(self.value)].provider
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
metadata = llm_registry.get_llm_model_metadata(self.value)
|
||||
if metadata:
|
||||
return metadata
|
||||
# Fallback to LlmModel enum if registry lookup fails
|
||||
return LlmModel(self.value).metadata
|
||||
return MODEL_METADATA[LlmModel(self.value)]
|
||||
|
||||
@property
|
||||
def context_window(self) -> int:
|
||||
return self.metadata.context_window
|
||||
return MODEL_METADATA[LlmModel(self.value)].context_window
|
||||
|
||||
@property
|
||||
def max_output_tokens(self) -> int | None:
|
||||
return self.metadata.max_output_tokens
|
||||
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
|
||||
|
||||
|
||||
class StagehandObserveBlock(Block):
|
||||
|
||||
@@ -19,30 +19,6 @@ CompletedBlockOutput = dict[str, list[Any]] # Completed stream, collected as a
|
||||
|
||||
|
||||
async def initialize_blocks() -> None:
|
||||
# Refresh LLM registry before initializing blocks so blocks can use registry data
|
||||
# This ensures the registry cache is populated even in executor context
|
||||
try:
|
||||
from backend.data import llm_registry
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
|
||||
# Only refresh if we have DB access (check if Prisma is connected)
|
||||
from backend.data.db import is_connected
|
||||
|
||||
if is_connected():
|
||||
await llm_registry.refresh_llm_registry()
|
||||
await refresh_llm_costs()
|
||||
logger.info("LLM registry refreshed during block initialization")
|
||||
else:
|
||||
logger.warning(
|
||||
"Prisma not connected, skipping LLM registry refresh during block initialization"
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM registry during block initialization: %s", exc
|
||||
)
|
||||
|
||||
# First, sync all provider costs to blocks
|
||||
# Imported here to avoid circular import
|
||||
from backend.blocks import get_blocks
|
||||
from backend.sdk.cost_integration import sync_all_provider_costs
|
||||
from backend.util.retry import func_retry
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
import logging
|
||||
from typing import Type
|
||||
|
||||
import prisma.models
|
||||
|
||||
from backend.blocks._base import Block, BlockCost, BlockCostType
|
||||
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
|
||||
from backend.blocks.ai_image_generator_block import AIImageGeneratorBlock, ImageGenModel
|
||||
@@ -27,11 +24,13 @@ from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
|
||||
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIListGeneratorBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
||||
@@ -39,7 +38,6 @@ from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||
from backend.blocks.video.narration import VideoNarrationBlock
|
||||
from backend.data import llm_registry
|
||||
from backend.integrations.credentials_store import (
|
||||
aiml_api_credentials,
|
||||
anthropic_credentials,
|
||||
@@ -59,116 +57,210 @@ from backend.integrations.credentials_store import (
|
||||
v0_credentials,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
|
||||
PROVIDER_CREDENTIALS = {
|
||||
"openai": openai_credentials,
|
||||
"anthropic": anthropic_credentials,
|
||||
"groq": groq_credentials,
|
||||
"open_router": open_router_credentials,
|
||||
"llama_api": llama_api_credentials,
|
||||
"aiml_api": aiml_api_credentials,
|
||||
"v0": v0_credentials,
|
||||
MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.O3: 4,
|
||||
LlmModel.O3_MINI: 2,
|
||||
LlmModel.O1: 16,
|
||||
LlmModel.O1_MINI: 4,
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: 6,
|
||||
LlmModel.GPT5_1: 5,
|
||||
LlmModel.GPT5: 2,
|
||||
LlmModel.GPT5_MINI: 1,
|
||||
LlmModel.GPT5_NANO: 1,
|
||||
LlmModel.GPT5_CHAT: 5,
|
||||
LlmModel.GPT41: 2,
|
||||
LlmModel.GPT41_MINI: 1,
|
||||
LlmModel.GPT4O_MINI: 1,
|
||||
LlmModel.GPT4O: 3,
|
||||
LlmModel.GPT4_TURBO: 10,
|
||||
LlmModel.GPT3_5_TURBO: 1,
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_6_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
|
||||
LlmModel.LLAMA3_3_70B: 1,
|
||||
LlmModel.LLAMA3_1_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_3: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_2: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_405B: 1,
|
||||
LlmModel.OLLAMA_DOLPHIN: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_120B: 1,
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: 1,
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
|
||||
LlmModel.META_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.META_LLAMA_4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
|
||||
LlmModel.GROK_4: 9,
|
||||
LlmModel.GROK_4_FAST: 1,
|
||||
LlmModel.GROK_4_1_FAST: 1,
|
||||
LlmModel.GROK_CODE_FAST_1: 1,
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
LlmModel.V0_1_0_MD: 1,
|
||||
}
|
||||
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
# All LLM costs now come from the database via llm_registry
|
||||
|
||||
LLM_COST: list[BlockCost] = []
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_COST:
|
||||
raise ValueError(f"Missing MODEL_COST for model: {model}")
|
||||
|
||||
|
||||
async def _build_llm_costs_from_registry() -> list[BlockCost]:
|
||||
"""
|
||||
Build BlockCost list from all models in the LLM registry.
|
||||
|
||||
This function checks for active model migrations with customCreditCost overrides.
|
||||
When a model has been migrated with a custom price, that price is used instead
|
||||
of the target model's default cost.
|
||||
"""
|
||||
# Query active migrations with custom pricing overrides.
|
||||
# Note: LlmModelMigration is system-level data (no userId field) and this function
|
||||
# is only called during app startup and admin operations, so no user ID filter needed.
|
||||
migration_overrides: dict[str, int] = {}
|
||||
try:
|
||||
active_migrations = await prisma.models.LlmModelMigration.prisma().find_many(
|
||||
where={
|
||||
"isReverted": False,
|
||||
"customCreditCost": {"not": None},
|
||||
}
|
||||
)
|
||||
# Key by targetModelSlug since that's the model nodes are now using
|
||||
# after migration. The custom cost applies to the target model.
|
||||
migration_overrides = {
|
||||
migration.targetModelSlug: migration.customCreditCost
|
||||
for migration in active_migrations
|
||||
if migration.customCreditCost is not None
|
||||
}
|
||||
if migration_overrides:
|
||||
logger.info(
|
||||
"Found %d active model migrations with custom pricing overrides",
|
||||
len(migration_overrides),
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to query model migration overrides: %s. Proceeding with default costs.",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
costs: list[BlockCost] = []
|
||||
for model in llm_registry.iter_dynamic_models():
|
||||
for cost in model.costs:
|
||||
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
|
||||
if not credentials:
|
||||
logger.warning(
|
||||
"Skipping cost entry for %s due to unknown credentials provider %s",
|
||||
model.slug,
|
||||
cost.credential_provider,
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if this model has a custom cost override from migration
|
||||
cost_amount = migration_overrides.get(model.slug, cost.credit_cost)
|
||||
|
||||
if model.slug in migration_overrides:
|
||||
logger.debug(
|
||||
"Applying custom cost override for model %s: %d credits (default: %d)",
|
||||
model.slug,
|
||||
cost_amount,
|
||||
cost.credit_cost,
|
||||
)
|
||||
|
||||
cost_filter = {
|
||||
"model": model.slug,
|
||||
LLM_COST = (
|
||||
# Anthropic Models
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": credentials.id,
|
||||
"provider": credentials.provider,
|
||||
"type": credentials.type,
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
},
|
||||
}
|
||||
costs.append(
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter=cost_filter,
|
||||
cost_amount=cost_amount,
|
||||
)
|
||||
)
|
||||
return costs
|
||||
|
||||
|
||||
async def refresh_llm_costs() -> None:
|
||||
"""
|
||||
Refresh LLM costs from the registry. All costs now come from the database.
|
||||
|
||||
This function also checks for active model migrations with custom pricing overrides
|
||||
and applies them to ensure accurate billing.
|
||||
"""
|
||||
LLM_COST.clear()
|
||||
LLM_COST.extend(await _build_llm_costs_from_registry())
|
||||
|
||||
|
||||
# Initial load will happen after registry is refreshed at startup
|
||||
# Don't call refresh_llm_costs() here - it will be called after registry refresh
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "anthropic"
|
||||
]
|
||||
# OpenAI Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "openai"
|
||||
]
|
||||
# Groq Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "groq"
|
||||
]
|
||||
# Open Router Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": open_router_credentials.id,
|
||||
"provider": open_router_credentials.provider,
|
||||
"type": open_router_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "open_router"
|
||||
]
|
||||
# Llama API Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": llama_api_credentials.id,
|
||||
"provider": llama_api_credentials.provider,
|
||||
"type": llama_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "llama_api"
|
||||
]
|
||||
# v0 by Vercel Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": v0_credentials.id,
|
||||
"provider": v0_credentials.provider,
|
||||
"type": v0_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "v0"
|
||||
]
|
||||
# AI/ML Api Models
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": aiml_api_credentials.id,
|
||||
"provider": aiml_api_credentials.provider,
|
||||
"type": aiml_api_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "aiml_api"
|
||||
]
|
||||
)
|
||||
|
||||
# =============== This is the exhaustive list of cost for each Block =============== #
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ from backend.util import type as type_utils
|
||||
from backend.util.exceptions import GraphNotAccessibleError, GraphNotInLibraryError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.request import parse_url
|
||||
|
||||
from .block import BlockInput
|
||||
from .db import BaseDbModel
|
||||
@@ -449,6 +450,9 @@ class GraphModel(Graph, GraphMeta):
|
||||
continue
|
||||
if ProviderName.HTTP in field.provider:
|
||||
continue
|
||||
# MCP credentials are intentionally split by server URL
|
||||
if ProviderName.MCP in field.provider:
|
||||
continue
|
||||
|
||||
# If this happens, that means a block implementation probably needs
|
||||
# to be updated.
|
||||
@@ -505,6 +509,18 @@ class GraphModel(Graph, GraphMeta):
|
||||
"required": ["id", "provider", "type"],
|
||||
}
|
||||
|
||||
# Add a descriptive display title when URL-based discriminator values
|
||||
# are present (e.g. "mcp.sentry.dev" instead of just "Mcp")
|
||||
if (
|
||||
field_info.discriminator
|
||||
and not field_info.discriminator_mapping
|
||||
and field_info.discriminator_values
|
||||
):
|
||||
hostnames = sorted(
|
||||
parse_url(str(v)).netloc for v in field_info.discriminator_values
|
||||
)
|
||||
field_schema["display_name"] = ", ".join(hostnames)
|
||||
|
||||
# Add other (optional) field info items
|
||||
field_schema.update(
|
||||
field_info.model_dump(
|
||||
@@ -549,8 +565,17 @@ class GraphModel(Graph, GraphMeta):
|
||||
|
||||
for graph in [self] + self.sub_graphs:
|
||||
for node in graph.nodes:
|
||||
# Track if this node requires credentials (credentials_optional=False means required)
|
||||
node_required_map[node.id] = not node.credentials_optional
|
||||
# A node's credentials are optional if either:
|
||||
# 1. The node metadata says so (credentials_optional=True), or
|
||||
# 2. All credential fields on the block have defaults (not required by schema)
|
||||
block_required = node.block.input_schema.get_required_fields()
|
||||
creds_required_by_schema = any(
|
||||
fname in block_required
|
||||
for fname in node.block.input_schema.get_credentials_fields()
|
||||
)
|
||||
node_required_map[node.id] = (
|
||||
not node.credentials_optional and creds_required_by_schema
|
||||
)
|
||||
|
||||
for (
|
||||
field_name,
|
||||
@@ -776,6 +801,19 @@ class GraphModel(Graph, GraphMeta):
|
||||
"'credentials' and `*_credentials` are reserved"
|
||||
)
|
||||
|
||||
# Check custom block-level validation (e.g., MCP dynamic tool arguments).
|
||||
# Blocks can override get_missing_input to report additional missing fields
|
||||
# beyond the standard top-level required fields.
|
||||
if for_run:
|
||||
credential_fields = InputSchema.get_credentials_fields()
|
||||
custom_missing = InputSchema.get_missing_input(node.input_default)
|
||||
for field_name in custom_missing:
|
||||
if (
|
||||
field_name not in provided_inputs
|
||||
and field_name not in credential_fields
|
||||
):
|
||||
node_errors[node.id][field_name] = "This field is required"
|
||||
|
||||
# Get input schema properties and check dependencies
|
||||
input_fields = InputSchema.model_fields
|
||||
|
||||
@@ -829,9 +867,67 @@ class GraphModel(Graph, GraphMeta):
|
||||
|
||||
return node_errors
|
||||
|
||||
@staticmethod
|
||||
def prune_invalid_links(graph: BaseGraph) -> int:
|
||||
"""
|
||||
Remove invalid/orphan links from the graph.
|
||||
|
||||
This removes links that:
|
||||
- Reference non-existent source or sink nodes
|
||||
- Reference invalid block IDs
|
||||
|
||||
Note: Pin name validation is handled separately in _validate_graph_structure.
|
||||
|
||||
Returns the number of links pruned.
|
||||
"""
|
||||
node_map = {v.id: v for v in graph.nodes}
|
||||
original_count = len(graph.links)
|
||||
valid_links = []
|
||||
|
||||
for link in graph.links:
|
||||
source_node = node_map.get(link.source_id)
|
||||
sink_node = node_map.get(link.sink_id)
|
||||
|
||||
# Skip if either node doesn't exist
|
||||
if not source_node or not sink_node:
|
||||
logger.warning(
|
||||
f"Pruning orphan link: source={link.source_id}, sink={link.sink_id} "
|
||||
f"- node(s) not found"
|
||||
)
|
||||
continue
|
||||
|
||||
# Skip if source block doesn't exist
|
||||
source_block = get_block(source_node.block_id)
|
||||
if not source_block:
|
||||
logger.warning(
|
||||
f"Pruning link with invalid source block: {source_node.block_id}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Skip if sink block doesn't exist
|
||||
sink_block = get_block(sink_node.block_id)
|
||||
if not sink_block:
|
||||
logger.warning(
|
||||
f"Pruning link with invalid sink block: {sink_node.block_id}"
|
||||
)
|
||||
continue
|
||||
|
||||
valid_links.append(link)
|
||||
|
||||
graph.links = valid_links
|
||||
pruned_count = original_count - len(valid_links)
|
||||
|
||||
if pruned_count > 0:
|
||||
logger.info(f"Pruned {pruned_count} invalid link(s) from graph {graph.id}")
|
||||
|
||||
return pruned_count
|
||||
|
||||
@staticmethod
|
||||
def _validate_graph_structure(graph: BaseGraph):
|
||||
"""Validate graph structure (links, connections, etc.)"""
|
||||
# First, prune invalid links to clean up orphan edges
|
||||
GraphModel.prune_invalid_links(graph)
|
||||
|
||||
node_map = {v.id: v for v in graph.nodes}
|
||||
|
||||
def is_static_output_block(nid: str) -> bool:
|
||||
@@ -1625,10 +1721,8 @@ async def migrate_llm_models(migrate_to: LlmModel):
|
||||
if field.annotation == LlmModel:
|
||||
llm_model_fields[block.id] = field_name
|
||||
|
||||
# Get all model slugs from the registry (dynamic, not hardcoded enum)
|
||||
from backend.data import llm_registry
|
||||
|
||||
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
|
||||
# Convert enum values to a list of strings for the SQL query
|
||||
enum_values = [v.value for v in LlmModel]
|
||||
escaped_enum_values = repr(tuple(enum_values)) # hack but works
|
||||
|
||||
# Update each block
|
||||
|
||||
@@ -462,3 +462,120 @@ def test_node_credentials_optional_with_other_metadata():
|
||||
assert node.credentials_optional is True
|
||||
assert node.metadata["position"] == {"x": 100, "y": 200}
|
||||
assert node.metadata["customized_name"] == "My Custom Node"
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for MCP Credential Deduplication
|
||||
# ============================================================================
|
||||
|
||||
|
||||
def test_mcp_credential_combine_different_servers():
|
||||
"""Two MCP credential fields with different server URLs should produce
|
||||
separate entries when combined (not merged into one)."""
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsType
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
oauth2_types: frozenset[CredentialsType] = frozenset(["oauth2"])
|
||||
|
||||
field_sentry = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
discriminator_values={"https://mcp.sentry.dev/mcp"},
|
||||
)
|
||||
field_linear = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
discriminator_values={"https://mcp.linear.app/mcp"},
|
||||
)
|
||||
|
||||
combined = CredentialsFieldInfo.combine(
|
||||
(field_sentry, ("node-sentry", "credentials")),
|
||||
(field_linear, ("node-linear", "credentials")),
|
||||
)
|
||||
|
||||
# Should produce 2 separate credential entries
|
||||
assert len(combined) == 2, (
|
||||
f"Expected 2 credential entries for 2 MCP blocks with different servers, "
|
||||
f"got {len(combined)}: {list(combined.keys())}"
|
||||
)
|
||||
|
||||
# Each entry should contain the server hostname in its key
|
||||
keys = list(combined.keys())
|
||||
assert any(
|
||||
"mcp.sentry.dev" in k for k in keys
|
||||
), f"Expected 'mcp.sentry.dev' in one key, got {keys}"
|
||||
assert any(
|
||||
"mcp.linear.app" in k for k in keys
|
||||
), f"Expected 'mcp.linear.app' in one key, got {keys}"
|
||||
|
||||
|
||||
def test_mcp_credential_combine_same_server():
|
||||
"""Two MCP credential fields with the same server URL should be combined
|
||||
into one credential entry."""
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsType
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
oauth2_types: frozenset[CredentialsType] = frozenset(["oauth2"])
|
||||
|
||||
field_a = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
discriminator_values={"https://mcp.sentry.dev/mcp"},
|
||||
)
|
||||
field_b = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
discriminator_values={"https://mcp.sentry.dev/mcp"},
|
||||
)
|
||||
|
||||
combined = CredentialsFieldInfo.combine(
|
||||
(field_a, ("node-a", "credentials")),
|
||||
(field_b, ("node-b", "credentials")),
|
||||
)
|
||||
|
||||
# Should produce 1 credential entry (same server URL)
|
||||
assert len(combined) == 1, (
|
||||
f"Expected 1 credential entry for 2 MCP blocks with same server, "
|
||||
f"got {len(combined)}: {list(combined.keys())}"
|
||||
)
|
||||
|
||||
|
||||
def test_mcp_credential_combine_no_discriminator_values():
|
||||
"""MCP credential fields without discriminator_values should be merged
|
||||
into a single entry (backwards compat for blocks without server_url set)."""
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsType
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
oauth2_types: frozenset[CredentialsType] = frozenset(["oauth2"])
|
||||
|
||||
field_a = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
)
|
||||
field_b = CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([ProviderName.MCP]),
|
||||
credentials_types=oauth2_types,
|
||||
credentials_scopes=None,
|
||||
discriminator="server_url",
|
||||
)
|
||||
|
||||
combined = CredentialsFieldInfo.combine(
|
||||
(field_a, ("node-a", "credentials")),
|
||||
(field_b, ("node-b", "credentials")),
|
||||
)
|
||||
|
||||
# Should produce 1 entry (no URL differentiation)
|
||||
assert len(combined) == 1, (
|
||||
f"Expected 1 credential entry for MCP blocks without discriminator_values, "
|
||||
f"got {len(combined)}: {list(combined.keys())}"
|
||||
)
|
||||
|
||||
@@ -1,72 +0,0 @@
|
||||
"""
|
||||
LLM Registry module for managing LLM models, providers, and costs dynamically.
|
||||
|
||||
This module provides a database-driven registry system for LLM models,
|
||||
replacing hardcoded model configurations with a flexible admin-managed system.
|
||||
"""
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
# Re-export for backwards compatibility
|
||||
from backend.data.llm_registry.notifications import (
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
publish_registry_refresh_notification,
|
||||
subscribe_to_registry_refresh,
|
||||
)
|
||||
from backend.data.llm_registry.registry import (
|
||||
RegistryModel,
|
||||
RegistryModelCost,
|
||||
RegistryModelCreator,
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_dynamic_model_slugs,
|
||||
get_fallback_model_for_disabled,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_cost,
|
||||
get_llm_model_metadata,
|
||||
get_llm_model_schema_options,
|
||||
get_model_info,
|
||||
is_model_enabled,
|
||||
iter_dynamic_models,
|
||||
refresh_llm_registry,
|
||||
register_static_costs,
|
||||
register_static_metadata,
|
||||
)
|
||||
from backend.data.llm_registry.schema_utils import (
|
||||
is_llm_model_field,
|
||||
refresh_llm_discriminator_mapping,
|
||||
refresh_llm_model_options,
|
||||
update_schema_with_llm_registry,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Types
|
||||
"ModelMetadata",
|
||||
"RegistryModel",
|
||||
"RegistryModelCost",
|
||||
"RegistryModelCreator",
|
||||
# Registry functions
|
||||
"get_all_model_slugs_for_validation",
|
||||
"get_default_model_slug",
|
||||
"get_dynamic_model_slugs",
|
||||
"get_fallback_model_for_disabled",
|
||||
"get_llm_discriminator_mapping",
|
||||
"get_llm_model_cost",
|
||||
"get_llm_model_metadata",
|
||||
"get_llm_model_schema_options",
|
||||
"get_model_info",
|
||||
"is_model_enabled",
|
||||
"iter_dynamic_models",
|
||||
"refresh_llm_registry",
|
||||
"register_static_costs",
|
||||
"register_static_metadata",
|
||||
# Notifications
|
||||
"REGISTRY_REFRESH_CHANNEL",
|
||||
"publish_registry_refresh_notification",
|
||||
"subscribe_to_registry_refresh",
|
||||
# Schema utilities
|
||||
"is_llm_model_field",
|
||||
"refresh_llm_discriminator_mapping",
|
||||
"refresh_llm_model_options",
|
||||
"update_schema_with_llm_registry",
|
||||
]
|
||||
@@ -1,25 +0,0 @@
|
||||
"""Type definitions for LLM model metadata."""
|
||||
|
||||
from typing import Literal, NamedTuple
|
||||
|
||||
|
||||
class ModelMetadata(NamedTuple):
|
||||
"""Metadata for an LLM model.
|
||||
|
||||
Attributes:
|
||||
provider: The provider identifier (e.g., "openai", "anthropic")
|
||||
context_window: Maximum context window size in tokens
|
||||
max_output_tokens: Maximum output tokens (None if unlimited)
|
||||
display_name: Human-readable name for the model
|
||||
provider_name: Human-readable provider name (e.g., "OpenAI", "Anthropic")
|
||||
creator_name: Name of the organization that created the model
|
||||
price_tier: Relative cost tier (1=cheapest, 2=medium, 3=expensive)
|
||||
"""
|
||||
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
@@ -1,89 +0,0 @@
|
||||
"""
|
||||
Redis pub/sub notifications for LLM registry updates.
|
||||
|
||||
When models are added/updated/removed via the admin UI, this module
|
||||
publishes notifications to Redis that all executor services subscribe to,
|
||||
ensuring they refresh their registry cache in real-time.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.redis_client import connect_async
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Redis channel name for LLM registry refresh notifications
|
||||
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
|
||||
|
||||
|
||||
async def publish_registry_refresh_notification() -> None:
|
||||
"""
|
||||
Publish a notification to Redis that the LLM registry has been updated.
|
||||
All executor services subscribed to this channel will refresh their registry.
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
|
||||
logger.info("Published LLM registry refresh notification to Redis")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to publish LLM registry refresh notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_refresh(
|
||||
on_refresh: Any, # Async callable that takes no args
|
||||
) -> None:
|
||||
"""
|
||||
Subscribe to Redis notifications for LLM registry updates.
|
||||
This runs in a loop and processes messages as they arrive.
|
||||
|
||||
Args:
|
||||
on_refresh: Async callable to execute when a refresh notification is received
|
||||
"""
|
||||
try:
|
||||
redis = await connect_async()
|
||||
pubsub = redis.pubsub()
|
||||
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
|
||||
logger.info(
|
||||
"Subscribed to LLM registry refresh notifications on channel: %s",
|
||||
REGISTRY_REFRESH_CHANNEL,
|
||||
)
|
||||
|
||||
# Process messages in a loop
|
||||
while True:
|
||||
try:
|
||||
message = await pubsub.get_message(
|
||||
ignore_subscribe_messages=True, timeout=1.0
|
||||
)
|
||||
if (
|
||||
message
|
||||
and message["type"] == "message"
|
||||
and message["channel"] == REGISTRY_REFRESH_CHANNEL
|
||||
):
|
||||
logger.info("Received LLM registry refresh notification")
|
||||
try:
|
||||
await on_refresh()
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Error refreshing LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Error processing registry refresh message: %s", exc, exc_info=True
|
||||
)
|
||||
# Continue listening even if one message fails
|
||||
await asyncio.sleep(1)
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to subscribe to LLM registry refresh notifications: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
@@ -1,388 +0,0 @@
|
||||
"""Core LLM registry implementation for managing models dynamically."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Iterable
|
||||
|
||||
import prisma.models
|
||||
|
||||
from backend.data.llm_registry.model import ModelMetadata
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _json_to_dict(value: Any) -> dict[str, Any]:
|
||||
"""Convert Prisma Json type to dict, with fallback to empty dict."""
|
||||
if value is None:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
# Prisma Json type should always be a dict at runtime
|
||||
return dict(value) if value else {}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCost:
|
||||
"""Cost configuration for an LLM model."""
|
||||
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: str | None
|
||||
credential_type: str | None
|
||||
currency: str | None
|
||||
metadata: dict[str, Any]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModelCreator:
|
||||
"""Creator information for an LLM model."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
website_url: str | None
|
||||
logo_url: str | None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RegistryModel:
|
||||
"""Represents a model in the LLM registry."""
|
||||
|
||||
slug: str
|
||||
display_name: str
|
||||
description: str | None
|
||||
metadata: ModelMetadata
|
||||
capabilities: dict[str, Any]
|
||||
extra_metadata: dict[str, Any]
|
||||
provider_display_name: str
|
||||
is_enabled: bool
|
||||
is_recommended: bool = False
|
||||
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
|
||||
creator: RegistryModelCreator | None = None
|
||||
|
||||
|
||||
_static_metadata: dict[str, ModelMetadata] = {}
|
||||
_static_costs: dict[str, int] = {}
|
||||
_dynamic_models: dict[str, RegistryModel] = {}
|
||||
_schema_options: list[dict[str, str]] = []
|
||||
_discriminator_mapping: dict[str, str] = {}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
|
||||
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
|
||||
"""Register static metadata for legacy models (deprecated)."""
|
||||
_static_metadata.update({str(key): value for key, value in metadata.items()})
|
||||
_refresh_cached_schema()
|
||||
|
||||
|
||||
def register_static_costs(costs: dict[Any, int]) -> None:
|
||||
"""Register static costs for legacy models (deprecated)."""
|
||||
_static_costs.update({str(key): value for key, value in costs.items()})
|
||||
|
||||
|
||||
def _build_schema_options() -> list[dict[str, str]]:
|
||||
"""Build schema options for model selection dropdown. Only includes enabled models."""
|
||||
options: list[dict[str, str]] = []
|
||||
# Only include enabled models in the dropdown options
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
options.append(
|
||||
{
|
||||
"label": model.display_name,
|
||||
"value": model.slug,
|
||||
"group": model.metadata.provider,
|
||||
"description": model.description or "",
|
||||
}
|
||||
)
|
||||
|
||||
for slug, metadata in _static_metadata.items():
|
||||
if slug in _dynamic_models:
|
||||
continue
|
||||
options.append(
|
||||
{
|
||||
"label": slug,
|
||||
"value": slug,
|
||||
"group": metadata.provider,
|
||||
"description": "",
|
||||
}
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
async def refresh_llm_registry() -> None:
|
||||
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
|
||||
async with _lock:
|
||||
try:
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
include={
|
||||
"Provider": True,
|
||||
"Costs": True,
|
||||
"Creator": True,
|
||||
}
|
||||
)
|
||||
logger.debug("Found %d LLM model records in database", len(records))
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
|
||||
)
|
||||
return
|
||||
|
||||
dynamic: dict[str, RegistryModel] = {}
|
||||
for record in records:
|
||||
provider_name = (
|
||||
record.Provider.name if record.Provider else record.providerId
|
||||
)
|
||||
provider_display_name = (
|
||||
record.Provider.displayName if record.Provider else record.providerId
|
||||
)
|
||||
# Creator name: prefer Creator.name, fallback to provider display name
|
||||
creator_name = (
|
||||
record.Creator.name if record.Creator else provider_display_name
|
||||
)
|
||||
# Price tier: default to 1 (cheapest) if not set
|
||||
price_tier = getattr(record, "priceTier", 1) or 1
|
||||
# Clamp to valid range 1-3
|
||||
price_tier = max(1, min(3, price_tier))
|
||||
|
||||
metadata = ModelMetadata(
|
||||
provider=provider_name,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
display_name=record.displayName,
|
||||
provider_name=provider_display_name,
|
||||
creator_name=creator_name,
|
||||
price_tier=price_tier, # type: ignore[arg-type]
|
||||
)
|
||||
costs = tuple(
|
||||
RegistryModelCost(
|
||||
credit_cost=cost.creditCost,
|
||||
credential_provider=cost.credentialProvider,
|
||||
credential_id=cost.credentialId,
|
||||
credential_type=cost.credentialType,
|
||||
currency=cost.currency,
|
||||
metadata=_json_to_dict(cost.metadata),
|
||||
)
|
||||
for cost in (record.Costs or [])
|
||||
)
|
||||
|
||||
# Map creator if present
|
||||
creator = None
|
||||
if record.Creator:
|
||||
creator = RegistryModelCreator(
|
||||
id=record.Creator.id,
|
||||
name=record.Creator.name,
|
||||
display_name=record.Creator.displayName,
|
||||
description=record.Creator.description,
|
||||
website_url=record.Creator.websiteUrl,
|
||||
logo_url=record.Creator.logoUrl,
|
||||
)
|
||||
|
||||
dynamic[record.slug] = RegistryModel(
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
metadata=metadata,
|
||||
capabilities=_json_to_dict(record.capabilities),
|
||||
extra_metadata=_json_to_dict(record.metadata),
|
||||
provider_display_name=(
|
||||
record.Provider.displayName
|
||||
if record.Provider
|
||||
else record.providerId
|
||||
),
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
costs=costs,
|
||||
creator=creator,
|
||||
)
|
||||
|
||||
# Atomic swap - build new structures then replace references
|
||||
# This ensures readers never see partially updated state
|
||||
global _dynamic_models
|
||||
_dynamic_models = dynamic
|
||||
_refresh_cached_schema()
|
||||
logger.info(
|
||||
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
|
||||
len(dynamic),
|
||||
sum(1 for m in dynamic.values() if m.is_enabled),
|
||||
sum(1 for m in dynamic.values() if not m.is_enabled),
|
||||
)
|
||||
|
||||
|
||||
def _refresh_cached_schema() -> None:
|
||||
"""Refresh cached schema options and discriminator mapping."""
|
||||
global _schema_options, _discriminator_mapping
|
||||
|
||||
# Build new structures
|
||||
new_options = _build_schema_options()
|
||||
new_mapping = {
|
||||
slug: entry.metadata.provider for slug, entry in _dynamic_models.items()
|
||||
}
|
||||
for slug, metadata in _static_metadata.items():
|
||||
new_mapping.setdefault(slug, metadata.provider)
|
||||
|
||||
# Atomic swap - replace references to ensure readers see consistent state
|
||||
_schema_options = new_options
|
||||
_discriminator_mapping = new_mapping
|
||||
|
||||
|
||||
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
|
||||
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].metadata
|
||||
return _static_metadata.get(slug)
|
||||
|
||||
|
||||
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
|
||||
"""Get model cost configuration by slug."""
|
||||
if slug in _dynamic_models:
|
||||
return _dynamic_models[slug].costs
|
||||
cost_value = _static_costs.get(slug)
|
||||
if cost_value is None:
|
||||
return tuple()
|
||||
return (
|
||||
RegistryModelCost(
|
||||
credit_cost=cost_value,
|
||||
credential_provider="static",
|
||||
credential_id=None,
|
||||
credential_type=None,
|
||||
currency=None,
|
||||
metadata={},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def get_llm_model_schema_options() -> list[dict[str, str]]:
|
||||
"""
|
||||
Get schema options for LLM model selection dropdown.
|
||||
|
||||
Returns a copy of cached schema options that are refreshed when the registry is
|
||||
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return list(_schema_options)
|
||||
|
||||
|
||||
def get_llm_discriminator_mapping() -> dict[str, str]:
|
||||
"""
|
||||
Get discriminator mapping for LLM models.
|
||||
|
||||
Returns a copy of cached discriminator mapping that is refreshed when the registry
|
||||
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
|
||||
"""
|
||||
# Return a copy to prevent external mutation
|
||||
return dict(_discriminator_mapping)
|
||||
|
||||
|
||||
def get_dynamic_model_slugs() -> set[str]:
|
||||
"""Get all dynamic model slugs from the registry."""
|
||||
return set(_dynamic_models.keys())
|
||||
|
||||
|
||||
def get_all_model_slugs_for_validation() -> set[str]:
|
||||
"""
|
||||
Get ALL model slugs (both enabled and disabled) for validation purposes.
|
||||
|
||||
This is used for JSON schema enum validation - we need to accept any known
|
||||
model value (even disabled ones) so that existing graphs don't fail validation.
|
||||
The actual fallback/enforcement happens at runtime in llm_call().
|
||||
"""
|
||||
all_slugs = set(_dynamic_models.keys())
|
||||
all_slugs.update(_static_metadata.keys())
|
||||
return all_slugs
|
||||
|
||||
|
||||
def iter_dynamic_models() -> Iterable[RegistryModel]:
|
||||
"""Iterate over all dynamic models in the registry."""
|
||||
return tuple(_dynamic_models.values())
|
||||
|
||||
|
||||
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
|
||||
"""
|
||||
Find a fallback model when the requested model is disabled.
|
||||
|
||||
Looks for an enabled model from the same provider. Prefers models with
|
||||
similar names or capabilities if possible.
|
||||
|
||||
Args:
|
||||
disabled_model_slug: The slug of the disabled model
|
||||
|
||||
Returns:
|
||||
An enabled RegistryModel from the same provider, or None if no fallback found
|
||||
"""
|
||||
disabled_model = _dynamic_models.get(disabled_model_slug)
|
||||
if not disabled_model:
|
||||
return None
|
||||
|
||||
provider = disabled_model.metadata.provider
|
||||
|
||||
# Find all enabled models from the same provider
|
||||
candidates = [
|
||||
model
|
||||
for model in _dynamic_models.values()
|
||||
if model.is_enabled and model.metadata.provider == provider
|
||||
]
|
||||
|
||||
if not candidates:
|
||||
return None
|
||||
|
||||
# Sort by: prefer models with similar context window, then by name
|
||||
candidates.sort(
|
||||
key=lambda m: (
|
||||
abs(m.metadata.context_window - disabled_model.metadata.context_window),
|
||||
m.display_name.lower(),
|
||||
)
|
||||
)
|
||||
|
||||
return candidates[0]
|
||||
|
||||
|
||||
def is_model_enabled(model_slug: str) -> bool:
|
||||
"""Check if a model is enabled in the registry."""
|
||||
model = _dynamic_models.get(model_slug)
|
||||
if not model:
|
||||
# Model not in registry - assume it's a static/legacy model and allow it
|
||||
return True
|
||||
return model.is_enabled
|
||||
|
||||
|
||||
def get_model_info(model_slug: str) -> RegistryModel | None:
|
||||
"""Get model info from the registry."""
|
||||
return _dynamic_models.get(model_slug)
|
||||
|
||||
|
||||
def get_default_model_slug() -> str | None:
|
||||
"""
|
||||
Get the default model slug to use for block defaults.
|
||||
|
||||
Returns the recommended model if set (configured via admin UI),
|
||||
otherwise returns the first enabled model alphabetically.
|
||||
Returns None if no models are available or enabled.
|
||||
"""
|
||||
# Return the recommended model if one is set and enabled
|
||||
for model in _dynamic_models.values():
|
||||
if model.is_recommended and model.is_enabled:
|
||||
return model.slug
|
||||
|
||||
# No recommended model set - find first enabled model alphabetically
|
||||
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
|
||||
if model.is_enabled:
|
||||
logger.warning(
|
||||
"No recommended model set, using '%s' as default",
|
||||
model.slug,
|
||||
)
|
||||
return model.slug
|
||||
|
||||
# No enabled models available
|
||||
if _dynamic_models:
|
||||
logger.error(
|
||||
"No enabled models found in registry (%d models registered but all disabled)",
|
||||
len(_dynamic_models),
|
||||
)
|
||||
else:
|
||||
logger.error("No models registered in LLM registry")
|
||||
|
||||
return None
|
||||
@@ -1,130 +0,0 @@
|
||||
"""
|
||||
Helper utilities for LLM registry integration with block schemas.
|
||||
|
||||
This module handles the dynamic injection of discriminator mappings
|
||||
and model options from the LLM registry into block schemas.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.llm_registry.registry import (
|
||||
get_all_model_slugs_for_validation,
|
||||
get_default_model_slug,
|
||||
get_llm_discriminator_mapping,
|
||||
get_llm_model_schema_options,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
|
||||
"""
|
||||
Check if a field is an LLM model selection field.
|
||||
|
||||
Returns True if the field has 'options' in json_schema_extra
|
||||
(set by llm_model_schema_extra() in blocks/llm.py).
|
||||
"""
|
||||
if not hasattr(field_info, "json_schema_extra"):
|
||||
return False
|
||||
|
||||
extra = field_info.json_schema_extra
|
||||
if isinstance(extra, dict):
|
||||
return "options" in extra
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh LLM model options from the registry.
|
||||
|
||||
Updates 'options' (for frontend dropdown) to show only enabled models,
|
||||
but keeps the 'enum' (for validation) inclusive of ALL known models.
|
||||
|
||||
This is important because:
|
||||
- Options: What users see in the dropdown (enabled models only)
|
||||
- Enum: What values pass validation (all known models, including disabled)
|
||||
|
||||
Existing graphs may have disabled models selected - they should pass validation
|
||||
and the fallback logic in llm_call() will handle using an alternative model.
|
||||
"""
|
||||
fresh_options = get_llm_model_schema_options()
|
||||
if not fresh_options:
|
||||
return
|
||||
|
||||
# Update options array (UI dropdown) - only enabled models
|
||||
if "options" in field_schema:
|
||||
field_schema["options"] = fresh_options
|
||||
|
||||
all_known_slugs = get_all_model_slugs_for_validation()
|
||||
if all_known_slugs and "enum" in field_schema:
|
||||
existing_enum = set(field_schema.get("enum", []))
|
||||
combined_enum = existing_enum | all_known_slugs
|
||||
field_schema["enum"] = sorted(combined_enum)
|
||||
|
||||
# Set the default value from the registry (gpt-4o if available, else first enabled)
|
||||
# This ensures new blocks have a sensible default pre-selected
|
||||
default_slug = get_default_model_slug()
|
||||
if default_slug:
|
||||
field_schema["default"] = default_slug
|
||||
|
||||
|
||||
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
|
||||
"""
|
||||
Refresh discriminator_mapping for fields that use model-based discrimination.
|
||||
|
||||
The discriminator is already set when AICredentialsField() creates the field.
|
||||
We only need to refresh the mapping when models are added/removed.
|
||||
"""
|
||||
if field_schema.get("discriminator") != "model":
|
||||
return
|
||||
|
||||
# Always refresh the mapping to get latest models
|
||||
fresh_mapping = get_llm_discriminator_mapping()
|
||||
if fresh_mapping is not None:
|
||||
field_schema["discriminator_mapping"] = fresh_mapping
|
||||
|
||||
|
||||
def update_schema_with_llm_registry(
|
||||
schema: dict[str, Any], model_class: type | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Update a JSON schema with current LLM registry data.
|
||||
|
||||
Refreshes:
|
||||
1. Model options for LLM model selection fields (dropdown choices)
|
||||
2. Discriminator mappings for credentials fields (model → provider)
|
||||
|
||||
Args:
|
||||
schema: The JSON schema to update (mutated in-place)
|
||||
model_class: The Pydantic model class (optional, for field introspection)
|
||||
"""
|
||||
properties = schema.get("properties", {})
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
if not isinstance(field_schema, dict):
|
||||
continue
|
||||
|
||||
# Refresh model options for LLM model fields
|
||||
if model_class and hasattr(model_class, "model_fields"):
|
||||
field_info = model_class.model_fields.get(field_name)
|
||||
if field_info and is_llm_model_field(field_name, field_info):
|
||||
try:
|
||||
refresh_llm_model_options(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh LLM options for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
|
||||
# Refresh discriminator mapping for fields that use model discrimination
|
||||
try:
|
||||
refresh_llm_discriminator_mapping(field_schema)
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"Failed to refresh discriminator mapping for field %s: %s",
|
||||
field_name,
|
||||
exc,
|
||||
)
|
||||
@@ -29,6 +29,7 @@ from pydantic import (
|
||||
GetCoreSchemaHandler,
|
||||
SecretStr,
|
||||
field_serializer,
|
||||
model_validator,
|
||||
)
|
||||
from pydantic_core import (
|
||||
CoreSchema,
|
||||
@@ -39,7 +40,6 @@ from pydantic_core import (
|
||||
)
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from backend.data.llm_registry import update_schema_with_llm_registry
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.util.request import parse_url
|
||||
@@ -503,6 +503,25 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
provider: CP
|
||||
type: CT
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def _normalize_legacy_provider(cls, data: Any) -> Any:
|
||||
"""Fix ``ProviderName.X`` format from Python 3.13 ``str(Enum)`` bug.
|
||||
|
||||
Python 3.13 changed ``str(StrEnum)`` to return ``"ClassName.MEMBER"``
|
||||
instead of the plain value. Old stored credential references may have
|
||||
``provider: "ProviderName.MCP"`` instead of ``"mcp"``.
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
prov = data.get("provider", "")
|
||||
if isinstance(prov, str) and prov.startswith("ProviderName."):
|
||||
member = prov.removeprefix("ProviderName.")
|
||||
try:
|
||||
data = {**data, "provider": ProviderName[member].value}
|
||||
except KeyError:
|
||||
pass
|
||||
return data
|
||||
|
||||
@classmethod
|
||||
def allowed_providers(cls) -> tuple[ProviderName, ...] | None:
|
||||
return get_args(cls.model_fields["provider"].annotation)
|
||||
@@ -551,9 +570,7 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
||||
else:
|
||||
schema["credentials_provider"] = allowed_providers
|
||||
schema["credentials_types"] = model_class.allowed_cred_types()
|
||||
|
||||
# Ensure LLM discriminators are populated (delegates to shared helper)
|
||||
update_schema_with_llm_registry(schema, model_class)
|
||||
# Do not return anything, just mutate schema in place
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra=_add_json_schema_extra, # type: ignore
|
||||
@@ -609,11 +626,18 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
||||
] = defaultdict(list)
|
||||
|
||||
for field, key in fields:
|
||||
if field.provider == frozenset([ProviderName.HTTP]):
|
||||
# HTTP host-scoped credentials can have different hosts that reqires different credential sets.
|
||||
# Group by host extracted from the URL
|
||||
if (
|
||||
field.discriminator
|
||||
and not field.discriminator_mapping
|
||||
and field.discriminator_values
|
||||
):
|
||||
# URL-based discrimination (e.g. HTTP host-scoped, MCP server URL):
|
||||
# Each unique host gets its own credential entry.
|
||||
provider_prefix = next(iter(field.provider))
|
||||
# Use .value for enum types to get the plain string (e.g. "mcp" not "ProviderName.MCP")
|
||||
prefix_str = getattr(provider_prefix, "value", str(provider_prefix))
|
||||
providers = frozenset(
|
||||
[cast(CP, "http")]
|
||||
[cast(CP, prefix_str)]
|
||||
+ [
|
||||
cast(CP, parse_url(str(value)).netloc)
|
||||
for value in field.discriminator_values
|
||||
@@ -708,20 +732,16 @@ def CredentialsField(
|
||||
This is enforced by the `BlockSchema` base class.
|
||||
"""
|
||||
|
||||
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
|
||||
field_schema_extra: dict[str, Any] = {}
|
||||
|
||||
# Always include discriminator if provided
|
||||
if discriminator is not None:
|
||||
field_schema_extra["discriminator"] = discriminator
|
||||
# Always include discriminator_mapping when discriminator is set (even if empty initially)
|
||||
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
|
||||
|
||||
# Include other optional fields (only if not None)
|
||||
if required_scopes:
|
||||
field_schema_extra["credentials_scopes"] = list(required_scopes)
|
||||
if discriminator_values:
|
||||
field_schema_extra["discriminator_values"] = discriminator_values
|
||||
field_schema_extra = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"credentials_scopes": list(required_scopes) or None,
|
||||
"discriminator": discriminator,
|
||||
"discriminator_mapping": discriminator_mapping,
|
||||
"discriminator_values": discriminator_values,
|
||||
}.items()
|
||||
if v is not None
|
||||
}
|
||||
|
||||
# Merge any json_schema_extra passed in kwargs
|
||||
if "json_schema_extra" in kwargs:
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
"""
|
||||
Helper functions for LLM registry initialization in executor context.
|
||||
|
||||
These functions handle refreshing the LLM registry when the executor starts
|
||||
and subscribing to real-time updates via Redis pub/sub.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from backend.blocks._base import BlockSchema
|
||||
from backend.data import db, llm_registry
|
||||
from backend.data.block import initialize_blocks
|
||||
from backend.data.block_cost_config import refresh_llm_costs
|
||||
from backend.data.llm_registry import subscribe_to_registry_refresh
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def initialize_registry_for_executor() -> None:
|
||||
"""
|
||||
Initialize blocks and refresh LLM registry in the executor context.
|
||||
|
||||
This must run in the executor's event loop to have access to the database.
|
||||
"""
|
||||
try:
|
||||
# Connect to database if not already connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
logger.info("[GraphExecutor] Connected to database for registry refresh")
|
||||
|
||||
# Initialize blocks (internally refreshes LLM registry and costs)
|
||||
await initialize_blocks()
|
||||
logger.info("[GraphExecutor] Blocks initialized")
|
||||
except Exception as exc:
|
||||
logger.warning(
|
||||
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def refresh_registry_on_notification() -> None:
|
||||
"""Refresh LLM registry when notified via Redis pub/sub."""
|
||||
try:
|
||||
# Ensure DB is connected
|
||||
if not db.is_connected():
|
||||
await db.connect()
|
||||
|
||||
# Refresh registry and costs
|
||||
await llm_registry.refresh_llm_registry()
|
||||
await refresh_llm_costs()
|
||||
|
||||
# Clear block schema caches so they regenerate with new model options
|
||||
BlockSchema.clear_all_schema_caches()
|
||||
|
||||
logger.info("[GraphExecutor] LLM registry refreshed from notification")
|
||||
except Exception as exc:
|
||||
logger.error(
|
||||
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
|
||||
exc,
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
|
||||
async def subscribe_to_registry_updates() -> None:
|
||||
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
|
||||
await subscribe_to_registry_refresh(refresh_registry_on_notification)
|
||||
@@ -20,6 +20,7 @@ from backend.blocks import get_block
|
||||
from backend.blocks._base import BlockSchema
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
from backend.blocks.io import AgentOutputBlock
|
||||
from backend.blocks.mcp.block import MCPToolBlock
|
||||
from backend.data import redis_client as redis
|
||||
from backend.data.block import BlockInput, BlockOutput, BlockOutputEntry
|
||||
from backend.data.credit import UsageTransactionMetadata
|
||||
@@ -228,6 +229,18 @@ async def execute_node(
|
||||
_input_data.nodes_input_masks = nodes_input_masks
|
||||
_input_data.user_id = user_id
|
||||
input_data = _input_data.model_dump()
|
||||
elif isinstance(node_block, MCPToolBlock):
|
||||
_mcp_data = MCPToolBlock.Input(**node.input_default)
|
||||
# Dynamic tool fields are flattened to top-level by validate_exec
|
||||
# (via get_input_defaults). Collect them back into tool_arguments.
|
||||
tool_schema = _mcp_data.tool_input_schema
|
||||
tool_props = set(tool_schema.get("properties", {}).keys())
|
||||
merged_args = {**_mcp_data.tool_arguments}
|
||||
for key in tool_props:
|
||||
if key in input_data:
|
||||
merged_args[key] = input_data[key]
|
||||
_mcp_data.tool_arguments = merged_args
|
||||
input_data = _mcp_data.model_dump()
|
||||
data.inputs = input_data
|
||||
|
||||
# Execute the node
|
||||
@@ -264,8 +277,34 @@ async def execute_node(
|
||||
|
||||
# Handle regular credentials fields
|
||||
for field_name, input_type in input_model.get_credentials_fields().items():
|
||||
credentials_meta = input_type(**input_data[field_name])
|
||||
credentials, lock = await creds_manager.acquire(user_id, credentials_meta.id)
|
||||
field_value = input_data.get(field_name)
|
||||
if not field_value or (
|
||||
isinstance(field_value, dict) and not field_value.get("id")
|
||||
):
|
||||
# No credentials configured — nullify so JSON schema validation
|
||||
# doesn't choke on the empty default `{}`.
|
||||
input_data[field_name] = None
|
||||
continue # Block runs without credentials
|
||||
|
||||
credentials_meta = input_type(**field_value)
|
||||
# Write normalized values back so JSON schema validation also passes
|
||||
# (model_validator may have fixed legacy formats like "ProviderName.MCP")
|
||||
input_data[field_name] = credentials_meta.model_dump(mode="json")
|
||||
try:
|
||||
credentials, lock = await creds_manager.acquire(
|
||||
user_id, credentials_meta.id
|
||||
)
|
||||
except ValueError:
|
||||
# Credential was deleted or doesn't exist.
|
||||
# If the field has a default, run without credentials.
|
||||
if input_model.model_fields[field_name].default is not None:
|
||||
log_metadata.warning(
|
||||
f"Credentials #{credentials_meta.id} not found, "
|
||||
"running without (field has default)"
|
||||
)
|
||||
input_data[field_name] = None
|
||||
continue
|
||||
raise
|
||||
creds_locks.append(lock)
|
||||
extra_exec_kwargs[field_name] = credentials
|
||||
|
||||
@@ -708,20 +747,6 @@ class ExecutionProcessor:
|
||||
)
|
||||
self.node_execution_thread.start()
|
||||
self.node_evaluation_thread.start()
|
||||
|
||||
# Initialize LLM registry and subscribe to updates
|
||||
from backend.executor.llm_registry_init import (
|
||||
initialize_registry_for_executor,
|
||||
subscribe_to_registry_updates,
|
||||
)
|
||||
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
initialize_registry_for_executor(), self.node_execution_loop
|
||||
)
|
||||
asyncio.run_coroutine_threadsafe(
|
||||
subscribe_to_registry_updates(), self.node_execution_loop
|
||||
)
|
||||
|
||||
logger.info(f"[GraphExecutor] {self.tid} started")
|
||||
|
||||
@error_logged(swallow=False)
|
||||
|
||||
@@ -260,7 +260,13 @@ async def _validate_node_input_credentials(
|
||||
# Track if any credential field is missing for this node
|
||||
has_missing_credentials = False
|
||||
|
||||
# A credential field is optional if the node metadata says so, or if
|
||||
# the block schema declares a default for the field.
|
||||
required_fields = block.input_schema.get_required_fields()
|
||||
is_creds_optional = node.credentials_optional
|
||||
|
||||
for field_name, credentials_meta_type in credentials_fields.items():
|
||||
field_is_optional = is_creds_optional or field_name not in required_fields
|
||||
try:
|
||||
# Check nodes_input_masks first, then input_default
|
||||
field_value = None
|
||||
@@ -273,7 +279,7 @@ async def _validate_node_input_credentials(
|
||||
elif field_name in node.input_default:
|
||||
# For optional credentials, don't use input_default - treat as missing
|
||||
# This prevents stale credential IDs from failing validation
|
||||
if node.credentials_optional:
|
||||
if field_is_optional:
|
||||
field_value = None
|
||||
else:
|
||||
field_value = node.input_default[field_name]
|
||||
@@ -283,8 +289,8 @@ async def _validate_node_input_credentials(
|
||||
isinstance(field_value, dict) and not field_value.get("id")
|
||||
):
|
||||
has_missing_credentials = True
|
||||
# If node has credentials_optional flag, mark for skipping instead of error
|
||||
if node.credentials_optional:
|
||||
# If credential field is optional, skip instead of error
|
||||
if field_is_optional:
|
||||
continue # Don't add error, will be marked for skip after loop
|
||||
else:
|
||||
credential_errors[node.id][
|
||||
@@ -334,16 +340,16 @@ async def _validate_node_input_credentials(
|
||||
] = "Invalid credentials: type/provider mismatch"
|
||||
continue
|
||||
|
||||
# If node has optional credentials and any are missing, mark for skipping
|
||||
# But only if there are no other errors for this node
|
||||
# If node has optional credentials and any are missing, allow running without.
|
||||
# The executor will pass credentials=None to the block's run().
|
||||
if (
|
||||
has_missing_credentials
|
||||
and node.credentials_optional
|
||||
and is_creds_optional
|
||||
and node.id not in credential_errors
|
||||
):
|
||||
nodes_to_skip.add(node.id)
|
||||
logger.info(
|
||||
f"Node #{node.id} will be skipped: optional credentials not configured"
|
||||
f"Node #{node.id}: optional credentials not configured, "
|
||||
"running without"
|
||||
)
|
||||
|
||||
return credential_errors, nodes_to_skip
|
||||
|
||||
@@ -495,6 +495,7 @@ async def test_validate_node_input_credentials_returns_nodes_to_skip(
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_block.input_schema.get_required_fields.return_value = {"credentials"}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
@@ -508,8 +509,8 @@ async def test_validate_node_input_credentials_returns_nodes_to_skip(
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Node should be in nodes_to_skip, not in errors
|
||||
assert mock_node.id in nodes_to_skip
|
||||
# Node should NOT be in nodes_to_skip (runs without credentials) and not in errors
|
||||
assert mock_node.id not in nodes_to_skip
|
||||
assert mock_node.id not in errors
|
||||
|
||||
|
||||
@@ -535,6 +536,7 @@ async def test_validate_node_input_credentials_required_missing_creds_error(
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_block.input_schema.get_required_fields.return_value = {"credentials"}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
|
||||
@@ -22,6 +22,27 @@ from backend.util.settings import Settings
|
||||
|
||||
settings = Settings()
|
||||
|
||||
|
||||
def provider_matches(stored: str, expected: str) -> bool:
|
||||
"""Compare provider strings, handling Python 3.13 ``str(StrEnum)`` bug.
|
||||
|
||||
On Python 3.13, ``str(ProviderName.MCP)`` returns ``"ProviderName.MCP"``
|
||||
instead of ``"mcp"``. OAuth states persisted with the buggy format need
|
||||
to match when ``expected`` is the canonical value (e.g. ``"mcp"``).
|
||||
"""
|
||||
if stored == expected:
|
||||
return True
|
||||
if stored.startswith("ProviderName."):
|
||||
member = stored.removeprefix("ProviderName.")
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
try:
|
||||
return ProviderName[member].value == expected
|
||||
except KeyError:
|
||||
pass
|
||||
return False
|
||||
|
||||
|
||||
# This is an overrride since ollama doesn't actually require an API key, but the creddential system enforces one be attached
|
||||
ollama_credentials = APIKeyCredentials(
|
||||
id="744fdc56-071a-4761-b5a5-0af0ce10a2b5",
|
||||
@@ -389,7 +410,7 @@ class IntegrationCredentialsStore:
|
||||
self, user_id: str, provider: str
|
||||
) -> list[Credentials]:
|
||||
credentials = await self.get_all_creds(user_id)
|
||||
return [c for c in credentials if c.provider == provider]
|
||||
return [c for c in credentials if provider_matches(c.provider, provider)]
|
||||
|
||||
async def get_authorized_providers(self, user_id: str) -> list[str]:
|
||||
credentials = await self.get_all_creds(user_id)
|
||||
@@ -485,17 +506,6 @@ class IntegrationCredentialsStore:
|
||||
async with self.edit_user_integrations(user_id) as user_integrations:
|
||||
user_integrations.oauth_states.append(state)
|
||||
|
||||
async with await self.locked_user_integrations(user_id):
|
||||
|
||||
user_integrations = await self._get_user_integrations(user_id)
|
||||
oauth_states = user_integrations.oauth_states
|
||||
oauth_states.append(state)
|
||||
user_integrations.oauth_states = oauth_states
|
||||
|
||||
await self.db_manager.update_user_integrations(
|
||||
user_id=user_id, data=user_integrations
|
||||
)
|
||||
|
||||
return token, code_challenge
|
||||
|
||||
def _generate_code_challenge(self) -> tuple[str, str]:
|
||||
@@ -521,7 +531,7 @@ class IntegrationCredentialsStore:
|
||||
state
|
||||
for state in oauth_states
|
||||
if secrets.compare_digest(state.token, token)
|
||||
and state.provider == provider
|
||||
and provider_matches(state.provider, provider)
|
||||
and state.expires_at > now.timestamp()
|
||||
),
|
||||
None,
|
||||
|
||||
@@ -9,7 +9,10 @@ from redis.asyncio.lock import Lock as AsyncRedisLock
|
||||
|
||||
from backend.data.model import Credentials, OAuth2Credentials
|
||||
from backend.data.redis_client import get_redis_async
|
||||
from backend.integrations.credentials_store import IntegrationCredentialsStore
|
||||
from backend.integrations.credentials_store import (
|
||||
IntegrationCredentialsStore,
|
||||
provider_matches,
|
||||
)
|
||||
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import MissingConfigError
|
||||
@@ -137,7 +140,10 @@ class IntegrationCredentialsManager:
|
||||
self, user_id: str, credentials: OAuth2Credentials, lock: bool = True
|
||||
) -> OAuth2Credentials:
|
||||
async with self._locked(user_id, credentials.id, "refresh"):
|
||||
oauth_handler = await _get_provider_oauth_handler(credentials.provider)
|
||||
if provider_matches(credentials.provider, ProviderName.MCP.value):
|
||||
oauth_handler = create_mcp_oauth_handler(credentials)
|
||||
else:
|
||||
oauth_handler = await _get_provider_oauth_handler(credentials.provider)
|
||||
if oauth_handler.needs_refresh(credentials):
|
||||
logger.debug(
|
||||
f"Refreshing '{credentials.provider}' "
|
||||
@@ -236,3 +242,31 @@ async def _get_provider_oauth_handler(provider_name_str: str) -> "BaseOAuthHandl
|
||||
client_secret=client_secret,
|
||||
redirect_uri=f"{frontend_base_url}/auth/integrations/oauth_callback",
|
||||
)
|
||||
|
||||
|
||||
def create_mcp_oauth_handler(
|
||||
credentials: OAuth2Credentials,
|
||||
) -> "BaseOAuthHandler":
|
||||
"""Create an MCPOAuthHandler from credential metadata for token refresh.
|
||||
|
||||
MCP OAuth handlers have dynamic endpoints discovered per-server, so they
|
||||
can't be registered as singletons in HANDLERS_BY_NAME. Instead, the handler
|
||||
is reconstructed from metadata stored on the credential during initial auth.
|
||||
"""
|
||||
from backend.blocks.mcp.oauth import MCPOAuthHandler
|
||||
|
||||
meta = credentials.metadata or {}
|
||||
token_url = meta.get("mcp_token_url", "")
|
||||
if not token_url:
|
||||
raise ValueError(
|
||||
f"MCP credential {credentials.id} is missing 'mcp_token_url' metadata; "
|
||||
"cannot refresh tokens"
|
||||
)
|
||||
return MCPOAuthHandler(
|
||||
client_id=meta.get("mcp_client_id", ""),
|
||||
client_secret=meta.get("mcp_client_secret", ""),
|
||||
redirect_uri="", # Not needed for token refresh
|
||||
authorize_url="", # Not needed for token refresh
|
||||
token_url=token_url,
|
||||
resource_url=meta.get("mcp_resource_url"),
|
||||
)
|
||||
|
||||
@@ -30,6 +30,7 @@ class ProviderName(str, Enum):
|
||||
IDEOGRAM = "ideogram"
|
||||
JINA = "jina"
|
||||
LLAMA_API = "llama_api"
|
||||
MCP = "mcp"
|
||||
MEDIUM = "medium"
|
||||
MEM0 = "mem0"
|
||||
NOTION = "notion"
|
||||
|
||||
@@ -51,6 +51,21 @@ async def _on_graph_activate(graph: "BaseGraph | GraphModel", user_id: str):
|
||||
if (
|
||||
creds_meta := new_node.input_default.get(creds_field_name)
|
||||
) and not await get_credentials(creds_meta["id"]):
|
||||
# If the credential field is optional (has a default in the
|
||||
# schema, or node metadata marks it optional), clear the stale
|
||||
# reference instead of blocking the save.
|
||||
creds_field_optional = (
|
||||
new_node.credentials_optional
|
||||
or creds_field_name not in block_input_schema.get_required_fields()
|
||||
)
|
||||
if creds_field_optional:
|
||||
new_node.input_default[creds_field_name] = {}
|
||||
logger.warning(
|
||||
f"Node #{new_node.id}: cleared stale optional "
|
||||
f"credentials #{creds_meta['id']} for "
|
||||
f"'{creds_field_name}'"
|
||||
)
|
||||
continue
|
||||
raise ValueError(
|
||||
f"Node #{new_node.id} input '{creds_field_name}' updated with "
|
||||
f"non-existent credentials #{creds_meta['id']}"
|
||||
|
||||
@@ -1,941 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Iterable, Sequence, cast
|
||||
|
||||
import prisma
|
||||
import prisma.models
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
from backend.util.models import Pagination
|
||||
|
||||
|
||||
def _json_dict(value: Any | None) -> dict[str, Any]:
|
||||
if not value:
|
||||
return {}
|
||||
if isinstance(value, dict):
|
||||
return value
|
||||
return {}
|
||||
|
||||
|
||||
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
|
||||
return llm_model.LlmModelCost(
|
||||
id=record.id,
|
||||
unit=record.unit,
|
||||
credit_cost=record.creditCost,
|
||||
credential_provider=record.credentialProvider,
|
||||
credential_id=record.credentialId,
|
||||
credential_type=record.credentialType,
|
||||
currency=record.currency,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_creator(
|
||||
record: prisma.models.LlmModelCreator,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
return llm_model.LlmModelCreator(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
website_url=record.websiteUrl,
|
||||
logo_url=record.logoUrl,
|
||||
metadata=_json_dict(record.metadata),
|
||||
)
|
||||
|
||||
|
||||
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
|
||||
costs = []
|
||||
if record.Costs:
|
||||
costs = [_map_cost(cost) for cost in record.Costs]
|
||||
|
||||
creator = None
|
||||
if hasattr(record, "Creator") and record.Creator:
|
||||
creator = _map_creator(record.Creator)
|
||||
|
||||
return llm_model.LlmModel(
|
||||
id=record.id,
|
||||
slug=record.slug,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
provider_id=record.providerId,
|
||||
creator_id=record.creatorId,
|
||||
creator=creator,
|
||||
context_window=record.contextWindow,
|
||||
max_output_tokens=record.maxOutputTokens,
|
||||
is_enabled=record.isEnabled,
|
||||
is_recommended=record.isRecommended,
|
||||
capabilities=_json_dict(record.capabilities),
|
||||
metadata=_json_dict(record.metadata),
|
||||
costs=costs,
|
||||
)
|
||||
|
||||
|
||||
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
|
||||
models: list[llm_model.LlmModel] = []
|
||||
if record.Models:
|
||||
models = [_map_model(model) for model in record.Models]
|
||||
|
||||
return llm_model.LlmProvider(
|
||||
id=record.id,
|
||||
name=record.name,
|
||||
display_name=record.displayName,
|
||||
description=record.description,
|
||||
default_credential_provider=record.defaultCredentialProvider,
|
||||
default_credential_id=record.defaultCredentialId,
|
||||
default_credential_type=record.defaultCredentialType,
|
||||
supports_tools=record.supportsTools,
|
||||
supports_json_output=record.supportsJsonOutput,
|
||||
supports_reasoning=record.supportsReasoning,
|
||||
supports_parallel_tool=record.supportsParallelTool,
|
||||
metadata=_json_dict(record.metadata),
|
||||
models=models,
|
||||
)
|
||||
|
||||
|
||||
async def list_providers(
|
||||
include_models: bool = True, enabled_only: bool = False
|
||||
) -> list[llm_model.LlmProvider]:
|
||||
"""
|
||||
List all LLM providers.
|
||||
|
||||
Args:
|
||||
include_models: Whether to include models for each provider
|
||||
enabled_only: If True, only include enabled models (for public routes)
|
||||
"""
|
||||
include: Any = None
|
||||
if include_models:
|
||||
model_where = {"isEnabled": True} if enabled_only else None
|
||||
include = {
|
||||
"Models": {
|
||||
"include": {"Costs": True, "Creator": True},
|
||||
"where": model_where,
|
||||
}
|
||||
}
|
||||
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
|
||||
return [_map_provider(record) for record in records]
|
||||
|
||||
|
||||
async def upsert_provider(
|
||||
request: llm_model.UpsertLlmProviderRequest,
|
||||
provider_id: str | None = None,
|
||||
) -> llm_model.LlmProvider:
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"defaultCredentialProvider": request.default_credential_provider,
|
||||
"defaultCredentialId": request.default_credential_id,
|
||||
"defaultCredentialType": request.default_credential_type,
|
||||
"supportsTools": request.supports_tools,
|
||||
"supportsJsonOutput": request.supports_json_output,
|
||||
"supportsReasoning": request.supports_reasoning,
|
||||
"supportsParallelTool": request.supports_parallel_tool,
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
}
|
||||
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
|
||||
if provider_id:
|
||||
record = await prisma.models.LlmProvider.prisma().update(
|
||||
where={"id": provider_id},
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmProvider.prisma().create(
|
||||
data=data,
|
||||
include=include,
|
||||
)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update provider")
|
||||
return _map_provider(record)
|
||||
|
||||
|
||||
async def delete_provider(provider_id: str) -> bool:
|
||||
"""
|
||||
Delete an LLM provider.
|
||||
|
||||
A provider can only be deleted if it has no associated models.
|
||||
Due to onDelete: Restrict on LlmModel.Provider, the database will
|
||||
block deletion if models exist.
|
||||
|
||||
Args:
|
||||
provider_id: UUID of the provider to delete
|
||||
|
||||
Returns:
|
||||
True if deleted successfully
|
||||
|
||||
Raises:
|
||||
ValueError: If provider not found or has associated models
|
||||
"""
|
||||
# Check if provider exists
|
||||
provider = await prisma.models.LlmProvider.prisma().find_unique(
|
||||
where={"id": provider_id},
|
||||
include={"Models": True},
|
||||
)
|
||||
if not provider:
|
||||
raise ValueError(f"Provider with id '{provider_id}' not found")
|
||||
|
||||
# Check if provider has any models
|
||||
model_count = len(provider.Models) if provider.Models else 0
|
||||
if model_count > 0:
|
||||
raise ValueError(
|
||||
f"Cannot delete provider '{provider.displayName}' because it has "
|
||||
f"{model_count} model(s). Delete all models first."
|
||||
)
|
||||
|
||||
# Safe to delete
|
||||
await prisma.models.LlmProvider.prisma().delete(where={"id": provider_id})
|
||||
return True
|
||||
|
||||
|
||||
async def list_models(
|
||||
provider_id: str | None = None,
|
||||
enabled_only: bool = False,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
) -> llm_model.LlmModelsResponse:
|
||||
"""
|
||||
List LLM models with pagination.
|
||||
|
||||
Args:
|
||||
provider_id: Optional filter by provider ID
|
||||
enabled_only: If True, only return enabled models (for public routes)
|
||||
page: Page number (1-indexed)
|
||||
page_size: Number of models per page
|
||||
"""
|
||||
# Validate pagination inputs to avoid runtime errors
|
||||
if page_size < 1:
|
||||
page_size = 50
|
||||
if page < 1:
|
||||
page = 1
|
||||
|
||||
where: Any = {}
|
||||
if provider_id:
|
||||
where["providerId"] = provider_id
|
||||
if enabled_only:
|
||||
where["isEnabled"] = True
|
||||
|
||||
# Get total count for pagination
|
||||
total_items = await prisma.models.LlmModel.prisma().count(
|
||||
where=where if where else None
|
||||
)
|
||||
|
||||
# Calculate pagination
|
||||
skip = (page - 1) * page_size
|
||||
total_pages = (total_items + page_size - 1) // page_size if total_items > 0 else 0
|
||||
|
||||
records = await prisma.models.LlmModel.prisma().find_many(
|
||||
where=where if where else None,
|
||||
include={"Costs": True, "Creator": True},
|
||||
skip=skip,
|
||||
take=page_size,
|
||||
)
|
||||
models = [_map_model(record) for record in records]
|
||||
|
||||
return llm_model.LlmModelsResponse(
|
||||
models=models,
|
||||
pagination=Pagination(
|
||||
total_items=total_items,
|
||||
total_pages=total_pages,
|
||||
current_page=page,
|
||||
page_size=page_size,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def _cost_create_payload(
|
||||
costs: Sequence[llm_model.LlmModelCostInput],
|
||||
) -> dict[str, Iterable[dict[str, Any]]]:
|
||||
|
||||
create_items = []
|
||||
for cost in costs:
|
||||
item: dict[str, Any] = {
|
||||
"unit": cost.unit,
|
||||
"creditCost": cost.credit_cost,
|
||||
"credentialProvider": cost.credential_provider,
|
||||
}
|
||||
# Only include optional fields if they have values
|
||||
if cost.credential_id:
|
||||
item["credentialId"] = cost.credential_id
|
||||
if cost.credential_type:
|
||||
item["credentialType"] = cost.credential_type
|
||||
if cost.currency:
|
||||
item["currency"] = cost.currency
|
||||
# Handle metadata - use Prisma Json type
|
||||
if cost.metadata is not None and cost.metadata != {}:
|
||||
item["metadata"] = prisma.Json(cost.metadata)
|
||||
create_items.append(item)
|
||||
return {"create": create_items}
|
||||
|
||||
|
||||
async def create_model(
|
||||
request: llm_model.CreateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
data: Any = {
|
||||
"slug": request.slug,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"Provider": {"connect": {"id": request.provider_id}},
|
||||
"contextWindow": request.context_window,
|
||||
"maxOutputTokens": request.max_output_tokens,
|
||||
"isEnabled": request.is_enabled,
|
||||
"capabilities": prisma.Json(request.capabilities or {}),
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
"Costs": _cost_create_payload(request.costs),
|
||||
}
|
||||
if request.creator_id:
|
||||
data["Creator"] = {"connect": {"id": request.creator_id}}
|
||||
|
||||
record = await prisma.models.LlmModel.prisma().create(
|
||||
data=data,
|
||||
include={"Costs": True, "Creator": True, "Provider": True},
|
||||
)
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def update_model(
|
||||
model_id: str,
|
||||
request: llm_model.UpdateLlmModelRequest,
|
||||
) -> llm_model.LlmModel:
|
||||
# Build scalar field updates (non-relation fields)
|
||||
scalar_data: Any = {}
|
||||
if request.display_name is not None:
|
||||
scalar_data["displayName"] = request.display_name
|
||||
if request.description is not None:
|
||||
scalar_data["description"] = request.description
|
||||
if request.context_window is not None:
|
||||
scalar_data["contextWindow"] = request.context_window
|
||||
if request.max_output_tokens is not None:
|
||||
scalar_data["maxOutputTokens"] = request.max_output_tokens
|
||||
if request.is_enabled is not None:
|
||||
scalar_data["isEnabled"] = request.is_enabled
|
||||
if request.capabilities is not None:
|
||||
scalar_data["capabilities"] = request.capabilities
|
||||
if request.metadata is not None:
|
||||
scalar_data["metadata"] = request.metadata
|
||||
# Foreign keys can be updated directly as scalar fields
|
||||
if request.provider_id is not None:
|
||||
scalar_data["providerId"] = request.provider_id
|
||||
if request.creator_id is not None:
|
||||
# Empty string means remove the creator
|
||||
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
|
||||
|
||||
# If we have costs to update, we need to handle them separately
|
||||
# because nested writes have different constraints
|
||||
if request.costs is not None:
|
||||
# Wrap cost replacement in a transaction for atomicity
|
||||
async with transaction() as tx:
|
||||
# First update scalar fields
|
||||
if scalar_data:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
)
|
||||
# Then handle costs: delete existing and create new
|
||||
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
|
||||
if request.costs:
|
||||
cost_payload = _cost_create_payload(request.costs)
|
||||
for cost_item in cost_payload["create"]:
|
||||
cost_item["llmModelId"] = model_id
|
||||
await tx.llmmodelcost.create(data=cast(Any, cost_item))
|
||||
# Fetch the updated record (outside transaction)
|
||||
record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
else:
|
||||
# No costs update - simple update
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data=scalar_data,
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
|
||||
if not record:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return _map_model(record)
|
||||
|
||||
|
||||
async def toggle_model(
|
||||
model_id: str,
|
||||
is_enabled: bool,
|
||||
migrate_to_slug: str | None = None,
|
||||
migration_reason: str | None = None,
|
||||
custom_credit_cost: int | None = None,
|
||||
) -> llm_model.ToggleLlmModelResponse:
|
||||
"""
|
||||
Toggle a model's enabled status, optionally migrating workflows when disabling.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to toggle
|
||||
is_enabled: New enabled status
|
||||
migrate_to_slug: If disabling and this is provided, migrate all workflows
|
||||
using this model to the specified replacement model
|
||||
migration_reason: Optional reason for the migration (e.g., "Provider outage")
|
||||
custom_credit_cost: Optional custom pricing override for migrated workflows.
|
||||
When set, the billing system should use this cost instead
|
||||
of the target model's cost for affected nodes.
|
||||
|
||||
Returns:
|
||||
ToggleLlmModelResponse with the updated model and optional migration stats
|
||||
"""
|
||||
import json
|
||||
|
||||
# Get the model being toggled
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
nodes_migrated = 0
|
||||
migration_id: str | None = None
|
||||
|
||||
# If disabling with migration, perform migration first
|
||||
if not is_enabled and migrate_to_slug:
|
||||
# Validate replacement model exists and is enabled
|
||||
replacement = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migrate_to_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{migrate_to_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# Perform all operations atomically within a single transaction
|
||||
# This ensures no nodes are missed between query and update
|
||||
async with transaction() as tx:
|
||||
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
|
||||
node_ids_result = await tx.query_raw(
|
||||
"""
|
||||
SELECT id
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
FOR UPDATE
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
migrated_node_ids = (
|
||||
[row["id"] for row in node_ids_result] if node_ids_result else []
|
||||
)
|
||||
nodes_migrated = len(migrated_node_ids)
|
||||
|
||||
if nodes_migrated > 0:
|
||||
# Update by IDs to ensure we only update the exact nodes we queried
|
||||
# Use JSON array and jsonb_array_elements_text for safe parameterization
|
||||
node_ids_json = json.dumps(migrated_node_ids)
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text IN (
|
||||
SELECT jsonb_array_elements_text($2::jsonb)
|
||||
)
|
||||
""",
|
||||
migrate_to_slug,
|
||||
node_ids_json,
|
||||
)
|
||||
|
||||
record = await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
# Create migration record for revert capability
|
||||
if nodes_migrated > 0:
|
||||
migration_data: Any = {
|
||||
"sourceModelSlug": model.slug,
|
||||
"targetModelSlug": migrate_to_slug,
|
||||
"reason": migration_reason,
|
||||
"migratedNodeIds": json.dumps(migrated_node_ids),
|
||||
"nodeCount": nodes_migrated,
|
||||
"customCreditCost": custom_credit_cost,
|
||||
}
|
||||
migration_record = await tx.llmmodelmigration.create(
|
||||
data=migration_data
|
||||
)
|
||||
migration_id = migration_record.id
|
||||
else:
|
||||
# Simple toggle without migration
|
||||
record = await prisma.models.LlmModel.prisma().update(
|
||||
where={"id": model_id},
|
||||
data={"isEnabled": is_enabled},
|
||||
include={"Costs": True},
|
||||
)
|
||||
|
||||
if record is None:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
return llm_model.ToggleLlmModelResponse(
|
||||
model=_map_model(record),
|
||||
nodes_migrated=nodes_migrated,
|
||||
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
|
||||
migration_id=migration_id,
|
||||
)
|
||||
|
||||
|
||||
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
|
||||
"""Get usage count for a model."""
|
||||
import prisma as prisma_module
|
||||
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
count_result = await prisma_module.get_client().query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
model.slug,
|
||||
)
|
||||
node_count = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
|
||||
|
||||
|
||||
async def delete_model(
|
||||
model_id: str, replacement_model_slug: str | None = None
|
||||
) -> llm_model.DeleteLlmModelResponse:
|
||||
"""
|
||||
Delete a model and optionally migrate all AgentNodes using it to a replacement model.
|
||||
|
||||
This performs an atomic operation within a database transaction:
|
||||
1. Validates the model exists
|
||||
2. Counts affected nodes
|
||||
3. If nodes exist, validates replacement model and migrates them
|
||||
4. Deletes the LlmModel record (CASCADE deletes costs)
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to delete
|
||||
replacement_model_slug: Slug of the model to migrate to (required only if nodes use this model)
|
||||
|
||||
Returns:
|
||||
DeleteLlmModelResponse with migration stats
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found, nodes exist but no replacement provided,
|
||||
replacement not found, or replacement is disabled
|
||||
"""
|
||||
# 1. Get the model being deleted (early validation - outside transaction)
|
||||
model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}, include={"Costs": True}
|
||||
)
|
||||
if not model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
|
||||
deleted_slug = model.slug
|
||||
deleted_display_name = model.displayName
|
||||
|
||||
# 2. Perform all mutation logic atomically within a transaction
|
||||
# This prevents TOCTOU issues where nodes could be created between count and delete
|
||||
async with transaction() as tx:
|
||||
# Count affected nodes inside the transaction
|
||||
count_result = await tx.query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM "AgentNode"
|
||||
WHERE "constantInput"::jsonb->>'model' = $1
|
||||
""",
|
||||
deleted_slug,
|
||||
)
|
||||
nodes_to_migrate = int(count_result[0]["count"]) if count_result else 0
|
||||
|
||||
# Validate replacement model only if there are nodes to migrate
|
||||
if nodes_to_migrate > 0:
|
||||
if not replacement_model_slug:
|
||||
raise ValueError(
|
||||
f"Cannot delete model '{deleted_slug}': {nodes_to_migrate} workflow node(s) "
|
||||
f"are using it. Please provide a replacement_model_slug to migrate them."
|
||||
)
|
||||
replacement = await tx.llmmodel.find_unique(
|
||||
where={"slug": replacement_model_slug}
|
||||
)
|
||||
if not replacement:
|
||||
raise ValueError(
|
||||
f"Replacement model '{replacement_model_slug}' not found"
|
||||
)
|
||||
if not replacement.isEnabled:
|
||||
raise ValueError(
|
||||
f"Replacement model '{replacement_model_slug}' is disabled. "
|
||||
f"Please enable it before using it as a replacement."
|
||||
)
|
||||
|
||||
# Migrate all AgentNode.constantInput->model to replacement
|
||||
await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE "constantInput"::jsonb->>'model' = $2
|
||||
""",
|
||||
replacement_model_slug,
|
||||
deleted_slug,
|
||||
)
|
||||
|
||||
# Delete the model (CASCADE will delete costs automatically)
|
||||
await tx.llmmodel.delete(where={"id": model_id})
|
||||
|
||||
# Build appropriate message based on whether migration happened
|
||||
if nodes_to_migrate > 0:
|
||||
message = (
|
||||
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
|
||||
f"and migrated {nodes_to_migrate} workflow node(s) to '{replacement_model_slug}'."
|
||||
)
|
||||
else:
|
||||
message = (
|
||||
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}). "
|
||||
f"No workflows were using this model."
|
||||
)
|
||||
|
||||
return llm_model.DeleteLlmModelResponse(
|
||||
deleted_model_slug=deleted_slug,
|
||||
deleted_model_display_name=deleted_display_name,
|
||||
replacement_model_slug=replacement_model_slug,
|
||||
nodes_migrated=nodes_to_migrate,
|
||||
message=message,
|
||||
)
|
||||
|
||||
|
||||
def _map_migration(
|
||||
record: prisma.models.LlmModelMigration,
|
||||
) -> llm_model.LlmModelMigration:
|
||||
return llm_model.LlmModelMigration(
|
||||
id=record.id,
|
||||
source_model_slug=record.sourceModelSlug,
|
||||
target_model_slug=record.targetModelSlug,
|
||||
reason=record.reason,
|
||||
node_count=record.nodeCount,
|
||||
custom_credit_cost=record.customCreditCost,
|
||||
is_reverted=record.isReverted,
|
||||
created_at=record.createdAt,
|
||||
reverted_at=record.revertedAt,
|
||||
)
|
||||
|
||||
|
||||
async def list_migrations(
|
||||
include_reverted: bool = False,
|
||||
) -> list[llm_model.LlmModelMigration]:
|
||||
"""
|
||||
List model migrations, optionally including reverted ones.
|
||||
|
||||
Args:
|
||||
include_reverted: If True, include reverted migrations. Default is False.
|
||||
|
||||
Returns:
|
||||
List of LlmModelMigration records
|
||||
"""
|
||||
where: Any = None if include_reverted else {"isReverted": False}
|
||||
records = await prisma.models.LlmModelMigration.prisma().find_many(
|
||||
where=where,
|
||||
order={"createdAt": "desc"},
|
||||
)
|
||||
return [_map_migration(record) for record in records]
|
||||
|
||||
|
||||
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
|
||||
"""Get a specific migration by ID."""
|
||||
record = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
return _map_migration(record) if record else None
|
||||
|
||||
|
||||
async def revert_migration(
|
||||
migration_id: str,
|
||||
re_enable_source_model: bool = True,
|
||||
) -> llm_model.RevertMigrationResponse:
|
||||
"""
|
||||
Revert a model migration, restoring affected nodes to their original model.
|
||||
|
||||
This only reverts the specific nodes that were migrated, not all nodes
|
||||
currently using the target model.
|
||||
|
||||
Args:
|
||||
migration_id: UUID of the migration to revert
|
||||
re_enable_source_model: Whether to re-enable the source model if it's disabled
|
||||
|
||||
Returns:
|
||||
RevertMigrationResponse with revert stats
|
||||
|
||||
Raises:
|
||||
ValueError: If migration not found, already reverted, or source model not available
|
||||
"""
|
||||
import json
|
||||
from datetime import datetime, timezone
|
||||
|
||||
# Get the migration record
|
||||
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
|
||||
where={"id": migration_id}
|
||||
)
|
||||
if not migration:
|
||||
raise ValueError(f"Migration with id '{migration_id}' not found")
|
||||
|
||||
if migration.isReverted:
|
||||
raise ValueError(
|
||||
f"Migration '{migration_id}' has already been reverted "
|
||||
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
|
||||
)
|
||||
|
||||
# Check if source model exists
|
||||
source_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"slug": migration.sourceModelSlug}
|
||||
)
|
||||
if not source_model:
|
||||
raise ValueError(
|
||||
f"Source model '{migration.sourceModelSlug}' no longer exists. "
|
||||
f"Cannot revert migration."
|
||||
)
|
||||
|
||||
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
|
||||
migrated_node_ids: list[str] = (
|
||||
migration.migratedNodeIds
|
||||
if isinstance(migration.migratedNodeIds, list)
|
||||
else json.loads(migration.migratedNodeIds) # type: ignore
|
||||
)
|
||||
if not migrated_node_ids:
|
||||
raise ValueError("No nodes to revert in this migration")
|
||||
|
||||
# Track if we need to re-enable the source model
|
||||
source_model_was_disabled = not source_model.isEnabled
|
||||
should_re_enable = source_model_was_disabled and re_enable_source_model
|
||||
source_model_re_enabled = False
|
||||
|
||||
# Perform revert atomically
|
||||
async with transaction() as tx:
|
||||
# Re-enable the source model if requested and it was disabled
|
||||
if should_re_enable:
|
||||
await tx.llmmodel.update(
|
||||
where={"id": source_model.id},
|
||||
data={"isEnabled": True},
|
||||
)
|
||||
source_model_re_enabled = True
|
||||
|
||||
# Update only the specific nodes that were migrated
|
||||
# We need to check that they still have the target model (haven't been changed since)
|
||||
# Use a single batch update for efficiency
|
||||
# Use JSON array and jsonb_array_elements_text for safe parameterization
|
||||
node_ids_json = json.dumps(migrated_node_ids)
|
||||
result = await tx.execute_raw(
|
||||
"""
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
to_jsonb($1::text)
|
||||
)
|
||||
WHERE id::text IN (
|
||||
SELECT jsonb_array_elements_text($2::jsonb)
|
||||
)
|
||||
AND "constantInput"::jsonb->>'model' = $3
|
||||
""",
|
||||
migration.sourceModelSlug,
|
||||
node_ids_json,
|
||||
migration.targetModelSlug,
|
||||
)
|
||||
nodes_reverted = result if result else 0
|
||||
|
||||
# Mark migration as reverted
|
||||
await tx.llmmodelmigration.update(
|
||||
where={"id": migration_id},
|
||||
data={
|
||||
"isReverted": True,
|
||||
"revertedAt": datetime.now(timezone.utc),
|
||||
},
|
||||
)
|
||||
|
||||
# Calculate nodes that were already changed since migration
|
||||
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
|
||||
|
||||
# Build appropriate message
|
||||
message_parts = [
|
||||
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
|
||||
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
|
||||
]
|
||||
if nodes_already_changed > 0:
|
||||
message_parts.append(
|
||||
f" {nodes_already_changed} node(s) were already changed and not reverted."
|
||||
)
|
||||
if source_model_re_enabled:
|
||||
message_parts.append(
|
||||
f" Model '{migration.sourceModelSlug}' has been re-enabled."
|
||||
)
|
||||
|
||||
return llm_model.RevertMigrationResponse(
|
||||
migration_id=migration_id,
|
||||
source_model_slug=migration.sourceModelSlug,
|
||||
target_model_slug=migration.targetModelSlug,
|
||||
nodes_reverted=nodes_reverted,
|
||||
nodes_already_changed=nodes_already_changed,
|
||||
source_model_re_enabled=source_model_re_enabled,
|
||||
message="".join(message_parts),
|
||||
)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Creator CRUD operations
|
||||
# ============================================================================
|
||||
|
||||
|
||||
async def list_creators() -> list[llm_model.LlmModelCreator]:
|
||||
"""List all LLM model creators."""
|
||||
records = await prisma.models.LlmModelCreator.prisma().find_many(
|
||||
order={"displayName": "asc"}
|
||||
)
|
||||
return [_map_creator(record) for record in records]
|
||||
|
||||
|
||||
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
|
||||
"""Get a specific creator by ID."""
|
||||
record = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
return _map_creator(record) if record else None
|
||||
|
||||
|
||||
async def upsert_creator(
|
||||
request: llm_model.UpsertLlmCreatorRequest,
|
||||
creator_id: str | None = None,
|
||||
) -> llm_model.LlmModelCreator:
|
||||
"""Create or update a model creator."""
|
||||
data: Any = {
|
||||
"name": request.name,
|
||||
"displayName": request.display_name,
|
||||
"description": request.description,
|
||||
"websiteUrl": request.website_url,
|
||||
"logoUrl": request.logo_url,
|
||||
"metadata": prisma.Json(request.metadata or {}),
|
||||
}
|
||||
if creator_id:
|
||||
record = await prisma.models.LlmModelCreator.prisma().update(
|
||||
where={"id": creator_id},
|
||||
data=data,
|
||||
)
|
||||
else:
|
||||
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
|
||||
if record is None:
|
||||
raise ValueError("Failed to create/update creator")
|
||||
return _map_creator(record)
|
||||
|
||||
|
||||
async def delete_creator(creator_id: str) -> bool:
|
||||
"""
|
||||
Delete a model creator.
|
||||
|
||||
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
|
||||
|
||||
Args:
|
||||
creator_id: UUID of the creator to delete
|
||||
|
||||
Returns:
|
||||
True if deleted successfully
|
||||
|
||||
Raises:
|
||||
ValueError: If creator not found
|
||||
"""
|
||||
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
|
||||
where={"id": creator_id}
|
||||
)
|
||||
if not creator:
|
||||
raise ValueError(f"Creator with id '{creator_id}' not found")
|
||||
|
||||
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
|
||||
return True
|
||||
|
||||
|
||||
async def get_recommended_model() -> llm_model.LlmModel | None:
|
||||
"""
|
||||
Get the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
return _map_model(record) if record else None
|
||||
|
||||
|
||||
async def set_recommended_model(
|
||||
model_id: str,
|
||||
) -> tuple[llm_model.LlmModel, str | None]:
|
||||
"""
|
||||
Set a model as the recommended model.
|
||||
|
||||
This will clear the isRecommended flag from any other model and set it
|
||||
on the specified model. The model must be enabled.
|
||||
|
||||
Args:
|
||||
model_id: UUID of the model to set as recommended
|
||||
|
||||
Returns:
|
||||
Tuple of (the updated model, previous recommended model slug or None)
|
||||
|
||||
Raises:
|
||||
ValueError: If model not found or not enabled
|
||||
"""
|
||||
# First, verify the model exists and is enabled
|
||||
target_model = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id}
|
||||
)
|
||||
if not target_model:
|
||||
raise ValueError(f"Model with id '{model_id}' not found")
|
||||
if not target_model.isEnabled:
|
||||
raise ValueError(
|
||||
f"Cannot set disabled model '{target_model.slug}' as recommended"
|
||||
)
|
||||
|
||||
# Get the current recommended model (if any)
|
||||
current_recommended = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True}
|
||||
)
|
||||
previous_slug = current_recommended.slug if current_recommended else None
|
||||
|
||||
# Use a transaction to ensure atomicity
|
||||
async with transaction() as tx:
|
||||
# Clear isRecommended from all models
|
||||
await tx.llmmodel.update_many(
|
||||
where={"isRecommended": True},
|
||||
data={"isRecommended": False},
|
||||
)
|
||||
# Set the new recommended model
|
||||
await tx.llmmodel.update(
|
||||
where={"id": model_id},
|
||||
data={"isRecommended": True},
|
||||
)
|
||||
|
||||
# Fetch and return the updated model
|
||||
updated_record = await prisma.models.LlmModel.prisma().find_unique(
|
||||
where={"id": model_id},
|
||||
include={"Costs": True, "Creator": True},
|
||||
)
|
||||
if not updated_record:
|
||||
raise ValueError("Failed to fetch updated model")
|
||||
|
||||
return _map_model(updated_record), previous_slug
|
||||
|
||||
|
||||
async def get_recommended_model_slug() -> str | None:
|
||||
"""
|
||||
Get the slug of the currently recommended LLM model.
|
||||
|
||||
Returns:
|
||||
The slug of the recommended model, or None if no model is marked as recommended.
|
||||
"""
|
||||
record = await prisma.models.LlmModel.prisma().find_first(
|
||||
where={"isRecommended": True, "isEnabled": True},
|
||||
)
|
||||
return record.slug if record else None
|
||||
@@ -1,235 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
import prisma.enums
|
||||
import pydantic
|
||||
|
||||
from backend.util.models import Pagination
|
||||
|
||||
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
|
||||
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
|
||||
|
||||
|
||||
class LlmModelCost(pydantic.BaseModel):
|
||||
id: str
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = None
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCreator(pydantic.BaseModel):
|
||||
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModel(pydantic.BaseModel):
|
||||
id: str
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
creator: Optional[LlmModelCreator] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
is_recommended: bool = False
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvider(pydantic.BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = None
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
models: list[LlmModel] = pydantic.Field(default_factory=list)
|
||||
|
||||
|
||||
class LlmProvidersResponse(pydantic.BaseModel):
|
||||
providers: list[LlmProvider]
|
||||
|
||||
|
||||
class LlmModelsResponse(pydantic.BaseModel):
|
||||
models: list[LlmModel]
|
||||
pagination: Optional[Pagination] = None
|
||||
|
||||
|
||||
class LlmCreatorsResponse(pydantic.BaseModel):
|
||||
creators: list[LlmModelCreator]
|
||||
|
||||
|
||||
class UpsertLlmProviderRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
default_credential_provider: Optional[str] = None
|
||||
default_credential_id: Optional[str] = None
|
||||
default_credential_type: Optional[str] = "api_key"
|
||||
supports_tools: bool = True
|
||||
supports_json_output: bool = True
|
||||
supports_reasoning: bool = False
|
||||
supports_parallel_tool: bool = False
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class UpsertLlmCreatorRequest(pydantic.BaseModel):
|
||||
name: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
website_url: Optional[str] = None
|
||||
logo_url: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class LlmModelCostInput(pydantic.BaseModel):
|
||||
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
|
||||
credit_cost: int
|
||||
credential_provider: str
|
||||
credential_id: Optional[str] = None
|
||||
credential_type: Optional[str] = "api_key"
|
||||
currency: Optional[str] = None
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
|
||||
|
||||
class CreateLlmModelRequest(pydantic.BaseModel):
|
||||
slug: str
|
||||
display_name: str
|
||||
description: Optional[str] = None
|
||||
provider_id: str
|
||||
creator_id: Optional[str] = None
|
||||
context_window: int
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: bool = True
|
||||
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
|
||||
costs: list[LlmModelCostInput]
|
||||
|
||||
@pydantic.field_validator("slug")
|
||||
@classmethod
|
||||
def validate_slug(cls, v: str) -> str:
|
||||
if not v or len(v) > 100:
|
||||
raise ValueError("Slug must be 1-100 characters")
|
||||
if not SLUG_PATTERN.match(v):
|
||||
raise ValueError(
|
||||
"Slug must start with alphanumeric and contain only "
|
||||
"alphanumeric characters, dots, underscores, slashes, or hyphens"
|
||||
)
|
||||
return v
|
||||
|
||||
|
||||
class UpdateLlmModelRequest(pydantic.BaseModel):
|
||||
display_name: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
context_window: Optional[int] = None
|
||||
max_output_tokens: Optional[int] = None
|
||||
is_enabled: Optional[bool] = None
|
||||
capabilities: Optional[dict[str, Any]] = None
|
||||
metadata: Optional[dict[str, Any]] = None
|
||||
provider_id: Optional[str] = None
|
||||
creator_id: Optional[str] = None
|
||||
costs: Optional[list[LlmModelCostInput]] = None
|
||||
|
||||
|
||||
class ToggleLlmModelRequest(pydantic.BaseModel):
|
||||
is_enabled: bool
|
||||
migrate_to_slug: Optional[str] = None
|
||||
migration_reason: Optional[str] = None # e.g., "Provider outage"
|
||||
# Custom pricing override for migrated workflows. When set, billing should use
|
||||
# this cost instead of the target model's cost for affected nodes.
|
||||
# See LlmModelMigration in schema.prisma for full documentation.
|
||||
custom_credit_cost: Optional[int] = None
|
||||
|
||||
|
||||
class ToggleLlmModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
nodes_migrated: int = 0
|
||||
migrated_to_slug: Optional[str] = None
|
||||
migration_id: Optional[str] = None # ID of the migration record for revert
|
||||
|
||||
|
||||
class DeleteLlmModelResponse(pydantic.BaseModel):
|
||||
deleted_model_slug: str
|
||||
deleted_model_display_name: str
|
||||
replacement_model_slug: Optional[str] = None
|
||||
nodes_migrated: int
|
||||
message: str
|
||||
|
||||
|
||||
class LlmModelUsageResponse(pydantic.BaseModel):
|
||||
model_slug: str
|
||||
node_count: int
|
||||
|
||||
|
||||
# Migration tracking models
|
||||
class LlmModelMigration(pydantic.BaseModel):
|
||||
id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
reason: Optional[str] = None
|
||||
node_count: int
|
||||
# Custom pricing override - billing should use this instead of target model's cost
|
||||
custom_credit_cost: Optional[int] = None
|
||||
is_reverted: bool = False
|
||||
created_at: datetime
|
||||
reverted_at: Optional[datetime] = None
|
||||
|
||||
|
||||
class LlmMigrationsResponse(pydantic.BaseModel):
|
||||
migrations: list[LlmModelMigration]
|
||||
|
||||
|
||||
class RevertMigrationRequest(pydantic.BaseModel):
|
||||
re_enable_source_model: bool = (
|
||||
True # Whether to re-enable the source model if disabled
|
||||
)
|
||||
|
||||
|
||||
class RevertMigrationResponse(pydantic.BaseModel):
|
||||
migration_id: str
|
||||
source_model_slug: str
|
||||
target_model_slug: str
|
||||
nodes_reverted: int
|
||||
nodes_already_changed: int = (
|
||||
0 # Nodes that were modified since migration (not reverted)
|
||||
)
|
||||
source_model_re_enabled: bool = False # Whether the source model was re-enabled
|
||||
message: str
|
||||
|
||||
|
||||
class SetRecommendedModelRequest(pydantic.BaseModel):
|
||||
model_id: str
|
||||
|
||||
|
||||
class SetRecommendedModelResponse(pydantic.BaseModel):
|
||||
model: LlmModel
|
||||
previous_recommended_slug: Optional[str] = None
|
||||
message: str
|
||||
|
||||
|
||||
class RecommendedModelResponse(pydantic.BaseModel):
|
||||
model: Optional[LlmModel] = None
|
||||
slug: Optional[str] = None
|
||||
@@ -1,29 +0,0 @@
|
||||
import autogpt_libs.auth
|
||||
import fastapi
|
||||
|
||||
from backend.server.v2.llm import db as llm_db
|
||||
from backend.server.v2.llm import model as llm_model
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
prefix="/llm",
|
||||
tags=["llm"],
|
||||
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
|
||||
)
|
||||
|
||||
|
||||
@router.get("/models", response_model=llm_model.LlmModelsResponse)
|
||||
async def list_models(
|
||||
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, ge=1, le=100, description="Number of models per page"
|
||||
),
|
||||
):
|
||||
"""List all enabled LLM models available to users."""
|
||||
return await llm_db.list_models(enabled_only=True, page=page, page_size=page_size)
|
||||
|
||||
|
||||
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
|
||||
async def list_providers():
|
||||
"""List all LLM providers with their enabled models."""
|
||||
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
|
||||
return llm_model.LlmProvidersResponse(providers=providers)
|
||||
@@ -38,6 +38,7 @@ class Flag(str, Enum):
|
||||
AGENT_ACTIVITY = "agent-activity"
|
||||
ENABLE_PLATFORM_PAYMENT = "enable-platform-payment"
|
||||
CHAT = "chat"
|
||||
COPILOT_SDK = "copilot-sdk"
|
||||
|
||||
|
||||
def is_configured() -> bool:
|
||||
|
||||
@@ -101,7 +101,7 @@ class HostResolver(abc.AbstractResolver):
|
||||
def __init__(self, ssl_hostname: str, ip_addresses: list[str]):
|
||||
self.ssl_hostname = ssl_hostname
|
||||
self.ip_addresses = ip_addresses
|
||||
self._default = aiohttp.AsyncResolver()
|
||||
self._default = aiohttp.ThreadedResolver()
|
||||
|
||||
async def resolve(self, host, port=0, family=socket.AF_INET):
|
||||
if host == self.ssl_hostname:
|
||||
@@ -467,7 +467,7 @@ class Requests:
|
||||
resolver = HostResolver(ssl_hostname=hostname, ip_addresses=ip_addresses)
|
||||
ssl_context = ssl.create_default_context()
|
||||
connector = aiohttp.TCPConnector(resolver=resolver, ssl=ssl_context)
|
||||
session_kwargs = {}
|
||||
session_kwargs: dict = {}
|
||||
if connector:
|
||||
session_kwargs["connector"] = connector
|
||||
|
||||
|
||||
@@ -662,6 +662,17 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
|
||||
mem0_api_key: str = Field(default="", description="Mem0 API key")
|
||||
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
|
||||
|
||||
linear_api_key: str = Field(
|
||||
default="", description="Linear API key for system-level operations"
|
||||
)
|
||||
linear_feature_request_project_id: str = Field(
|
||||
default="",
|
||||
description="Linear project ID where feature requests are tracked",
|
||||
)
|
||||
linear_feature_request_team_id: str = Field(
|
||||
default="",
|
||||
description="Linear team ID used when creating feature request issues",
|
||||
)
|
||||
linear_client_id: str = Field(default="", description="Linear client ID")
|
||||
linear_client_secret: str = Field(default="", description="Linear client secret")
|
||||
|
||||
|
||||
@@ -1,81 +0,0 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmProvider" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"defaultCredentialProvider" TEXT,
|
||||
"defaultCredentialId" TEXT,
|
||||
"defaultCredentialType" TEXT,
|
||||
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModel" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"slug" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"providerId" TEXT NOT NULL,
|
||||
"contextWindow" INTEGER NOT NULL,
|
||||
"maxOutputTokens" INTEGER,
|
||||
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
|
||||
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
|
||||
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
|
||||
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelCost" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
|
||||
"creditCost" INTEGER NOT NULL,
|
||||
"credentialProvider" TEXT NOT NULL,
|
||||
"credentialId" TEXT,
|
||||
"credentialType" TEXT,
|
||||
"currency" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
|
||||
"llmModelId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "LlmModelCost_llmModelId_credentialProvider_unit_key" ON "LlmModelCost"("llmModelId", "credentialProvider", "unit");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
@@ -1,226 +0,0 @@
|
||||
-- Seed LLM Registry from existing hard-coded data
|
||||
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
|
||||
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
|
||||
|
||||
-- Insert Providers
|
||||
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
|
||||
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Insert Models (using CTEs to reference provider IDs)
|
||||
WITH provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
model_slug,
|
||||
model_display_name,
|
||||
NULL,
|
||||
p."id",
|
||||
context_window,
|
||||
max_output_tokens,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM (VALUES
|
||||
-- OpenAI models
|
||||
('o3', 'O3', 'openai', 200000, 100000),
|
||||
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
|
||||
('o1', 'O1', 'openai', 200000, 100000),
|
||||
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
|
||||
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
|
||||
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
|
||||
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
|
||||
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
|
||||
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
|
||||
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1000000, 32768),
|
||||
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
|
||||
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
|
||||
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
|
||||
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
|
||||
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
|
||||
-- Anthropic models
|
||||
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
|
||||
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
|
||||
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
|
||||
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
|
||||
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
|
||||
-- AI/ML API models
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
|
||||
-- Groq models
|
||||
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
|
||||
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
|
||||
-- Ollama models
|
||||
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
|
||||
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
|
||||
('llama3', 'Llama 3', 'ollama', 8192, NULL),
|
||||
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
|
||||
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
|
||||
-- OpenRouter models
|
||||
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
|
||||
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
|
||||
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
|
||||
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
|
||||
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
|
||||
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
|
||||
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
|
||||
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
|
||||
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
|
||||
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
|
||||
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
|
||||
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
|
||||
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
|
||||
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
|
||||
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
|
||||
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
|
||||
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
|
||||
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
|
||||
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
|
||||
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
|
||||
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
|
||||
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
|
||||
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
|
||||
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
|
||||
-- Llama API models
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
|
||||
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
|
||||
-- v0 models
|
||||
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
|
||||
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
|
||||
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
|
||||
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
|
||||
JOIN provider_ids p ON p."name" = models.provider_name
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Insert Costs (using CTEs to reference model IDs)
|
||||
WITH model_ids AS (
|
||||
SELECT "id", "slug", "providerId" FROM "LlmModel"
|
||||
),
|
||||
provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
cost,
|
||||
p."name",
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM (VALUES
|
||||
-- OpenAI costs
|
||||
('o3', 4),
|
||||
('o3-mini', 2),
|
||||
('o1', 16),
|
||||
('o1-mini', 4),
|
||||
('gpt-5-2025-08-07', 2),
|
||||
('gpt-5.1-2025-11-13', 5),
|
||||
('gpt-5-mini-2025-08-07', 1),
|
||||
('gpt-5-nano-2025-08-07', 1),
|
||||
('gpt-5-chat-latest', 5),
|
||||
('gpt-4.1-2025-04-14', 2),
|
||||
('gpt-4.1-mini-2025-04-14', 1),
|
||||
('gpt-4o-mini', 1),
|
||||
('gpt-4o', 3),
|
||||
('gpt-4-turbo', 10),
|
||||
('gpt-3.5-turbo', 1),
|
||||
-- Anthropic costs
|
||||
('claude-opus-4-1-20250805', 21),
|
||||
('claude-opus-4-20250514', 21),
|
||||
('claude-sonnet-4-20250514', 5),
|
||||
('claude-haiku-4-5-20251001', 4),
|
||||
('claude-opus-4-5-20251101', 14),
|
||||
('claude-sonnet-4-5-20250929', 9),
|
||||
('claude-3-7-sonnet-20250219', 5),
|
||||
('claude-3-haiku-20240307', 1),
|
||||
-- AI/ML API costs
|
||||
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
|
||||
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
|
||||
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
|
||||
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
|
||||
-- Groq costs
|
||||
('llama-3.3-70b-versatile', 1),
|
||||
('llama-3.1-8b-instant', 1),
|
||||
-- Ollama costs
|
||||
('llama3.3', 1),
|
||||
('llama3.2', 1),
|
||||
('llama3', 1),
|
||||
('llama3.1:405b', 1),
|
||||
('dolphin-mistral:latest', 1),
|
||||
-- OpenRouter costs
|
||||
('google/gemini-2.5-pro-preview-03-25', 4),
|
||||
('google/gemini-3-pro-preview', 5),
|
||||
('mistralai/mistral-nemo', 1),
|
||||
('cohere/command-r-08-2024', 1),
|
||||
('cohere/command-r-plus-08-2024', 3),
|
||||
('deepseek/deepseek-chat', 2),
|
||||
('perplexity/sonar', 1),
|
||||
('perplexity/sonar-pro', 5),
|
||||
('perplexity/sonar-deep-research', 10),
|
||||
('nousresearch/hermes-3-llama-3.1-405b', 1),
|
||||
('nousresearch/hermes-3-llama-3.1-70b', 1),
|
||||
('amazon/nova-lite-v1', 1),
|
||||
('amazon/nova-micro-v1', 1),
|
||||
('amazon/nova-pro-v1', 1),
|
||||
('microsoft/wizardlm-2-8x22b', 1),
|
||||
('gryphe/mythomax-l2-13b', 1),
|
||||
('meta-llama/llama-4-scout', 1),
|
||||
('meta-llama/llama-4-maverick', 1),
|
||||
('x-ai/grok-4', 9),
|
||||
('x-ai/grok-4-fast', 1),
|
||||
('x-ai/grok-4.1-fast', 1),
|
||||
('x-ai/grok-code-fast-1', 1),
|
||||
('moonshotai/kimi-k2', 1),
|
||||
('qwen/qwen3-235b-a22b-thinking-2507', 1),
|
||||
('qwen/qwen3-coder', 9),
|
||||
('google/gemini-2.5-flash', 1),
|
||||
('google/gemini-2.0-flash-001', 1),
|
||||
('google/gemini-2.5-flash-lite-preview-06-17', 1),
|
||||
('google/gemini-2.0-flash-lite-001', 1),
|
||||
('deepseek/deepseek-r1-0528', 1),
|
||||
('openai/gpt-oss-120b', 1),
|
||||
('openai/gpt-oss-20b', 1),
|
||||
-- Llama API costs
|
||||
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
|
||||
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
|
||||
('Llama-3.3-8B-Instruct', 1),
|
||||
('Llama-3.3-70B-Instruct', 1),
|
||||
-- v0 costs
|
||||
('v0-1.5-md', 1),
|
||||
('v0-1.5-lg', 2),
|
||||
('v0-1.0-md', 1)
|
||||
) AS costs(model_slug, cost)
|
||||
JOIN model_ids m ON m."slug" = costs.model_slug
|
||||
JOIN provider_ids p ON p."id" = m."providerId"
|
||||
ON CONFLICT ("llmModelId", "credentialProvider", "unit") DO NOTHING;
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
-- CreateTable
|
||||
CREATE TABLE "LlmModelMigration" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"sourceModelSlug" TEXT NOT NULL,
|
||||
"targetModelSlug" TEXT NOT NULL,
|
||||
"reason" TEXT,
|
||||
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
|
||||
"nodeCount" INTEGER NOT NULL,
|
||||
"customCreditCost" INTEGER,
|
||||
"isReverted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"revertedAt" TIMESTAMP(3),
|
||||
|
||||
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");
|
||||
@@ -1,127 +0,0 @@
|
||||
-- Add LlmModelCreator table
|
||||
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
|
||||
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
|
||||
|
||||
-- Create the LlmModelCreator table
|
||||
CREATE TABLE "LlmModelCreator" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"displayName" TEXT NOT NULL,
|
||||
"description" TEXT,
|
||||
"websiteUrl" TEXT,
|
||||
"logoUrl" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- Create unique index on name
|
||||
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
|
||||
|
||||
-- Add creatorId column to LlmModel
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
|
||||
|
||||
-- Add foreign key constraint
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
|
||||
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
|
||||
|
||||
-- Create index on creatorId
|
||||
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
|
||||
|
||||
-- Seed creators based on known model creators
|
||||
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
|
||||
VALUES
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
|
||||
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
|
||||
ON CONFLICT ("name") DO NOTHING;
|
||||
|
||||
-- Update existing models with their creators
|
||||
-- OpenAI models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
|
||||
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
|
||||
|
||||
-- Anthropic models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
|
||||
WHERE "slug" LIKE 'claude-%';
|
||||
|
||||
-- Meta/Llama models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
|
||||
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
|
||||
|
||||
-- Google models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
|
||||
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
|
||||
|
||||
-- Mistral models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
|
||||
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
|
||||
|
||||
-- Cohere models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
|
||||
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
|
||||
|
||||
-- DeepSeek models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
|
||||
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
|
||||
|
||||
-- Perplexity models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
|
||||
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
|
||||
|
||||
-- Qwen models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
|
||||
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
|
||||
|
||||
-- xAI/Grok models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
|
||||
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
|
||||
|
||||
-- Amazon models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
|
||||
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
|
||||
|
||||
-- Microsoft models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
|
||||
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
|
||||
|
||||
-- Moonshot models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
|
||||
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
|
||||
|
||||
-- NVIDIA models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
|
||||
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
|
||||
|
||||
-- Nous Research models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
|
||||
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
|
||||
|
||||
-- Vercel/v0 models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
|
||||
WHERE "slug" LIKE 'v0-%';
|
||||
|
||||
-- Dolphin models (Cognitive Computations / Eric Hartford)
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
|
||||
WHERE "slug" LIKE 'dolphin-%';
|
||||
|
||||
-- Gryphe models
|
||||
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
|
||||
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';
|
||||
@@ -1,4 +0,0 @@
|
||||
-- CreateIndex
|
||||
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
|
||||
-- This improves performance of model migration queries in the LLM registry
|
||||
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));
|
||||
@@ -1,52 +0,0 @@
|
||||
-- Add GPT-5.2 model and update O3 slug
|
||||
-- This migration adds the new GPT-5.2 model added in dev branch
|
||||
|
||||
-- Update O3 slug to match dev branch format
|
||||
UPDATE "LlmModel"
|
||||
SET "slug" = 'o3-2025-04-16'
|
||||
WHERE "slug" = 'o3';
|
||||
|
||||
-- Update cost reference for O3 if needed
|
||||
-- (costs are linked by model ID, so no update needed)
|
||||
|
||||
-- Add GPT-5.2 model
|
||||
WITH provider_id AS (
|
||||
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'gpt-5.2-2025-12-11',
|
||||
'GPT 5.2',
|
||||
'OpenAI GPT-5.2 model',
|
||||
p."id",
|
||||
400000,
|
||||
128000,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb
|
||||
FROM provider_id p
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Add cost for GPT-5.2
|
||||
WITH model_id AS (
|
||||
SELECT m."id", p."name" as provider_name
|
||||
FROM "LlmModel" m
|
||||
JOIN "LlmProvider" p ON p."id" = m."providerId"
|
||||
WHERE m."slug" = 'gpt-5.2-2025-12-11'
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
3, -- Same cost tier as GPT-5.1
|
||||
m.provider_name,
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id"
|
||||
FROM model_id m
|
||||
WHERE NOT EXISTS (
|
||||
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
|
||||
);
|
||||
@@ -1,11 +0,0 @@
|
||||
-- Add isRecommended field to LlmModel table
|
||||
-- This allows admins to mark a model as the recommended default
|
||||
|
||||
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
|
||||
|
||||
-- Set gpt-4o-mini as the default recommended model (if it exists)
|
||||
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
|
||||
|
||||
-- Create unique partial index to enforce only one recommended model at the database level
|
||||
-- This prevents multiple rows from having isRecommended = true
|
||||
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;
|
||||
@@ -1,61 +0,0 @@
|
||||
-- Add new columns to LlmModel table for extended model metadata
|
||||
-- These columns support the LLM Picker UI enhancements
|
||||
|
||||
-- Add priceTier column: 1=cheapest, 2=medium, 3=expensive
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "priceTier" INTEGER NOT NULL DEFAULT 1;
|
||||
|
||||
-- Add creatorId column for model creator relationship (if not exists)
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "creatorId" TEXT;
|
||||
|
||||
-- Add isRecommended column (if not exists)
|
||||
ALTER TABLE "LlmModel" ADD COLUMN IF NOT EXISTS "isRecommended" BOOLEAN NOT NULL DEFAULT FALSE;
|
||||
|
||||
-- Add index on creatorId if not exists
|
||||
CREATE INDEX IF NOT EXISTS "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
|
||||
|
||||
-- Add foreign key for creatorId if not exists
|
||||
DO $$
|
||||
BEGIN
|
||||
IF NOT EXISTS (SELECT 1 FROM pg_constraint WHERE conname = 'LlmModel_creatorId_fkey') THEN
|
||||
-- Only add FK if LlmModelCreator table exists
|
||||
IF EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name = 'LlmModelCreator') THEN
|
||||
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
|
||||
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
|
||||
END IF;
|
||||
END IF;
|
||||
END $$;
|
||||
|
||||
-- Update priceTier values for existing models based on original MODEL_METADATA
|
||||
-- Tier 1 = cheapest, Tier 2 = medium, Tier 3 = expensive
|
||||
|
||||
-- OpenAI models
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o3';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'o3-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'o1';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'o1-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-5.2';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5.1';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-5-nano';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-5-chat-latest';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" LIKE 'gpt-4.1%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-4o-mini';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" = 'gpt-4o';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'gpt-4-turbo';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'gpt-3.5-turbo';
|
||||
|
||||
-- Anthropic models
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude-opus%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude-sonnet%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE 'claude%-4-5-sonnet%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'claude%-haiku%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 1 WHERE "slug" = 'claude-3-haiku-20240307';
|
||||
|
||||
-- OpenRouter models - Pro/expensive tiers
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE 'google/gemini%-pro%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%command-r-plus%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 2 WHERE "slug" LIKE '%sonar-pro%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%sonar-deep-research%';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" = 'x-ai/grok-4';
|
||||
UPDATE "LlmModel" SET "priceTier" = 3 WHERE "slug" LIKE '%qwen3-coder%';
|
||||
@@ -1,6 +0,0 @@
|
||||
-- Add composite index on LlmModelMigration for optimized active migration queries
|
||||
-- This index improves performance when querying for non-reverted migrations by model slug
|
||||
-- Used by the billing system to apply customCreditCost overrides
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "LlmModelMigration_sourceModelSlug_isReverted_idx" ON "LlmModelMigration"("sourceModelSlug", "isReverted");
|
||||
@@ -1,65 +0,0 @@
|
||||
-- Sync LLM models with latest dev branch changes
|
||||
-- This migration adds new models and removes deprecated ones
|
||||
|
||||
-- Remove models that were deleted from dev
|
||||
DELETE FROM "LlmModelCost" WHERE "llmModelId" IN (
|
||||
SELECT "id" FROM "LlmModel" WHERE "slug" IN ('o3', 'o3-mini', 'claude-3-7-sonnet-20250219')
|
||||
);
|
||||
|
||||
DELETE FROM "LlmModel" WHERE "slug" IN ('o3', 'o3-mini', 'claude-3-7-sonnet-20250219');
|
||||
|
||||
-- Add new models from dev
|
||||
WITH provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata", "createdAt", "updatedAt")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
model_slug,
|
||||
model_display_name,
|
||||
NULL,
|
||||
p."id",
|
||||
context_window,
|
||||
max_output_tokens,
|
||||
true,
|
||||
'{}'::jsonb,
|
||||
'{}'::jsonb,
|
||||
NOW(),
|
||||
NOW()
|
||||
FROM (VALUES
|
||||
-- New OpenAI model
|
||||
('gpt-5.2-2025-12-11', 'GPT 5.2', 'openai', 400000, 128000),
|
||||
-- New Anthropic model
|
||||
('claude-opus-4-6', 'Claude 4.6 Opus', 'anthropic', 200000, 64000)
|
||||
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
|
||||
JOIN provider_ids p ON p."name" = models.provider_name
|
||||
ON CONFLICT ("slug") DO NOTHING;
|
||||
|
||||
-- Add costs for new models
|
||||
WITH model_ids AS (
|
||||
SELECT "id", "slug", "providerId" FROM "LlmModel"
|
||||
),
|
||||
provider_ids AS (
|
||||
SELECT "id", "name" FROM "LlmProvider"
|
||||
)
|
||||
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId", "createdAt", "updatedAt")
|
||||
SELECT
|
||||
gen_random_uuid(),
|
||||
'RUN'::"LlmCostUnit",
|
||||
cost,
|
||||
p."name",
|
||||
NULL,
|
||||
'api_key',
|
||||
NULL,
|
||||
'{}'::jsonb,
|
||||
m."id",
|
||||
NOW(),
|
||||
NOW()
|
||||
FROM (VALUES
|
||||
-- New model costs (estimate based on similar models)
|
||||
('gpt-5.2-2025-12-11', 5), -- Similar to GPT 5.1
|
||||
('claude-opus-4-6', 21) -- Similar to other Opus 4.x models
|
||||
) AS costs(model_slug, cost)
|
||||
JOIN model_ids m ON m."slug" = costs.model_slug
|
||||
JOIN provider_ids p ON p."id" = m."providerId"
|
||||
ON CONFLICT ("llmModelId", "credentialProvider", "unit") DO NOTHING;
|
||||
94
autogpt_platform/backend/poetry.lock
generated
94
autogpt_platform/backend/poetry.lock
generated
@@ -897,6 +897,29 @@ files = [
|
||||
{file = "charset_normalizer-3.4.4.tar.gz", hash = "sha256:94537985111c35f28720e43603b8e7b43a6ecfb2ce1d3058bbe955b73404e21a"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "claude-agent-sdk"
|
||||
version = "0.1.35"
|
||||
description = "Python SDK for Claude Code"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "claude_agent_sdk-0.1.35-py3-none-macosx_11_0_arm64.whl", hash = "sha256:df67f4deade77b16a9678b3a626c176498e40417f33b04beda9628287f375591"},
|
||||
{file = "claude_agent_sdk-0.1.35-py3-none-manylinux_2_17_aarch64.whl", hash = "sha256:14963944f55ded7c8ed518feebfa5b4284aa6dd8d81aeff2e5b21a962ce65097"},
|
||||
{file = "claude_agent_sdk-0.1.35-py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:84344dcc535d179c1fc8a11c6f34c37c3b583447bdf09d869effb26514fd7a65"},
|
||||
{file = "claude_agent_sdk-0.1.35-py3-none-win_amd64.whl", hash = "sha256:1b3d54b47448c93f6f372acd4d1757f047c3c1e8ef5804be7a1e3e53e2c79a5f"},
|
||||
{file = "claude_agent_sdk-0.1.35.tar.gz", hash = "sha256:0f98e2b3c71ca85abfc042e7a35c648df88e87fda41c52e6779ef7b038dcbb52"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.0.0"
|
||||
mcp = ">=0.1.0"
|
||||
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
|
||||
|
||||
[package.extras]
|
||||
dev = ["anyio[trio] (>=4.0.0)", "mypy (>=1.0.0)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.20.0)", "pytest-cov (>=4.0.0)", "ruff (>=0.1.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "cleo"
|
||||
version = "2.1.0"
|
||||
@@ -2593,6 +2616,18 @@ http2 = ["h2 (>=3,<5)"]
|
||||
socks = ["socksio (==1.*)"]
|
||||
zstd = ["zstandard (>=0.18.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "httpx-sse"
|
||||
version = "0.4.3"
|
||||
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "httpx_sse-0.4.3-py3-none-any.whl", hash = "sha256:0ac1c9fe3c0afad2e0ebb25a934a59f4c7823b60792691f779fad2c5568830fc"},
|
||||
{file = "httpx_sse-0.4.3.tar.gz", hash = "sha256:9b1ed0127459a66014aec3c56bebd93da3c1bc8bb6618c8082039a44889a755d"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "huggingface-hub"
|
||||
version = "1.4.1"
|
||||
@@ -3310,6 +3345,39 @@ files = [
|
||||
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mcp"
|
||||
version = "1.26.0"
|
||||
description = "Model Context Protocol SDK"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "mcp-1.26.0-py3-none-any.whl", hash = "sha256:904a21c33c25aa98ddbeb47273033c435e595bbacfdb177f4bd87f6dceebe1ca"},
|
||||
{file = "mcp-1.26.0.tar.gz", hash = "sha256:db6e2ef491eecc1a0d93711a76f28dec2e05999f93afd48795da1c1137142c66"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.5"
|
||||
httpx = ">=0.27.1"
|
||||
httpx-sse = ">=0.4"
|
||||
jsonschema = ">=4.20.0"
|
||||
pydantic = ">=2.11.0,<3.0.0"
|
||||
pydantic-settings = ">=2.5.2"
|
||||
pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
|
||||
python-multipart = ">=0.0.9"
|
||||
pywin32 = {version = ">=310", markers = "sys_platform == \"win32\""}
|
||||
sse-starlette = ">=1.6.1"
|
||||
starlette = ">=0.27"
|
||||
typing-extensions = ">=4.9.0"
|
||||
typing-inspection = ">=0.4.1"
|
||||
uvicorn = {version = ">=0.31.1", markers = "sys_platform != \"emscripten\""}
|
||||
|
||||
[package.extras]
|
||||
cli = ["python-dotenv (>=1.0.0)", "typer (>=0.16.0)"]
|
||||
rich = ["rich (>=13.9.4)"]
|
||||
ws = ["websockets (>=15.0.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "mdurl"
|
||||
version = "0.1.2"
|
||||
@@ -5994,7 +6062,7 @@ description = "Python for Window Extensions"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
groups = ["main"]
|
||||
markers = "platform_system == \"Windows\""
|
||||
markers = "sys_platform == \"win32\" or platform_system == \"Windows\""
|
||||
files = [
|
||||
{file = "pywin32-311-cp310-cp310-win32.whl", hash = "sha256:d03ff496d2a0cd4a5893504789d4a15399133fe82517455e78bad62efbb7f0a3"},
|
||||
{file = "pywin32-311-cp310-cp310-win_amd64.whl", hash = "sha256:797c2772017851984b97180b0bebe4b620bb86328e8a884bb626156295a63b3b"},
|
||||
@@ -6974,6 +7042,28 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
|
||||
pymysql = ["pymysql"]
|
||||
sqlcipher = ["sqlcipher3_binary"]
|
||||
|
||||
[[package]]
|
||||
name = "sse-starlette"
|
||||
version = "3.2.0"
|
||||
description = "SSE plugin for Starlette"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
groups = ["main"]
|
||||
files = [
|
||||
{file = "sse_starlette-3.2.0-py3-none-any.whl", hash = "sha256:5876954bd51920fc2cd51baee47a080eb88a37b5b784e615abb0b283f801cdbf"},
|
||||
{file = "sse_starlette-3.2.0.tar.gz", hash = "sha256:8127594edfb51abe44eac9c49e59b0b01f1039d0c7461c6fd91d4e03b70da422"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
anyio = ">=4.7.0"
|
||||
starlette = ">=0.49.1"
|
||||
|
||||
[package.extras]
|
||||
daphne = ["daphne (>=4.2.0)"]
|
||||
examples = ["aiosqlite (>=0.21.0)", "fastapi (>=0.115.12)", "sqlalchemy[asyncio] (>=2.0.41)", "uvicorn (>=0.34.0)"]
|
||||
granian = ["granian (>=2.3.1)"]
|
||||
uvicorn = ["uvicorn (>=0.34.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "stagehand"
|
||||
version = "0.5.9"
|
||||
@@ -8440,4 +8530,4 @@ cffi = ["cffi (>=1.17,<2.0) ; platform_python_implementation != \"PyPy\" and pyt
|
||||
[metadata]
|
||||
lock-version = "2.1"
|
||||
python-versions = ">=3.10,<3.14"
|
||||
content-hash = "fa9c5deadf593e815dd2190f58e22152373900603f5f244b9616cd721de84d2f"
|
||||
content-hash = "55e095de555482f0fe47de7695f390fe93e7bcf739b31c391b2e5e3c3d938ae3"
|
||||
|
||||
@@ -16,6 +16,7 @@ anthropic = "^0.79.0"
|
||||
apscheduler = "^3.11.1"
|
||||
autogpt-libs = { path = "../autogpt_libs", develop = true }
|
||||
bleach = { extras = ["css"], version = "^6.2.0" }
|
||||
claude-agent-sdk = "^0.1.0"
|
||||
click = "^8.2.0"
|
||||
cryptography = "^46.0"
|
||||
discord-py = "^2.5.2"
|
||||
|
||||
@@ -1143,154 +1143,6 @@ enum APIKeyStatus {
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
///////////// LLM REGISTRY AND BILLING DATA /////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
|
||||
// This is distinct from BlockCostType (in backend/data/block.py) which defines
|
||||
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
|
||||
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
|
||||
// while BlockCostType is for billing platform block executions.
|
||||
enum LlmCostUnit {
|
||||
RUN
|
||||
TOKENS
|
||||
}
|
||||
|
||||
model LlmModelCreator {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique // e.g., "openai", "anthropic", "meta"
|
||||
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
|
||||
description String?
|
||||
websiteUrl String? // Link to creator's website
|
||||
logoUrl String? // URL to creator's logo
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmProvider {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
name String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
defaultCredentialProvider String?
|
||||
defaultCredentialId String?
|
||||
defaultCredentialType String?
|
||||
|
||||
supportsTools Boolean @default(true)
|
||||
supportsJsonOutput Boolean @default(true)
|
||||
supportsReasoning Boolean @default(false)
|
||||
supportsParallelTool Boolean @default(false)
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
Models LlmModel[]
|
||||
}
|
||||
|
||||
model LlmModel {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
slug String @unique
|
||||
displayName String
|
||||
description String?
|
||||
|
||||
providerId String
|
||||
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
|
||||
|
||||
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
|
||||
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
|
||||
creatorId String?
|
||||
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
|
||||
|
||||
contextWindow Int
|
||||
maxOutputTokens Int?
|
||||
priceTier Int @default(1) // 1=cheapest, 2=medium, 3=expensive
|
||||
isEnabled Boolean @default(true)
|
||||
isRecommended Boolean @default(false)
|
||||
|
||||
capabilities Json @default("{}")
|
||||
metadata Json @default("{}")
|
||||
|
||||
Costs LlmModelCost[]
|
||||
|
||||
@@index([providerId, isEnabled])
|
||||
@@index([creatorId])
|
||||
@@index([slug])
|
||||
}
|
||||
|
||||
model LlmModelCost {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
unit LlmCostUnit @default(RUN)
|
||||
|
||||
creditCost Int
|
||||
|
||||
credentialProvider String
|
||||
credentialId String?
|
||||
credentialType String?
|
||||
currency String?
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
llmModelId String
|
||||
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
|
||||
|
||||
@@unique([llmModelId, credentialProvider, unit])
|
||||
@@index([llmModelId])
|
||||
@@index([credentialProvider])
|
||||
}
|
||||
|
||||
// Tracks model migrations for revert capability
|
||||
// When a model is disabled with migration, we record which nodes were affected
|
||||
// so they can be reverted when the original model is back online
|
||||
model LlmModelMigration {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
sourceModelSlug String // The original model that was disabled
|
||||
targetModelSlug String // The model workflows were migrated to
|
||||
reason String? // Why the migration happened (e.g., "Provider outage")
|
||||
|
||||
// Track affected nodes as JSON array of node IDs
|
||||
// Format: ["node-uuid-1", "node-uuid-2", ...]
|
||||
migratedNodeIds Json @default("[]")
|
||||
nodeCount Int // Number of nodes migrated
|
||||
|
||||
// Custom pricing override for migrated workflows during the migration period.
|
||||
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
|
||||
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
|
||||
// to avoid billing surprises, or offer a discount during the transition.
|
||||
//
|
||||
// IMPORTANT: This field is intended for integration with the billing system.
|
||||
// When billing calculates costs for nodes affected by this migration, it should
|
||||
// check if customCreditCost is set and use it instead of the target model's cost.
|
||||
// If null, the target model's normal cost applies.
|
||||
//
|
||||
// TODO: Integrate with billing system to apply this override during cost calculation.
|
||||
customCreditCost Int?
|
||||
|
||||
// Revert tracking
|
||||
isReverted Boolean @default(false)
|
||||
revertedAt DateTime?
|
||||
|
||||
@@index([sourceModelSlug])
|
||||
@@index([targetModelSlug])
|
||||
@@index([isReverted])
|
||||
@@index([sourceModelSlug, isReverted]) // Composite index for active migration queries
|
||||
}
|
||||
////////////// OAUTH PROVIDER TABLES //////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -0,0 +1,66 @@
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.blocks.jina._auth import (
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
JinaCredentialsInput,
|
||||
)
|
||||
from backend.blocks.jina.search import ExtractWebsiteContentBlock
|
||||
from backend.util.request import HTTPClientError
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_extract_website_content_returns_content(monkeypatch):
|
||||
block = ExtractWebsiteContentBlock()
|
||||
input_data = block.Input(
|
||||
url="https://example.com",
|
||||
credentials=cast(JinaCredentialsInput, TEST_CREDENTIALS_INPUT),
|
||||
raw_content=True,
|
||||
)
|
||||
|
||||
async def fake_get_request(url, json=False, headers=None):
|
||||
assert url == "https://example.com"
|
||||
assert headers == {}
|
||||
return "page content"
|
||||
|
||||
monkeypatch.setattr(block, "get_request", fake_get_request)
|
||||
|
||||
results = [
|
||||
output
|
||||
async for output in block.run(
|
||||
input_data=input_data, credentials=TEST_CREDENTIALS
|
||||
)
|
||||
]
|
||||
|
||||
assert ("content", "page content") in results
|
||||
assert all(key != "error" for key, _ in results)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_extract_website_content_handles_http_error(monkeypatch):
|
||||
block = ExtractWebsiteContentBlock()
|
||||
input_data = block.Input(
|
||||
url="https://example.com",
|
||||
credentials=cast(JinaCredentialsInput, TEST_CREDENTIALS_INPUT),
|
||||
raw_content=False,
|
||||
)
|
||||
|
||||
async def fake_get_request(url, json=False, headers=None):
|
||||
raise HTTPClientError("HTTP 400 Error: Bad Request", 400)
|
||||
|
||||
monkeypatch.setattr(block, "get_request", fake_get_request)
|
||||
|
||||
results = [
|
||||
output
|
||||
async for output in block.run(
|
||||
input_data=input_data, credentials=TEST_CREDENTIALS
|
||||
)
|
||||
]
|
||||
|
||||
assert ("content", "page content") not in results
|
||||
error_messages = [value for key, value in results if key == "error"]
|
||||
assert error_messages
|
||||
assert "Client error (400)" in error_messages[0]
|
||||
assert "https://example.com" in error_messages[0]
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user