Compare commits

...

86 Commits

Author SHA1 Message Date
github-actions[bot]
81a47ecab7 chore(release): Update version to v1.4.288 2025-08-16 16:19:42 +00:00
Kayvan Sylvan
0bce5c7b6e Merge pull request #1709 from ksylvan/0816-fix-youtube-transcripts
Enhanced YouTube Subtitle Language Fallback Handling
2025-08-16 09:17:09 -07:00
Kayvan Sylvan
992936dbd8 fix: improve YouTube subtitle language fallback handling in yt-dlp integration
- Fix typo "Gemmini" to "Gemini" in README
- Add "kballard" and "shellquote" to VSCode dictionary
- Add "YTDLP" to VSCode spell checker
- Enhance subtitle language options with fallback variants
- Build language options string with comma-separated alternatives
2025-08-16 09:14:03 -07:00
github-actions[bot]
48d74290f3 chore(release): Update version to v1.4.287 2025-08-16 07:29:23 +00:00
Kayvan Sylvan
3d4e967b92 Merge pull request #1706 from ksylvan/0814-readme-updates
Gemini Thinking Support and README (New Features) automation
2025-08-16 00:26:55 -07:00
Kayvan Sylvan
d8690c7cec feat: add release updates section and Gemini thinking support
- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking
- Create documentation for README update automation
- Reorganize README navigation structure with changelog section
2025-08-16 00:21:12 -07:00
github-actions[bot]
7eed9c3c64 chore(release): Update version to v1.4.286 2025-08-14 14:18:00 +00:00
Kayvan Sylvan
97b75cb153 Merge pull request #1700 from ksylvan/0813-thinking-flag-plus-suggest-pattern-overhault
Introduce Thinking Config Across Anthropic and OpenAI Providers
2025-08-14 07:15:40 -07:00
Kayvan Sylvan
b485a4584f refactor: extract token budget constants for thinking levels with validation bounds
## CHANGES

- Extract hardcoded token values into named constants
- Add comprehensive documentation for token budget purposes
- Implement token validation bounds (1-10000) in parsing
- Replace magic numbers with semantic constant references
- Improve code maintainability through constant extraction
2025-08-14 07:11:04 -07:00
Kayvan Sylvan
f4dbafc638 feat: add cross-provider --thinking flag mapping to Anthropic/OpenAI
CHANGES
- Add --thinking flag to set reasoning level cross-vendors
- Map Anthropic thinking levels and token budgets appropriately
- Translate OpenAI reasoning effort from thinking levels
- Propagate Thinking through ChatOptions, server, and dry-run output
- Update zsh, bash, fish completions with thinking choices
- Expand suggest_pattern docs with categories, workflows, usage examples
- Remove outdated suggest_pattern user files to avoid duplication
- Add VSCode dictionary terms: Anki, DMARC, wireframes
- Extend tests to include Thinking defaults in ChatOptions
2025-08-14 07:06:31 -07:00
github-actions[bot]
eae56e0038 chore(release): Update version to v1.4.285 2025-08-13 13:35:14 +00:00
Kayvan Sylvan
72a5e49855 Merge pull request #1698 from ksylvan/0812-claude-sonnet-1m-context
Enable One Million Token Context Beta Feature for Sonnet-4
2025-08-13 06:32:50 -07:00
Kayvan Sylvan
17b7d96da1 chore: upgrade anthropic-sdk-go to v1.9.1 and add beta feature support for context-1m
## CHANGES

- Upgrade anthropic-sdk-go from v1.7.0 to v1.9.1
- Upgrade golang.org/x/crypto from v0.39.0 to v0.40.0
- Add modelBetas map for beta feature configuration
- Implement context-1m-2025-08-07 beta for Claude Sonnet 4
- Add beta header support in streaming requests
- Add beta header support in standard requests
- Implement fallback mechanism when beta features fail
- Preserve existing beta headers in OAuth transport
- Add test coverage for model beta configuration
2025-08-12 22:30:27 -07:00
github-actions[bot]
1b2d9ec0ed chore(release): Update version to v1.4.284 2025-08-12 18:51:24 +00:00
Kayvan Sylvan
63fe320b16 Merge pull request #1695 from ksylvan/0812-make-installing-completions-super-easy
Introduce One-Liner Curl Install for Completions
2025-08-12 11:48:57 -07:00
Changelog Bot
aafca303ad chore: incoming 1695 changelog entry 2025-08-12 11:48:21 -07:00
Kayvan Sylvan
41821efd27 refactor: standardize obtain_completion_files logging; use stderr-only printf
CHANGES
- Replace print_info with tagged printf directed to stderr.
- Replace print_dry_run with tagged printf directed to stderr.
- Add comment enforcing stderr-only output inside this function.
- Preserve dry-run behavior by echoing path only on stdout.
- Retain error handling using print_error for directory creation.
- Normalize log message prefixes to [INFO] and [DRY-RUN].
- Avoid stdout pollution by routing informational messages to stderr.
2025-08-12 11:16:25 -07:00
Kayvan Sylvan
3a4082a1f3 fix: convert GitHub blob/tree URLs to raw and validate completion downloads
CHANGES
- Add helper to translate GitHub blob/tree to raw URLs
- Use effective URL in curl and wget download paths
- Validate downloaded files are non-empty and not HTML
- Redirect info and dry-run messages to standard error
- Relocate temporary directory cleanup trap into main execution
- Improve error messages when completion download sources appear invalid
2025-08-12 10:49:55 -07:00
Kayvan Sylvan
b6fa44d003 docs: add quick install method for shell completions without cloning repo
## CHANGES

- Add one-liner curl install for completions
- Support downloading completions when files missing locally
- Add dry-run option for preview changes
- Enable custom download source via environment variable
- Create temp directory for downloaded completion files
- Add automatic cleanup of temporary files
- Update documentation with new installation methods
2025-08-12 10:00:11 -07:00
github-actions[bot]
09d2d7efc5 chore(release): Update version to v1.4.283 2025-08-12 14:15:16 +00:00
Kayvan Sylvan
4c2ebf25fa Merge pull request #1692 from ksylvan/0812-specify-vendor-when-ambiguous
Add Vendor Selection Support for Models
2025-08-12 07:12:40 -07:00
Changelog Bot
b1b748dc9c chore: incoming 1692 changelog entry 2025-08-12 07:06:45 -07:00
Kayvan Sylvan
cc3e4226d7 feat: add -V/--vendor flag and vendor-aware model selection
CHANGES
- Add -V/--vendor flag to specify model vendor
- Implement vendor-aware model resolution and availability validation
- Warn on ambiguous models; suggest --vendor to disambiguate
- Update bash, zsh, fish completions with vendor suggestions
- Extend --listmodels to print vendor|model when interactive
- Add VendorsModels.PrintWithVendor; sort vendors and models alphabetically
- Pass vendor through API; update server chat handler
- Standardize docs and errors to --yt-dlp-args="..." syntax
- Add test covering ambiguous model warning across multiple vendors
- Promote go-shellquote to direct dependency in go.mod
2025-08-12 06:39:02 -07:00
github-actions[bot]
0f994d8136 chore(release): Update version to v1.4.282 2025-08-11 18:26:48 +00:00
Kayvan Sylvan
298a9007ad Merge pull request #1689 from ksylvan/0811-fix-completions-for-fabric-ai
Enhanced Shell Completions for Fabric CLI Binaries
2025-08-11 11:24:26 -07:00
Kayvan Sylvan
b36e5d3372 feat: enhance completions with 'fabric-ai' alias, dynamic exec, installer
CHANGES
- Support 'fabric-ai' alias across Zsh, Bash, and Fish
- Use invoked command for dynamic completion list queries
- Refactor Fish completions into reusable registrar for multiple commands
- Update Bash completion to reference executable via COMP_WORDS[0]
- Extend Zsh compdef to register fabric and fabric-ai
- Add cross-shell installer script with autodetection and dry-run mode
- Document installation, features, troubleshooting in new completions guide
2025-08-11 11:21:53 -07:00
github-actions[bot]
d1b8eb10ce chore(release): Update version to v1.4.281 2025-08-11 03:16:33 +00:00
Kayvan Sylvan
6000e7469e Merge pull request #1687 from ksylvan/0810-enable-gemini-search
Add Web Search Tool Support for Gemini Models
2025-08-10 20:13:57 -07:00
Changelog Bot
88d3fe65f3 chore: incoming 1687 changelog entry 2025-08-10 20:07:03 -07:00
Kayvan Sylvan
558e7f877d feat(gemini): enable web search, citations, and search-location validation
CHANGES
- Enable Gemini models to use web search tool
- Validate search-location timezone or language code formats
- Normalize language codes from underscores to hyphenated form
- Inject Google Search tool when --search flag enabled
- Append deduplicated web citations under standardized Sources section
- Improve robustness for nil candidates and content parts
- Factor generation config builder for reuse in streaming
- Update CLI help and completions to include Gemini
2025-08-10 19:56:02 -07:00
github-actions[bot]
f33d27f836 chore(release): Update version to v1.4.280 2025-08-10 12:34:52 +00:00
Kayvan Sylvan
1694324261 Merge pull request #1686 from ksylvan/0810-fix-openai-streaming-bug
Prevent duplicate text output in OpenAI streaming responses
2025-08-10 05:32:17 -07:00
Changelog Bot
3a3f5c50a8 chore: incoming 1686 changelog entry 2025-08-10 05:27:29 -07:00
Kayvan Sylvan
b1abfd71c2 fix: prevent duplicate text output in OpenAI streaming responses
## CHANGES

- Skip processing of ResponseOutputTextDone events
- Prevent doubled text in stream output
- Add clarifying comment about API behavior
- Maintain delta chunk streaming functionality
- Fix duplicate content issue in responses
2025-08-10 05:24:30 -07:00
github-actions[bot]
f5b7279225 chore(release): Update version to v1.4.279 2025-08-10 12:13:45 +00:00
Kayvan Sylvan
b974e1bfd5 Merge pull request #1685 from ksylvan/0810-fix-gemini-roles-in-sessions
Fix Gemini Role Mapping for API Compatibility
2025-08-10 05:11:16 -07:00
Changelog Bot
8dda68b3b9 chore: incoming 1685 changelog entry 2025-08-10 05:07:06 -07:00
Kayvan Sylvan
33c24e0cb2 fix(gemini): map chat roles to Gemini user/model in convertMessages
CHANGES
- Map assistant role to model per Gemini constraints
- Map system, developer, function, tool roles to user
- Default unrecognized roles to user to preserve instruction context
- Add unit test validating convertMessages role mapping logic
- Import chat package in tests for role constants
2025-08-10 04:55:33 -07:00
github-actions[bot]
8fb0c5b8a8 chore(release): Update version to v1.4.278 2025-08-09 17:26:37 +00:00
Kayvan Sylvan
d82122b624 Merge pull request #1681 from ksylvan/0803-youtube-transcript-lang-fix
Enhance YouTube Support with Custom yt-dlp Arguments
2025-08-09 10:24:09 -07:00
Kayvan Sylvan
f5966af95a docs: update release notes 2025-08-09 10:09:32 -07:00
Changelog Bot
9470ee1655 chore: incoming 1681 changelog entry 2025-08-09 10:06:50 -07:00
Kayvan Sylvan
9a118cf637 refactor: replace custom arg parser with shellquote; precompile regexes
CHANGES
- Precompile regexes for video, playlist, VTT tags, durations.
- Parse yt-dlp additional arguments using shellquote.Split for safety.
- Validate user-provided yt-dlp args and surface quoting errors.
- Reuse compiled regex in GetVideoOrPlaylistId extractions for stability.
- Simplify removeVTTTags by leveraging precompiled VTT tag matcher.
- Parse ISO-8601 durations with precompiled pattern for efficiency.
- Replace inline VTT language regex with cached compiled matcher.
- Remove unused findVTTFiles helper and redundant language checks.
- Add go-shellquote dependency in go.mod and go.sum.
- Reduce allocations by eliminating per-call regexp.MustCompile invocations.
2025-08-09 10:01:24 -07:00
Kayvan Sylvan
d69757908f docs: update release notes 2025-08-08 23:49:55 -07:00
Changelog Bot
30525ef1c0 chore: incoming 1681 changelog entry 2025-08-08 23:44:42 -07:00
Kayvan Sylvan
8414e72545 feat: add smart subtitle language fallback when requested locale unavailable
CHANGES
- Introduce findVTTFilesWithFallback to handle subtitle language absence
- Prefer requested language VTT, gracefully fallback to available alternatives
- Auto-detect downloaded subtitle language and proceed without interruption
- Update yt-dlp processing to use fallback-aware VTT discovery
- Document language fallback behavior and provide usage example
- Return first available VTT when no specific language requested
- Detect language-coded filenames using regex for robust matching
2025-08-08 23:39:12 -07:00
Kayvan Sylvan
caca366511 docs: update YouTube processing documentation for yt-dlp argument precedence control
## CHANGES

- Add user argument precedence over built-in flags
- Document argument order and override behavior
- Include new precedence section with detailed explanation
- Add override examples for language and format
- Update tips section with precedence guidance
- Modify Go code to append user args last
- Add testing tip for subtitle language discovery
- Include practical override use case examples
2025-08-08 23:14:28 -07:00
Kayvan Sylvan
261eb30951 feat: add --yt-dlp-args flag for custom YouTube downloader options
### CHANGES

- Introduce `--yt-dlp-args` flag for advanced control
- Allow passing browser cookies for authentication
- Improve error handling for YouTube rate limits
- Add comprehensive documentation for YouTube processing
- Refactor YouTube methods to accept additional arguments
- Update shell completions to include new flag
2025-08-08 23:03:02 -07:00
Kayvan Sylvan
bdb36ee296 Merge branch 'main' into 0803-youtube-transcript-lang-fix 2025-08-08 16:42:37 -07:00
github-actions[bot]
1351f138fb chore(release): Update version to v1.4.277 2025-08-08 07:40:13 +00:00
Kayvan Sylvan
8da51968dc Merge pull request #1679 from ksylvan/0807-desktop-notification
Add cross-platform desktop notifications to Fabric CLI
2025-08-08 00:37:40 -07:00
Kayvan Sylvan
30d23f15be chore: format fix 2025-08-08 00:35:04 -07:00
Changelog Bot
0a718be622 chore: incoming 1679 changelog entry 2025-08-08 00:30:20 -07:00
github-actions[bot]
21f258caa4 feat(cli): add cross-platform desktop notifications with secure custom commands
CHANGES
- Integrate notification sending into chat processing workflow
- Add --notification and --notification-command CLI flags and help
- Provide cross-platform providers: macOS, Linux, Windows with fallbacks
- Escape shell metacharacters to prevent injection vulnerabilities
- Truncate Unicode output safely for notification message previews
- Update bash, zsh, fish completions with new notification options
- Add docs and YAML examples for configuration and customization
- Add unit tests for providers and notification integration paths
2025-08-08 00:20:51 -07:00
github-actions[bot]
3584f83b30 chore(release): Update version to v1.4.276 2025-08-08 02:24:57 +00:00
Kayvan Sylvan
056791233a Merge pull request #1677 from ksylvan/0807-fix-release-notes-ci-cd-permission
Grant GITHUB_TOKEN write permissions for release notes job
2025-08-07 19:22:22 -07:00
Kayvan Sylvan
dc435dcc6e ci: add write permissions to update_release_notes job
## CHANGES

- Add contents write permission to release notes job
- Enable GitHub Actions to modify repository contents
- Fix potential permission issues during release process
2025-08-07 19:17:19 -07:00
github-actions[bot]
6edbc9dd38 chore(release): Update version to v1.4.275 2025-08-07 19:27:24 +00:00
Kayvan Sylvan
fd60d66c0d Merge pull request #1676 from ksylvan/0807-fix-gh-token-access-for-automated-release
Refactor authentication to support GITHUB_TOKEN and GH_TOKEN
2025-08-07 12:24:47 -07:00
Changelog Bot
08ec89bbe1 chore: incoming 1676 changelog entry 2025-08-07 12:16:21 -07:00
Kayvan Sylvan
836557f41c feat: add 'gpt-5' to raw-mode models in OpenAI client
## CHANGES
- Add gpt-5 to raw mode model requirements list.
- Ensure gpt-5 responses bypass structured chat message formatting.
- Align NeedsRawMode logic with expanded OpenAI model support.
2025-08-07 12:15:44 -07:00
Kayvan Sylvan
f7c5c6d344 docs: document GetTokenFromEnv behavior and token environment fallback 2025-08-07 11:42:48 -07:00
Kayvan Sylvan
9d18ad523e docs: document GetTokenFromEnv behavior and token environment fallback 2025-08-07 11:38:19 -07:00
Changelog Bot
efcd7dcac2 chore: incoming 1676 changelog entry 2025-08-07 11:33:36 -07:00
Kayvan Sylvan
768e87879e refactor: centralize GitHub token retrieval logic into utility function
## CHANGES

- Extract token retrieval into `util.GetTokenFromEnv` function
- Support both `GITHUB_TOKEN` and `GH_TOKEN` environment variables
- Replace direct `os.Getenv` calls with utility function
- Add new `util/token.go` file for token handling
- Update walker.go to use centralized token logic
- Update main.go to use token utility function
2025-08-07 10:01:11 -07:00
github-actions[bot]
3c51cad614 chore(release): Update version to v1.4.274 2025-08-07 04:38:49 +00:00
Kayvan Sylvan
bc642904e0 Merge pull request #1673 from ksylvan/0806-update-anthropic-to-support-opus-4-1
Add Support for Claude Opus 4.1 Model
2025-08-06 21:36:19 -07:00
Changelog Bot
fa135036f4 chore: incoming 1673 changelog entry 2025-08-06 21:25:57 -07:00
Kayvan Sylvan
2d414ec394 fix: ensure Anthropic client always sets temperature to override API default
## CHANGES

- Always set temperature parameter for consistent behavior
- Prioritize TopP over temperature when explicitly set
- Override Anthropic's default 1.0 with Fabric's 0.7
- Add comprehensive tests for parameter precedence logic
- Update VSCode dictionary with Keploy entry
- Simplify conditional logic for temperature/TopP selection
2025-08-06 21:25:24 -07:00
Changelog Bot
9e72df9c6c chore: incoming 1673 changelog entry 2025-08-06 20:56:26 -07:00
Kayvan Sylvan
1a933e1c9a refactor: improve chat parameter defaults handling with domain constants
## CHANGES

- Add domain constants for default chat parameter values
- Update Anthropic client to check explicitly set parameters
- Add documentation linking CLI flags to domain defaults
- Improve temperature and TopP parameter selection logic
- Ensure consistent default values across CLI and domain
- Replace zero-value checks with explicit default comparisons
- Centralize chat option defaults in domain package
2025-08-06 20:56:08 -07:00
Changelog Bot
d5431f9843 chore: incoming 1673 changelog entry 2025-08-06 20:29:04 -07:00
Kayvan Sylvan
e2dabc406d ci: refactor release workflow to use shared version job and simplify OS handling 2025-08-06 20:18:46 -07:00
Changelog Bot
31f7f22629 chore: incoming 1673 changelog entry 2025-08-06 19:58:24 -07:00
Kayvan Sylvan
29aaf430ca fix: update anthropic SDK and refactor release workflow for release notes generation
## CHANGES

- Upgrade anthropic-sdk-go from v1.4.0 to v1.7.0
- Move changelog generation to separate workflow job
- Add Claude Opus 4.1 model support
- Fix temperature/topP parameter conflict for models
- Separate release artifact upload from changelog update
- Add dedicated update_release_notes job configuration
2025-08-06 19:50:36 -07:00
github-actions[bot]
9ef3518a07 chore(release): Update version to v1.4.273 2025-08-05 04:06:55 +00:00
Kayvan Sylvan
0b40bad986 Merge pull request #1671 from queryfast/main
chore: remove redundant words
2025-08-04 21:04:35 -07:00
queryfast
34ff4d30f2 chore: remove redundant words
Signed-off-by: queryfast <queryfast@outlook.com>
2025-08-05 11:16:43 +08:00
Kayvan Sylvan
2b195f204d ci: separate release notes generation into dedicated job
## CHANGES

- Move changelog generation to separate workflow job
- Add fallback logic for YouTube subtitle language detection
- Remove changelog commands from main release job
- Create dedicated update_release_notes job with Go setup
- Implement retry mechanism without language specification
- Improve yt-dlp command argument construction flexibility
- Add proper checkout and Go configuration steps
2025-08-03 21:46:24 -07:00
Kayvan Sylvan
1d9596bf3d Merge pull request #1660 from pbulteel/main 2025-07-29 19:18:44 -07:00
Patrick Bulteel
72d099d40a Fix typos in t_ patterns 2025-07-29 11:59:22 +01:00
github-actions[bot]
7ab6fe3baa chore(release): Update version to v1.4.272 2025-07-28 04:52:22 +00:00
Kayvan Sylvan
198964df82 Merge pull request #1658 from ksylvan/0727-fix-release-note-updates
Update Release Process for Data Consistency
2025-07-27 21:49:56 -07:00
Changelog Bot
f0998d3686 chore: incoming 1658 changelog entry 2025-07-27 21:47:56 -07:00
Kayvan Sylvan
75875ba9f5 chore: Update changelog cache db 2025-07-27 21:43:39 -07:00
Kayvan Sylvan
ea009ff64b feat: add database sync before generating changelog in release workflow
### CHANGES
- Add database sync command to release workflow
- Ensure changelog generation includes latest database updates
2025-07-27 21:40:04 -07:00
71 changed files with 4554 additions and 2123 deletions

View File

@@ -27,8 +27,39 @@ jobs:
- name: Run tests
run: go test -v ./...
get_version:
name: Get version
runs-on: ubuntu-latest
outputs:
latest_tag: ${{ steps.get_version.outputs.latest_tag }}
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get version from source
id: get_version
shell: bash
run: |
if [ ! -f "nix/pkgs/fabric/version.nix" ]; then
echo "Error: version.nix file not found"
exit 1
fi
version=$(cat nix/pkgs/fabric/version.nix | tr -d '"' | tr -cd '0-9.')
if [ -z "$version" ]; then
echo "Error: version is empty"
exit 1
fi
if ! echo "$version" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+' > /dev/null; then
echo "Error: Invalid version format: $version"
exit 1
fi
echo "latest_tag=v$version" >> $GITHUB_OUTPUT
build:
name: Build binaries for Windows, macOS, and Linux
needs: [test, get_version]
runs-on: ${{ matrix.os }}
permissions:
contents: write
@@ -51,25 +82,14 @@ jobs:
with:
go-version-file: ./go.mod
- name: Determine OS Name
id: os-name
run: |
if [ "${{ matrix.os }}" == "ubuntu-latest" ]; then
echo "OS=linux" >> $GITHUB_ENV
elif [ "${{ matrix.os }}" == "macos-latest" ]; then
echo "OS=darwin" >> $GITHUB_ENV
else
echo "OS=windows" >> $GITHUB_ENV
fi
shell: bash
- name: Build binary on Linux and macOS
if: matrix.os != 'windows-latest'
env:
GOOS: ${{ env.OS }}
GOOS: ${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}
GOARCH: ${{ matrix.arch }}
run: |
go build -o fabric-${OS}-${{ matrix.arch }} ./cmd/fabric
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
go build -o fabric-${OS_NAME}-${{ matrix.arch }} ./cmd/fabric
- name: Build binary on Windows
if: matrix.os == 'windows-latest'
@@ -83,8 +103,8 @@ jobs:
if: matrix.os != 'windows-latest'
uses: actions/upload-artifact@v4
with:
name: fabric-${OS}-${{ matrix.arch }}
path: fabric-${OS}-${{ matrix.arch }}
name: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
path: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
- name: Upload build artifact
if: matrix.os == 'windows-latest'
@@ -93,47 +113,51 @@ jobs:
name: fabric-windows-${{ matrix.arch }}.exe
path: fabric-windows-${{ matrix.arch }}.exe
- name: Get version from source
id: get_version
shell: bash
run: |
if [ ! -f "nix/pkgs/fabric/version.nix" ]; then
echo "Error: version.nix file not found"
exit 1
fi
version=$(cat nix/pkgs/fabric/version.nix | tr -d '"' | tr -cd '0-9.')
if [ -z "$version" ]; then
echo "Error: version is empty"
exit 1
fi
if ! echo "$version" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+' > /dev/null; then
echo "Error: Invalid version format: $version"
exit 1
fi
echo "latest_tag=v$version" >> $GITHUB_ENV
- name: Create release if it doesn't exist
shell: bash
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
if ! gh release view ${{ env.latest_tag }} >/dev/null 2>&1; then
gh release create ${{ env.latest_tag }} --title "Release ${{ env.latest_tag }}" --notes "Automated release for ${{ env.latest_tag }}"
if ! gh release view ${{ needs.get_version.outputs.latest_tag }} >/dev/null 2>&1; then
gh release create ${{ needs.get_version.outputs.latest_tag }} --title "Release ${{ needs.get_version.outputs.latest_tag }}" --notes "Automated release for ${{ needs.get_version.outputs.latest_tag }}"
else
echo "Release ${{ env.latest_tag }} already exists."
echo "Release ${{ needs.get_version.outputs.latest_tag }} already exists."
fi
go run ./cmd/generate_changelog --release ${{ env.latest_tag }}
- name: Upload release artifact
if: matrix.os == 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
gh release upload ${{ env.latest_tag }} fabric-windows-${{ matrix.arch }}.exe
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-windows-${{ matrix.arch }}.exe
- name: Upload release artifact
if: matrix.os != 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
gh release upload ${{ env.latest_tag }} fabric-${OS}-${{ matrix.arch }}
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-${OS_NAME}-${{ matrix.arch }}
update_release_notes:
needs: [build, get_version]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
with:
go-version-file: ./go.mod
- name: Update release description
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
go run ./cmd/generate_changelog --sync-db
go run ./cmd/generate_changelog --release ${{ needs.get_version.outputs.latest_tag }}

12
.vscode/settings.json vendored
View File

@@ -4,6 +4,7 @@
"addextension",
"adduser",
"AIML",
"Anki",
"anthropics",
"Aoede",
"atotto",
@@ -28,6 +29,7 @@
"deepseek",
"Despina",
"direnv",
"DMARC",
"dryrun",
"dsrp",
"editability",
@@ -73,12 +75,15 @@
"jessevdk",
"Jina",
"joho",
"kballard",
"Keploy",
"Kore",
"ksylvan",
"Langdock",
"Laomedeia",
"ldflags",
"libexec",
"libnotify",
"listcontexts",
"listextensions",
"listmodels",
@@ -92,6 +97,7 @@
"matplotlib",
"mattn",
"mbed",
"metacharacters",
"Miessler",
"nometa",
"numpy",
@@ -101,6 +107,7 @@
"opencode",
"openrouter",
"Orus",
"osascript",
"otiai",
"pdflatex",
"pipx",
@@ -123,6 +130,7 @@
"seaborn",
"semgrep",
"sess",
"shellquote",
"storer",
"Streamlit",
"stretchr",
@@ -145,11 +153,13 @@
"WEBVTT",
"wipecontext",
"wipesession",
"wireframes",
"Worktree",
"writeups",
"xclip",
"yourpatternname",
"youtu"
"youtu",
"YTDLP"
],
"cSpell.ignorePaths": ["go.mod", ".gitignore", "CHANGELOG.md"],
"markdownlint.config": {

View File

@@ -1,5 +1,170 @@
# Changelog
## v1.4.288 (2025-08-16)
### PR [#1709](https://github.com/danielmiessler/Fabric/pull/1709) by [ksylvan](https://github.com/ksylvan): Enhanced YouTube Subtitle Language Fallback Handling
- Fix: improve YouTube subtitle language fallback handling in yt-dlp integration
- Fix typo "Gemmini" to "Gemini" in README
- Add "kballard" and "shellquote" to VSCode dictionary
- Add "YTDLP" to VSCode spell checker
- Enhance subtitle language options with fallback variants
## v1.4.287 (2025-08-14)
### PR [#1706](https://github.com/danielmiessler/Fabric/pull/1706) by [ksylvan](https://github.com/ksylvan): Gemini Thinking Support and README (New Features) automation
- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking
## v1.4.286 (2025-08-14)
### PR [#1700](https://github.com/danielmiessler/Fabric/pull/1700) by [ksylvan](https://github.com/ksylvan): Introduce Thinking Config Across Anthropic and OpenAI Providers
- Add --thinking CLI flag for configurable reasoning levels across providers
- Implement Anthropic ThinkingConfig with standardized budgets and tokens
- Map OpenAI reasoning effort from thinking levels
- Show thinking level in dry-run formatted options
- Overhaul suggest_pattern docs with categories, workflows, usage examples
## v1.4.285 (2025-08-13)
### PR [#1698](https://github.com/danielmiessler/Fabric/pull/1698) by [ksylvan](https://github.com/ksylvan): Enable One Million Token Context Beta Feature for Sonnet-4
- Chore: upgrade anthropic-sdk-go to v1.9.1 and add beta feature support for context-1m
- Add modelBetas map for beta feature configuration
- Implement context-1m-2025-08-07 beta for Claude Sonnet 4
- Add beta header support with fallback handling
- Preserve existing beta headers in OAuth transport
## v1.4.284 (2025-08-12)
### PR [#1695](https://github.com/danielmiessler/Fabric/pull/1695) by [ksylvan](https://github.com/ksylvan): Introduce One-Liner Curl Install for Completions
- Add one-liner curl install method for shell completions without requiring repository cloning
- Support downloading completions when files are missing locally with dry-run option for previewing changes
- Enable custom download source via environment variable and create temporary directory for downloaded completion files
- Add automatic cleanup of temporary files and validate downloaded files are non-empty and not HTML
- Improve error handling and standardize logging by routing informational messages to stderr to avoid stdout pollution
## v1.4.283 (2025-08-12)
### PR [#1692](https://github.com/danielmiessler/Fabric/pull/1692) by [ksylvan](https://github.com/ksylvan): Add Vendor Selection Support for Models
- Add -V/--vendor flag to specify model vendor
- Implement vendor-aware model resolution and availability validation
- Warn on ambiguous models; suggest --vendor to disambiguate
- Update bash, zsh, fish completions with vendor suggestions
- Extend --listmodels to print vendor|model when interactive
## v1.4.282 (2025-08-11)
### PR [#1689](https://github.com/danielmiessler/Fabric/pull/1689) by [ksylvan](https://github.com/ksylvan): Enhanced Shell Completions for Fabric CLI Binaries
- Add 'fabric-ai' alias support across all shell completions
- Use invoked command name for dynamic completion list queries
- Refactor fish completions into reusable registrar for multiple commands
- Update Bash completion to reference executable via COMP_WORDS[0]
- Install completions automatically with new cross-shell setup script
## v1.4.281 (2025-08-11)
### PR [#1687](https://github.com/danielmiessler/Fabric/pull/1687) by [ksylvan](https://github.com/ksylvan): Add Web Search Tool Support for Gemini Models
- Enable Gemini models to use web search tool with --search flag
- Add validation for search-location timezone and language code formats
- Normalize language codes from underscores to hyphenated form
- Append deduplicated web citations under standardized Sources section
- Improve robustness for nil candidates and content parts
## v1.4.280 (2025-08-10)
### PR [#1686](https://github.com/danielmiessler/Fabric/pull/1686) by [ksylvan](https://github.com/ksylvan): Prevent duplicate text output in OpenAI streaming responses
- Fix: prevent duplicate text output in OpenAI streaming responses
- Skip processing of ResponseOutputTextDone events
- Prevent doubled text in stream output
- Add clarifying comment about API behavior
- Maintain delta chunk streaming functionality
## v1.4.279 (2025-08-10)
### PR [#1685](https://github.com/danielmiessler/Fabric/pull/1685) by [ksylvan](https://github.com/ksylvan): Fix Gemini Role Mapping for API Compatibility
- Fix Gemini role mapping to ensure proper API compatibility by converting chat roles to Gemini's user/model format
- Map assistant role to model role per Gemini API constraints
- Map system, developer, function, and tool roles to user role for proper handling
- Default unrecognized roles to user role to preserve instruction context
- Add comprehensive unit tests to validate convertMessages role mapping logic
## v1.4.278 (2025-08-09)
### PR [#1681](https://github.com/danielmiessler/Fabric/pull/1681) by [ksylvan](https://github.com/ksylvan): Enhance YouTube Support with Custom yt-dlp Arguments
- Add `--yt-dlp-args` flag for custom YouTube downloader options with advanced control capabilities
- Implement smart subtitle language fallback system when requested locale is unavailable
- Add fallback logic for YouTube subtitle language detection with auto-detection of downloaded languages
- Replace custom argument parser with shellquote and precompile regexes for improved performance and safety
## v1.4.277 (2025-08-08)
### PR [#1679](https://github.com/danielmiessler/Fabric/pull/1679) by [ksylvan](https://github.com/ksylvan): Add cross-platform desktop notifications to Fabric CLI
- Add cross-platform desktop notifications with secure custom commands
- Integrate notification sending into chat processing workflow
- Add --notification and --notification-command CLI flags and help
- Provide cross-platform providers: macOS, Linux, Windows with fallbacks
- Escape shell metacharacters to prevent injection vulnerabilities
## v1.4.276 (2025-08-08)
### Direct commits
- Ci: add write permissions to update_release_notes job
- Add contents write permission to release notes job
- Enable GitHub Actions to modify repository contents
- Fix potential permission issues during release process
## v1.4.275 (2025-08-07)
### PR [#1676](https://github.com/danielmiessler/Fabric/pull/1676) by [ksylvan](https://github.com/ksylvan): Refactor authentication to support GITHUB_TOKEN and GH_TOKEN
- Refactor: centralize GitHub token retrieval logic into utility function
- Support both GITHUB_TOKEN and GH_TOKEN environment variables with fallback handling
- Add new util/token.go file for centralized token handling across the application
- Update walker.go and main.go to use the new centralized token utility function
- Feat: add 'gpt-5' to raw-mode models in OpenAI client to bypass structured chat message formatting
## v1.4.274 (2025-08-07)
### PR [#1673](https://github.com/danielmiessler/Fabric/pull/1673) by [ksylvan](https://github.com/ksylvan): Add Support for Claude Opus 4.1 Model
- Add Claude Opus 4.1 model support
- Upgrade anthropic-sdk-go from v1.4.0 to v1.7.0
- Fix temperature/topP parameter conflict for models
- Refactor release workflow to use shared version job and simplify OS handling
- Improve chat parameter defaults handling with domain constants
## v1.4.273 (2025-08-05)
### Direct commits
- Remove redundant words from codebase
- Fix typos in t_ patterns
## v1.4.272 (2025-07-28)
### PR [#1658](https://github.com/danielmiessler/Fabric/pull/1658) by [ksylvan](https://github.com/ksylvan): Update Release Process for Data Consistency
- Add database sync before generating changelog in release workflow
- Ensure changelog generation includes latest database updates
- Update changelog cache database
## v1.4.271 (2025-07-28)
### PR [#1657](https://github.com/danielmiessler/Fabric/pull/1657) by [ksylvan](https://github.com/ksylvan): Add GitHub Release Description Update Feature

View File

@@ -47,6 +47,52 @@ It's all really exciting and powerful, but _it's not easy to integrate this func
Fabric organizes prompts by real-world task, allowing people to create, collect, and organize their most important AI solutions in a single place for use in their favorite tools. And if you're command-line focused, you can use Fabric itself as the interface!
## Updates
Dear Users,
We've been doing so many exciting things here at Fabric, I wanted to give a quick summary here to give you a sense of our development velocity!
Below are the **new features and capabilities** we've added (newest first):
### Recent Major Features
- [v1.4.287](https://github.com/danielmiessler/fabric/releases/tag/v1.4.287) (Aug 16, 2025) — **AI Reasoning**: Add Thinking to Gemini models and introduce `readme_updates` python script
- [v1.4.286](https://github.com/danielmiessler/fabric/releases/tag/v1.4.286) (Aug 14, 2025) — **AI Reasoning**: Introduce Thinking Config Across Anthropic and OpenAI Providers
- [v1.4.285](https://github.com/danielmiessler/fabric/releases/tag/v1.4.285) (Aug 13, 2025) — **Extended Context**: Enable One Million Token Context Beta Feature for Sonnet-4
- [v1.4.284](https://github.com/danielmiessler/fabric/releases/tag/v1.4.284) (Aug 12, 2025) — **Easy Shell Completions Setup**: Introduce One-Liner Curl Install for Completions
- [v1.4.283](https://github.com/danielmiessler/fabric/releases/tag/v1.4.283) (Aug 12, 2025) — **Model Management**: Add Vendor Selection Support for Models
- [v1.4.282](https://github.com/danielmiessler/fabric/releases/tag/v1.4.282) (Aug 11, 2025) — **Enhanced Shell Completions**: Enhanced Shell Completions for Fabric CLI Binaries
- [v1.4.281](https://github.com/danielmiessler/fabric/releases/tag/v1.4.281) (Aug 11, 2025) — **Gemini Search Tool**: Add Web Search Tool Support for Gemini Models
- [v1.4.278](https://github.com/danielmiessler/fabric/releases/tag/v1.4.278) (Aug 9, 2025) — **Enhance YouTube Transcripts**: Enhance YouTube Support with Custom yt-dlp Arguments
- [v1.4.277](https://github.com/danielmiessler/fabric/releases/tag/v1.4.277) (Aug 8, 2025) — **Desktop Notifications**: Add cross-platform desktop notifications to Fabric CLI
- [v1.4.274](https://github.com/danielmiessler/fabric/releases/tag/v1.4.274) (Aug 7, 2025) — **Claude 4.1 Added**: Add Support for Claude Opus 4.1 Model
- [v1.4.271](https://github.com/danielmiessler/fabric/releases/tag/v1.4.271) (Jul 28, 2025) — **AI Summarized Release Notes**: Enable AI summary updates for GitHub releases
- [v1.4.268](https://github.com/danielmiessler/fabric/releases/tag/v1.4.268) (Jul 26, 2025) — **Gemini TTS Voice Selection**: add Gemini TTS voice selection and listing functionality
- [v1.4.267](https://github.com/danielmiessler/fabric/releases/tag/v1.4.267) (Jul 26, 2025) — **Text-to-Speech**: Update Gemini Plugin to New SDK with TTS Support
- [v1.4.258](https://github.com/danielmiessler/fabric/releases/tag/v1.4.258) (Jul 17, 2025) — **Onboarding Improved**: Add startup check to initialize config and .env file automatically
- [v1.4.257](https://github.com/danielmiessler/fabric/releases/tag/v1.4.257) (Jul 17, 2025) — **OpenAI Routing Control**: Introduce CLI Flag to Disable OpenAI Responses API
- [v1.4.252](https://github.com/danielmiessler/fabric/releases/tag/v1.4.252) (Jul 16, 2025) — **Hide Thinking Block**: Optional Hiding of Model Thinking Process with Configurable Tags
- [v1.4.246](https://github.com/danielmiessler/fabric/releases/tag/v1.4.246) (Jul 14, 2025) — **Automatic ChangeLog Updates**: Add AI-powered changelog generation with high-performance Go tool and comprehensive caching
- [v1.4.245](https://github.com/danielmiessler/fabric/releases/tag/v1.4.245) (Jul 11, 2025) — **Together AI**: Together AI Support with OpenAI Fallback Mechanism Added
- [v1.4.232](https://github.com/danielmiessler/fabric/releases/tag/v1.4.232) (Jul 6, 2025) — **Add Custom**: Add Custom Patterns Directory Support
- [v1.4.231](https://github.com/danielmiessler/fabric/releases/tag/v1.4.231) (Jul 5, 2025) — **OAuth Auto-Auth**: OAuth Authentication Support for Anthropic (Use your Max Subscription)
- [v1.4.230](https://github.com/danielmiessler/fabric/releases/tag/v1.4.230) (Jul 5, 2025) — **Model Management**: Add advanced image generation parameters for OpenAI models with four new CLI flags
- [v1.4.227](https://github.com/danielmiessler/fabric/releases/tag/v1.4.227) (Jul 4, 2025) — **Add Image**: Add Image Generation Support to Fabric
- [v1.4.226](https://github.com/danielmiessler/fabric/releases/tag/v1.4.226) (Jul 4, 2025) — **Web Search**: OpenAI Plugin Now Supports Web Search Functionality
- [v1.4.225](https://github.com/danielmiessler/fabric/releases/tag/v1.4.225) (Jul 4, 2025) — **Web Search**: Runtime Web Search Control via Command-Line `--search` Flag
- [v1.4.224](https://github.com/danielmiessler/fabric/releases/tag/v1.4.224) (Jul 1, 2025) — **Add code_review**: Add code_review pattern and updates in Pattern_Descriptions
- [v1.4.222](https://github.com/danielmiessler/fabric/releases/tag/v1.4.222) (Jul 1, 2025) — **OpenAI Plugin**: OpenAI Plugin Migrates to New Responses API
- [v1.4.218](https://github.com/danielmiessler/fabric/releases/tag/v1.4.218) (Jun 27, 2025) — **Model Management**: Add Support for OpenAI Search and Research Model Variants
- [v1.4.217](https://github.com/danielmiessler/fabric/releases/tag/v1.4.217) (Jun 26, 2025) — **New YouTube**: New YouTube Transcript Endpoint Added to REST API
- [v1.4.212](https://github.com/danielmiessler/fabric/releases/tag/v1.4.212) (Jun 23, 2025) — **Add Langdock**: Add Langdock AI and enhance generic OpenAI compatible support
- [v1.4.211](https://github.com/danielmiessler/fabric/releases/tag/v1.4.211) (Jun 19, 2025) — **REST API**: REST API and Web UI Now Support Dynamic Pattern Variables
- [v1.4.210](https://github.com/danielmiessler/fabric/releases/tag/v1.4.210) (Jun 18, 2025) — **Add Citations**: Add Citation Support to Perplexity Response
- [v1.4.208](https://github.com/danielmiessler/fabric/releases/tag/v1.4.208) (Jun 17, 2025) — **Add Perplexity**: Add Perplexity AI Provider with Token Limits Support
- [v1.4.203](https://github.com/danielmiessler/fabric/releases/tag/v1.4.203) (Jun 14, 2025) — **Add Amazon Bedrock**: Add support for Amazon Bedrock
These features represent our commitment to making Fabric the most powerful and flexible AI augmentation framework available!
## Intro videos
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#installation) below.
@@ -60,9 +106,11 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [`fabric`](#fabric)
- [What and why](#what-and-why)
- [Updates](#updates)
- [Recent Major Features](#recent-major-features)
- [Intro videos](#intro-videos)
- [Navigation](#navigation)
- [Updates](#updates)
- [Changelog](#changelog)
- [Philosophy](#philosophy)
- [Breaking problems into components](#breaking-problems-into-components)
- [Too many prompts](#too-many-prompts)
@@ -84,6 +132,7 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [Migration](#migration)
- [Upgrading](#upgrading)
- [Shell Completions](#shell-completions)
- [Quick install (no clone required)](#quick-install-no-clone-required)
- [Zsh Completion](#zsh-completion)
- [Bash Completion](#bash-completion)
- [Fish Completion](#fish-completion)
@@ -111,7 +160,7 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
<br />
## Updates
## Changelog
Fabric is evolving rapidly.
@@ -428,6 +477,25 @@ Fabric provides shell completion scripts for Zsh, Bash, and Fish
shells, making it easier to use the CLI by providing tab completion
for commands and options.
#### Quick install (no clone required)
You can install completions directly via a one-liner:
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh
```
Optional variants:
```bash
# Dry-run (see actions without changing your system)
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh -s -- --dry-run
# Override the download source (advanced)
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions" \
sh -c "$(curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh)"
```
#### Zsh Completion
To enable Zsh completion:
@@ -498,6 +566,7 @@ Application Options:
-U, --updatepatterns Update patterns
-c, --copy Copy to clipboard
-m, --model= Choose model
-V, --vendor= Specify vendor for chosen model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)
--modelContextLength= Model context length (only affects ollama)
-o, --output= Output to file
--output-session Output the entire session (also a temporary one) to the output file
@@ -536,7 +605,7 @@ Application Options:
--liststrategies List all strategies
--listvendors List all vendors
--shell-complete-list Output raw list without headers/formatting (for shell completion)
--search Enable web search tool for supported models (Anthropic, OpenAI)
--search Enable web search tool for supported models (Anthropic, OpenAI, Gemini)
--search-location= Set location for web search results (e.g., 'America/Los_Angeles')
--image-file= Save generated image to specified file path (e.g., 'output.png')
--image-size= Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)
@@ -551,7 +620,12 @@ Application Options:
--voice= TTS voice name for supported models (e.g., Kore, Charon, Puck)
(default: Kore)
--list-gemini-voices List all available Gemini TTS voices
--notification Send desktop notification when command completes
--notification-command= Custom command to run for notifications (overrides built-in
notifications)
--yt-dlp-args= Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')
--thinking= Set reasoning/thinking level (e.g., off, low, medium, high, or
numeric tokens for Anthropic or Google Gemini)
Help Options:
-h, --help Show this help message
```

View File

@@ -1,3 +1,3 @@
package main
var version = "v1.4.271"
var version = "v1.4.288"

Binary file not shown.

View File

@@ -2,12 +2,12 @@ package git
import (
"fmt"
"os"
"regexp"
"strconv"
"strings"
"time"
"github.com/danielmiessler/fabric/cmd/generate_changelog/util"
"github.com/go-git/go-git/v5"
"github.com/go-git/go-git/v5/plumbing"
"github.com/go-git/go-git/v5/plumbing/object"
@@ -520,7 +520,7 @@ func (w *Walker) PushToRemote() error {
pushOptions := &git.PushOptions{}
// Check if we have a GitHub token for authentication
if githubToken := os.Getenv("GITHUB_TOKEN"); githubToken != "" {
if githubToken := util.GetTokenFromEnv(""); githubToken != "" {
// Get remote URL to check if it's a GitHub repository
remotes, err := w.repo.Remotes()
if err == nil && len(remotes) > 0 {

View File

@@ -5,9 +5,10 @@ import (
"os"
"path/filepath"
internal "github.com/danielmiessler/fabric/cmd/generate_changelog/internal"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/changelog"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/config"
"github.com/danielmiessler/fabric/cmd/generate_changelog/util"
"github.com/joho/godotenv"
"github.com/spf13/cobra"
)
@@ -55,9 +56,7 @@ func run(cmd *cobra.Command, args []string) error {
return fmt.Errorf("--release cannot be used with other processing flags")
}
if cfg.GitHubToken == "" {
cfg.GitHubToken = os.Getenv("GITHUB_TOKEN")
}
cfg.GitHubToken = util.GetTokenFromEnv(cfg.GitHubToken)
generator, err := changelog.New(cfg)
if err != nil {

View File

@@ -0,0 +1,31 @@
package util
import (
"os"
)
// GetTokenFromEnv returns a GitHub token based on the following precedence order:
// 1. If tokenValue is non-empty, it is returned.
// 2. Otherwise, if the GITHUB_TOKEN environment variable is set, its value is returned.
// 3. Otherwise, if the GH_TOKEN environment variable is set, its value is returned.
// 4. If none of the above are set, an empty string is returned.
//
// Example:
//
// os.Setenv("GITHUB_TOKEN", "abc")
// os.Setenv("GH_TOKEN", "def")
// GetTokenFromEnv("xyz") // returns "xyz"
// GetTokenFromEnv("") // returns "abc"
// os.Unsetenv("GITHUB_TOKEN")
// GetTokenFromEnv("") // returns "def"
// os.Unsetenv("GH_TOKEN")
// GetTokenFromEnv("") // returns ""
func GetTokenFromEnv(tokenValue string) string {
if tokenValue == "" {
tokenValue = os.Getenv("GITHUB_TOKEN")
if tokenValue == "" {
tokenValue = os.Getenv("GH_TOKEN")
}
}
return tokenValue
}

View File

@@ -1,47 +1,61 @@
#compdef fabric
#compdef fabric fabric-ai
# Zsh completion for fabric CLI
# Place this file in a directory in your $fpath (e.g. /usr/local/share/zsh/site-functions)
_fabric_patterns() {
local -a patterns
patterns=(${(f)"$(fabric --listpatterns --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
patterns=(${(f)"$($cmd --listpatterns --shell-complete-list 2>/dev/null)"})
compadd -X "Patterns:" ${patterns}
}
_fabric_models() {
local -a models
models=(${(f)"$(fabric --listmodels --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
models=(${(f)"$($cmd --listmodels --shell-complete-list 2>/dev/null)"})
compadd -X "Models:" ${models}
}
_fabric_vendors() {
local -a vendors
local cmd=${words[1]}
vendors=(${(f)"$($cmd --listvendors --shell-complete-list 2>/dev/null)"})
compadd -X "Vendors:" ${vendors}
}
_fabric_contexts() {
local -a contexts
contexts=(${(f)"$(fabric --listcontexts --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
contexts=(${(f)"$($cmd --listcontexts --shell-complete-list 2>/dev/null)"})
compadd -X "Contexts:" ${contexts}
}
_fabric_sessions() {
local -a sessions
sessions=(${(f)"$(fabric --listsessions --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
sessions=(${(f)"$($cmd --listsessions --shell-complete-list 2>/dev/null)"})
compadd -X "Sessions:" ${sessions}
}
_fabric_strategies() {
local -a strategies
strategies=(${(f)"$(fabric --liststrategies --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
strategies=(${(f)"$($cmd --liststrategies --shell-complete-list 2>/dev/null)"})
compadd -X "Strategies:" ${strategies}
}
_fabric_extensions() {
local -a extensions
extensions=(${(f)"$(fabric --listextensions --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
extensions=(${(f)"$($cmd --listextensions --shell-complete-list 2>/dev/null)"})
compadd -X "Extensions:" ${extensions}
}
_fabric_gemini_voices() {
local -a voices
voices=(${(f)"$(fabric --list-gemini-voices --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
voices=(${(f)"$($cmd --list-gemini-voices --shell-complete-list 2>/dev/null)"})
compadd -X "Gemini TTS Voices:" ${voices}
}
@@ -69,6 +83,7 @@ _fabric() {
'(-U --updatepatterns)'{-U,--updatepatterns}'[Update patterns]' \
'(-c --copy)'{-c,--copy}'[Copy to clipboard]' \
'(-m --model)'{-m,--model}'[Choose model]:model:_fabric_models' \
'(-V --vendor)'{-V,--vendor}'[Specify vendor for chosen model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)]:vendor:_fabric_vendors' \
'(--modelContextLength)--modelContextLength[Model context length (only affects ollama)]:length:' \
'(-o --output)'{-o,--output}'[Output to file]:file:_files' \
'(--output-session)--output-session[Output the entire session to the output file]' \
@@ -80,10 +95,12 @@ _fabric() {
'(--transcript-with-timestamps)--transcript-with-timestamps[Grab transcript from YouTube video with timestamps]' \
'(--comments)--comments[Grab comments from YouTube video and send to chat]' \
'(--metadata)--metadata[Output video metadata]' \
'(--yt-dlp-args)--yt-dlp-args[Additional arguments to pass to yt-dlp]:yt-dlp args:' \
'(-g --language)'{-g,--language}'[Specify the Language Code for the chat, e.g. -g=en -g=zh]:language:' \
'(-u --scrape_url)'{-u,--scrape_url}'[Scrape website URL to markdown using Jina AI]:url:' \
'(-q --scrape_question)'{-q,--scrape_question}'[Search question using Jina AI]:question:' \
'(-e --seed)'{-e,--seed}'[Seed to be used for LMM generation]:seed:' \
'(--thinking)--thinking[Set reasoning/thinking level]:level:(off low medium high)' \
'(-w --wipecontext)'{-w,--wipecontext}'[Wipe context]:context:_fabric_contexts' \
'(-W --wipesession)'{-W,--wipesession}'[Wipe session]:session:_fabric_sessions' \
'(--printcontext)--printcontext[Print context]:context:_fabric_contexts' \
@@ -97,7 +114,7 @@ _fabric() {
'(--api-key)--api-key[API key used to secure server routes]:api-key:' \
'(--config)--config[Path to YAML config file]:config file:_files -g "*.yaml *.yml"' \
'(--version)--version[Print current version]' \
'(--search)--search[Enable web search tool for supported models (Anthropic, OpenAI)]' \
'(--search)--search[Enable web search tool for supported models (Anthropic, OpenAI, Gemini)]' \
'(--search-location)--search-location[Set location for web search results]:location:' \
'(--image-file)--image-file[Save generated image to specified file path]:image file:_files -g "*.png *.webp *.jpeg *.jpg"' \
'(--image-size)--image-size[Image dimensions]:size:(1024x1024 1536x1024 1024x1536 auto)' \
@@ -117,6 +134,8 @@ _fabric() {
'(--think-start-tag)--think-start-tag[Start tag for thinking sections (default: <think>)]:start tag:' \
'(--think-end-tag)--think-end-tag[End tag for thinking sections (default: </think>)]:end tag:' \
'(--disable-responses-api)--disable-responses-api[Disable OpenAI Responses API (default: false)]' \
'(--notification)--notification[Send desktop notification when command completes]' \
'(--notification-command)--notification-command[Custom command to run for notifications]:notification command:' \
'(-h --help)'{-h,--help}'[Show this help message]' \
'*:arguments:'
}

View File

@@ -13,11 +13,11 @@ _fabric() {
_get_comp_words_by_ref -n : cur prev words cword
# Define all possible options/flags
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --language -g --scrape_url -u --scrape_question -q --seed -e --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --voice --list-gemini-voices --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --vendor -V --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --yt-dlp-args --language -g --scrape_url -u --scrape_question -q --seed -e --thinking --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --voice --list-gemini-voices --notification --notification-command --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
# Helper function for dynamic completions
_fabric_get_list() {
fabric "$1" --shell-complete-list 2>/dev/null
"${COMP_WORDS[0]}" "$1" --shell-complete-list 2>/dev/null
}
# Handle completions based on the previous word
@@ -38,6 +38,10 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --listmodels)" -- "${cur}"))
return 0
;;
-V | --vendor)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listvendors)" -- "${cur}"))
return 0
;;
-w | --wipecontext)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listcontexts)" -- "${cur}"))
return 0
@@ -54,6 +58,10 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --listsessions)" -- "${cur}"))
return 0
;;
--thinking)
COMPREPLY=($(compgen -W "off low medium high" -- "${cur}"))
return 0
;;
--rmextension)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listextensions)" -- "${cur}"))
return 0
@@ -85,7 +93,7 @@ _fabric() {
return 0
;;
# Options requiring simple arguments (no specific completion logic here)
-v | --variable | -t | --temperature | -T | --topp | -P | --presencepenalty | -F | --frequencypenalty | --modelContextLength | -n | --latest | -y | --youtube | -g | --language | -u | --scrape_url | -q | --scrape_question | -e | --seed | --address | --api-key | --search-location | --image-compression | --think-start-tag | --think-end-tag)
-v | --variable | -t | --temperature | -T | --topp | -P | --presencepenalty | -F | --frequencypenalty | --modelContextLength | -n | --latest | -y | --youtube | --yt-dlp-args | -g | --language | -u | --scrape_url | -q | --scrape_question | -e | --seed | --address | --api-key | --search-location | --image-compression | --think-start-tag | --think-end-tag | --notification-command)
# No specific completion suggestions, user types the value
return 0
;;
@@ -104,4 +112,4 @@ _fabric() {
}
complete -F _fabric fabric
complete -F _fabric fabric fabric-ai

View File

@@ -8,104 +8,127 @@
# Helper functions for dynamic completions
function __fabric_get_patterns
fabric --listpatterns --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listpatterns --shell-complete-list 2>/dev/null
end
function __fabric_get_models
fabric --listmodels --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listmodels --shell-complete-list 2>/dev/null
end
function __fabric_get_vendors
set cmd (commandline -opc)[1]
$cmd --listvendors --shell-complete-list 2>/dev/null
end
function __fabric_get_contexts
fabric --listcontexts --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listcontexts --shell-complete-list 2>/dev/null
end
function __fabric_get_sessions
fabric --listsessions --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listsessions --shell-complete-list 2>/dev/null
end
function __fabric_get_strategies
fabric --liststrategies --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --liststrategies --shell-complete-list 2>/dev/null
end
function __fabric_get_extensions
fabric --listextensions --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listextensions --shell-complete-list 2>/dev/null
end
function __fabric_get_gemini_voices
fabric --list-gemini-voices --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --list-gemini-voices --shell-complete-list 2>/dev/null
end
# Main completion function
complete -c fabric -f
function __fabric_register_completions
set cmd $argv[1]
complete -c $cmd -f
# Flag completions with arguments
complete -c fabric -s p -l pattern -d "Choose a pattern from the available patterns" -a "(__fabric_get_patterns)"
complete -c fabric -s v -l variable -d "Values for pattern variables, e.g. -v=#role:expert -v=#points:30"
complete -c fabric -s C -l context -d "Choose a context from the available contexts" -a "(__fabric_get_contexts)"
complete -c fabric -l session -d "Choose a session from the available sessions" -a "(__fabric_get_sessions)"
complete -c fabric -s a -l attachment -d "Attachment path or URL (e.g. for OpenAI image recognition messages)" -r
complete -c fabric -s t -l temperature -d "Set temperature (default: 0.7)"
complete -c fabric -s T -l topp -d "Set top P (default: 0.9)"
complete -c fabric -s P -l presencepenalty -d "Set presence penalty (default: 0.0)"
complete -c fabric -s F -l frequencypenalty -d "Set frequency penalty (default: 0.0)"
complete -c fabric -s m -l model -d "Choose model" -a "(__fabric_get_models)"
complete -c fabric -l modelContextLength -d "Model context length (only affects ollama)"
complete -c fabric -s o -l output -d "Output to file" -r
complete -c fabric -s n -l latest -d "Number of latest patterns to list (default: 0)"
complete -c fabric -s y -l youtube -d "YouTube video or play list URL to grab transcript, comments from it"
complete -c fabric -s g -l language -d "Specify the Language Code for the chat, e.g. -g=en -g=zh"
complete -c fabric -s u -l scrape_url -d "Scrape website URL to markdown using Jina AI"
complete -c fabric -s q -l scrape_question -d "Search question using Jina AI"
complete -c fabric -s e -l seed -d "Seed to be used for LMM generation"
complete -c fabric -s w -l wipecontext -d "Wipe context" -a "(__fabric_get_contexts)"
complete -c fabric -s W -l wipesession -d "Wipe session" -a "(__fabric_get_sessions)"
complete -c fabric -l printcontext -d "Print context" -a "(__fabric_get_contexts)"
complete -c fabric -l printsession -d "Print session" -a "(__fabric_get_sessions)"
complete -c fabric -l address -d "The address to bind the REST API (default: :8080)"
complete -c fabric -l api-key -d "API key used to secure server routes"
complete -c fabric -l config -d "Path to YAML config file" -r -a "*.yaml *.yml"
complete -c fabric -l search-location -d "Set location for web search results (e.g., 'America/Los_Angeles')"
complete -c fabric -l image-file -d "Save generated image to specified file path (e.g., 'output.png')" -r -a "*.png *.webp *.jpeg *.jpg"
complete -c fabric -l image-size -d "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)" -a "1024x1024 1536x1024 1024x1536 auto"
complete -c fabric -l image-quality -d "Image quality: low, medium, high, auto (default: auto)" -a "low medium high auto"
complete -c fabric -l image-compression -d "Compression level 0-100 for JPEG/WebP formats (default: not set)" -r
complete -c fabric -l image-background -d "Background type: opaque, transparent (default: opaque, only for PNG/WebP)" -a "opaque transparent"
complete -c fabric -l addextension -d "Register a new extension from config file path" -r -a "*.yaml *.yml"
complete -c fabric -l rmextension -d "Remove a registered extension by name" -a "(__fabric_get_extensions)"
complete -c fabric -l strategy -d "Choose a strategy from the available strategies" -a "(__fabric_get_strategies)"
complete -c fabric -l think-start-tag -d "Start tag for thinking sections (default: <think>)"
complete -c fabric -l think-end-tag -d "End tag for thinking sections (default: </think>)"
complete -c fabric -l voice -d "TTS voice name for supported models (e.g., Kore, Charon, Puck)" -a "(__fabric_get_gemini_voices)"
# Flag completions with arguments
complete -c $cmd -s p -l pattern -d "Choose a pattern from the available patterns" -a "(__fabric_get_patterns)"
complete -c $cmd -s v -l variable -d "Values for pattern variables, e.g. -v=#role:expert -v=#points:30"
complete -c $cmd -s C -l context -d "Choose a context from the available contexts" -a "(__fabric_get_contexts)"
complete -c $cmd -l session -d "Choose a session from the available sessions" -a "(__fabric_get_sessions)"
complete -c $cmd -s a -l attachment -d "Attachment path or URL (e.g. for OpenAI image recognition messages)" -r
complete -c $cmd -s t -l temperature -d "Set temperature (default: 0.7)"
complete -c $cmd -s T -l topp -d "Set top P (default: 0.9)"
complete -c $cmd -s P -l presencepenalty -d "Set presence penalty (default: 0.0)"
complete -c $cmd -s F -l frequencypenalty -d "Set frequency penalty (default: 0.0)"
complete -c $cmd -s m -l model -d "Choose model" -a "(__fabric_get_models)"
complete -c $cmd -s V -l vendor -d "Specify vendor for chosen model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)" -a "(__fabric_get_vendors)"
complete -c $cmd -l modelContextLength -d "Model context length (only affects ollama)"
complete -c $cmd -s o -l output -d "Output to file" -r
complete -c $cmd -s n -l latest -d "Number of latest patterns to list (default: 0)"
complete -c $cmd -s y -l youtube -d "YouTube video or play list URL to grab transcript, comments from it"
complete -c $cmd -s g -l language -d "Specify the Language Code for the chat, e.g. -g=en -g=zh"
complete -c $cmd -s u -l scrape_url -d "Scrape website URL to markdown using Jina AI"
complete -c $cmd -s q -l scrape_question -d "Search question using Jina AI"
complete -c $cmd -s e -l seed -d "Seed to be used for LMM generation"
complete -c $cmd -l thinking -d "Set reasoning/thinking level" -a "off low medium high"
complete -c $cmd -s w -l wipecontext -d "Wipe context" -a "(__fabric_get_contexts)"
complete -c $cmd -s W -l wipesession -d "Wipe session" -a "(__fabric_get_sessions)"
complete -c $cmd -l printcontext -d "Print context" -a "(__fabric_get_contexts)"
complete -c $cmd -l printsession -d "Print session" -a "(__fabric_get_sessions)"
complete -c $cmd -l address -d "The address to bind the REST API (default: :8080)"
complete -c $cmd -l api-key -d "API key used to secure server routes"
complete -c $cmd -l config -d "Path to YAML config file" -r -a "*.yaml *.yml"
complete -c $cmd -l search-location -d "Set location for web search results (e.g., 'America/Los_Angeles')"
complete -c $cmd -l image-file -d "Save generated image to specified file path (e.g., 'output.png')" -r -a "*.png *.webp *.jpeg *.jpg"
complete -c $cmd -l image-size -d "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)" -a "1024x1024 1536x1024 1024x1536 auto"
complete -c $cmd -l image-quality -d "Image quality: low, medium, high, auto (default: auto)" -a "low medium high auto"
complete -c $cmd -l image-compression -d "Compression level 0-100 for JPEG/WebP formats (default: not set)" -r
complete -c $cmd -l image-background -d "Background type: opaque, transparent (default: opaque, only for PNG/WebP)" -a "opaque transparent"
complete -c $cmd -l addextension -d "Register a new extension from config file path" -r -a "*.yaml *.yml"
complete -c $cmd -l rmextension -d "Remove a registered extension by name" -a "(__fabric_get_extensions)"
complete -c $cmd -l strategy -d "Choose a strategy from the available strategies" -a "(__fabric_get_strategies)"
complete -c $cmd -l think-start-tag -d "Start tag for thinking sections (default: <think>)"
complete -c $cmd -l think-end-tag -d "End tag for thinking sections (default: </think>)"
complete -c $cmd -l voice -d "TTS voice name for supported models (e.g., Kore, Charon, Puck)" -a "(__fabric_get_gemini_voices)"
complete -c $cmd -l notification-command -d "Custom command to run for notifications (overrides built-in notifications)"
# Boolean flags (no arguments)
complete -c fabric -s S -l setup -d "Run setup for all reconfigurable parts of fabric"
complete -c fabric -s s -l stream -d "Stream"
complete -c fabric -s r -l raw -d "Use the defaults of the model without sending chat options"
complete -c fabric -s l -l listpatterns -d "List all patterns"
complete -c fabric -s L -l listmodels -d "List all available models"
complete -c fabric -s x -l listcontexts -d "List all contexts"
complete -c fabric -s X -l listsessions -d "List all sessions"
complete -c fabric -s U -l updatepatterns -d "Update patterns"
complete -c fabric -s c -l copy -d "Copy to clipboard"
complete -c fabric -l output-session -d "Output the entire session to the output file"
complete -c fabric -s d -l changeDefaultModel -d "Change default model"
complete -c fabric -l playlist -d "Prefer playlist over video if both ids are present in the URL"
complete -c fabric -l transcript -d "Grab transcript from YouTube video and send to chat"
complete -c fabric -l transcript-with-timestamps -d "Grab transcript from YouTube video with timestamps"
complete -c fabric -l comments -d "Grab comments from YouTube video and send to chat"
complete -c fabric -l metadata -d "Output video metadata"
complete -c fabric -l readability -d "Convert HTML input into a clean, readable view"
complete -c fabric -l input-has-vars -d "Apply variables to user input"
complete -c fabric -l dry-run -d "Show what would be sent to the model without actually sending it"
complete -c fabric -l search -d "Enable web search tool for supported models (Anthropic, OpenAI)"
complete -c fabric -l serve -d "Serve the Fabric Rest API"
complete -c fabric -l serveOllama -d "Serve the Fabric Rest API with ollama endpoints"
complete -c fabric -l version -d "Print current version"
complete -c fabric -l listextensions -d "List all registered extensions"
complete -c fabric -l liststrategies -d "List all strategies"
complete -c fabric -l listvendors -d "List all vendors"
complete -c fabric -l list-gemini-voices -d "List all available Gemini TTS voices"
complete -c fabric -l shell-complete-list -d "Output raw list without headers/formatting (for shell completion)"
complete -c fabric -l suppress-think -d "Suppress text enclosed in thinking tags"
complete -c fabric -l disable-responses-api -d "Disable OpenAI Responses API (default: false)"
complete -c fabric -s h -l help -d "Show this help message"
# Boolean flags (no arguments)
complete -c $cmd -s S -l setup -d "Run setup for all reconfigurable parts of fabric"
complete -c $cmd -s s -l stream -d "Stream"
complete -c $cmd -s r -l raw -d "Use the defaults of the model without sending chat options"
complete -c $cmd -s l -l listpatterns -d "List all patterns"
complete -c $cmd -s L -l listmodels -d "List all available models"
complete -c $cmd -s x -l listcontexts -d "List all contexts"
complete -c $cmd -s X -l listsessions -d "List all sessions"
complete -c $cmd -s U -l updatepatterns -d "Update patterns"
complete -c $cmd -s c -l copy -d "Copy to clipboard"
complete -c $cmd -l output-session -d "Output the entire session to the output file"
complete -c $cmd -s d -l changeDefaultModel -d "Change default model"
complete -c $cmd -l playlist -d "Prefer playlist over video if both ids are present in the URL"
complete -c $cmd -l transcript -d "Grab transcript from YouTube video and send to chat"
complete -c $cmd -l transcript-with-timestamps -d "Grab transcript from YouTube video with timestamps"
complete -c $cmd -l comments -d "Grab comments from YouTube video and send to chat"
complete -c $cmd -l metadata -d "Output video metadata"
complete -c $cmd -l yt-dlp-args -d "Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"
complete -c $cmd -l readability -d "Convert HTML input into a clean, readable view"
complete -c $cmd -l input-has-vars -d "Apply variables to user input"
complete -c $cmd -l dry-run -d "Show what would be sent to the model without actually sending it"
complete -c $cmd -l search -d "Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"
complete -c $cmd -l serve -d "Serve the Fabric Rest API"
complete -c $cmd -l serveOllama -d "Serve the Fabric Rest API with ollama endpoints"
complete -c $cmd -l version -d "Print current version"
complete -c $cmd -l listextensions -d "List all registered extensions"
complete -c $cmd -l liststrategies -d "List all strategies"
complete -c $cmd -l listvendors -d "List all vendors"
complete -c $cmd -l list-gemini-voices -d "List all available Gemini TTS voices"
complete -c $cmd -l shell-complete-list -d "Output raw list without headers/formatting (for shell completion)"
complete -c $cmd -l suppress-think -d "Suppress text enclosed in thinking tags"
complete -c $cmd -l disable-responses-api -d "Disable OpenAI Responses API (default: false)"
complete -c $cmd -l notification -d "Send desktop notification when command completes"
complete -c $cmd -s h -l help -d "Show this help message"
end
__fabric_register_completions fabric
__fabric_register_completions fabric-ai

503
completions/setup-completions.sh Executable file
View File

@@ -0,0 +1,503 @@
#!/bin/sh
# Fabric Shell Completions Setup Script
# This script automatically installs shell completions for the fabric CLI
# based on your current shell and the installed fabric command name.
set -e
# Global variables
DRY_RUN=false
# Base URL to fetch completion files when not available locally
# Can be overridden via environment variable FABRIC_COMPLETIONS_BASE_URL
FABRIC_COMPLETIONS_BASE_URL="${FABRIC_COMPLETIONS_BASE_URL:-https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions}"
TEMP_DIR=""
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color
# Function to print colored output
print_info() {
printf "${BLUE}[INFO]${NC} %s\n" "$1"
}
print_success() {
printf "${GREEN}[SUCCESS]${NC} %s\n" "$1"
}
print_warning() {
printf "${YELLOW}[WARNING]${NC} %s\n" "$1"
}
print_error() {
printf "${RED}[ERROR]${NC} %s\n" "$1"
}
print_dry_run() {
printf "${CYAN}[DRY-RUN]${NC} %s\n" "$1"
}
# Function to execute commands with dry-run support
execute_command() {
cmd="$1"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: $cmd"
return 0
else
eval "$cmd" 2>/dev/null
fi
}
# Simple downloader that prefers curl, falls back to wget
to_github_raw_url() {
in_url="$1"
case "$in_url" in
https://github.com/*/*/blob/*)
# Convert blob URL to raw
# https://github.com/{owner}/{repo}/blob/{ref}/path -> https://raw.githubusercontent.com/{owner}/{repo}/{ref}/path
echo "$in_url" | sed -E 's#https://github.com/([^/]+)/([^/]+)/blob/([^/]+)/#https://raw.githubusercontent.com/\1/\2/\3/#'
;;
https://github.com/*/*/tree/*)
# Convert tree URL base + file path to raw
# https://github.com/{owner}/{repo}/tree/{ref}/path -> https://raw.githubusercontent.com/{owner}/{repo}/{ref}/path
echo "$in_url" | sed -E 's#https://github.com/([^/]+)/([^/]+)/tree/([^/]+)/#https://raw.githubusercontent.com/\1/\2/\3/#'
;;
*)
echo "$in_url"
;;
esac
}
# Simple downloader that prefers curl, falls back to wget
download_file() {
url="$1"
dest="$2"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would download: $url -> $dest"
return 0
fi
eff_url="$(to_github_raw_url "$url")"
if command -v curl >/dev/null 2>&1; then
curl -fsSL "$eff_url" -o "$dest"
return $?
elif command -v wget >/dev/null 2>&1; then
wget -q "$eff_url" -O "$dest"
return $?
else
print_error "Neither 'curl' nor 'wget' is available to download: $url"
return 1
fi
}
# Attempt to obtain completion files. If local copies are missing,
# download them into a temporary directory and return that directory path.
obtain_completion_files() {
obf_script_dir="$1"
obf_need_download=false
if [ ! -f "$obf_script_dir/_fabric" ] || [ ! -f "$obf_script_dir/fabric.bash" ] || [ ! -f "$obf_script_dir/fabric.fish" ]; then
obf_need_download=true
fi
if [ "$obf_need_download" = false ]; then
echo "$obf_script_dir"
return 0
fi
# Note: write only to stderr in this function except for the final echo which returns the path
printf "%s\n" "[INFO] Local completion files not found; will download from GitHub." 1>&2
printf "%s\n" "[INFO] Source: $FABRIC_COMPLETIONS_BASE_URL" 1>&2
if [ "$DRY_RUN" = true ]; then
printf "%s\n" "[DRY-RUN] Would create temporary directory for downloads" 1>&2
echo "$obf_script_dir" # Keep using original for dry-run copies
return 0
fi
TEMP_DIR="$(mktemp -d 2>/dev/null || mktemp -d -t fabric-completions)"
if [ ! -d "$TEMP_DIR" ]; then
print_error "Failed to create temporary directory for downloads."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/_fabric" "$TEMP_DIR/_fabric"; then
print_error "Failed to download _fabric"
return 1
fi
if [ ! -s "$TEMP_DIR/_fabric" ] || head -n1 "$TEMP_DIR/_fabric" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded _fabric appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/fabric.bash" "$TEMP_DIR/fabric.bash"; then
print_error "Failed to download fabric.bash"
return 1
fi
if [ ! -s "$TEMP_DIR/fabric.bash" ] || head -n1 "$TEMP_DIR/fabric.bash" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded fabric.bash appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/fabric.fish" "$TEMP_DIR/fabric.fish"; then
print_error "Failed to download fabric.fish"
return 1
fi
if [ ! -s "$TEMP_DIR/fabric.fish" ] || head -n1 "$TEMP_DIR/fabric.fish" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded fabric.fish appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
echo "$TEMP_DIR"
}
# Ensure directory exists, try sudo on permission failure
ensure_dir() {
dir="$1"
# Expand ~ if present
case "$dir" in
~/*)
dir="$HOME${dir#~}"
;;
esac
if [ -d "$dir" ]; then
return 0
fi
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: mkdir -p \"$dir\""
print_dry_run "If permission denied, would run: sudo mkdir -p \"$dir\""
return 0
fi
if mkdir -p "$dir" 2>/dev/null; then
return 0
fi
if command -v sudo >/dev/null 2>&1 && sudo mkdir -p "$dir" 2>/dev/null; then
return 0
fi
print_error "Failed to create directory: $dir"
return 1
}
# Copy file with sudo fallback on permission failure
install_file() {
src="$1"
dest="$2"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: cp \"$src\" \"$dest\""
print_dry_run "If permission denied, would run: sudo cp \"$src\" \"$dest\""
return 0
fi
if cp "$src" "$dest" 2>/dev/null; then
return 0
fi
if command -v sudo >/dev/null 2>&1 && sudo cp "$src" "$dest" 2>/dev/null; then
return 0
fi
print_error "Failed to install file to: $dest"
return 1
}
# Function to detect fabric command name
detect_fabric_command() {
if command -v fabric >/dev/null 2>&1; then
echo "fabric"
elif command -v fabric-ai >/dev/null 2>&1; then
echo "fabric-ai"
else
print_error "Neither 'fabric' nor 'fabric-ai' command found in PATH"
exit 1
fi
}
# Function to detect shell
detect_shell() {
if [ -n "$SHELL" ]; then
basename "$SHELL"
else
print_warning "SHELL environment variable not set, defaulting to sh"
echo "sh"
fi
}
# Function to get script directory
get_script_dir() {
# Get the directory where this script is located
script_path="$(readlink -f "$0" 2>/dev/null || realpath "$0" 2>/dev/null || echo "$0")"
dirname "$script_path"
}
# Function to setup Zsh completions
setup_zsh_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="_${fabric_cmd}"
print_info "Setting up Zsh completions for '$fabric_cmd'..."
# Try to use existing $fpath first, then fall back to default directories
zsh_dirs=""
# Check if user's shell is zsh and try to get fpath from it
if [ "$(basename "$SHELL")" = "zsh" ] && command -v zsh >/dev/null 2>&1; then
# Get fpath from zsh by sourcing user's .zshrc first
fpath_output=$(zsh -c "source \$HOME/.zshrc 2>/dev/null && print -l \$fpath" 2>/dev/null | head -5 | tr '\n' ' ')
if [ -n "$fpath_output" ] && [ "$fpath_output" != "" ]; then
print_info "Using directories from zsh \$fpath"
zsh_dirs="$fpath_output"
fi
fi
# If we couldn't get fpath or it's empty, use default directories
if [ -z "$zsh_dirs" ] || [ "$zsh_dirs" = "" ]; then
print_info "Using default zsh completion directories"
zsh_dirs="/usr/local/share/zsh/site-functions /opt/homebrew/share/zsh/site-functions /usr/share/zsh/site-functions ~/.local/share/zsh/site-functions"
fi
installed=false
for dir in $zsh_dirs; do
# Create directory (with sudo fallback if needed)
if ensure_dir "$dir"; then
if install_file "$script_dir/_fabric" "$dir/$completion_file"; then
if [ "$DRY_RUN" = true ]; then
print_success "Would install Zsh completion to: $dir/$completion_file"
else
print_success "Installed Zsh completion to: $dir/$completion_file"
fi
installed=true
break
fi
fi
done
if [ "$installed" = false ]; then
if [ "$DRY_RUN" = true ]; then
print_warning "Would attempt to install Zsh completions but no writable directory found."
else
print_error "Failed to install Zsh completions. Try running with sudo or check permissions."
return 1
fi
fi
if [ "$DRY_RUN" = true ]; then
print_info "Would suggest: Restart your shell or run 'autoload -U compinit && compinit' to enable completions."
else
print_info "Restart your shell or run 'autoload -U compinit && compinit' to enable completions."
fi
}
# Function to setup Bash completions
setup_bash_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="${fabric_cmd}.bash"
print_info "Setting up Bash completions for '$fabric_cmd'..."
# Try different completion directories
bash_dirs="/etc/bash_completion.d /usr/local/etc/bash_completion.d /opt/homebrew/etc/bash_completion.d ~/.local/share/bash-completion/completions"
installed=false
for dir in $bash_dirs; do
if ensure_dir "$dir"; then
if install_file "$script_dir/fabric.bash" "$dir/$completion_file"; then
if [ "$DRY_RUN" = true ]; then
print_success "Would install Bash completion to: $dir/$completion_file"
else
print_success "Installed Bash completion to: $dir/$completion_file"
fi
installed=true
break
fi
fi
done
if [ "$installed" = false ]; then
if [ "$DRY_RUN" = true ]; then
print_warning "Would attempt to install Bash completions but no writable directory found."
else
print_error "Failed to install Bash completions. Try running with sudo or check permissions."
return 1
fi
fi
if [ "$DRY_RUN" = true ]; then
print_info "Would suggest: Restart your shell or run 'source ~/.bashrc' to enable completions."
else
print_info "Restart your shell or run 'source ~/.bashrc' to enable completions."
fi
}
# Function to setup Fish completions
setup_fish_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="${fabric_cmd}.fish"
print_info "Setting up Fish completions for '$fabric_cmd'..."
# Fish completion directory
fish_dir="$HOME/.config/fish/completions"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: mkdir -p \"$fish_dir\""
print_dry_run "Would run: cp \"$script_dir/fabric.fish\" \"$fish_dir/$completion_file\""
print_success "Would install Fish completion to: $fish_dir/$completion_file"
print_info "Fish will automatically load the completions (no restart needed)."
elif mkdir -p "$fish_dir" 2>/dev/null; then
if cp "$script_dir/fabric.fish" "$fish_dir/$completion_file"; then
print_success "Installed Fish completion to: $fish_dir/$completion_file"
print_info "Fish will automatically load the completions (no restart needed)."
else
print_error "Failed to copy Fish completion file."
return 1
fi
else
print_error "Failed to create Fish completions directory: $fish_dir"
return 1
fi
}
# Function to setup completions for other shells
setup_other_shell_completions() {
fabric_cmd="$1"
shell_name="$2"
script_dir="$3"
print_warning "Shell '$shell_name' is not directly supported."
print_info "You can manually source the completion files:"
print_info " Bash-compatible: source $script_dir/fabric.bash"
print_info " Zsh-compatible: source $script_dir/_fabric"
}
# Function to show help
show_help() {
cat << EOF
Fabric Shell Completions Setup Script
USAGE:
setup-completions.sh [OPTIONS]
OPTIONS:
--dry-run Show what commands would be run without executing them
--help Show this help message
DESCRIPTION:
This script automatically installs shell completions for the fabric CLI
based on your current shell and the installed fabric command name.
The script will use completion files from the same directory as the script
when available. If they are not present (e.g., when running via curl), it
will download them from GitHub:
$FABRIC_COMPLETIONS_BASE_URL
You can override the download source by setting
FABRIC_COMPLETIONS_BASE_URL to your preferred location.
Supports: zsh, bash, fish
The script will:
1. Detect whether 'fabric' or 'fabric-ai' is installed
2. Detect your current shell from the SHELL environment variable
3. Install the appropriate completion file with the correct name
4. Try multiple standard completion directories
EXAMPLES:
./setup-completions.sh # Install completions
./setup-completions.sh --dry-run # Show what would be done
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/<owner>/<repo>/main/completions" \\
./setup-completions.sh # Override download source
./setup-completions.sh --help # Show this help
EOF
}
# Main function
main() {
# Parse command line arguments
while [ $# -gt 0 ]; do
case "$1" in
--dry-run)
DRY_RUN=true
shift
;;
--help|-h)
show_help
exit 0
;;
*)
print_error "Unknown option: $1"
print_info "Use --help for usage information."
exit 1
;;
esac
done
print_info "Fabric Shell Completions Setup"
print_info "==============================="
if [ "$DRY_RUN" = true ]; then
print_info "DRY RUN MODE - Commands will be shown but not executed"
print_info ""
fi
# Get script directory and obtain completion files (local or downloaded)
script_dir="$(get_script_dir)"
script_dir="$(obtain_completion_files "$script_dir" || echo "")"
if [ -z "$script_dir" ]; then
print_error "Unable to obtain completion files. Aborting."
exit 1
fi
# If we downloaded into a temp dir, arrange cleanup at process exit
if [ -n "$TEMP_DIR" ] && [ -d "$TEMP_DIR" ]; then
trap 'if [ -n "$TEMP_DIR" ] && [ -d "$TEMP_DIR" ]; then rm -rf "$TEMP_DIR"; fi' EXIT INT TERM
fi
# Detect fabric command
fabric_cmd="$(detect_fabric_command)"
print_info "Detected fabric command: $fabric_cmd"
# Detect shell
shell_name="$(detect_shell)"
print_info "Detected shell: $shell_name"
# Setup completions based on shell
case "$shell_name" in
zsh)
setup_zsh_completions "$fabric_cmd" "$script_dir"
;;
bash)
setup_bash_completions "$fabric_cmd" "$script_dir"
;;
fish)
setup_fish_completions "$fabric_cmd" "$script_dir"
;;
*)
setup_other_shell_completions "$fabric_cmd" "$shell_name" "$script_dir"
;;
esac
if [ "$DRY_RUN" = true ]; then
print_success "Dry-run completed! The above commands would set up shell completions."
print_info "Run without --dry-run to actually install the completions."
else
print_success "Shell completion setup completed!"
print_info "You can now use tab completion with the '$fabric_cmd' command."
fi
}
# Run main function
main "$@"

View File

@@ -167,6 +167,8 @@ us the results in
Select the model to use. NOTE: Will not work if you
have set a default model. please use --clear to clear
persistence before using this flag
--vendor VENDOR, -V VENDOR
Specify vendor for the selected model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)
--listmodels List all available models
--remoteOllamaServer REMOTEOLLAMASERVER
The URL of the remote ollamaserver to use. ONLY USE

View File

@@ -1,23 +1,128 @@
# IDENTITY and PURPOSE
You are an AI assistant tasked with creating a new feature for a fabric command-line tool. Your primary responsibility is to develop a pattern that suggests appropriate fabric patterns or commands based on user input. You are knowledgeable about fabric commands and understand the need to expand the tool's functionality. Your role involves analyzing user requests, determining the most suitable fabric commands or patterns, and providing helpful suggestions to users.
You are an expert AI assistant specialized in the Fabric framework - an open-source tool for augmenting human capabilities with AI. Your primary responsibility is to analyze user requests and suggest the most appropriate fabric patterns or commands to accomplish their goals. You have comprehensive knowledge of all available patterns, their categories, capabilities, and use cases.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Analyze the user's input to understand their specific needs and context
- Determine the appropriate fabric pattern or command based on the user's request
- Generate a response that suggests the relevant fabric command(s) or pattern(s)
- Provide explanations or multiple options when applicable
- If no specific command is found, suggest using `create_pattern`
## 1. ANALYZE USER INPUT
- Parse the user's request to understand their primary objective
- Identify the type of content they're working with (text, code, data, etc.)
- Determine the desired output format or outcome
- Consider the user's level of expertise with fabric
## 2. CATEGORIZE THE REQUEST
Match the request to one or more of these primary categories:
- **AI** - AI-related patterns for model guidance, art prompts, evaluation
- **ANALYSIS** - Analysis and evaluation of content, data, claims, debates
- **BILL** - Legislative bill analysis and implications
- **BUSINESS** - Business strategy, agreements, sales, presentations
- **CLASSIFICATION** - Content categorization and tagging
- **CONVERSION** - Format conversion between different data types
- **CR THINKING** - Critical thinking, logical analysis, bias detection
- **CREATIVITY** - Creative writing, essay generation, artistic content
- **DEVELOPMENT** - Software development, coding, project design
- **DEVOPS** - Infrastructure, deployment, pipeline management
- **EXTRACT** - Information extraction from various content types
- **GAMING** - RPG, D&D, gaming-related content creation
- **LEARNING** - Educational content, tutorials, explanations
- **OTHER** - Miscellaneous patterns that don't fit other categories
- **RESEARCH** - Academic research, paper analysis, investigation
- **REVIEW** - Evaluation and review of content, code, designs
- **SECURITY** - Cybersecurity analysis, threat modeling, vulnerability assessment
- **SELF** - Personal development, guidance, self-improvement
- **STRATEGY** - Strategic analysis, planning, decision-making
- **SUMMARIZE** - Content summarization at various levels of detail
- **VISUALIZE** - Data visualization, diagrams, charts, graphics
- **WISDOM** - Wisdom extraction, insights, life lessons
- **WRITING** - Writing assistance, improvement, formatting
## 3. SUGGEST APPROPRIATE PATTERNS
- Recommend 1-3 most suitable patterns based on the analysis
- Prioritize patterns that directly address the user's main objective
- Consider alternative patterns for different approaches to the same goal
- Include both primary and secondary pattern suggestions when relevant
## 4. PROVIDE CONTEXT AND USAGE
- Explain WHY each suggested pattern is appropriate
- Include the exact fabric command syntax
- Mention any important considerations or limitations
- Suggest complementary patterns if applicable
# OUTPUT INSTRUCTIONS
- Only output Markdown
- Provide suggestions for fabric commands or patterns based on the user's input
- Include explanations or multiple options when appropriate
- If suggesting `create_pattern`, include instructions for saving and using the new pattern
- Format the output to be clear and easy to understand for users new to fabric
- Ensure the response aligns with the goal of making fabric more accessible and user-friendly
- Ensure you follow ALL these instructions when creating your output
- Structure your response with clear headings and sections
- Provide specific fabric command examples: `fabric --pattern pattern_name`
- Include brief explanations of what each pattern does
- If multiple patterns could work, rank them by relevance
- For complex requests, suggest a workflow using multiple patterns
- If no existing pattern fits perfectly, suggest `create_pattern` with specific guidance
- Format the output to be actionable and easy to follow
- Ensure suggestions align with making fabric more accessible and powerful
# PATTERN MATCHING GUIDELINES
## Common Request Types and Best Patterns
**AI**: ai, create_art_prompt, create_pattern, extract_mcp_servers, extract_wisdom_agents, generate_code_rules, improve_prompt, judge_output, rate_ai_response, rate_ai_result, raw_query, solve_with_cot, suggest_pattern, summarize_prompt
**ANALYSIS**: ai, analyze_answers, analyze_bill, analyze_bill_short, analyze_candidates, analyze_cfp_submission, analyze_claims, analyze_comments, analyze_debate, analyze_email_headers, analyze_incident, analyze_interviewer_techniques, analyze_logs, analyze_malware, analyze_military_strategy, analyze_mistakes, analyze_paper, analyze_paper_simple, analyze_patent, analyze_personality, analyze_presentation, analyze_product_feedback, analyze_proposition, analyze_prose, analyze_prose_json, analyze_prose_pinker, analyze_risk, analyze_sales_call, analyze_spiritual_text, analyze_tech_impact, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, apply_ul_tags, check_agreement, compare_and_contrast, create_ai_jobs_analysis, create_idea_compass, create_investigation_visualization, create_prediction_block, create_recursive_outline, create_tags, dialog_with_socrates, extract_main_idea, extract_predictions, find_hidden_message, find_logical_fallacies, get_wow_per_minute, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, identify_job_stories, label_and_rate, prepare_7s_strategy, provide_guidance, rate_content, rate_value, recommend_artists, recommend_talkpanel_topics, review_design, summarize_board_meeting, t_analyze_challenge_handling, t_check_dunning_kruger, t_check_metrics, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_find_blindspots, t_find_negative_thinking, t_red_team_thinking, t_threat_model_plans, t_year_in_review, write_hackerone_report
**BILL**: analyze_bill, analyze_bill_short
**BUSINESS**: check_agreement, create_ai_jobs_analysis, create_formal_email, create_hormozi_offer, create_loe_document, create_logo, create_newsletter_entry, create_prd, explain_project, extract_business_ideas, extract_product_features, extract_skills, extract_sponsors, identify_job_stories, prepare_7s_strategy, rate_value, t_check_metrics, t_create_h3_career, t_visualize_mission_goals_projects, t_year_in_review, transcribe_minutes
**CLASSIFICATION**: apply_ul_tags
**CONVERSION**: clean_text, convert_to_markdown, create_graph_from_input, export_data_as_csv, extract_videoid, get_youtube_rss, humanize, md_callout, sanitize_broken_html_to_markdown, to_flashcards, transcribe_minutes, translate, tweet, write_latex
**CR THINKING**: capture_thinkers_work, create_idea_compass, create_markmap_visualization, dialog_with_socrates, extract_alpha, extract_controversial_ideas, extract_extraordinary_claims, extract_predictions, extract_primary_problem, extract_wisdom_nometa, find_hidden_message, find_logical_fallacies, solve_with_cot, summarize_debate, t_analyze_challenge_handling, t_check_dunning_kruger, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking
**CREATIVITY**: create_mnemonic_phrases, write_essay
**DEVELOPMENT**: agility_story, analyze_prose_json, answer_interview_question, ask_secure_by_design_questions, ask_uncle_duke, coding_master, create_coding_feature, create_coding_project, create_command, create_design_document, create_git_diff_commit, create_mermaid_visualization, create_mermaid_visualization_for_github, create_pattern, create_sigma_rules, create_user_story, explain_code, explain_docs, export_data_as_csv, extract_algorithm_update_recommendations, extract_mcp_servers, extract_poc, generate_code_rules, get_youtube_rss, improve_prompt, official_pattern_template, recommend_pipeline_upgrades, refine_design_document, review_code, review_design, sanitize_broken_html_to_markdown, show_fabric_options_markmap, suggest_pattern, summarize_git_changes, summarize_git_diff, summarize_pull-requests, write_nuclei_template_rule, write_pull-request, write_semgrep_rule
**DEVOPS**: analyze_terraform_plan
**EXTRACT**: analyze_comments, create_aphorisms, create_tags, create_video_chapters, extract_algorithm_update_recommendations, extract_alpha, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_business_ideas, extract_controversial_ideas, extract_core_message, extract_ctf_writeup, extract_domains, extract_extraordinary_claims, extract_ideas, extract_insights, extract_insights_dm, extract_instructions, extract_jokes, extract_latest_video, extract_main_activities, extract_main_idea, extract_mcp_servers, extract_most_redeeming_thing, extract_patterns, extract_poc, extract_predictions, extract_primary_problem, extract_primary_solution, extract_product_features, extract_questions, extract_recipe, extract_recommendations, extract_references, extract_skills, extract_song_meaning, extract_sponsors, extract_videoid, extract_wisdom, extract_wisdom_agents, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short, generate_code_rules, t_extract_intro_sentences, t_extract_panel_topics
**GAMING**: create_npc, create_rpg_summary, summarize_rpg_session
**LEARNING**: analyze_answers, ask_uncle_duke, coding_master, create_diy, create_flash_cards, create_quiz, create_reading_plan, create_story_explanation, dialog_with_socrates, explain_code, explain_docs, explain_math, explain_project, explain_terms, extract_references, improve_academic_writing, provide_guidance, solve_with_cot, summarize_lecture, summarize_paper, to_flashcards, write_essay_pg
**OTHER**: extract_jokes
**RESEARCH**: analyze_candidates, analyze_claims, analyze_paper, analyze_paper_simple, analyze_patent, analyze_proposition, analyze_spiritual_text, analyze_tech_impact, capture_thinkers_work, create_academic_paper, extract_extraordinary_claims, extract_references, find_hidden_message, find_logical_fallacies, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, improve_academic_writing, recommend_artists, summarize_paper, write_essay_pg, write_latex, write_micro_essay
**REVIEW**: analyze_cfp_submission, analyze_presentation, analyze_prose, get_wow_per_minute, judge_output, label_and_rate, rate_ai_response, rate_ai_result, rate_content, rate_value, review_code, review_design
**SECURITY**: analyze_email_headers, analyze_incident, analyze_logs, analyze_malware, analyze_risk, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, ask_secure_by_design_questions, create_command, create_cyber_summary, create_graph_from_input, create_investigation_visualization, create_network_threat_landscape, create_report_finding, create_security_update, create_sigma_rules, create_stride_threat_model, create_threat_scenarios, create_ttrc_graph, create_ttrc_narrative, extract_ctf_writeup, improve_report_finding, recommend_pipeline_upgrades, review_code, t_red_team_thinking, t_threat_model_plans, write_hackerone_report, write_nuclei_template_rule, write_semgrep_rule
**SELF**: create_better_frame, create_diy, create_reading_plan, dialog_with_socrates, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_insights, extract_insights_dm, extract_most_redeeming_thing, extract_recipe, extract_recommendations, extract_song_meaning, extract_wisdom, extract_wisdom_dm, extract_wisdom_short, find_female_life_partner, provide_guidance, t_check_dunning_kruger, t_create_h3_career, t_describe_life_outlook, t_find_neglected_goals, t_give_encouragement
**STRATEGY**: analyze_military_strategy, create_better_frame, prepare_7s_strategy, t_analyze_challenge_handling, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking, t_threat_model_plans, t_visualize_mission_goals_projects
**SUMMARIZE**: capture_thinkers_work, create_5_sentence_summary, create_micro_summary, create_newsletter_entry, create_show_intro, create_summary, extract_core_message, extract_latest_video, extract_main_idea, summarize, summarize_board_meeting, summarize_debate, summarize_git_changes, summarize_git_diff, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_pull-requests, summarize_rpg_session, youtube_summary
**VISUALIZE**: create_excalidraw_visualization, create_graph_from_input, create_idea_compass, create_investigation_visualization, create_keynote, create_logo, create_markmap_visualization, create_mermaid_visualization, create_mermaid_visualization_for_github, create_video_chapters, create_visualization, enrich_blog_post, show_fabric_options_markmap, t_visualize_mission_goals_projects
**WISDOM**: extract_alpha, extract_article_wisdom, extract_book_ideas, extract_insights, extract_most_redeeming_thing, extract_recommendations, extract_wisdom, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short
**WRITING**: analyze_prose_json, analyze_prose_pinker, apply_ul_tags, clean_text, compare_and_contrast, convert_to_markdown, create_5_sentence_summary, create_academic_paper, create_aphorisms, create_better_frame, create_design_document, create_diy, create_formal_email, create_hormozi_offer, create_keynote, create_micro_summary, create_newsletter_entry, create_prediction_block, create_prd, create_show_intro, create_story_explanation, create_summary, create_tags, create_user_story, enrich_blog_post, explain_docs, explain_terms, humanize, improve_academic_writing, improve_writing, label_and_rate, md_callout, official_pattern_template, recommend_talkpanel_topics, refine_design_document, summarize, summarize_debate, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_rpg_session, t_create_opening_sentences, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_give_encouragement, t_year_in_review, transcribe_minutes, tweet, write_essay, write_essay_pg, write_hackerone_report, write_latex, write_micro_essay, write_pull-request
## Workflow Suggestions
- For complex analysis: First use an extract pattern, then an analyze pattern, finally a summarize pattern
- For content creation: Use relevant create_patterns followed by improve_ patterns for refinement
- For research projects: Combine extract_, analyze_, and summarize_ patterns in sequence
# INPUT
INPUT:
INPUT:

File diff suppressed because it is too large Load Diff

View File

@@ -1,919 +0,0 @@
# Suggest Pattern
## OVERVIEW
What It Does: Fabric is an open-source framework designed to augment human capabilities using AI, making it easier to integrate AI into daily tasks.
Why People Use It: Users leverage Fabric to seamlessly apply AI for solving everyday challenges, enhancing productivity, and fostering human creativity through technology.
## HOW TO USE IT
Most Common Syntax: The most common usage involves executing Fabric commands in the terminal, such as `fabric --pattern <PATTERN_NAME>`.
## COMMON USE CASES
For Summarizing Content: `fabric --pattern summarize`
For Analyzing Claims: `fabric --pattern analyze_claims`
For Extracting Wisdom from Videos: `fabric --pattern extract_wisdom`
For creating custom patterns: `fabric --pattern create_pattern`
- One possible place to store them is ~/.config/custom-fabric-patterns.
- Then when you want to use them, simply copy them into ~/.config/fabric/patterns.
`cp -a ~/.config/custom-fabric-patterns/* ~/.config/fabric/patterns/`
- Now you can run them with: `pbpaste | fabric -p your_custom_pattern`
## MOST IMPORTANT AND USED OPTIONS AND FEATURES
- **--pattern PATTERN, -p PATTERN**: Specifies the pattern (prompt) to use. Useful for applying specific AI prompts to your input.
- **--stream, -s**: Streams results in real-time. Ideal for getting immediate feedback from AI operations.
- **--update, -u**: Updates patterns. Ensures you're using the latest AI prompts for your tasks.
- **--model MODEL, -m MODEL**: Selects the AI model to use. Allows customization of the AI backend for different tasks.
- **--setup, -S**: Sets up your Fabric instance. Essential for first-time users to configure Fabric correctly.
- **--list, -l**: Lists available patterns. Helps users discover new AI prompts for various applications.
- **--context, -C**: Uses a Context file to add context to your pattern. Enhances the relevance of AI responses by providing additional background information.
## PATTERNS
**Key pattern to use: `suggest_pattern`** - suggests appropriate fabric patterns or commands based on user input.
### agility_story
Generate a user story and acceptance criteria in JSON format based on the given topic.
### ai
Interpret questions deeply and provide concise, insightful answers in Markdown bullet points.
### analyze_answers
Evaluate quiz answers for correctness based on learning objectives and generated quiz questions.
### analyze_bill
Analyzes legislation to identify overt and covert goals, examining bills for hidden agendas and true intentions.
### analyze_bill_short
Provides a concise analysis of legislation, identifying overt and covert goals in a brief, structured format.
### analyze_candidates
Compare and contrast two political candidates based on key issues and policies.
### analyze_cfp_submission
Review and evaluate conference speaking session submissions based on clarity, relevance, depth, and engagement potential.
### analyze_claims
Analyse and rate truth claims with evidence, counter-arguments, fallacies, and final recommendations.
### analyze_comments
Evaluate internet comments for content, categorize sentiment, and identify reasons for praise, criticism, and neutrality.
### analyze_debate
Rate debates on insight, emotionality, and present an unbiased, thorough analysis of arguments, agreements, and disagreements.
### analyze_email_headers
Provide cybersecurity analysis and actionable insights on SPF, DKIM, DMARC, and ARC email header results.
### analyze_incident
Efficiently extract and organize key details from cybersecurity breach articles, focusing on attack type, vulnerable components, attacker and target info, incident details, and remediation steps.
### analyze_interviewer_techniques
This exercise involves analyzing interviewer techniques, identifying their unique qualities, and succinctly articulating what makes them stand out in a clear, simple format.
### analyze_logs
Analyse server log files to identify patterns, anomalies, and issues, providing data-driven insights and recommendations for improving server reliability and performance.
### analyze_malware
Analyse malware details, extract key indicators, techniques, and potential detection strategies, and summarize findings concisely for a malware analyst's use in identifying and responding to threats.
### analyze_military_strategy
Analyse a historical battle, offering in-depth insights into strategic decisions, strengths, weaknesses, tactical approaches, logistical factors, pivotal moments, and consequences for a comprehensive military evaluation.
### analyze_mistakes
Analyse past mistakes in thinking patterns, map them to current beliefs, and offer recommendations to improve accuracy in predictions.
### analyze_paper
Analyses research papers by summarizing findings, evaluating rigor, and assessing quality to provide insights for documentation and review.
### analyze_paper_simple
Analyzes academic papers with a focus on primary findings, research quality, and study design evaluation.
### analyze_patent
Analyse a patent's field, problem, solution, novelty, inventive step, and advantages in detail while summarizing and extracting keywords.
### analyze_personality
Performs a deep psychological analysis of a person in the input, focusing on their behavior, language, and psychological traits.
### analyze_presentation
Reviews and critiques presentations by analyzing the content, speaker's underlying goals, self-focus, and entertainment value.
### analyze_product_feedback
A prompt for analyzing and organizing user feedback by identifying themes, consolidating similar comments, and prioritizing them based on usefulness.
### analyze_proposition
Analyzes a ballot proposition by identifying its purpose, impact, arguments for and against, and relevant background information.
### analyze_prose
Evaluates writing for novelty, clarity, and prose, providing ratings, improvement recommendations, and an overall score.
### analyze_prose_json
Evaluates writing for novelty, clarity, prose, and provides ratings, explanations, improvement suggestions, and an overall score in a JSON format.
### analyze_prose_pinker
Evaluates prose based on Steven Pinker's The Sense of Style, analyzing writing style, clarity, and bad writing elements.
### analyze_risk
Conducts a risk assessment of a third-party vendor, assigning a risk score and suggesting security controls based on analysis of provided documents and vendor website.
### analyze_sales_call
Rates sales call performance across multiple dimensions, providing scores and actionable feedback based on transcript analysis.
### analyze_spiritual_text
Compares and contrasts spiritual texts by analyzing claims and differences with the King James Bible.
### analyze_tech_impact
Analyzes the societal impact, ethical considerations, and sustainability of technology projects, evaluating their outcomes and benefits.
### analyze_terraform_plan
Analyzes Terraform plan outputs to assess infrastructure changes, security risks, cost implications, and compliance considerations.
### analyze_threat_report
Extracts surprising insights, trends, statistics, quotes, references, and recommendations from cybersecurity threat reports, summarizing key findings and providing actionable information.
### analyze_threat_report_cmds
Extract and synthesize actionable cybersecurity commands from provided materials, incorporating command-line arguments and expert insights for pentesters and non-experts.
### analyze_threat_report_trends
Extract up to 50 surprising, insightful, and interesting trends from a cybersecurity threat report in markdown format.
### answer_interview_question
Generates concise, tailored responses to technical interview questions, incorporating alternative approaches and evidence to demonstrate the candidate's expertise and experience.
### ask_secure_by_design_questions
Generates a set of security-focused questions to ensure a project is built securely by design, covering key components and considerations.
### ask_uncle_duke
Coordinates a team of AI agents to research and produce multiple software development solutions based on provided specifications, and conducts detailed code reviews to ensure adherence to best practices.
### capture_thinkers_work
Analyze philosophers or philosophies and provide detailed summaries about their teachings, background, works, advice, and related concepts in a structured template.
### check_agreement
Analyze contracts and agreements to identify important stipulations, issues, and potential gotchas, then summarize them in Markdown.
### clean_text
Fix broken or malformatted text by correcting line breaks, punctuation, capitalization, and paragraphs without altering content or spelling.
### coding_master
Explain a coding concept to a beginner, providing examples, and formatting code in markdown with specific output sections like ideas, recommendations, facts, and insights.
### compare_and_contrast
Compare and contrast a list of items in a markdown table, with items on the left and topics on top.
### convert_to_markdown
Convert content to clean, complete Markdown format, preserving all original structure, formatting, links, and code blocks without alterations.
### create_5_sentence_summary
Create concise summaries or answers to input at 5 different levels of depth, from 5 words to 1 word.
### create_academic_paper
Generate a high-quality academic paper in LaTeX format with clear concepts, structured content, and a professional layout.
### create_ai_jobs_analysis
Analyze job categories' susceptibility to automation, identify resilient roles, and provide strategies for personal adaptation to AI-driven changes in the workforce.
### create_aphorisms
Find and generate a list of brief, witty statements.
### create_art_prompt
Generates a detailed, compelling visual description of a concept, including stylistic references and direct AI instructions for creating art.
### create_better_frame
Identifies and analyzes different frames of interpreting reality, emphasizing the power of positive, productive lenses in shaping outcomes.
### create_coding_feature
Generates secure and composable code features using modern technology and best practices from project specifications.
### create_coding_project
Generate wireframes and starter code for any coding ideas that you have.
### create_command
Helps determine the correct parameters and switches for penetration testing tools based on a brief description of the objective.
### create_cyber_summary
Summarizes cybersecurity threats, vulnerabilities, incidents, and malware with a 25-word summary and categorized bullet points, after thoroughly analyzing and mapping the provided input.
### create_design_document
Creates a detailed design document for a system using the C4 model, addressing business and security postures, and including a system context diagram.
### create_diy
Creates structured "Do It Yourself" tutorial patterns by analyzing prompts, organizing requirements, and providing step-by-step instructions in Markdown format.
### create_excalidraw_visualization
Creates complex Excalidraw diagrams to visualize relationships between concepts and ideas in structured format.
### create_flash_cards
Creates flashcards for key concepts, definitions, and terms with question-answer format for educational purposes.
### create_formal_email
Crafts professional, clear, and respectful emails by analyzing context, tone, and purpose, ensuring proper structure and formatting.
### create_git_diff_commit
Generates Git commands and commit messages for reflecting changes in a repository, using conventional commits and providing concise shell commands for updates.
### create_graph_from_input
Generates a CSV file with progress-over-time data for a security program, focusing on relevant metrics and KPIs.
### create_hormozi_offer
Creates a customized business offer based on principles from Alex Hormozi's book, "$100M Offers."
### create_idea_compass
Organizes and structures ideas by exploring their definition, evidence, sources, and related themes or consequences.
### create_investigation_visualization
Creates detailed Graphviz visualizations of complex input, highlighting key aspects and providing clear, well-annotated diagrams for investigative analysis and conclusions.
### create_keynote
Creates TED-style keynote presentations with a clear narrative, structured slides, and speaker notes, emphasizing impactful takeaways and cohesive flow.
### create_loe_document
Creates detailed Level of Effort documents for estimating work effort, resources, and costs for tasks or projects.
### create_logo
Creates simple, minimalist company logos without text, generating AI prompts for vector graphic logos based on input.
### create_markmap_visualization
Transforms complex ideas into clear visualizations using MarkMap syntax, simplifying concepts into diagrams with relationships, boxes, arrows, and labels.
### create_mermaid_visualization
Creates detailed, standalone visualizations of concepts using Mermaid (Markdown) syntax, ensuring clarity and coherence in diagrams.
### create_mermaid_visualization_for_github
Creates standalone, detailed visualizations using Mermaid (Markdown) syntax to effectively explain complex concepts, ensuring clarity and precision.
### create_micro_summary
Summarizes content into a concise, 20-word summary with main points and takeaways, formatted in Markdown.
### create_mnemonic_phrases
Creates memorable mnemonic sentences from given words to aid in memory retention and learning.
### create_network_threat_landscape
Analyzes open ports and services from a network scan and generates a comprehensive, insightful, and detailed security threat report in Markdown.
### create_newsletter_entry
Condenses provided article text into a concise, objective, newsletter-style summary with a title in the style of Frontend Weekly.
### create_npc
Generates a detailed D&D 5E NPC, including background, flaws, stats, appearance, personality, goals, and more in Markdown format.
### create_pattern
Extracts, organizes, and formats LLM/AI prompts into structured sections, detailing the AI's role, instructions, output format, and any provided examples for clarity and accuracy.
### create_prd
Creates a precise Product Requirements Document (PRD) in Markdown based on input.
### create_prediction_block
Extracts and formats predictions from input into a structured Markdown block for a blog post.
### create_quiz
Generates review questions based on learning objectives from the input, adapted to the specified student level, and outputs them in a clear markdown format.
### create_reading_plan
Creates a three-phase reading plan based on an author or topic to help the user become significantly knowledgeable, including core, extended, and supplementary readings.
### create_recursive_outline
Breaks down complex tasks or projects into manageable, hierarchical components with recursive outlining for clarity and simplicity.
### create_report_finding
Creates a detailed, structured security finding report in markdown, including sections on Description, Risk, Recommendations, References, One-Sentence-Summary, and Quotes.
### create_rpg_summary
Summarizes an in-person RPG session with key events, combat details, player stats, and role-playing highlights in a structured format.
### create_security_update
Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
### create_show_intro
Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
### create_sigma_rules
Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
### create_story_explanation
Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
### create_stride_threat_model
Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
### create_summary
Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
### create_tags
Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
### create_threat_scenarios
Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
### create_ttrc_graph
Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
### create_ttrc_narrative
Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
### create_upgrade_pack
Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
### create_user_story
Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
### create_video_chapters
Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
### create_visualization
Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
### dialog_with_socrates
Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
### enrich_blog_post
Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
### explain_code
Explains code, security tool output, configuration text, and answers questions based on the provided input.
### explain_docs
Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
### explain_math
Helps you understand mathematical concepts in a clear and engaging way.
### explain_project
Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
### explain_terms
Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
### export_data_as_csv
Extracts and outputs all data structures from the input in properly formatted CSV data.
### extract_algorithm_update_recommendations
Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
### extract_article_wisdom
Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
### extract_book_ideas
Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
### extract_book_recommendations
Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
### extract_business_ideas
Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
### extract_controversial_ideas
Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
### extract_core_message
Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
### extract_ctf_writeup
Extracts a short writeup from a warstory-like text about a cyber security engagement.
### extract_domains
Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
### extract_extraordinary_claims
Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
### extract_ideas
Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
### extract_insights
Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
### extract_insights_dm
Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
### extract_instructions
Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
### extract_jokes
Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
### extract_latest_video
Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
### extract_main_activities
Extracts key events and activities from transcripts or logs, providing a summary of what happened.
### extract_main_idea
Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
### extract_most_redeeming_thing
Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
### extract_patterns
Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
### extract_poc
Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
### extract_predictions
Extracts predictions from input, including specific details such as date, confidence level, and verification method.
### extract_primary_problem
Extracts the primary problem with the world as presented in a given text or body of work.
### extract_primary_solution
Extracts the primary solution for the world as presented in a given text or body of work.
### extract_product_features
Extracts and outputs a list of product features from the provided input in a bulleted format.
### extract_questions
Extracts and outputs all questions asked by the interviewer in a conversation or interview.
### extract_recipe
Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
### extract_recommendations
Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
### extract_references
Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
### extract_skills
Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
### extract_song_meaning
Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
### extract_sponsors
Extracts and lists official sponsors and potential sponsors from a provided transcript.
### extract_videoid
Extracts and outputs the video ID from any given URL.
### extract_wisdom
Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
### extract_wisdom_agents
Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
### extract_wisdom_dm
Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
### extract_wisdom_nometa
Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
### find_female_life_partner
Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
### find_hidden_message
Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
### find_logical_fallacies
Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
### get_wow_per_minute
Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
### get_youtube_rss
Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
### humanize
Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
### identify_dsrp_distinctions
Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
### identify_dsrp_perspectives
Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
### identify_dsrp_relationships
Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
### identify_dsrp_systems
Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
### identify_job_stories
Identifies key job stories or requirements for roles.
### improve_academic_writing
Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
### improve_prompt
Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
### improve_report_finding
Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
### improve_writing
Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning.
### judge_output
Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
### label_and_rate
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### md_callout
Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
### official_pattern_template
Template to use if you want to create new fabric patterns.
### prepare_7s_strategy
Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
### provide_guidance
Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
### rate_ai_response
Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
### rate_ai_result
Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
### rate_content
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### rate_value
Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
### raw_query
Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
### recommend_artists
Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
### recommend_pipeline_upgrades
Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
### recommend_talkpanel_topics
Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
### refine_design_document
Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
### review_design
Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
### sanitize_broken_html_to_markdown
Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
### show_fabric_options_markmap
Visualizes the functionality of the Fabric framework by representing its components, commands, and features based on the provided input.
### solve_with_cot
Provides detailed, step-by-step responses with chain of thought reasoning, using structured thinking, reflection, and output sections.
### suggest_pattern
Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
### summarize
Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
### summarize_board_meeting
Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
### summarize_debate
Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
### summarize_git_changes
Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
### summarize_git_diff
Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
### summarize_lecture
Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
### summarize_legislation
Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
### summarize_meeting
Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
### summarize_micro
Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
### summarize_newsletter
Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
### summarize_paper
Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
### summarize_prompt
Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
### summarize_pull-requests
Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
### summarize_rpg_session
Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
### t_analyze_challenge_handling
Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
### t_check_metrics
Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
### t_create_h3_career
Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
### t_create_opening_sentences
Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
### t_describe_life_outlook
Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
### t_extract_intro_sentences
Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
### t_extract_panel_topics
Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
### t_find_blindspots
Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
### t_find_negative_thinking
Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
### t_find_neglected_goals
Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
### t_give_encouragement
Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
### t_red_team_thinking
Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
### t_threat_model_plans
Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
### t_visualize_mission_goals_projects
Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
### t_year_in_review
Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
### to_flashcards
Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
### transcribe_minutes
Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
### translate
Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
### tweet
Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
### write_essay
Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
### write_essay_pg
Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
### write_hackerone_report
Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
### write_latex
Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
### write_micro_essay
Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
### write_nuclei_template_rule
Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
### write_pull-request
Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
### write_semgrep_rule
Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
### youtube_summary
Create concise, timestamped Youtube video summaries that highlight key points.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 8 16-word bullets describing how well or poorly I'm addressing my challenges. Call me out if I'm not putting work into them, and/or if you can see evidence of them affecting me in my journal or elsewhere.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Check this person's Metrics or KPIs (M's or K's) to see their current state and if they've been improved recently.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Analyze everything in my TELOS file and think about what I could and should do after my legacy corporate / technical skills are automated away. What can I contribute that's based on human-to-human interaction and exchanges of value?
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 4 32-word bullets describing who I am and what I do in a non-douchey way. Use the who I am, the problem I see in the world, and what I'm doing about it as the template. Something like:
a. I'm a programmer by trade, and one thing that really bothers me is kids being so stuck inside of tech and games. So I started a school where I teach kids to build things with their hands.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 5 16-word bullets describing this person's life outlook.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 5 16-word bullets describing who this person is, what they do, and what they're working on. The goal is to concisely and confidently project who they are while being humble and grounded.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 5 48-word bullet points, each including a 3-5 word panel title, that would be wonderful panels for this person to participate on.
5. Write them so that they'd be good panels for others to participate in as well, not just me.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 8 16-word bullets describing possible blindspots in my thinking, i.e., flaws in my frames or models that might leave me exposed to error or risk.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 4 16-word bullets identifying negative thinking either in my main document or in my journal.
5. Add some tough love encouragement (not fluff) to help get me out of that mindset.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 5 16-word bullets describing which of their goals and/or projects don't seem to have been worked on recently.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 8 16-word bullets looking at what I'm trying to do, and any progress I've made, and give some encouragement on the positive aspects and recommendations to continue the work.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 4 16-word bullets red-teaming my thinking, models, frames, etc, especially as evidenced throughout my journal.
5. Give a set of recommendations on how to fix the issues identified in the red-teaming.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 8 16-word bullets threat modeling my life plan and what could go wrong.
5. Provide recommendations on how to address the threats and improve the life plan.

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Create an ASCII art diagram of the relationship my missions, goals, and projects.
# OUTPUT INSTRUCTIONS

View File

@@ -6,7 +6,7 @@ You are an expert at understanding deep context about a person or entity, and th
1. Read the incoming TELOS File thoroughly. Fully understand everything about this person or entity.
2. Deeply study the input instruction or question.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible ouptut for the person who sent the input.
3. Spend significant time and effort thinking about how these two are related, and what would be the best possible output for the person who sent the input.
4. Write 8 16-word bullets describing what you accomplished this year.
5. End with an ASCII art visualization of what you worked on and accomplished vs. what you didn't work on or finish.

View File

@@ -45,7 +45,7 @@ Follow the following structure:
- Deeply understand the relationship between the HTTP requests provided. Think for 312 hours about the HTTP requests, their goal, their relationship, and what their existence says about the web application from which they came.
- Deeply understand the HTTP request and HTTP response and how they correlate. Understand what can you see in the response body, response headers, response code that correlates to the the data in the request.
- Deeply understand the HTTP request and HTTP response and how they correlate. Understand what can you see in the response body, response headers, response code that correlates to the data in the request.
- Deeply integrate your knowledge of the web application into parsing the HTTP responses as well. Integrate all knowledge consumed at this point together.

View File

@@ -0,0 +1,183 @@
# Desktop Notifications
Fabric supports desktop notifications to alert you when commands complete, which is especially useful for long-running tasks or when you're multitasking.
## Quick Start
Enable notifications with the `--notification` flag:
```bash
fabric --pattern summarize --notification < article.txt
```
## Configuration
### Command Line Options
- `--notification`: Enable desktop notifications when command completes
- `--notification-command`: Use a custom notification command instead of built-in notifications
### YAML Configuration
Add notification settings to your `~/.config/fabric/config.yaml`:
```yaml
# Enable notifications by default
notification: true
# Optional: Custom notification command
notificationCommand: 'notify-send --urgency=normal "$1" "$2"'
```
## Platform Support
### macOS
- **Default**: Uses `osascript` (built into macOS)
- **Enhanced**: Install `terminal-notifier` for better notifications:
```bash
brew install terminal-notifier
```
### Linux
- **Requirement**: Install `notify-send`:
```bash
# Ubuntu/Debian
sudo apt install libnotify-bin
# Fedora
sudo dnf install libnotify
```
### Windows
- **Default**: Uses PowerShell message boxes (built-in)
## Custom Notification Commands
The `--notification-command` flag allows you to use custom notification scripts or commands. The command receives the title as `$1` and message as `$2` as shell positional arguments.
**Security Note**: The title and message content are properly escaped to prevent command injection attacks from AI-generated output containing shell metacharacters.
### Examples
**macOS with custom sound:**
```bash
fabric --pattern analyze_claims --notification-command 'osascript -e "display notification \"$2\" with title \"$1\" sound name \"Ping\""' < document.txt
```
**Linux with urgency levels:**
```bash
fabric --pattern extract_wisdom --notification-command 'notify-send --urgency=critical "$1" "$2"' < video-transcript.txt
```
**Custom script:**
```bash
fabric --pattern summarize --notification-command '/path/to/my-notification-script.sh "$1" "$2"' < report.pdf
```
**Testing your custom command:**
```bash
# Test that $1 and $2 are passed correctly
fabric --pattern raw_query --notification-command 'echo "Title: $1, Message: $2"' "test input"
```
## Notification Content
Notifications include:
- **Title**: "Fabric Command Complete" or "Fabric: [pattern] Complete"
- **Message**: Brief summary of the output (first 100 characters)
For long outputs, the message is truncated with "..." to fit notification display limits.
## Use Cases
### Long-Running Tasks
```bash
# Process large document with notifications
fabric --pattern analyze_paper --notification < research-paper.pdf
# Extract wisdom from long video with alerts
fabric -y "https://youtube.com/watch?v=..." --pattern extract_wisdom --notification
```
### Background Processing
```bash
# Process multiple files and get notified when each completes
for file in *.txt; do
fabric --pattern summarize --notification < "$file" &
done
```
### Integration with Other Tools
```bash
# Combine with other commands
curl -s "https://api.example.com/data" | \
fabric --pattern analyze_data --notification --output results.md
```
## Troubleshooting
### No Notifications Appearing
1. **Check system notifications are enabled** for Terminal/your shell
2. **Verify notification tools are installed**:
- macOS: `which osascript` (should exist)
- Linux: `which notify-send`
- Windows: `where.exe powershell`
3. **Test with simple command**:
```bash
echo "test" | fabric --pattern raw_query --notification --dry-run
```
### Notification Permission Issues
On some systems, you may need to grant notification permissions to your terminal application:
- **macOS**: System Preferences → Security & Privacy → Privacy → Notifications → Enable for Terminal
- **Linux**: Depends on desktop environment; usually automatic
- **Windows**: Usually works by default
### Custom Commands Not Working
- Ensure your custom notification command is executable
- Test the command manually with sample arguments
- Check that all required dependencies are installed
## Advanced Configuration
### Environment-Specific Settings
Create different configuration files for different environments:
```bash
# Work computer (quieter notifications)
fabric --config ~/.config/fabric/work-config.yaml --notification
# Personal computer (with sound)
fabric --config ~/.config/fabric/personal-config.yaml --notification
```
### Integration with Task Management
```bash
# Custom script that also logs to task management system
notificationCommand: '/usr/local/bin/fabric-notify-and-log.sh "$1" "$2"'
```
## Examples
See `docs/notification-config.yaml` for a complete configuration example with various notification command options.

140
docs/Shell-Completions.md Normal file
View File

@@ -0,0 +1,140 @@
# Shell Completions for Fabric
Fabric comes with shell completion support for Zsh, Bash, and Fish shells. These completions provide intelligent tab-completion for commands, flags, patterns, models, contexts, and more.
## Quick Setup (Automated)
You can install completions without cloning the repo:
```bash
# No-clone install (Zsh/Bash/Fish supported)
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh
# Optional: dry-run first
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh -s -- --dry-run
# Optional: override the download source
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions" \
sh -c "$(curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh)"
```
Or, if you have the repository locally:
```bash
# Run the automated setup script from a cloned repo
./completions/setup-completions.sh
# Or see what it would do first
./completions/setup-completions.sh --dry-run
```
The script will:
- Detect whether you have `fabric` or `fabric-ai` installed
- Detect your current shell (zsh, bash, or fish)
- Use your existing `$fpath` directories (for zsh) or standard completion directories
- Install the completion file with the correct name
- Provide instructions for enabling the completions
If the completion files aren't present locally (e.g., when running via `curl`), the script will automatically download them from GitHub.
For manual installation or troubleshooting, see the detailed instructions below.
## Manual Installation
### Zsh
1. Copy the completion file to a directory in your `$fpath`:
```bash
sudo cp completions/_fabric /usr/local/share/zsh/site-functions/
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink so completions work:
```bash
sudo ln -s /usr/local/share/zsh/site-functions/_fabric /usr/local/share/zsh/site-functions/_fabric-ai
```
3. Restart your shell or reload completions:
```bash
autoload -U compinit && compinit
```
### Bash
1. Copy the completion file to a standard completion directory:
```bash
# System-wide installation
sudo cp completions/fabric.bash /etc/bash_completion.d/
# Or user-specific installation
mkdir -p ~/.local/share/bash-completion/completions/
cp completions/fabric.bash ~/.local/share/bash-completion/completions/fabric
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink:
```bash
# For system-wide installation
sudo ln -s /etc/bash_completion.d/fabric.bash /etc/bash_completion.d/fabric-ai.bash
# Or for user-specific installation
ln -s ~/.local/share/bash-completion/completions/fabric ~/.local/share/bash-completion/completions/fabric-ai
```
3. Restart your shell or source the completion:
```bash
source ~/.bashrc
```
### Fish
1. Copy the completion file to Fish's completion directory:
```bash
mkdir -p ~/.config/fish/completions
cp completions/fabric.fish ~/.config/fish/completions/
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink:
```bash
ln -s ~/.config/fish/completions/fabric.fish ~/.config/fish/completions/fabric-ai.fish
```
3. Fish will automatically load the completions (no restart needed).
## Features
The completions provide intelligent suggestions for:
- **Patterns**: Tab-complete available patterns with `-p` or `--pattern`
- **Models**: Tab-complete available models with `-m` or `--model`
- **Contexts**: Tab-complete contexts for context-related flags
- **Sessions**: Tab-complete sessions for session-related flags
- **Strategies**: Tab-complete available strategies
- **Extensions**: Tab-complete registered extensions
- **Gemini Voices**: Tab-complete TTS voices for `--voice`
- **File paths**: Smart file completion for attachment, output, and config options
- **Flag completion**: All available command-line flags and options
## Alternative Installation Method
You can also source the completion files directly in your shell's configuration file:
- **Zsh**: Add to `~/.zshrc`: `source /path/to/fabric/completions/_fabric`
- **Bash**: Add to `~/.bashrc`: `source /path/to/fabric/completions/fabric.bash`
- **Fish**: The file-based installation method above is preferred for Fish
## Troubleshooting
- If completions don't work, ensure the completion files have proper permissions
- For Zsh, verify that the completion directory is in your `$fpath`
- If you renamed the fabric binary, make sure to create the appropriate symlinks as described above
- Restart your shell after installation to ensure completions are loaded
The completion system dynamically queries the fabric command for current patterns, models, and other resources, so your completions will always be up-to-date with your fabric installation.

298
docs/YouTube-Processing.md Normal file
View File

@@ -0,0 +1,298 @@
# YouTube Processing with Fabric
Fabric provides powerful YouTube video processing capabilities that allow you to extract transcripts, comments, and metadata from YouTube videos and playlists. This guide covers all the available options and common use cases.
## Prerequisites
- **yt-dlp**: Required for transcript extraction. Install on MacOS with:
```bash
brew install yt-dlp
```
Or use the package manager of your choice for your operating system.
See the [yt-dlp wiki page](https://github.com/yt-dlp/yt-dlp/wiki/Installation) for your specific installation instructions.
- **YouTube API Key** (optional): Only needed for comments and metadata extraction. Configure with:
```bash
fabric --setup
```
## Basic Usage
### Extract Transcript
Extract a video transcript and process it with a pattern:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize
```
### Extract Transcript with Timestamps
Get transcript with timestamps preserved:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --transcript-with-timestamps --pattern extract_wisdom
```
### Extract Comments
Get video comments (requires YouTube API key):
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --comments --pattern analyze_claims
```
### Extract Metadata
Get video metadata as JSON:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --metadata
```
## Advanced Options
### Custom yt-dlp Arguments
Pass additional arguments to yt-dlp for advanced functionality. **User-provided arguments take precedence** over built-in fabric arguments, giving you full control:
```bash
# Use browser cookies for age-restricted or private videos
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser brave"
# Override language selection (takes precedence over -g flag)
fabric -g en -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sub-langs es,fr"
# Use specific format
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--format best"
# Handle rate limiting (slow down requests)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sleep-requests 1"
# Multiple arguments (use quotes)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser firefox --write-info-json"
# Combine rate limiting with authentication
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser brave --sleep-requests 1"
# Override subtitle format (takes precedence over built-in --sub-format vtt)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sub-format srt"
```
#### Argument Precedence
Fabric constructs the yt-dlp command in this order:
1. **Built-in base arguments** (`--write-auto-subs`, `--skip-download`, etc.)
2. **Language selection** (from `-g` flag): `--sub-langs LANGUAGE`
3. **User arguments** (from `--yt-dlp-args`): **These override any conflicting built-in arguments**
4. **Video URL**
This means you can override any built-in behavior by specifying it in `--yt-dlp-args`.
### Playlist Processing
Process entire playlists:
```bash
# Process all videos in a playlist
fabric -y "https://www.youtube.com/playlist?list=PLAYLIST_ID" --playlist --pattern summarize
# Save playlist videos to CSV
fabric -y "https://www.youtube.com/playlist?list=PLAYLIST_ID" --playlist -o playlist.csv
```
### Language Support
Specify transcript language:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" -g es --pattern translate
```
## Combining Options
You can combine multiple YouTube processing options:
```bash
# Get transcript, comments, and metadata
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--transcript \
--comments \
--metadata \
--pattern comprehensive_analysis
```
## Output Options
### Save to File
```bash
# Save output to file
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize -o summary.md
# Save entire session including input
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize --output-session -o full_session.md
```
### Stream Output
Get real-time streaming output:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize --stream
```
## Common Use Cases
### Content Analysis
```bash
# Analyze video content for key insights
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_wisdom
# Check claims made in the video
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern analyze_claims
```
### Educational Content
```bash
# Create study notes from educational videos
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern create_study_notes
# Extract key concepts and definitions
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_concepts
```
### Meeting/Conference Processing
```bash
# Summarize conference talks with timestamps
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--transcript-with-timestamps \
--pattern meeting_summary
# Extract action items from recorded meetings
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_action_items
```
### Content Creation
```bash
# Create social media posts from video content
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern create_social_posts
# Generate blog post from video transcript
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern write_blog_post
```
## Troubleshooting
### Common Issues
1. **"yt-dlp not found"**: Install yt-dlp using pip or your package manager
2. **Age-restricted videos**: Use `--yt-dlp-args="--cookies-from-browser BROWSER"`
3. **No subtitles available**: Some videos don't have auto-generated subtitles
4. **API rate limits**: YouTube API has daily quotas for comments/metadata
5. **HTTP 429 errors**: YouTube is rate limiting subtitle requests
### Error Messages
- **"YouTube is not configured"**: Run `fabric --setup` to configure YouTube API
- **"yt-dlp failed"**: Check video URL and try with `--yt-dlp-args` for authentication
- **"No transcript content found"**: Video may not have subtitles available
- **"HTTP Error 429: Too Many Requests"**: YouTube rate limit exceeded. This is increasingly common. Solutions:
- **Wait 10-30 minutes and try again** (most effective)
- Use longer sleep: `--yt-dlp-args="--sleep-requests 5"`
- Try with browser cookies: `--yt-dlp-args="--cookies-from-browser brave --sleep-requests 5"`
- **Try a different video** - some videos are less restricted
- **Use a VPN** - different IP address may help
- **Try without language specification** - let yt-dlp choose any available language
- **Try English instead** - `fabric -g en` (English subtitles may be less rate-limited)
### Language Fallback Behavior
When you specify a language (e.g., `-g es` for Spanish) but that language isn't available or fails to download:
1. **Automatic fallback**: Fabric automatically retries without language specification
2. **Smart file detection**: If the fallback downloads a different language (e.g., English), Fabric will automatically detect and use it
3. **No manual intervention needed**: The process is transparent to the user
```bash
# Even if Spanish isn't available, this will work with whatever language yt-dlp finds
fabric -g es -y "https://youtube.com/watch?v=VIDEO_ID" --pattern summarize
```
## Configuration
### YAML Configuration
You can set default yt-dlp arguments in your config file (`~/.config/fabric/config.yaml`):
```yaml
ytDlpArgs: "--cookies-from-browser brave --write-info-json"
```
### Environment Variables
Set up your YouTube API key:
```bash
export FABRIC_YOUTUBE_API_KEY="your_api_key_here"
```
## Tips and Best Practices
1. **Use specific patterns**: Choose patterns that match your use case for better results
2. **Combine with other tools**: Pipe output to other commands or save to files for further processing
3. **Batch processing**: Use playlists to process multiple videos efficiently
4. **Authentication**: Use browser cookies for accessing private or age-restricted content
5. **Language support**: Specify language codes for better transcript accuracy
6. **Rate limiting**: If you encounter 429 errors, use `--sleep-requests 1` to slow down requests
7. **Persistent settings**: Set common yt-dlp args in your config file to avoid repeating them
8. **Argument precedence**: Use `--yt-dlp-args` to override any built-in behavior when needed
9. **Testing**: Use `yt-dlp --list-subs URL` to see available subtitle languages before processing
## Examples
### Quick Video Summary
```bash
fabric -y "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --pattern summarize --stream
```
### Detailed Analysis with Authentication
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--yt-dlp-args="--cookies-from-browser chrome" \
--transcript-with-timestamps \
--comments \
--pattern comprehensive_analysis \
-o analysis.md
```
### Playlist Processing
```bash
fabric -y "https://www.youtube.com/playlist?list=PLrAXtmRdnEQy6nuLvVUxpDnx4C0823vBN" \
--playlist \
--pattern extract_wisdom \
-o playlist_wisdom.md
```
### Override Built-in Language Selection
```bash
# Built-in language selection (-g es) is overridden by user args
fabric -g es -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--yt-dlp-args="--sub-langs fr,de,en" \
--pattern translate
```
For more patterns and advanced usage, see the main [Fabric documentation](../README.md).

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@@ -0,0 +1,21 @@
# Example Fabric configuration with notification support
# Save this to ~/.config/fabric/config.yaml to use as defaults
# Enable notifications by default for all commands
notification: true
# Optional: Use a custom notification command
# Examples:
# macOS with custom sound:
# notificationCommand: 'osascript -e "display notification \"$2\" with title \"$1\" sound name \"Ping\""'
#
# Linux with custom urgency:
# notificationCommand: 'notify-send --urgency=normal "$1" "$2"'
#
# Custom script:
# notificationCommand: '/path/to/custom-notification-script.sh "$1" "$2"'
# Other common settings
model: "gpt-4o"
temperature: 0.7
stream: true

5
go.mod
View File

@@ -5,7 +5,7 @@ go 1.24.0
toolchain go1.24.2
require (
github.com/anthropics/anthropic-sdk-go v1.4.0
github.com/anthropics/anthropic-sdk-go v1.9.1
github.com/atotto/clipboard v0.1.4
github.com/aws/aws-sdk-go-v2 v1.36.4
github.com/aws/aws-sdk-go-v2/config v1.27.27
@@ -19,6 +19,7 @@ require (
github.com/hasura/go-graphql-client v0.14.4
github.com/jessevdk/go-flags v1.6.1
github.com/joho/godotenv v1.5.1
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51
github.com/mattn/go-sqlite3 v1.14.28
github.com/ollama/ollama v0.9.0
github.com/openai/openai-go v1.8.2
@@ -116,7 +117,7 @@ require (
go.opentelemetry.io/otel/metric v1.36.0 // indirect
go.opentelemetry.io/otel/trace v1.36.0 // indirect
golang.org/x/arch v0.18.0 // indirect
golang.org/x/crypto v0.39.0 // indirect
golang.org/x/crypto v0.40.0 // indirect
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b // indirect
golang.org/x/net v0.41.0 // indirect
golang.org/x/sync v0.16.0 // indirect

14
go.sum
View File

@@ -17,8 +17,8 @@ github.com/andybalholm/cascadia v1.3.3 h1:AG2YHrzJIm4BZ19iwJ/DAua6Btl3IwJX+VI4kk
github.com/andybalholm/cascadia v1.3.3/go.mod h1:xNd9bqTn98Ln4DwST8/nG+H0yuB8Hmgu1YHNnWw0GeA=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be h1:9AeTilPcZAjCFIImctFaOjnTIavg87rW78vTPkQqLI8=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be/go.mod h1:ySMOLuWl6zY27l47sB3qLNK6tF2fkHG55UZxx8oIVo4=
github.com/anthropics/anthropic-sdk-go v1.4.0 h1:fU1jKxYbQdQDiEXCxeW5XZRIOwKevn/PMg8Ay1nnUx0=
github.com/anthropics/anthropic-sdk-go v1.4.0/go.mod h1:AapDW22irxK2PSumZiQXYUFvsdQgkwIWlpESweWZI/c=
github.com/anthropics/anthropic-sdk-go v1.9.1 h1:raRhZKmayVSVZtLpLDd6IsMXvxLeeSU03/2IBTerWlg=
github.com/anthropics/anthropic-sdk-go v1.9.1/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de h1:FxWPpzIjnTlhPwqqXc4/vE0f7GvRjuAsbW+HOIe8KnA=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de/go.mod h1:DCaWoUhZrYW9p1lxo/cm8EmUOOzAPSEZNGF2DK1dJgw=
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5 h1:0CwZNZbxp69SHPdPJAN/hZIm0C4OItdklCFmMRWYpio=
@@ -153,6 +153,8 @@ github.com/joho/godotenv v1.5.1 h1:7eLL/+HRGLY0ldzfGMeQkb7vMd0as4CfYvUVzLqw0N0=
github.com/joho/godotenv v1.5.1/go.mod h1:f4LDr5Voq0i2e/R5DDNOoa2zzDfwtkZa6DnEwAbqwq4=
github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=
github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo=
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51 h1:Z9n2FFNUXsshfwJMBgNA0RU6/i7WVaAegv3PtuIHPMs=
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51/go.mod h1:CzGEWj7cYgsdH8dAjBGEr58BoE7ScuLd+fwFZ44+/x8=
github.com/kevinburke/ssh_config v1.2.0 h1:x584FjTGwHzMwvHx18PXxbBVzfnxogHaAReU4gf13a4=
github.com/kevinburke/ssh_config v1.2.0/go.mod h1:CT57kijsi8u/K/BOFA39wgDQJ9CxiF4nAY/ojJ6r6mM=
github.com/klauspost/cpuid/v2 v2.0.9/go.mod h1:FInQzS24/EEf25PyTYn52gqo7WaD8xa0213Md/qVLRg=
@@ -266,8 +268,8 @@ golang.org/x/crypto v0.13.0/go.mod h1:y6Z2r+Rw4iayiXXAIxJIDAJ1zMW4yaTpebo8fPOliY
golang.org/x/crypto v0.19.0/go.mod h1:Iy9bg/ha4yyC70EfRS8jz+B6ybOBKMaSxLj6P6oBDfU=
golang.org/x/crypto v0.23.0/go.mod h1:CKFgDieR+mRhux2Lsu27y0fO304Db0wZe70UKqHu0v8=
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
golang.org/x/crypto v0.39.0 h1:SHs+kF4LP+f+p14esP5jAoDpHU8Gu/v9lFRK6IT5imM=
golang.org/x/crypto v0.39.0/go.mod h1:L+Xg3Wf6HoL4Bn4238Z6ft6KfEpN0tJGo53AAPC632U=
golang.org/x/crypto v0.40.0 h1:r4x+VvoG5Fm+eJcxMaY8CQM7Lb0l1lsmjGBQ6s8BfKM=
golang.org/x/crypto v0.40.0/go.mod h1:Qr1vMER5WyS2dfPHAlsOj01wgLbsyWtFn/aY+5+ZdxY=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b h1:QoALfVG9rhQ/M7vYDScfPdWjGL9dlsVVM5VGh7aKoAA=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b/go.mod h1:U6Lno4MTRCDY+Ba7aCcauB9T60gsv5s4ralQzP72ZoQ=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
@@ -325,8 +327,8 @@ golang.org/x/term v0.12.0/go.mod h1:owVbMEjm3cBLCHdkQu9b1opXd4ETQWc3BhuQGKgXgvU=
golang.org/x/term v0.17.0/go.mod h1:lLRBjIVuehSbZlaOtGMbcMncT+aqLLLmKrsjNrUguwk=
golang.org/x/term v0.20.0/go.mod h1:8UkIAJTvZgivsXaD6/pH6U9ecQzZ45awqEOzuCvwpFY=
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
golang.org/x/term v0.32.0 h1:DR4lr0TjUs3epypdhTOkMmuF5CDFJ/8pOnbzMZPQ7bg=
golang.org/x/term v0.32.0/go.mod h1:uZG1FhGx848Sqfsq4/DlJr3xGGsYMu/L5GW4abiaEPQ=
golang.org/x/term v0.33.0 h1:NuFncQrRcaRvVmgRkvM3j/F00gWIAlcmlB8ACEKmGIg=
golang.org/x/term v0.33.0/go.mod h1:s18+ql9tYWp1IfpV9DmCtQDDSRBUjKaw9M1eAv5UeF0=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=

View File

@@ -3,12 +3,14 @@ package cli
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"strings"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
"github.com/danielmiessler/fabric/internal/tools/notifications"
)
// handleChatProcessing handles the main chat processing logic
@@ -19,7 +21,7 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
var chatter *core.Chatter
if chatter, err = registry.GetChatter(currentFlags.Model, currentFlags.ModelContextLength,
currentFlags.Strategy, currentFlags.Stream, currentFlags.DryRun); err != nil {
currentFlags.Vendor, currentFlags.Strategy, currentFlags.Stream, currentFlags.DryRun); err != nil {
return
}
@@ -115,9 +117,65 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
}
}
}
// Send notification if requested
if chatOptions.Notification {
if err = sendNotification(chatOptions, chatReq.PatternName, result); err != nil {
// Log notification error but don't fail the main command
fmt.Fprintf(os.Stderr, "Failed to send notification: %v\n", err)
}
}
return
}
// sendNotification sends a desktop notification about command completion.
//
// When truncating the result for notification display, this function counts Unicode code points,
// not grapheme clusters. As a result, complex emoji or accented characters with multiple combining
// characters may be truncated improperly. This is a limitation of the current implementation.
func sendNotification(options *domain.ChatOptions, patternName, result string) error {
title := "Fabric Command Complete"
if patternName != "" {
title = fmt.Sprintf("Fabric: %s Complete", patternName)
}
// Limit message length for notification display (counts Unicode code points)
message := "Command completed successfully"
if result != "" {
maxLength := 100
runes := []rune(result)
if len(runes) > maxLength {
message = fmt.Sprintf("Output: %s...", string(runes[:maxLength]))
} else {
message = fmt.Sprintf("Output: %s", result)
}
// Clean up newlines for notification display
message = strings.ReplaceAll(message, "\n", " ")
}
// Use custom notification command if provided
if options.NotificationCommand != "" {
// SECURITY: Pass title and message as proper shell positional arguments $1 and $2
// This matches the documented interface where custom commands receive title and message as shell variables
cmd := exec.Command("sh", "-c", options.NotificationCommand+" \"$1\" \"$2\"", "--", title, message)
// For debugging: capture and display output from custom commands
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
// Use built-in notification system
notificationManager := notifications.NewNotificationManager()
if !notificationManager.IsAvailable() {
return fmt.Errorf("no notification system available")
}
return notificationManager.Send(title, message)
}
// isTTSModel checks if the model is a text-to-speech model
func isTTSModel(modelName string) bool {
lowerModel := strings.ToLower(modelName)

166
internal/cli/chat_test.go Normal file
View File

@@ -0,0 +1,166 @@
package cli
import (
"strings"
"testing"
"github.com/danielmiessler/fabric/internal/domain"
)
func TestSendNotification_SecurityEscaping(t *testing.T) {
tests := []struct {
name string
title string
message string
command string
expectError bool
description string
}{
{
name: "Normal content",
title: "Test Title",
message: "Test message content",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Normal content should work fine",
},
{
name: "Content with backticks",
title: "Test Title",
message: "Test `whoami` injection",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Backticks should be escaped and not executed",
},
{
name: "Content with semicolon injection",
title: "Test Title",
message: "Test; echo INJECTED; echo end",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Semicolon injection should be prevented",
},
{
name: "Content with command substitution",
title: "Test Title",
message: "Test $(whoami) injection",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Command substitution should be escaped",
},
{
name: "Content with quote injection",
title: "Test Title",
message: "Test ' || echo INJECTED || echo ' end",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Quote injection should be prevented",
},
{
name: "Content with newlines",
title: "Test Title",
message: "Line 1\nLine 2\nLine 3",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Newlines should be handled safely",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: tt.command,
Notification: true,
}
// This test mainly verifies that the function doesn't panic
// and properly escapes dangerous content. The actual command
// execution is tested separately in integration tests.
err := sendNotification(options, "test_pattern", tt.message)
if tt.expectError && err == nil {
t.Errorf("Expected error for %s, but got none", tt.description)
}
if !tt.expectError && err != nil {
t.Errorf("Unexpected error for %s: %v", tt.description, err)
}
})
}
}
func TestSendNotification_TitleGeneration(t *testing.T) {
tests := []struct {
name string
patternName string
expected string
}{
{
name: "No pattern name",
patternName: "",
expected: "Fabric Command Complete",
},
{
name: "With pattern name",
patternName: "summarize",
expected: "Fabric: summarize Complete",
},
{
name: "Pattern with special characters",
patternName: "test_pattern-v2",
expected: "Fabric: test_pattern-v2 Complete",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: `echo "Title: $1"`,
Notification: true,
}
// We're testing the title generation logic
// The actual notification command would echo the title
err := sendNotification(options, tt.patternName, "test message")
// The function should not error for valid inputs
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
})
}
}
func TestSendNotification_MessageTruncation(t *testing.T) {
longMessage := strings.Repeat("A", 150) // 150 characters
shortMessage := "Short message"
tests := []struct {
name string
message string
expected string
}{
{
name: "Short message",
message: shortMessage,
},
{
name: "Long message truncation",
message: longMessage,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: `echo "Message: $2"`,
Notification: true,
}
err := sendNotification(options, "test", tt.message)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
})
}
}

View File

@@ -113,11 +113,11 @@ func processYoutubeVideo(
}
}
if flags.YouTubeTranscriptWithTimestamps {
if transcript, err = registry.YouTube.GrabTranscriptWithTimestamps(videoId, language); err != nil {
if transcript, err = registry.YouTube.GrabTranscriptWithTimestampsWithArgs(videoId, language, flags.YtDlpArgs); err != nil {
return
}
} else {
if transcript, err = registry.YouTube.GrabTranscript(videoId, language); err != nil {
if transcript, err = registry.YouTube.GrabTranscriptWithArgs(videoId, language, flags.YtDlpArgs); err != nil {
return
}
}

View File

@@ -20,75 +20,82 @@ import (
)
// Flags create flags struct. the users flags go into this, this will be passed to the chat struct in cli
// Chat parameter defaults set in the struct tags must match domain.Default* constants
type Flags struct {
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
Vendor string `short:"V" long:"vendor" yaml:"vendor" description:"Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
YtDlpArgs string `long:"yt-dlp-args" yaml:"ytDlpArgs" description:"Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
Notification bool `long:"notification" yaml:"notification" description:"Send desktop notification when command completes"`
NotificationCommand string `long:"notification-command" yaml:"notificationCommand" description:"Custom command to run for notifications (overrides built-in notifications)"`
Thinking domain.ThinkingLevel `long:"thinking" yaml:"thinking" description:"Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic or Google Gemini)"`
}
var debug = false
@@ -425,25 +432,28 @@ func (o *Flags) BuildChatOptions() (ret *domain.ChatOptions, err error) {
}
ret = &domain.ChatOptions{
Model: o.Model,
Temperature: o.Temperature,
TopP: o.TopP,
PresencePenalty: o.PresencePenalty,
FrequencyPenalty: o.FrequencyPenalty,
Raw: o.Raw,
Seed: o.Seed,
ModelContextLength: o.ModelContextLength,
Search: o.Search,
SearchLocation: o.SearchLocation,
ImageFile: o.ImageFile,
ImageSize: o.ImageSize,
ImageQuality: o.ImageQuality,
ImageCompression: o.ImageCompression,
ImageBackground: o.ImageBackground,
SuppressThink: o.SuppressThink,
ThinkStartTag: startTag,
ThinkEndTag: endTag,
Voice: o.Voice,
Model: o.Model,
Temperature: o.Temperature,
TopP: o.TopP,
PresencePenalty: o.PresencePenalty,
FrequencyPenalty: o.FrequencyPenalty,
Raw: o.Raw,
Seed: o.Seed,
Thinking: o.Thinking,
ModelContextLength: o.ModelContextLength,
Search: o.Search,
SearchLocation: o.SearchLocation,
ImageFile: o.ImageFile,
ImageSize: o.ImageSize,
ImageQuality: o.ImageQuality,
ImageCompression: o.ImageCompression,
ImageBackground: o.ImageBackground,
SuppressThink: o.SuppressThink,
ThinkStartTag: startTag,
ThinkEndTag: endTag,
Voice: o.Voice,
Notification: o.Notification || o.NotificationCommand != "",
NotificationCommand: o.NotificationCommand,
}
return
}

View File

@@ -64,6 +64,7 @@ func TestBuildChatOptions(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 1,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",
@@ -88,6 +89,7 @@ func TestBuildChatOptionsDefaultSeed(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 0,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",

View File

@@ -36,7 +36,11 @@ func handleListingCommands(currentFlags *Flags, fabricDb *fsdb.Db, registry *cor
if models, err = registry.VendorManager.GetModels(); err != nil {
return true, err
}
models.Print(currentFlags.ShellCompleteOutput)
if currentFlags.ShellCompleteOutput {
models.Print(true)
} else {
models.PrintWithVendor(false)
}
return true, nil
}

View File

@@ -288,7 +288,7 @@ func (o *PluginRegistry) Configure() (err error) {
return
}
func (o *PluginRegistry) GetChatter(model string, modelContextLength int, strategy string, stream bool, dryRun bool) (ret *Chatter, err error) {
func (o *PluginRegistry) GetChatter(model string, modelContextLength int, vendorName string, strategy string, stream bool, dryRun bool) (ret *Chatter, err error) {
ret = &Chatter{
db: o.Db,
Stream: stream,
@@ -317,14 +317,32 @@ func (o *PluginRegistry) GetChatter(model string, modelContextLength int, strate
ret.model = defaultModel
}
} else if model == "" {
ret.vendor = vendorManager.FindByName(defaultVendor)
if vendorName != "" {
ret.vendor = vendorManager.FindByName(vendorName)
} else {
ret.vendor = vendorManager.FindByName(defaultVendor)
}
ret.model = defaultModel
} else {
var models *ai.VendorsModels
if models, err = vendorManager.GetModels(); err != nil {
return
}
ret.vendor = vendorManager.FindByName(models.FindGroupsByItemFirst(model))
if vendorName != "" {
// ensure vendor exists and provides model
ret.vendor = vendorManager.FindByName(vendorName)
availableVendors := models.FindGroupsByItem(model)
if ret.vendor == nil || !lo.Contains(availableVendors, vendorName) {
err = fmt.Errorf("model %s not available for vendor %s", model, vendorName)
return
}
} else {
availableVendors := models.FindGroupsByItem(model)
if len(availableVendors) > 1 {
fmt.Fprintf(os.Stderr, "Warning: multiple vendors provide model %s: %s. Using %s. Specify --vendor to select a vendor.\n", model, strings.Join(availableVendors, ", "), availableVendors[0])
}
ret.vendor = vendorManager.FindByName(models.FindGroupsByItemFirst(model))
}
ret.model = model
}

View File

@@ -1,10 +1,19 @@
package core
import (
"bytes"
"context"
"io"
"os"
"strings"
"testing"
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/danielmiessler/fabric/internal/plugins/ai"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
"github.com/danielmiessler/fabric/internal/tools"
)
func TestSaveEnvFile(t *testing.T) {
@@ -19,3 +28,63 @@ func TestSaveEnvFile(t *testing.T) {
t.Fatalf("SaveEnvFile() error = %v", err)
}
}
// testVendor implements ai.Vendor for testing purposes
type testVendor struct {
name string
models []string
}
func (m *testVendor) GetName() string { return m.name }
func (m *testVendor) GetSetupDescription() string { return m.name }
func (m *testVendor) IsConfigured() bool { return true }
func (m *testVendor) Configure() error { return nil }
func (m *testVendor) Setup() error { return nil }
func (m *testVendor) SetupFillEnvFileContent(*bytes.Buffer) {}
func (m *testVendor) ListModels() ([]string, error) { return m.models, nil }
func (m *testVendor) SendStream([]*chat.ChatCompletionMessage, *domain.ChatOptions, chan string) error {
return nil
}
func (m *testVendor) Send(context.Context, []*chat.ChatCompletionMessage, *domain.ChatOptions) (string, error) {
return "", nil
}
func (m *testVendor) NeedsRawMode(string) bool { return false }
func TestGetChatter_WarnsOnAmbiguousModel(t *testing.T) {
tempDir := t.TempDir()
db := fsdb.NewDb(tempDir)
vendorA := &testVendor{name: "VendorA", models: []string{"shared-model"}}
vendorB := &testVendor{name: "VendorB", models: []string{"shared-model"}}
vm := ai.NewVendorsManager()
vm.AddVendors(vendorA, vendorB)
defaults := &tools.Defaults{
PluginBase: &plugins.PluginBase{},
Vendor: &plugins.Setting{Value: "VendorA"},
Model: &plugins.SetupQuestion{Setting: &plugins.Setting{Value: "shared-model"}},
ModelContextLength: &plugins.SetupQuestion{Setting: &plugins.Setting{Value: "0"}},
}
registry := &PluginRegistry{Db: db, VendorManager: vm, Defaults: defaults}
r, w, _ := os.Pipe()
oldStderr := os.Stderr
os.Stderr = w
defer func() { os.Stderr = oldStderr }()
chatter, err := registry.GetChatter("shared-model", 0, "", "", false, false)
w.Close()
warning, _ := io.ReadAll(r)
if err != nil {
t.Fatalf("GetChatter() error = %v", err)
}
if chatter.vendor.GetName() != "VendorA" {
t.Fatalf("expected vendor VendorA, got %s", chatter.vendor.GetName())
}
if !strings.Contains(string(warning), "multiple vendors provide model shared-model") {
t.Fatalf("expected warning about multiple vendors, got %q", string(warning))
}
}

View File

@@ -4,6 +4,14 @@ import "github.com/danielmiessler/fabric/internal/chat"
const ChatMessageRoleMeta = "meta"
// Default values for chat options (must match cli/flags.go defaults)
const (
DefaultTemperature = 0.7
DefaultTopP = 0.9
DefaultPresencePenalty = 0.0
DefaultFrequencyPenalty = 0.0
)
type ChatRequest struct {
ContextName string
SessionName string
@@ -17,28 +25,31 @@ type ChatRequest struct {
}
type ChatOptions struct {
Model string
Temperature float64
TopP float64
PresencePenalty float64
FrequencyPenalty float64
Raw bool
Seed int
ModelContextLength int
MaxTokens int
Search bool
SearchLocation string
ImageFile string
ImageSize string
ImageQuality string
ImageCompression int
ImageBackground string
SuppressThink bool
ThinkStartTag string
ThinkEndTag string
AudioOutput bool
AudioFormat string
Voice string
Model string
Temperature float64
TopP float64
PresencePenalty float64
FrequencyPenalty float64
Raw bool
Seed int
Thinking ThinkingLevel
ModelContextLength int
MaxTokens int
Search bool
SearchLocation string
ImageFile string
ImageSize string
ImageQuality string
ImageCompression int
ImageBackground string
SuppressThink bool
ThinkStartTag string
ThinkEndTag string
AudioOutput bool
AudioFormat string
Voice string
Notification bool
NotificationCommand string
}
// NormalizeMessages remove empty messages and ensure messages order user-assist-user

View File

@@ -0,0 +1,34 @@
package domain
// ThinkingLevel represents reasoning/thinking levels supported across providers.
type ThinkingLevel string
const (
ThinkingOff ThinkingLevel = "off"
ThinkingLow ThinkingLevel = "low"
ThinkingMedium ThinkingLevel = "medium"
ThinkingHigh ThinkingLevel = "high"
)
// ThinkingBudgets defines standardized token budgets for reasoning-enabled models.
// The map assigns a maximum token count to each ThinkingLevel, representing the
// amount of context or computation that can be used for reasoning at that level.
// These values (e.g., 1024 for low, 2048 for medium, 4096 for high) are used to
// Token budget constants for each ThinkingLevel.
// These values are chosen to align with typical context window sizes for LLMs at different reasoning levels.
// Adjust these if model capabilities change.
const (
// TokenBudgetLow is suitable for basic reasoning or smaller models (e.g., 1k context window).
TokenBudgetLow int64 = 1024
// TokenBudgetMedium is suitable for intermediate reasoning or mid-sized models (e.g., 2k context window).
TokenBudgetMedium int64 = 2048
// TokenBudgetHigh is suitable for advanced reasoning or large models (e.g., 4k context window).
TokenBudgetHigh int64 = 4096
)
// ThinkingBudgets defines standardized token budgets for reasoning-enabled models.
var ThinkingBudgets = map[ThinkingLevel]int64{
ThinkingLow: TokenBudgetLow,
ThinkingMedium: TokenBudgetMedium,
ThinkingHigh: TokenBudgetHigh,
}

View File

@@ -4,6 +4,8 @@ import (
"context"
"fmt"
"net/http"
"os"
"strconv"
"strings"
"github.com/anthropics/anthropic-sdk-go"
@@ -46,6 +48,11 @@ func NewClient() (ret *Client) {
string(anthropic.ModelClaude_3_5_Sonnet_20240620), string(anthropic.ModelClaude3OpusLatest),
string(anthropic.ModelClaude_3_Opus_20240229), string(anthropic.ModelClaude_3_Haiku_20240307),
string(anthropic.ModelClaudeOpus4_20250514), string(anthropic.ModelClaudeSonnet4_20250514),
string(anthropic.ModelClaudeOpus4_1_20250805),
}
ret.modelBetas = map[string][]string{
string(anthropic.ModelClaudeSonnet4_20250514): {"context-1m-2025-08-07"},
}
return
@@ -92,6 +99,7 @@ type Client struct {
maxTokens int
defaultRequiredUserMessage string
models []string
modelBetas map[string][]string
client anthropic.Client
}
@@ -147,6 +155,26 @@ func (an *Client) ListModels() (ret []string, err error) {
return an.models, nil
}
func parseThinking(level domain.ThinkingLevel) (anthropic.ThinkingConfigParamUnion, bool) {
lower := strings.ToLower(string(level))
switch domain.ThinkingLevel(lower) {
case domain.ThinkingOff:
disabled := anthropic.NewThinkingConfigDisabledParam()
return anthropic.ThinkingConfigParamUnion{OfDisabled: &disabled}, true
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
return anthropic.ThinkingConfigParamOfEnabled(budget), true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 64); err == nil {
if tokens >= 1 && tokens <= 10000 {
return anthropic.ThinkingConfigParamOfEnabled(tokens), true
}
}
}
return anthropic.ThinkingConfigParamUnion{}, false
}
func (an *Client) SendStream(
msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string,
) (err error) {
@@ -159,7 +187,17 @@ func (an *Client) SendStream(
ctx := context.Background()
stream := an.client.Messages.NewStreaming(ctx, an.buildMessageParams(messages, opts))
params := an.buildMessageParams(messages, opts)
betas := an.modelBetas[opts.Model]
var reqOpts []option.RequestOption
if len(betas) > 0 {
reqOpts = append(reqOpts, option.WithHeader("anthropic-beta", strings.Join(betas, ",")))
}
stream := an.client.Messages.NewStreaming(ctx, params, reqOpts...)
if stream.Err() != nil && len(betas) > 0 {
fmt.Fprintf(os.Stderr, "Anthropic beta feature %s failed: %v\n", strings.Join(betas, ","), stream.Err())
stream = an.client.Messages.NewStreaming(ctx, params)
}
for stream.Next() {
event := stream.Current()
@@ -181,11 +219,19 @@ func (an *Client) buildMessageParams(msgs []anthropic.MessageParam, opts *domain
params anthropic.MessageNewParams) {
params = anthropic.MessageNewParams{
Model: anthropic.Model(opts.Model),
MaxTokens: int64(an.maxTokens),
TopP: anthropic.Opt(opts.TopP),
Temperature: anthropic.Opt(opts.Temperature),
Messages: msgs,
Model: anthropic.Model(opts.Model),
MaxTokens: int64(an.maxTokens),
Messages: msgs,
}
// Only set one of Temperature or TopP as some models don't allow both
// Always set temperature to ensure consistent behavior (Anthropic default is 1.0, Fabric default is 0.7)
if opts.TopP != domain.DefaultTopP {
// User explicitly set TopP, so use that instead of temperature
params.TopP = anthropic.Opt(opts.TopP)
} else {
// Use temperature (always set to ensure Fabric's default of 0.7, not Anthropic's 1.0)
params.Temperature = anthropic.Opt(opts.Temperature)
}
// Add Claude Code spoofing system message for OAuth authentication
@@ -217,6 +263,11 @@ func (an *Client) buildMessageParams(msgs []anthropic.MessageParam, opts *domain
{OfWebSearchTool20250305: &webTool},
}
}
if t, ok := parseThinking(opts.Thinking); ok {
params.Thinking = t
}
return
}
@@ -230,8 +281,21 @@ func (an *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage,
}
var message *anthropic.Message
if message, err = an.client.Messages.New(ctx, an.buildMessageParams(messages, opts)); err != nil {
return
params := an.buildMessageParams(messages, opts)
betas := an.modelBetas[opts.Model]
var reqOpts []option.RequestOption
if len(betas) > 0 {
reqOpts = append(reqOpts, option.WithHeader("anthropic-beta", strings.Join(betas, ",")))
}
if message, err = an.client.Messages.New(ctx, params, reqOpts...); err != nil {
if len(betas) > 0 {
fmt.Fprintf(os.Stderr, "Anthropic beta feature %s failed: %v\n", strings.Join(betas, ","), err)
if message, err = an.client.Messages.New(ctx, params); err != nil {
return
}
} else {
return
}
}
var textParts []string

View File

@@ -72,7 +72,8 @@ func TestBuildMessageParams_WithoutSearch(t *testing.T) {
client := NewClient()
opts := &domain.ChatOptions{
Model: "claude-3-5-sonnet-latest",
Temperature: 0.7,
Temperature: 0.8, // Use non-default value to ensure it gets set
TopP: domain.DefaultTopP, // Use default TopP so temperature takes precedence
Search: false,
}
@@ -90,6 +91,7 @@ func TestBuildMessageParams_WithoutSearch(t *testing.T) {
t.Errorf("Expected model %s, got %s", opts.Model, params.Model)
}
// When using non-default temperature, it should be set in params
if params.Temperature.Value != opts.Temperature {
t.Errorf("Expected temperature %f, got %f", opts.Temperature, params.Temperature.Value)
}
@@ -99,7 +101,8 @@ func TestBuildMessageParams_WithSearch(t *testing.T) {
client := NewClient()
opts := &domain.ChatOptions{
Model: "claude-3-5-sonnet-latest",
Temperature: 0.7,
Temperature: 0.8, // Use non-default value
TopP: domain.DefaultTopP, // Use default TopP so temperature takes precedence
Search: true,
}
@@ -135,7 +138,8 @@ func TestBuildMessageParams_WithSearchAndLocation(t *testing.T) {
client := NewClient()
opts := &domain.ChatOptions{
Model: "claude-3-5-sonnet-latest",
Temperature: 0.7,
Temperature: 0.8, // Use non-default value
TopP: domain.DefaultTopP, // Use default TopP so temperature takes precedence
Search: true,
SearchLocation: "America/Los_Angeles",
}
@@ -164,6 +168,15 @@ func TestBuildMessageParams_WithSearchAndLocation(t *testing.T) {
}
}
func TestModelBetasConfiguration(t *testing.T) {
client := NewClient()
model := string(anthropic.ModelClaudeSonnet4_20250514)
betas, ok := client.modelBetas[model]
if !ok || len(betas) != 1 || betas[0] != "context-1m-2025-08-07" {
t.Errorf("expected beta mapping for %s", model)
}
}
func TestCitationFormatting(t *testing.T) {
// Test the citation formatting logic by creating a mock message with citations
message := &anthropic.Message{
@@ -256,3 +269,59 @@ func TestCitationFormatting(t *testing.T) {
t.Errorf("Expected 2 unique citations, got %d", citationCount)
}
}
func TestBuildMessageParams_DefaultValues(t *testing.T) {
client := NewClient()
// Test with default temperature - should always set temperature unless TopP is explicitly set
opts := &domain.ChatOptions{
Model: "claude-3-5-sonnet-latest",
Temperature: domain.DefaultTemperature, // 0.7 - should be set to override Anthropic's 1.0 default
TopP: domain.DefaultTopP, // 0.9 - default, so temperature takes precedence
Search: false,
}
messages := []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Hello")),
}
params := client.buildMessageParams(messages, opts)
// Temperature should be set when using default value to override Anthropic's 1.0 default
if params.Temperature.Value != opts.Temperature {
t.Errorf("Expected temperature %f, got %f", opts.Temperature, params.Temperature.Value)
}
// TopP should not be set when using default value (temperature takes precedence)
if params.TopP.Value != 0 {
t.Errorf("Expected TopP to not be set (0), but got %f", params.TopP.Value)
}
}
func TestBuildMessageParams_ExplicitTopP(t *testing.T) {
client := NewClient()
// Test with explicit TopP - should set TopP instead of temperature
opts := &domain.ChatOptions{
Model: "claude-3-5-sonnet-latest",
Temperature: domain.DefaultTemperature, // 0.7 - ignored when TopP is explicitly set
TopP: 0.5, // Non-default - should be set
Search: false,
}
messages := []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Hello")),
}
params := client.buildMessageParams(messages, opts)
// Temperature should not be set when TopP is explicitly set
if params.Temperature.Value != 0 {
t.Errorf("Expected temperature to not be set (0), but got %f", params.Temperature.Value)
}
// TopP should be set when using non-default value
if params.TopP.Value != opts.TopP {
t.Errorf("Expected TopP %f, got %f", opts.TopP, params.TopP.Value)
}
}

View File

@@ -46,8 +46,13 @@ func (t *OAuthTransport) RoundTrip(req *http.Request) (*http.Response, error) {
// Add OAuth Bearer token
newReq.Header.Set("Authorization", "Bearer "+token)
// Add the anthropic-beta header for OAuth
newReq.Header.Set("anthropic-beta", "oauth-2025-04-20")
// Add the anthropic-beta header for OAuth, preserving existing betas
existing := newReq.Header.Get("anthropic-beta")
beta := "oauth-2025-04-20"
if existing != "" {
beta = existing + "," + beta
}
newReq.Header.Set("anthropic-beta", beta)
// Set User-Agent to match AI SDK exactly
newReq.Header.Set("User-Agent", "ai-sdk/anthropic")

View File

@@ -153,7 +153,7 @@ func (c *BedrockClient) ListModels() ([]string, error) {
return models, nil
}
// SendStream sends the messages to the the Bedrock ConverseStream API
// SendStream sends the messages to the Bedrock ConverseStream API
func (c *BedrockClient) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string) (err error) {
// Ensure channel is closed on all exit paths to prevent goroutine leaks
defer func() {

View File

@@ -87,6 +87,9 @@ func (c *Client) formatOptions(opts *domain.ChatOptions) string {
if opts.ImageFile != "" {
builder.WriteString(fmt.Sprintf("ImageFile: %s\n", opts.ImageFile))
}
if opts.Thinking != "" {
builder.WriteString(fmt.Sprintf("Thinking: %s\n", string(opts.Thinking)))
}
if opts.SuppressThink {
builder.WriteString("SuppressThink: enabled\n")
builder.WriteString(fmt.Sprintf("Thinking Start Tag: %s\n", opts.ThinkStartTag))

View File

@@ -5,6 +5,8 @@ import (
"context"
"encoding/binary"
"fmt"
"regexp"
"strconv"
"strings"
"github.com/danielmiessler/fabric/internal/chat"
@@ -26,6 +28,24 @@ const (
AudioDataPrefix = "FABRIC_AUDIO_DATA:"
)
const (
citationHeader = "\n\n## Sources\n\n"
citationSeparator = "\n"
citationFormat = "- [%s](%s)"
errInvalidLocationFormat = "invalid search location format %q: must be timezone (e.g., 'America/Los_Angeles') or language code (e.g., 'en-US')"
locationSeparator = "/"
langCodeSeparator = "_"
langCodeNormalizedSep = "-"
modelPrefix = "models/"
modelTypeTTS = "tts"
modelTypePreviewTTS = "preview-tts"
modelTypeTextToSpeech = "text-to-speech"
)
var langCodeRegex = regexp.MustCompile(`^[a-z]{2}(-[A-Z]{2})?$`)
func NewClient() (ret *Client) {
vendorName := "Gemini"
ret = &Client{}
@@ -93,14 +113,13 @@ func (o *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage, o
// Convert messages to new SDK format
contents := o.convertMessages(msgs)
// Generate content
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
response, err := client.Models.GenerateContent(ctx, o.buildModelNameFull(opts.Model), contents, &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
})
cfg, err := o.buildGenerateContentConfig(opts)
if err != nil {
return "", err
}
// Generate content with optional tools
response, err := client.Models.GenerateContent(ctx, o.buildModelNameFull(opts.Model), contents, cfg)
if err != nil {
return "", err
}
@@ -123,14 +142,13 @@ func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.Cha
// Convert messages to new SDK format
contents := o.convertMessages(msgs)
// Generate streaming content
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
stream := client.Models.GenerateContentStream(ctx, o.buildModelNameFull(opts.Model), contents, &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
})
cfg, err := o.buildGenerateContentConfig(opts)
if err != nil {
return err
}
// Generate streaming content with optional tools
stream := client.Models.GenerateContentStream(ctx, o.buildModelNameFull(opts.Model), contents, cfg)
for response, err := range stream {
if err != nil {
@@ -153,20 +171,109 @@ func (o *Client) NeedsRawMode(modelName string) bool {
return false
}
func parseThinkingConfig(level domain.ThinkingLevel) (*genai.ThinkingConfig, bool) {
lower := strings.ToLower(strings.TrimSpace(string(level)))
switch domain.ThinkingLevel(lower) {
case "", domain.ThinkingOff:
return nil, false
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
b := int32(budget)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &b}, true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 32); err == nil && tokens > 0 {
t := int32(tokens)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &t}, true
}
}
return nil, false
}
// buildGenerateContentConfig constructs the generation config with optional tools.
// When search is enabled it injects the Google Search tool. The optional search
// location accepts either:
// - A timezone in the format "Continent/City" (e.g., "America/Los_Angeles")
// - An ISO language code "ll" or "ll-CC" (e.g., "en" or "en-US")
//
// Underscores are normalized to hyphens. Returns an error if the location is
// invalid.
func (o *Client) buildGenerateContentConfig(opts *domain.ChatOptions) (*genai.GenerateContentConfig, error) {
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
cfg := &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
}
if opts.Search {
cfg.Tools = []*genai.Tool{{GoogleSearch: &genai.GoogleSearch{}}}
if loc := opts.SearchLocation; loc != "" {
if isValidLocationFormat(loc) {
loc = normalizeLocation(loc)
cfg.ToolConfig = &genai.ToolConfig{
RetrievalConfig: &genai.RetrievalConfig{LanguageCode: loc},
}
} else {
return nil, fmt.Errorf(errInvalidLocationFormat, loc)
}
}
}
if tc, ok := parseThinkingConfig(opts.Thinking); ok {
cfg.ThinkingConfig = tc
}
return cfg, nil
}
// buildModelNameFull adds the "models/" prefix for API calls
func (o *Client) buildModelNameFull(modelName string) string {
if strings.HasPrefix(modelName, "models/") {
if strings.HasPrefix(modelName, modelPrefix) {
return modelName
}
return "models/" + modelName
return modelPrefix + modelName
}
func isValidLocationFormat(location string) bool {
if strings.Contains(location, locationSeparator) {
parts := strings.Split(location, locationSeparator)
return len(parts) == 2 && parts[0] != "" && parts[1] != ""
}
return isValidLanguageCode(location)
}
func normalizeLocation(location string) string {
if strings.Contains(location, locationSeparator) {
return location
}
return strings.Replace(location, langCodeSeparator, langCodeNormalizedSep, 1)
}
// isValidLanguageCode reports whether the input is an ISO 639-1 language code
// optionally followed by an ISO 3166-1 country code. Underscores are
// normalized to hyphens before validation.
func isValidLanguageCode(code string) bool {
normalized := strings.Replace(code, langCodeSeparator, langCodeNormalizedSep, 1)
parts := strings.Split(normalized, langCodeNormalizedSep)
switch len(parts) {
case 1:
return langCodeRegex.MatchString(strings.ToLower(parts[0]))
case 2:
formatted := strings.ToLower(parts[0]) + langCodeNormalizedSep + strings.ToUpper(parts[1])
return langCodeRegex.MatchString(formatted)
default:
return false
}
}
// isTTSModel checks if the model is a text-to-speech model
func (o *Client) isTTSModel(modelName string) bool {
lowerModel := strings.ToLower(modelName)
return strings.Contains(lowerModel, "tts") ||
strings.Contains(lowerModel, "preview-tts") ||
strings.Contains(lowerModel, "text-to-speech")
return strings.Contains(lowerModel, modelTypeTTS) ||
strings.Contains(lowerModel, modelTypePreviewTTS) ||
strings.Contains(lowerModel, modelTypeTextToSpeech)
}
// extractTextForTTS extracts text content from chat messages for TTS generation
@@ -336,6 +443,19 @@ func (o *Client) convertMessages(msgs []*chat.ChatCompletionMessage) []*genai.Co
for _, msg := range msgs {
content := &genai.Content{Parts: []*genai.Part{}}
switch msg.Role {
case chat.ChatMessageRoleAssistant:
content.Role = "model"
case chat.ChatMessageRoleUser:
content.Role = "user"
case chat.ChatMessageRoleSystem, chat.ChatMessageRoleDeveloper, chat.ChatMessageRoleFunction, chat.ChatMessageRoleTool:
// Gemini's API only accepts "user" and "model" roles.
// Map all other roles to "user" to preserve instruction context.
content.Role = "user"
default:
content.Role = "user"
}
if msg.Content != "" {
content.Parts = append(content.Parts, &genai.Part{Text: msg.Content})
}
@@ -357,19 +477,71 @@ func (o *Client) convertMessages(msgs []*chat.ChatCompletionMessage) []*genai.Co
return contents
}
// extractTextFromResponse extracts text content from the response
// extractTextFromResponse extracts text content from the response and appends
// any web citations in a standardized format.
func (o *Client) extractTextFromResponse(response *genai.GenerateContentResponse) string {
var result strings.Builder
if response == nil {
return ""
}
text := o.extractTextParts(response)
citations := o.extractCitations(response)
if len(citations) > 0 {
return text + citationHeader + strings.Join(citations, citationSeparator)
}
return text
}
func (o *Client) extractTextParts(response *genai.GenerateContentResponse) string {
var builder strings.Builder
for _, candidate := range response.Candidates {
if candidate.Content != nil {
for _, part := range candidate.Content.Parts {
if part.Text != "" {
result.WriteString(part.Text)
}
if candidate == nil || candidate.Content == nil {
continue
}
for _, part := range candidate.Content.Parts {
if part != nil && part.Text != "" {
builder.WriteString(part.Text)
}
}
}
return result.String()
return builder.String()
}
func (o *Client) extractCitations(response *genai.GenerateContentResponse) []string {
if response == nil || len(response.Candidates) == 0 {
return nil
}
citationMap := make(map[string]bool)
var citations []string
for _, candidate := range response.Candidates {
if candidate == nil || candidate.GroundingMetadata == nil {
continue
}
chunks := candidate.GroundingMetadata.GroundingChunks
if len(chunks) == 0 {
continue
}
for _, chunk := range chunks {
if chunk == nil || chunk.Web == nil {
continue
}
uri := chunk.Web.URI
title := chunk.Web.Title
if uri == "" || title == "" {
continue
}
var keyBuilder strings.Builder
keyBuilder.WriteString(uri)
keyBuilder.WriteByte('|')
keyBuilder.WriteString(title)
key := keyBuilder.String()
if !citationMap[key] {
citationMap[key] = true
citationText := fmt.Sprintf(citationFormat, title, uri)
citations = append(citations, citationText)
}
}
}
return citations
}

View File

@@ -1,9 +1,13 @@
package gemini
import (
"strings"
"testing"
"google.golang.org/genai"
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
)
// Test buildModelNameFull method
@@ -51,6 +55,162 @@ func TestExtractTextFromResponse(t *testing.T) {
}
}
func TestExtractTextFromResponse_Nil(t *testing.T) {
client := &Client{}
if got := client.extractTextFromResponse(nil); got != "" {
t.Fatalf("expected empty string, got %q", got)
}
}
func TestExtractTextFromResponse_EmptyGroundingChunks(t *testing.T) {
client := &Client{}
response := &genai.GenerateContentResponse{
Candidates: []*genai.Candidate{
{
Content: &genai.Content{Parts: []*genai.Part{{Text: "Hello"}}},
GroundingMetadata: &genai.GroundingMetadata{GroundingChunks: nil},
},
},
}
if got := client.extractTextFromResponse(response); got != "Hello" {
t.Fatalf("expected 'Hello', got %q", got)
}
}
func TestBuildGenerateContentConfig_WithSearch(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.Tools == nil || len(cfg.Tools) != 1 || cfg.Tools[0].GoogleSearch == nil {
t.Errorf("expected google search tool to be included")
}
}
func TestBuildGenerateContentConfig_WithSearchAndLocation(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "America/Los_Angeles"}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ToolConfig == nil || cfg.ToolConfig.RetrievalConfig == nil {
t.Fatalf("expected retrieval config when search location provided")
}
if cfg.ToolConfig.RetrievalConfig.LanguageCode != opts.SearchLocation {
t.Errorf("expected language code %s, got %s", opts.SearchLocation, cfg.ToolConfig.RetrievalConfig.LanguageCode)
}
}
func TestBuildGenerateContentConfig_InvalidLocation(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "invalid"}
_, err := client.buildGenerateContentConfig(opts)
if err == nil {
t.Fatalf("expected error for invalid location")
}
}
func TestBuildGenerateContentConfig_LanguageCodeNormalization(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "en_US"}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ToolConfig == nil || cfg.ToolConfig.RetrievalConfig.LanguageCode != "en-US" {
t.Fatalf("expected normalized language code 'en-US', got %+v", cfg.ToolConfig)
}
}
func TestBuildGenerateContentConfig_Thinking(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLow}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || !cfg.ThinkingConfig.IncludeThoughts {
t.Fatalf("expected thinking config with thoughts included")
}
if cfg.ThinkingConfig.ThinkingBudget == nil || *cfg.ThinkingConfig.ThinkingBudget != int32(domain.TokenBudgetLow) {
t.Errorf("expected thinking budget %d, got %+v", domain.TokenBudgetLow, cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestBuildGenerateContentConfig_ThinkingTokens(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLevel("123")}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || cfg.ThinkingConfig.ThinkingBudget == nil {
t.Fatalf("expected thinking config with budget")
}
if *cfg.ThinkingConfig.ThinkingBudget != 123 {
t.Errorf("expected thinking budget 123, got %d", *cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestCitationFormatting(t *testing.T) {
client := &Client{}
response := &genai.GenerateContentResponse{
Candidates: []*genai.Candidate{
{
Content: &genai.Content{Parts: []*genai.Part{{Text: "Based on recent research, AI is advancing rapidly."}}},
GroundingMetadata: &genai.GroundingMetadata{
GroundingChunks: []*genai.GroundingChunk{
{Web: &genai.GroundingChunkWeb{URI: "https://example.com/ai", Title: "AI Research"}},
{Web: &genai.GroundingChunkWeb{URI: "https://news.com/tech", Title: "Tech News"}},
{Web: &genai.GroundingChunkWeb{URI: "https://example.com/ai", Title: "AI Research"}}, // duplicate
},
},
},
},
}
result := client.extractTextFromResponse(response)
if !strings.Contains(result, "## Sources") {
t.Fatalf("expected sources section in result: %s", result)
}
if strings.Count(result, "- [") != 2 {
t.Errorf("expected 2 unique citations, got %d", strings.Count(result, "- ["))
}
}
// Test convertMessages handles role mapping correctly
func TestConvertMessagesRoles(t *testing.T) {
client := &Client{}
msgs := []*chat.ChatCompletionMessage{
{Role: chat.ChatMessageRoleUser, Content: "user"},
{Role: chat.ChatMessageRoleAssistant, Content: "assistant"},
{Role: chat.ChatMessageRoleSystem, Content: "system"},
}
contents := client.convertMessages(msgs)
expected := []string{"user", "model", "user"}
if len(contents) != len(expected) {
t.Fatalf("expected %d contents, got %d", len(expected), len(contents))
}
for i, c := range contents {
if c.Role != expected[i] {
t.Errorf("content %d expected role %s, got %s", i, expected[i], c.Role)
}
}
}
// Test isTTSModel method
func TestIsTTSModel(t *testing.T) {
client := &Client{}

View File

@@ -1,6 +1,10 @@
package ai
import (
"fmt"
"sort"
"strings"
"github.com/danielmiessler/fabric/internal/util"
)
@@ -11,3 +15,35 @@ func NewVendorsModels() *VendorsModels {
type VendorsModels struct {
*util.GroupsItemsSelectorString
}
// PrintWithVendor prints models including their vendor on each line.
// When shellCompleteList is true, output is suitable for shell completion.
func (o *VendorsModels) PrintWithVendor(shellCompleteList bool) {
if !shellCompleteList {
fmt.Printf("\n%v:\n", o.SelectionLabel)
}
var currentItemIndex int
sortedGroups := make([]*util.GroupItems[string], len(o.GroupsItems))
copy(sortedGroups, o.GroupsItems)
sort.SliceStable(sortedGroups, func(i, j int) bool {
return strings.ToLower(sortedGroups[i].Group) < strings.ToLower(sortedGroups[j].Group)
})
for _, groupItems := range sortedGroups {
items := make([]string, len(groupItems.Items))
copy(items, groupItems.Items)
sort.SliceStable(items, func(i, j int) bool {
return strings.ToLower(items[i]) < strings.ToLower(items[j])
})
for _, item := range items {
currentItemIndex++
if shellCompleteList {
fmt.Printf("%s|%s\n", groupItems.Group, item)
} else {
fmt.Printf("\t[%d]\t%s|%s\n", currentItemIndex, groupItems.Group, item)
}
}
}
}

View File

@@ -85,6 +85,9 @@ func (o *Client) buildChatCompletionParams(
ret.Seed = openai.Int(int64(opts.Seed))
}
}
if eff, ok := parseReasoningEffort(opts.Thinking); ok {
ret.ReasoningEffort = eff
}
return
}

View File

@@ -115,7 +115,11 @@ func (o *Client) sendStreamResponses(
case string(constant.ResponseOutputTextDelta("").Default()):
channel <- event.AsResponseOutputTextDelta().Delta
case string(constant.ResponseOutputTextDone("").Default()):
channel <- event.AsResponseOutputTextDone().Text
// The Responses API sends the full text again in the
// final "done" event. Since we've already streamed all
// delta chunks above, sending it would duplicate the
// output. Ignore it here to prevent doubled results.
continue
}
}
if stream.Err() == nil {
@@ -164,6 +168,7 @@ func (o *Client) NeedsRawMode(modelName string) bool {
"o1",
"o3",
"o4",
"gpt-5",
}
openAIModelsNeedingRaw := []string{
"gpt-4o-mini-search-preview",
@@ -179,6 +184,19 @@ func (o *Client) NeedsRawMode(modelName string) bool {
return slices.Contains(openAIModelsNeedingRaw, modelName)
}
func parseReasoningEffort(level domain.ThinkingLevel) (shared.ReasoningEffort, bool) {
switch domain.ThinkingLevel(strings.ToLower(string(level))) {
case domain.ThinkingLow:
return shared.ReasoningEffortLow, true
case domain.ThinkingMedium:
return shared.ReasoningEffortMedium, true
case domain.ThinkingHigh:
return shared.ReasoningEffortHigh, true
default:
return "", false
}
}
func (o *Client) buildResponseParams(
inputMsgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions,
) (ret responses.ResponseNewParams) {
@@ -224,6 +242,10 @@ func (o *Client) buildResponseParams(
ret.Tools = tools
}
if eff, ok := parseReasoningEffort(opts.Thinking); ok {
ret.Reasoning = shared.ReasoningParam{Effort: eff}
}
if !opts.Raw {
ret.Temperature = openai.Float(opts.Temperature)
if opts.TopP != 0 {

View File

@@ -105,7 +105,7 @@ func (h *ChatHandler) HandleChat(c *gin.Context) {
}
}
chatter, err := h.registry.GetChatter(p.Model, 2048, "", false, false)
chatter, err := h.registry.GetChatter(p.Model, 2048, p.Vendor, "", false, false)
if err != nil {
log.Printf("Error creating chatter: %v", err)
streamChan <- fmt.Sprintf("Error: %v", err)
@@ -130,6 +130,7 @@ func (h *ChatHandler) HandleChat(c *gin.Context) {
TopP: request.TopP,
FrequencyPenalty: request.FrequencyPenalty,
PresencePenalty: request.PresencePenalty,
Thinking: request.Thinking,
}
session, err := chatter.Send(chatReq, opts)

View File

@@ -0,0 +1,128 @@
package notifications
import (
"fmt"
"os"
"os/exec"
"runtime"
)
// NotificationProvider interface for different notification backends
type NotificationProvider interface {
Send(title, message string) error
IsAvailable() bool
}
// NotificationManager handles cross-platform notifications
type NotificationManager struct {
provider NotificationProvider
}
// NewNotificationManager creates a new notification manager with the best available provider
func NewNotificationManager() *NotificationManager {
var provider NotificationProvider
switch runtime.GOOS {
case "darwin":
// Try terminal-notifier first, then fall back to osascript
provider = &TerminalNotifierProvider{}
if !provider.IsAvailable() {
provider = &OSAScriptProvider{}
}
case "linux":
provider = &NotifySendProvider{}
case "windows":
provider = &PowerShellProvider{}
default:
provider = &NoopProvider{}
}
return &NotificationManager{provider: provider}
}
// Send sends a notification using the configured provider
func (nm *NotificationManager) Send(title, message string) error {
if nm.provider == nil {
return fmt.Errorf("no notification provider available")
}
return nm.provider.Send(title, message)
}
// IsAvailable checks if notifications are available
func (nm *NotificationManager) IsAvailable() bool {
return nm.provider != nil && nm.provider.IsAvailable()
}
// macOS terminal-notifier implementation
type TerminalNotifierProvider struct{}
func (t *TerminalNotifierProvider) Send(title, message string) error {
cmd := exec.Command("terminal-notifier", "-title", title, "-message", message, "-sound", "Glass")
return cmd.Run()
}
func (t *TerminalNotifierProvider) IsAvailable() bool {
_, err := exec.LookPath("terminal-notifier")
return err == nil
}
// macOS osascript implementation
type OSAScriptProvider struct{}
func (o *OSAScriptProvider) Send(title, message string) error {
// SECURITY: Use separate arguments instead of string interpolation to prevent AppleScript injection
script := `display notification (system attribute "FABRIC_MESSAGE") with title (system attribute "FABRIC_TITLE") sound name "Glass"`
cmd := exec.Command("osascript", "-e", script)
// Set environment variables for the AppleScript to read safely
cmd.Env = append(os.Environ(), "FABRIC_TITLE="+title, "FABRIC_MESSAGE="+message)
return cmd.Run()
}
func (o *OSAScriptProvider) IsAvailable() bool {
_, err := exec.LookPath("osascript")
return err == nil
}
// Linux notify-send implementation
type NotifySendProvider struct{}
func (n *NotifySendProvider) Send(title, message string) error {
cmd := exec.Command("notify-send", title, message)
return cmd.Run()
}
func (n *NotifySendProvider) IsAvailable() bool {
_, err := exec.LookPath("notify-send")
return err == nil
}
// Windows PowerShell implementation
type PowerShellProvider struct{}
func (p *PowerShellProvider) Send(title, message string) error {
// SECURITY: Use environment variables to avoid PowerShell injection attacks
script := `Add-Type -AssemblyName System.Windows.Forms; [System.Windows.Forms.MessageBox]::Show($env:FABRIC_MESSAGE, $env:FABRIC_TITLE)`
cmd := exec.Command("powershell", "-Command", script)
// Set environment variables for PowerShell to read safely
cmd.Env = append(os.Environ(), "FABRIC_TITLE="+title, "FABRIC_MESSAGE="+message)
return cmd.Run()
}
func (p *PowerShellProvider) IsAvailable() bool {
_, err := exec.LookPath("powershell")
return err == nil
}
// NoopProvider for unsupported platforms
type NoopProvider struct{}
func (n *NoopProvider) Send(title, message string) error {
// Silent no-op for unsupported platforms
return nil
}
func (n *NoopProvider) IsAvailable() bool {
return false
}

View File

@@ -0,0 +1,168 @@
package notifications
import (
"os/exec"
"runtime"
"testing"
)
func TestNewNotificationManager(t *testing.T) {
manager := NewNotificationManager()
if manager == nil {
t.Fatal("NewNotificationManager() returned nil")
}
if manager.provider == nil {
t.Fatal("NotificationManager provider is nil")
}
}
func TestNotificationManagerIsAvailable(t *testing.T) {
manager := NewNotificationManager()
// Should not panic
_ = manager.IsAvailable()
}
func TestNotificationManagerSend(t *testing.T) {
manager := NewNotificationManager()
// Test sending notification - this may fail on systems without notification tools
// but should not panic
err := manager.Send("Test Title", "Test Message")
if err != nil {
t.Logf("Notification send failed (expected on systems without notification tools): %v", err)
}
}
func TestTerminalNotifierProvider(t *testing.T) {
if runtime.GOOS != "darwin" {
t.Skip("Skipping macOS terminal-notifier test on non-macOS platform")
}
provider := &TerminalNotifierProvider{}
// Test availability - depends on whether terminal-notifier is installed
available := provider.IsAvailable()
t.Logf("terminal-notifier available: %v", available)
if available {
err := provider.Send("Test", "Test message")
if err != nil {
t.Logf("terminal-notifier send failed: %v", err)
}
}
}
func TestOSAScriptProvider(t *testing.T) {
if runtime.GOOS != "darwin" {
t.Skip("Skipping macOS osascript test on non-macOS platform")
}
provider := &OSAScriptProvider{}
// osascript should always be available on macOS
if !provider.IsAvailable() {
t.Error("osascript should be available on macOS")
}
// Test sending (may show actual notification)
err := provider.Send("Test", "Test message")
if err != nil {
t.Errorf("osascript send failed: %v", err)
}
}
func TestNotifySendProvider(t *testing.T) {
if runtime.GOOS != "linux" {
t.Skip("Skipping Linux notify-send test on non-Linux platform")
}
provider := &NotifySendProvider{}
// Test availability - depends on whether notify-send is installed
available := provider.IsAvailable()
t.Logf("notify-send available: %v", available)
if available {
err := provider.Send("Test", "Test message")
if err != nil {
t.Logf("notify-send send failed: %v", err)
}
}
}
func TestPowerShellProvider(t *testing.T) {
if runtime.GOOS != "windows" {
t.Skip("Skipping Windows PowerShell test on non-Windows platform")
}
provider := &PowerShellProvider{}
// PowerShell should be available on Windows
if !provider.IsAvailable() {
t.Error("PowerShell should be available on Windows")
}
// Note: This will show a message box if run
// In CI/CD, this might not work properly
err := provider.Send("Test", "Test message")
if err != nil {
t.Logf("PowerShell send failed (expected in headless environments): %v", err)
}
}
func TestNoopProvider(t *testing.T) {
provider := &NoopProvider{}
// Should always report as not available
if provider.IsAvailable() {
t.Error("NoopProvider should report as not available")
}
// Should never error
err := provider.Send("Test", "Test message")
if err != nil {
t.Errorf("NoopProvider send should never error, got: %v", err)
}
}
func TestProviderIsAvailable(t *testing.T) {
tests := []struct {
name string
provider NotificationProvider
command string
}{
{"TerminalNotifier", &TerminalNotifierProvider{}, "terminal-notifier"},
{"OSAScript", &OSAScriptProvider{}, "osascript"},
{"NotifySend", &NotifySendProvider{}, "notify-send"},
{"PowerShell", &PowerShellProvider{}, "powershell"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
available := tt.provider.IsAvailable()
// Cross-check with actual command availability
_, err := exec.LookPath(tt.command)
expectedAvailable := err == nil
if available != expectedAvailable {
t.Logf("Provider %s availability mismatch: provider=%v, command=%v",
tt.name, available, expectedAvailable)
// This is informational, not a failure, since system setup varies
}
})
}
}
func TestSendWithSpecialCharacters(t *testing.T) {
manager := NewNotificationManager()
// Test with special characters that might break shell commands
specialTitle := `Title with "quotes" and 'apostrophes'`
specialMessage := `Message with \backslashes and $variables and "quotes"`
err := manager.Send(specialTitle, specialMessage)
if err != nil {
t.Logf("Send with special characters failed (may be expected): %v", err)
}
}

View File

@@ -25,17 +25,33 @@ import (
"time"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/kballard/go-shellquote"
"google.golang.org/api/option"
"google.golang.org/api/youtube/v3"
)
var timestampRegex *regexp.Regexp
var languageFileRegex *regexp.Regexp
var videoPatternRegex *regexp.Regexp
var playlistPatternRegex *regexp.Regexp
var vttTagRegex *regexp.Regexp
var durationRegex *regexp.Regexp
const TimeGapForRepeats = 10 // seconds
func init() {
// Match timestamps like "00:00:01.234" or just numbers or sequence numbers
timestampRegex = regexp.MustCompile(`^\d+$|^\d{1,2}:\d{2}(:\d{2})?(\.\d{3})?$`)
// Match language-specific VTT files like .en.vtt, .es.vtt, .en-US.vtt, .pt-BR.vtt
languageFileRegex = regexp.MustCompile(`\.[a-z]{2}(-[A-Z]{2})?\.vtt$`)
// YouTube video ID pattern
videoPatternRegex = regexp.MustCompile(`(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:live\/|[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|(?:s(?:horts)\/)|\S*?[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]*)`)
// YouTube playlist ID pattern
playlistPatternRegex = regexp.MustCompile(`[?&]list=([a-zA-Z0-9_-]+)`)
// VTT formatting tags like <c.colorE5E5E5>, </c>, etc.
vttTagRegex = regexp.MustCompile(`<[^>]*>`)
// YouTube duration format PT1H2M3S
durationRegex = regexp.MustCompile(`(?i)PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?`)
}
func NewYouTube() (ret *YouTube) {
@@ -76,18 +92,14 @@ func (o *YouTube) initService() (err error) {
}
func (o *YouTube) GetVideoOrPlaylistId(url string) (videoId string, playlistId string, err error) {
// Video ID pattern
videoPattern := `(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:live\/|[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|(?:s(?:horts)\/)|\S*?[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]*)`
videoRe := regexp.MustCompile(videoPattern)
videoMatch := videoRe.FindStringSubmatch(url)
// Extract video ID using pre-compiled regex
videoMatch := videoPatternRegex.FindStringSubmatch(url)
if len(videoMatch) > 1 {
videoId = videoMatch[1]
}
// Playlist ID pattern
playlistPattern := `[?&]list=([a-zA-Z0-9_-]+)`
playlistRe := regexp.MustCompile(playlistPattern)
playlistMatch := playlistRe.FindStringSubmatch(url)
// Extract playlist ID using pre-compiled regex
playlistMatch := playlistPatternRegex.FindStringSubmatch(url)
if len(playlistMatch) > 1 {
playlistId = playlistMatch[1]
}
@@ -113,17 +125,27 @@ func (o *YouTube) GrabTranscriptForUrl(url string, language string) (ret string,
func (o *YouTube) GrabTranscript(videoId string, language string) (ret string, err error) {
// Use yt-dlp for reliable transcript extraction
return o.tryMethodYtDlp(videoId, language)
return o.GrabTranscriptWithArgs(videoId, language, "")
}
func (o *YouTube) GrabTranscriptWithArgs(videoId string, language string, additionalArgs string) (ret string, err error) {
// Use yt-dlp for reliable transcript extraction
return o.tryMethodYtDlp(videoId, language, additionalArgs)
}
func (o *YouTube) GrabTranscriptWithTimestamps(videoId string, language string) (ret string, err error) {
// Use yt-dlp for reliable transcript extraction with timestamps
return o.tryMethodYtDlpWithTimestamps(videoId, language)
return o.GrabTranscriptWithTimestampsWithArgs(videoId, language, "")
}
func (o *YouTube) GrabTranscriptWithTimestampsWithArgs(videoId string, language string, additionalArgs string) (ret string, err error) {
// Use yt-dlp for reliable transcript extraction with timestamps
return o.tryMethodYtDlpWithTimestamps(videoId, language, additionalArgs)
}
// tryMethodYtDlpInternal is a helper function to reduce duplication between
// tryMethodYtDlp and tryMethodYtDlpWithTimestamps.
func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, processVTTFileFunc func(filename string) (string, error)) (ret string, err error) {
func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, additionalArgs string, processVTTFileFunc func(filename string) (string, error)) (ret string, err error) {
// Check if yt-dlp is available
if _, err = exec.LookPath("yt-dlp"); err != nil {
err = fmt.Errorf("yt-dlp not found in PATH. Please install yt-dlp to use YouTube transcript functionality")
@@ -141,30 +163,94 @@ func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, proces
// Use yt-dlp to get transcript
videoURL := "https://www.youtube.com/watch?v=" + videoId
outputPath := filepath.Join(tempDir, "%(title)s.%(ext)s")
lang_match := language
if len(language) > 2 {
lang_match = language[:2]
}
cmd := exec.Command("yt-dlp",
baseArgs := []string{
"--write-auto-subs",
"--sub-lang", lang_match,
"--skip-download",
"--sub-format", "vtt",
"--quiet",
"--no-warnings",
"-o", outputPath,
videoURL)
}
args := append([]string{}, baseArgs...)
// Add built-in language selection first
if language != "" {
langMatch := language
if len(langMatch) > 2 {
langMatch = langMatch[:2]
}
langOpts := language + "," + langMatch + ".*," + langMatch
args = append(args, "--sub-langs", langOpts)
}
// Add user-provided arguments last so they take precedence
if additionalArgs != "" {
additionalArgsList, err := shellquote.Split(additionalArgs)
if err != nil {
return "", fmt.Errorf("invalid yt-dlp arguments: %v", err)
}
args = append(args, additionalArgsList...)
}
args = append(args, videoURL)
cmd := exec.Command("yt-dlp", args...)
var stderr bytes.Buffer
cmd.Stderr = &stderr
if err = cmd.Run(); err != nil {
err = fmt.Errorf("yt-dlp failed: %v, stderr: %s", err, stderr.String())
return
stderrStr := stderr.String()
// Check for specific YouTube errors
if strings.Contains(stderrStr, "429") || strings.Contains(stderrStr, "Too Many Requests") {
err = fmt.Errorf("YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1' to slow down requests. Error: %v", err)
return
}
if strings.Contains(stderrStr, "Sign in to confirm you're not a bot") || strings.Contains(stderrStr, "Use --cookies-from-browser") {
err = fmt.Errorf("YouTube requires authentication (bot detection). Use --yt-dlp-args='--cookies-from-browser BROWSER' where BROWSER is chrome, firefox, brave, etc. Error: %v", err)
return
}
if language != "" {
// Fallback: try without specifying language (let yt-dlp choose best available)
stderr.Reset()
fallbackArgs := append([]string{}, baseArgs...)
// Add additional arguments if provided
if additionalArgs != "" {
additionalArgsList, parseErr := shellquote.Split(additionalArgs)
if parseErr != nil {
return "", fmt.Errorf("invalid yt-dlp arguments: %v", parseErr)
}
fallbackArgs = append(fallbackArgs, additionalArgsList...)
}
// Don't specify language, let yt-dlp choose
fallbackArgs = append(fallbackArgs, videoURL)
cmd = exec.Command("yt-dlp", fallbackArgs...)
cmd.Stderr = &stderr
if err = cmd.Run(); err != nil {
stderrStr2 := stderr.String()
if strings.Contains(stderrStr2, "429") || strings.Contains(stderrStr2, "Too Many Requests") {
err = fmt.Errorf("YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1'. Error: %v", err)
} else {
err = fmt.Errorf("yt-dlp failed with language '%s' and fallback. Original error: %s. Fallback error: %s", language, stderrStr, stderrStr2)
}
return
}
} else {
err = fmt.Errorf("yt-dlp failed: %v, stderr: %s", err, stderrStr)
return
}
}
// Find VTT files using cross-platform approach
vttFiles, err := o.findVTTFiles(tempDir, language)
// Try to find files with the requested language first, but fall back to any VTT file
vttFiles, err := o.findVTTFilesWithFallback(tempDir, language)
if err != nil {
return "", err
}
@@ -172,12 +258,12 @@ func (o *YouTube) tryMethodYtDlpInternal(videoId string, language string, proces
return processVTTFileFunc(vttFiles[0])
}
func (o *YouTube) tryMethodYtDlp(videoId string, language string) (ret string, err error) {
return o.tryMethodYtDlpInternal(videoId, language, o.readAndCleanVTTFile)
func (o *YouTube) tryMethodYtDlp(videoId string, language string, additionalArgs string) (ret string, err error) {
return o.tryMethodYtDlpInternal(videoId, language, additionalArgs, o.readAndCleanVTTFile)
}
func (o *YouTube) tryMethodYtDlpWithTimestamps(videoId string, language string) (ret string, err error) {
return o.tryMethodYtDlpInternal(videoId, language, o.readAndFormatVTTWithTimestamps)
func (o *YouTube) tryMethodYtDlpWithTimestamps(videoId string, language string, additionalArgs string) (ret string, err error) {
return o.tryMethodYtDlpInternal(videoId, language, additionalArgs, o.readAndFormatVTTWithTimestamps)
}
func (o *YouTube) readAndCleanVTTFile(filename string) (ret string, err error) {
@@ -303,8 +389,7 @@ func isTimeStamp(s string) bool {
func removeVTTTags(s string) string {
// Remove VTT tags like <c.colorE5E5E5>, </c>, etc.
tagRegex := regexp.MustCompile(`<[^>]*>`)
return tagRegex.ReplaceAllString(s, "")
return vttTagRegex.ReplaceAllString(s, "")
}
// shouldIncludeRepeat determines if repeated content should be included based on time gap
@@ -428,7 +513,7 @@ func (o *YouTube) GrabDuration(videoId string) (ret int, err error) {
durationStr := videoResponse.Items[0].ContentDetails.Duration
matches := regexp.MustCompile(`(?i)PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?`).FindStringSubmatch(durationStr)
matches := durationRegex.FindStringSubmatch(durationStr)
if len(matches) == 0 {
return 0, fmt.Errorf("invalid duration string: %s", durationStr)
}
@@ -588,8 +673,9 @@ func (o *YouTube) normalizeFileName(name string) string {
}
// findVTTFiles searches for VTT files in a directory using cross-platform approach
func (o *YouTube) findVTTFiles(dir, language string) ([]string, error) {
// findVTTFilesWithFallback searches for VTT files, handling fallback scenarios
// where the requested language might not be available
func (o *YouTube) findVTTFilesWithFallback(dir, requestedLanguage string) ([]string, error) {
var vttFiles []string
// Walk through the directory to find VTT files
@@ -612,14 +698,28 @@ func (o *YouTube) findVTTFiles(dir, language string) ([]string, error) {
return nil, fmt.Errorf("no VTT files found in directory")
}
// Prefer files with the specified language
// If no specific language requested, return the first file
if requestedLanguage == "" {
return []string{vttFiles[0]}, nil
}
// First, try to find files with the requested language
for _, file := range vttFiles {
if strings.Contains(file, "."+language+".vtt") {
if strings.Contains(file, "."+requestedLanguage+".vtt") {
return []string{file}, nil
}
}
// Return the first VTT file found if no language-specific file exists
// If requested language not found, check if we have any language-specific files
// This handles the fallback case where yt-dlp downloaded a different language
for _, file := range vttFiles {
// Look for any language pattern (e.g., .en.vtt, .es.vtt, etc.)
if languageFileRegex.MatchString(file) {
return []string{file}, nil
}
}
// If no language-specific files found, return the first VTT file
return []string{vttFiles[0]}, nil
}

View File

@@ -26,8 +26,8 @@ schema = 3
version = "v1.3.3"
hash = "sha256-jv7ZshpSd7FZzKKN6hqlUgiR8C3y85zNIS/hq7g76Ho="
[mod."github.com/anthropics/anthropic-sdk-go"]
version = "v1.4.0"
hash = "sha256-4kwFw9gt/sRIlTo0fC2PbfLnCyc4lCOtmfQelhpORX8="
version = "v1.9.1"
hash = "sha256-1saDnM1DMnDLHT4RoA/EFuOvW7CIFh2tkfOJ1/+itNc="
[mod."github.com/araddon/dateparse"]
version = "v0.0.0-20210429162001-6b43995a97de"
hash = "sha256-UuX84naeRGMsFOgIgRoBHG5sNy1CzBkWPKmd6VbLwFw="
@@ -199,6 +199,9 @@ schema = 3
[mod."github.com/json-iterator/go"]
version = "v1.1.12"
hash = "sha256-To8A0h+lbfZ/6zM+2PpRpY3+L6725OPC66lffq6fUoM="
[mod."github.com/kballard/go-shellquote"]
version = "v0.0.0-20180428030007-95032a82bc51"
hash = "sha256-AOEdKETBMUC39ln6jBJ9NYdJWp++jV5lSbjNqG3dV+c="
[mod."github.com/kevinburke/ssh_config"]
version = "v1.2.0"
hash = "sha256-Ta7ZOmyX8gG5tzWbY2oES70EJPfI90U7CIJS9EAce0s="
@@ -305,8 +308,8 @@ schema = 3
version = "v0.18.0"
hash = "sha256-tUpUPERjmRi7zldj0oPlnbnBhEkcI9iQGvP1HqlsK10="
[mod."golang.org/x/crypto"]
version = "v0.39.0"
hash = "sha256-FtwjbVoAhZkx7F2hmzi9Y0J87CVVhWcrZzun+zWQLzc="
version = "v0.40.0"
hash = "sha256-I6p2fqvz63P9MwAuoQrljI7IUbfZQvCem0ii4Q2zZng="
[mod."golang.org/x/exp"]
version = "v0.0.0-20250531010427-b6e5de432a8b"
hash = "sha256-QaFfjyB+pogCkUkJskR9xnXwkCOU828XJRrzwwLm6Ms="

View File

@@ -1 +1 @@
"1.4.271"
"1.4.288"

View File

@@ -0,0 +1,99 @@
# README Update Scripts
This directory contains automation scripts for updating the main README.md file with release information from the changelog database.
## `update_readme_features.py`
A Python script that generates the "Recent Major Features" section for the README by extracting and filtering release information from the changelog SQLite database.
### Usage
```bash
# Generate the Recent Major Features section with default limit (20 releases)
python scripts/readme_updates/update_readme_features.py
# Specify a custom limit
python scripts/readme_updates/update_readme_features.py --limit 15
# Use a custom database path
python scripts/readme_updates/update_readme_features.py --db /path/to/changelog.db
```
### How It Works
1. **Database Connection**: Connects to `cmd/generate_changelog/changelog.db` (or custom path)
2. **Data Extraction**: Queries the `versions` table for release information
3. **Feature Filtering**: Uses heuristics to identify feature/improvement releases
4. **Markdown Generation**: Formats output to match README style
### Feature Detection Heuristics
The script uses keyword-based heuristics to filter releases:
#### Include Keywords (Features/Improvements)
- new, feature, feat, add, introduce, enable, support
- improve, enhance, performance, speed
- option, flag, argument, parameter
- integration, provider, search, tts, audio, model
- cli, ui, web, oauth, sync, database
- notifications, desktop, reasoning, thinking
#### Exclude Keywords (Non-Features)
- fix, bug, hotfix
- ci, cd, pipeline, chore
- docs, readme, refactor, style, typo
- test, bump, deps, dependency
- merge, revert, format, lint, build
- release, prepare, coverage, security
### Integration with README
To update the README with new release features:
```bash
# Generate the features and save to a temporary file
python scripts/readme_updates/update_readme_features.py --limit 20 > /tmp/recent_features.md
# Manually replace the "### Recent Major Features" section in README.md
# with the generated content
```
### Database Schema
The script expects the following SQLite table structure:
```sql
CREATE TABLE versions (
name TEXT PRIMARY KEY,
date DATETIME,
commit_sha TEXT,
pr_numbers TEXT,
ai_summary TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
);
```
### Date Format Support
The script can parse various date formats:
- ISO 8601 with timezone: `2025-08-14 14:11:04+00:00`
- ISO 8601 basic: `2025-08-14T14:11:04`
- Date only: `2025-08-14`
- US format: `08/14/2025`
Output format is standardized to: `Aug 14, 2025`
### Maintenance Notes
- **AI Summary Format Changes**: If the format of AI summaries changes, update the `extract_title_desc()` and `split_summary()` functions
- **Keyword Tuning**: Adjust `INCLUDE_RE` and `EXCLUDE_RE` patterns as needed
- **Title Extraction**: The script attempts to extract concise titles from feature descriptions
- **Description Length**: Descriptions are limited to 200 characters for readability
### Future Enhancements
Potential improvements for automated README updates:
- Add section delimiter markers in README for automated replacement
- Create a GitHub Action to run on new releases
- Add support for categorizing features by type
- Implement confidence scoring for feature detection

View File

@@ -0,0 +1,281 @@
#!/usr/bin/env python3
"""
Generate the '### Recent Major Features' markdown section for README from the changelog SQLite DB.
- Connects to cmd/generate_changelog/changelog.db
- Extracts version, date, and AI summaries from the 'versions' table
- Heuristically filters for feature/improvement items (excludes CI/CD/docs/bug fixes)
- Formats output to match README style:
- [vX.Y.Z](https://github.com/danielmiessler/fabric/releases/tag/vX.Y.Z) (Aug 14, 2025) — **Feature Name**: Short description
Usage:
python scripts/readme_updates/update_readme_features.py --limit 20
"""
import argparse
import sqlite3
from pathlib import Path
from datetime import datetime
import re
import sys
from typing import List, Optional, Tuple
# Heuristics for filtering feature-related lines
EXCLUDE_RE = re.compile(
r"(?i)\b(fix|bug|hotfix|ci|cd|pipeline|chore|docs|doc|readme|refactor|style|typo|"
"test|tests|bump|deps|dependency|merge|revert|format|lint|build|release\b|prepare|"
"codeowners|coverage|security)\b"
)
INCLUDE_RE = re.compile(
r"(?i)\b(new|feature|feat|add|added|introduce|enable|support|improve|enhance|"
"performance|speed|option|flag|argument|parameter|integration|provider|search|tts|"
"audio|model|cli|ui|web|oauth|sync|database|notifications|desktop|reasoning|thinking)\b"
)
def parse_args():
"""Parse command-line arguments."""
p = argparse.ArgumentParser(
description="Generate README 'Recent Major Features' markdown from changelog DB."
)
p.add_argument(
"--limit", type=int, default=20, help="Maximum number of releases to include."
)
p.add_argument(
"--db",
type=str,
default=None,
help="Optional path to changelog.db (defaults to repo cmd/generate_changelog/changelog.db)",
)
return p.parse_args()
def repo_root() -> Path:
"""Get the repository root directory."""
# scripts/readme_updates/update_readme_features.py -> repo root is parent.parent.parent
return Path(__file__).resolve().parent.parent.parent
def db_path(args) -> Path:
"""Determine the database path."""
if args.db:
return Path(args.db).expanduser().resolve()
return repo_root() / "cmd" / "generate_changelog" / "changelog.db"
def connect(dbfile: Path):
"""Connect to the SQLite database."""
if not dbfile.exists():
print(f"ERROR: changelog database not found: {dbfile}", file=sys.stderr)
sys.exit(1)
return sqlite3.connect(str(dbfile))
def normalize_version(name: str) -> str:
"""Ensure version string starts with 'v'."""
n = str(name).strip()
return n if n.startswith("v") else f"v{n}"
def parse_date(value) -> str:
"""Parse various date formats and return formatted string."""
if value is None:
return "(Unknown date)"
# Handle the ISO format with timezone from the database
s = str(value).strip()
# Try to parse the ISO format with timezone
if "+" in s or "T" in s:
# Remove timezone info and microseconds for simpler parsing
s_clean = s.split("+")[0].split(".")[0]
try:
dt = datetime.strptime(s_clean, "%Y-%m-%d %H:%M:%S")
return dt.strftime("%b %d, %Y").replace(" 0", " ")
except ValueError:
pass
# Fallback formats
fmts = [
"%Y-%m-%d",
"%Y-%m-%d %H:%M:%S",
"%Y-%m-%dT%H:%M:%S",
"%Y/%m/%d",
"%m/%d/%Y",
]
for fmt in fmts:
try:
dt = datetime.strptime(s, fmt)
return dt.strftime("%b %d, %Y").replace(" 0", " ")
except ValueError:
continue
# Return original if we can't parse it
return f"({s})"
def split_summary(text: str) -> List[str]:
"""Split AI summary into individual lines/bullets."""
if not text:
return []
lines = []
# Split by newlines first
for line in text.split("\n"):
line = line.strip()
if not line:
continue
# Remove markdown headers
line = re.sub(r"^#+\s+", "", line)
# Remove PR links and author info
line = re.sub(
r"^PR\s+\[#\d+\]\([^)]+\)\s+by\s+\[[^\]]+\]\([^)]+\):\s*", "", line
)
# Remove bullet points
line = re.sub(r"^[-*•]\s+", "", line)
if line:
lines.append(line)
return lines
def is_feature_line(line: str) -> bool:
"""Check if a line describes a feature/improvement (not a bug fix or CI/CD)."""
line_lower = line.lower()
# Strong exclusions first
if any(
word in line_lower
for word in ["chore:", "fix:", "docs:", "test:", "ci:", "build:", "refactor:"]
):
return False
if EXCLUDE_RE.search(line):
return False
return bool(INCLUDE_RE.search(line))
def extract_title_desc(line: str) -> Tuple[str, str]:
"""Extract title and description from a feature line."""
# Remove any markdown formatting
line = re.sub(r"\*\*([^*]+)\*\*", r"\1", line)
# Look for colon separator first
if ":" in line:
parts = line.split(":", 1)
if len(parts) == 2:
title = parts[0].strip()
desc = parts[1].strip()
# Clean up the title
title = (
title.replace("Introduce ", "")
.replace("Enable ", "")
.replace("Add ", "")
)
title = title.replace("Implement ", "").replace("Support ", "")
# Make title more concise
if len(title) > 30:
# Try to extract key words
key_words = []
for word in title.split():
if word[0].isupper() or "-" in word or "_" in word:
key_words.append(word)
if key_words:
title = " ".join(key_words[:3])
return (title, desc)
# Fallback: use first sentence as description
sentences = re.split(r"[.!?]\s+", line)
if sentences:
desc = sentences[0].strip()
# Extract a title from the description
if "thinking" in desc.lower():
return ("AI Reasoning", desc)
elif "token" in desc.lower() and "context" in desc.lower():
return ("Extended Context", desc)
elif "curl" in desc.lower() or "install" in desc.lower():
return ("Easy Setup", desc)
elif "vendor" in desc.lower() or "model" in desc.lower():
return ("Model Management", desc)
elif "notification" in desc.lower():
return ("Desktop Notifications", desc)
elif "tts" in desc.lower() or "speech" in desc.lower():
return ("Text-to-Speech", desc)
elif "oauth" in desc.lower() or "auth" in desc.lower():
return ("OAuth Auto-Auth", desc)
elif "search" in desc.lower() and "web" in desc.lower():
return ("Web Search", desc)
else:
# Generic title from first significant words
words = desc.split()[:2]
title = " ".join(words)
return (title, desc)
return ("Feature", line)
def pick_feature(ai_summary: str) -> Optional[Tuple[str, str]]:
"""Pick the best feature line from the AI summary."""
lines = split_summary(ai_summary)
# Look for the first feature line
for line in lines:
if is_feature_line(line):
title, desc = extract_title_desc(line)
# Clean up description - remove redundant info
desc = desc[:200] if len(desc) > 200 else desc # Limit length
return (title, desc)
return None
def build_item(
version: str, date_str: str, feature_title: str, feature_desc: str
) -> str:
"""Build a markdown list item for a release."""
url = f"https://github.com/danielmiessler/fabric/releases/tag/{version}"
return f"- [{version}]({url}) ({date_str}) — **{feature_title}**: {feature_desc}"
def main():
"""Main function."""
args = parse_args()
dbfile = db_path(args)
conn = connect(dbfile)
cur = conn.cursor()
# Query the database
cur.execute("SELECT name, date, ai_summary FROM versions ORDER BY date DESC")
rows = cur.fetchall()
items = []
for name, date, summary in rows:
version = normalize_version(name)
date_fmt = parse_date(date)
feat = pick_feature(summary or "")
if not feat:
continue
title, desc = feat
items.append(build_item(version, date_fmt, title, desc))
if len(items) >= args.limit:
break
conn.close()
# Output the markdown
print("### Recent Major Features")
print()
for item in items:
print(item)
if __name__ == "__main__":
main()

View File

@@ -11,7 +11,7 @@ This is a web app for Fabric. It was built using [Svelte][svelte], [SkeletonUI][
The goal of this app is to not only provide a user interface for Fabric, but also an out-of-the-box website for those who want to get started with web development, blogging, or to just have a web interface for fabric. You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
![Preview](./static/preview.png)
![Preview](../docs/images/svelte-preview.png)
## Installing

View File

@@ -1,6 +1,6 @@
---
title: README
description: fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowdsourced set of AI prompts that can be used anywhere.
description: fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowd-sourced set of AI prompts that can be used anywhere.
aliases: Fabric/Docs
date: 2024-1-12
updated: 2024-11-22
@@ -12,7 +12,6 @@ updated: 2024-11-22
# `fabric`
<div class="justify-left flex gap-2">
<img src="https://img.shields.io/github/languages/top/danielmiessler/fabric" alt="Github top language">
<img src="https://img.shields.io/github/last-commit/danielmiessler/fabric" alt="GitHub last commit">
@@ -23,10 +22,10 @@ updated: 2024-11-22
<h4><code>fabric</code> is an open-source framework for augmenting humans using AI.</h4>
[Updates](#updates) •
[What and Why](#whatandwhy) •
[What and Why](#what-and-why) •
[Philosophy](#philosophy) •
[Installation](#Installation) •
[Usage](#Usage) •
[Installation](#installation) •
[Usage](#usage) •
[Examples](#examples) •
[Just Use the Patterns](#just-use-the-patterns) •
[Custom Patterns](#custom-patterns) •
@@ -42,8 +41,8 @@ updated: 2024-11-22
- [`fabric`](#fabric)
- [Navigation](#navigation)
- [Updates](#updates)
- [Intro videos](#intro-videos)
- [What and why](#what-and-why)
- [Intro videos](#intro-videos)
- [Philosophy](#philosophy)
- [Breaking problems into components](#breaking-problems-into-components)
- [Too many prompts](#too-many-prompts)
@@ -65,7 +64,9 @@ updated: 2024-11-22
- [`to_pdf`](#to_pdf)
- [`to_pdf` Installation](#to_pdf-installation)
- [pbpaste](#pbpaste)
- [Web Interface](#Web_Interface)
- [Web Interface](#web-interface)
- [Installing](#installing)
- [Streamlit UI](#streamlit-ui)
- [Meta](#meta)
- [Primary contributors](#primary-contributors)
@@ -76,7 +77,7 @@ updated: 2024-11-22
> [!NOTE]
> November 8, 2024
>
> - **Multimodal Support**: You can now use `-a` (attachment) for Multimodal submissions to OpenAI models that support it. Example: `fabric -a https://path/to/image "Give me a description of this image."`
> - **Multi-modal Support**: You can now use `-a` (attachment) for Multi-modal submissions to OpenAI models that support it. Example: `fabric -a https://path/to/image "Give me a description of this image."`
## What and why
@@ -90,7 +91,7 @@ Fabric was created to address this by enabling everyone to granularly apply AI t
## Intro videos
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#Installation) below.
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#installation) below.
- [Network Chuck](https://www.youtube.com/watch?v=UbDyjIIGaxQ)
- [David Bombal](https://www.youtube.com/watch?v=vF-MQmVxnCs)
@@ -223,7 +224,7 @@ This also creates a `yt` alias that allows you to use `yt https://www.youtube.co
#### Save your files in markdown using aliases
If in addition to the above aliases you would like to have the option to save the output to your favourite markdown note vault like Obsidian then instead of the above add the following to your `.zshrc` or `.bashrc` file:
If in addition to the above aliases you would like to have the option to save the output to your favorite markdown note vault like Obsidian then instead of the above add the following to your `.zshrc` or `.bashrc` file:
```bash
# Define the base directory for Obsidian notes
@@ -281,7 +282,7 @@ go install github.com/danielmiessler/fabric@latest
fabric --setup
```
Then [set your environmental variables](#environmental-variables) as shown above.
Then [set your environmental variables](#environment-variables) as shown above.
### Upgrading
@@ -324,6 +325,7 @@ Application Options:
-U, --updatepatterns Update patterns
-c, --copy Copy to clipboard
-m, --model= Choose model
-V, --vendor= Specify vendor for chosen model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)
-o, --output= Output to file
--output-session Output the entire session (also a temporary one) to the output file
-n, --latest= Number of latest patterns to list (default: 0)
@@ -375,21 +377,21 @@ Now let's look at some things you can do with Fabric.
1. Run the `summarize` Pattern based on input from `stdin`. In this case, the body of an article.
```bash
pbpaste | fabric --pattern summarize
```
```bash
pbpaste | fabric --pattern summarize
```
2. Run the `analyze_claims` Pattern with the `--stream` option to get immediate and streaming results.
```bash
pbpaste | fabric --stream --pattern analyze_claims
```
```bash
pbpaste | fabric --stream --pattern analyze_claims
```
3. Run the `extract_wisdom` Pattern with the `--stream` option to get immediate and streaming results from any Youtube video (much like in the original introduction video).
```bash
fabric -y "https://youtube.com/watch?v=uXs-zPc63kM" --stream --pattern extract_wisdom
```
```bash
fabric -y "https://youtube.com/watch?v=uXs-zPc63kM" --stream --pattern extract_wisdom
```
4. Create patterns- you must create a .md file with the pattern and save it to ~/.config/fabric/patterns/[yourpatternname].
@@ -414,11 +416,7 @@ You may want to use Fabric to create your own custom Patterns—but not share th
Just make a directory in `~/.config/custompatterns/` (or wherever) and put your `.md` files in there.
When you're ready to use them, copy them into:
```
~/.config/fabric/patterns/
```
When you're ready to use them, copy them into: `~/.config/fabric/patterns/`
You can then use them like any other Patterns, but they won't be public unless you explicitly submit them as Pull Requests to the Fabric project. So don't worry—they're private to you.
@@ -462,7 +460,7 @@ The [examples](#examples) use the macOS program `pbpaste` to paste content from
On Windows, you can use the PowerShell command `Get-Clipboard` from a PowerShell command prompt. If you like, you can also alias it to `pbpaste`. If you are using classic PowerShell, edit the file `~\Documents\WindowsPowerShell\.profile.ps1`, or if you are using PowerShell Core, edit `~\Documents\PowerShell\.profile.ps1` and add the alias,
```
```powershell
Set-Alias pbpaste Get-Clipboard
```
@@ -481,17 +479,19 @@ alias pbpaste='xclip -selection clipboard -o'
## Web Interface
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface and an out-of-the-box website for those who want to get started with web development or blogging.
You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface and an out-of-the-box website for those who want to get started with web development or blogging.
You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
The `web/src/lib/content` directory includes starter `.obsidian/` and `templates/` directories, allowing you to open up the `web/src/lib/content/` directory as an [Obsidian.md](https://obsidian.md) vault. You can place your posts in the posts directory when you're ready to publish.
The `web/src/lib/content` directory includes starter `.obsidian/` and `templates/` directories, allowing you to open up the `web/src/lib/content/` directory as an [Obsidian.md](https://obsidian.md) vault. You can place your posts in the posts directory when you're ready to publish.
### Installing
The GUI can be installed by navigating to the `web` directory and using `npm install`, `pnpm install`, or your favorite package manager. Then simply run the development server to start the app. 
The GUI can be installed by navigating to the `web` directory and using `npm install`, `pnpm install`, or your favorite package manager. Then simply run the development server to start the app.
_You will need to run fabric in a separate terminal with the `fabric --serve` command._
_You will need to run fabric in a separate terminal with the `fabric --serve` command._
**From the fabric project `web/` directory:**
```shell
npm run dev
@@ -499,7 +499,7 @@ npm run dev
pnpm run dev
## or your equivalent
## or your equivalent
```
### Streamlit UI
@@ -515,10 +515,12 @@ streamlit run streamlit.py
```
The Streamlit UI provides a user-friendly interface for:
- Running and chaining patterns
- Managing pattern outputs
- Creating and editing patterns
- Analyzing pattern results
## Meta
> [!NOTE]