Compare commits

...

295 Commits

Author SHA1 Message Date
psychedelicious
b7132ce9e7 fix(ui): capitalization for vietnamese language 2024-12-03 14:52:28 -08:00
psychedelicious
90f30e7748 chore: bump version to v5.4.3 2024-12-03 14:50:09 -08:00
Riccardo Giovanetti
6b86a66bc7 translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1633 of 1643 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-03 13:16:12 -08:00
Linos
aa97e626e9 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1643 of 1643 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.8% (1641 of 1643 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-12-03 13:13:26 -08:00
Ryan Dick
c90736093f Revert FLUX performance improvement that fails on MacOS (#7423)
## Summary

https://github.com/invoke-ai/InvokeAI/issues/7422

As reported in the above ticket, a recent FLUX performance improvement
caused a regression on MacOS. This PR reverts the offending part of the
change.

## Related Issues / Discussions

- Closes #7422 
- Original perf improvement:
https://github.com/invoke-ai/InvokeAI/pull/7399

## QA Instructions

I don't have a Mac capable of running this test, so trusting the report
in #7422 that this fixes the problem.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-03 10:58:00 -05:00
Ryan Dick
0bff4ace1b Revert performance improvement, because it caused flux inference to fail on Mac: https://github.com/invoke-ai/InvokeAI/issues/7422 2024-12-03 15:18:58 +00:00
psychedelicious
5eb382074e tweak(ui): slightly clearer logic for skipping regional guidance 2024-12-02 23:46:21 -05:00
psychedelicious
46aa930526 fix(ui): skip disabled ref images 2024-12-02 23:46:21 -05:00
psychedelicious
3305bad0c2 fix(app): queue item id check before setting cancel flag should use != instead of is not
The `is` operator compares references, not values. Thanks to a wonderfully unintuitive quirk of python, `is` works on integers from `-5` to `256`, inclusive.

Whenever integers in this range are used for a value, internally python returns a reference to a stable object in memory. When integers outside this range are used as a value, python creates a new object in memory for that integer.

See `PyLong_FromLong` documentation here: https://docs.python.org/3/c-api/long.html

Tying this back to our session processor, we were using `is` to compare the queue item ids for equality. Our queue item ids start at 0, and each queue item created increments this by one. So this comparison works only for the first 256 queue items on the machine.

Starting with the 257th queue item, the comparison starts returning `False`, and cancelation gets weird.

Easy fix - use `!=` instead of `is not`.
2024-12-02 23:22:58 -05:00
psychedelicious
13703d8f55 chore: bump version to v5.4.3rc2 2024-12-02 15:02:30 -08:00
psychedelicious
60d838d0a5 chore(ui): update whats new copy 2024-12-02 15:02:30 -08:00
Riccardo Giovanetti
2a157a44bf translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1633 of 1643 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-02 14:52:05 -08:00
James Reynolds
d61b5833c2 Fix documentation broken links and remove whitespace at end of lines 2024-12-02 14:49:53 -08:00
Jonathan
c094838c6a Update model_util.py 2024-12-02 14:35:02 -08:00
Hosted Weblate
2d334c8dd8 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-12-02 14:05:51 -08:00
Mary Hipp
a6be26e174 fix(worker): only apply processor cancel logic if cancel event is for current queue item 2024-12-02 14:03:05 -08:00
psychedelicious
f8c7adddd0 feat(ui): add vietnamese to language picker
Closes #7384
2024-12-02 08:12:14 -05:00
psychedelicious
17da1d92e9 fix(ui): remove "adding to" text on Invoke tooltip on Workflows/Upscaling tabs
The "adding to" text indicates if images are going to the gallery or staging area. This info is relevant only to the canvas tab, but was displayed on Upscaling and Workflows tabs. Removed it from those tabs.
2024-12-02 08:08:16 -05:00
psychedelicious
1cc57a4854 chore(ui): lint 2024-12-02 07:59:12 -05:00
psychedelicious
3993fae331 fix(ui): unable to invoke w/ empty inpaint mask or raster layer
Removed the empty state checks for these layer types - it's always OK to invoke when they are empty.
2024-12-02 07:59:12 -05:00
psychedelicious
1446526d55 tidy(ui): translation keys for canvas layer warnings 2024-12-02 07:59:12 -05:00
psychedelicious
62c024e725 feat(ui): add gallery image ctx menu items to create ref image from image
Appears these actions disappeared at some point. Restoring them.
2024-12-02 07:52:58 -05:00
psychedelicious
1e92bb4e94 fix(ui): ref image defaults to prev ref image's image selection
A redux selector is used to get the "default" IP Adapter. The selector uses the model list query result to select an IP Adapter model to be preset by default.

The selector is memoized, so if we mutate the returned default IP Adapter state, it mutates the result of the selector for all consumers.

For example, the `image` property of the default IP Adapter selector result is `null`. When we set the `image` property of the selector result while creating an IP Adapter, this does not trigger the selector to recompute its result. We end up setting the image for the selector result directly, and all other consumers now have that same image set.

Solution - we need to clone the selector result everywhere it is used. This was missed in a few spots, causing the issue.
2024-12-02 07:48:39 -05:00
psychedelicious
db6398fdf6 feat(ui): less confusing empty state for rg ref images
It was easy to misunderstand the empty state for a regional guidance reference image. There was no label, so it seemed like it was the whole region that was empty.

This small change adds the "Reference Image" heading to the empty state, so it's clear that the empty state messaging refers to this reference image, not the whole regional guidance layer.
2024-12-02 07:46:10 -05:00
Riccardo Giovanetti
ebd73a2ac2 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1622 of 1643 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Hosted Weblate
8ee95cab00 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Linos
d1184201a8 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1643 of 1643 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1638 of 1638 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Nik Nikovsky
5887891654 translationBot(ui): update translation (Polish)
Currently translated at 4.9% (81 of 1638 strings)

Co-authored-by: Nik Nikovsky <zejdzztegomaila@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Riku
765ca4e004 translationBot(ui): update translation (German)
Currently translated at 69.7% (1142 of 1638 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-12-02 02:13:51 -08:00
Riku
159b00a490 fix(app): adjust session queue api type 2024-12-01 20:06:05 -08:00
Riku
3fbf6f2d2a chore(ui): update typegen schema 2024-12-01 19:56:09 -08:00
Riku
931fca7cd1 fix(ui): call cancel instead of clear queue 2024-12-01 19:53:12 -08:00
Riku
db84a3a5d4 refactor(ui): move clear queue hook to separate file 2024-12-01 19:42:25 -08:00
psychedelicious
ca8313e805 feat(ui): add new layer from image menu items for staging area
The layers are disabled when created so as to not interfere with the canvas state.
2024-12-01 19:37:49 -08:00
psychedelicious
df849035ee feat(ui): allow setting isEnabled, isLocked and name in createNewCanvasEntityFromImage util 2024-12-01 19:37:49 -08:00
psychedelicious
8d97fe69ca feat(ui): use imageDTOToFile in staging area save to gallery button 2024-12-01 19:37:49 -08:00
psychedelicious
9044e53a9b feat(ui): add imageDTOToFile util 2024-12-01 19:37:49 -08:00
Jonathan
6012b0f912 Update flux_text_encoder.py
Updated version number for FLUX Text Encoding.
2024-11-30 08:29:21 -05:00
Jonathan
bb0ed5dc8a Update flux_denoise.py
Updated node version for FLUX Denoise.
2024-11-30 08:29:21 -05:00
Ryan Dick
021552fd81 Avoid unnecessary dtype conversions with rope encodings. 2024-11-29 12:32:50 -05:00
Ryan Dick
be73dbba92 Use view() instead of rearrange() for better performance. 2024-11-29 12:32:50 -05:00
Ryan Dick
db9c0cad7c Replace custom RMSNorm implementation with torch.nn.functional.rms_norm(...) for improved speed. 2024-11-29 12:32:50 -05:00
Ryan Dick
54b7f9a063 FLUX Regional Prompting (#7388)
## Summary

This PR adds support for regional prompting with FLUX.

### Example 1
Global prompt: `An architecture rendering of the reception area of a
corporate office with modern decor.`
<img width="1386" alt="image"
src="https://github.com/user-attachments/assets/c8169bdb-49a9-44bc-bd9e-58d98e09094b">

![image](https://github.com/user-attachments/assets/4a426be9-9d7a-4527-b27c-2d2514ee73fe)

## QA Instructions

- [x] Test that there is no slowdown in the base case with a single
global prompt.
- [x] Test image fully covered by regional masks.
- [x] Test image covered by region masks with small gaps.
- [x] Test region masks with large unmasked ‘background’ regions
- [x] Test region masks with significant overlap
- [x] Test multiple global prompts.
- [x] Test no global prompt.
- [x] Test regional negative prompts (It runs... but results are not
great. Needs more tuning to be useful.)
- Test compatibility with:
    - [x] ControlNet
    - [x] LoRA
    - [x] IP-Adapter

## Remaining TODO

- [x] Disable the following UI features for FLUX prompt regions:
negative prompts, reference images, auto-negative.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-11-29 08:56:42 -05:00
psychedelicious
7d488a5352 feat(ui): add delete button to regional ref image empty state 2024-11-29 15:51:24 +10:00
psychedelicious
4d7667f63d fix(ui): add missing translations 2024-11-29 15:43:49 +10:00
psychedelicious
08704ee8ec feat(ui): use canvas layer validators in control/ip adapter graph builders 2024-11-29 15:32:48 +10:00
psychedelicious
5910892c33 Merge remote-tracking branch 'origin/main' into ryan/flux-regional-prompting 2024-11-29 15:19:39 +10:00
psychedelicious
46a09d9e90 feat(ui): format warnings tooltip 2024-11-29 13:32:51 +10:00
psychedelicious
df0c7d73f3 feat(ui): use regional guidance validation utils in graph builders 2024-11-29 13:26:09 +10:00
psychedelicious
3905c97e32 feat(ui): return translation keys from validation utils instead of translated strings 2024-11-29 13:25:09 +10:00
psychedelicious
0be796a808 feat(ui): use layer validation utils in invoke readiness utils 2024-11-29 13:14:26 +10:00
psychedelicious
7dd33b0f39 feat(ui): add indicator to canvas layer headers, displaying validation warnings
If there are any issues with the layer, the icon is displayed. If the layer is disabled, the icon is greyed out but still visible.
2024-11-29 13:13:47 +10:00
psychedelicious
484aaf1595 feat(ui): add canvas layer validation utils
These helpers consolidate layer validation checks. For example, checking that the layer has content drawn, is compatible with the selected main model, has valid reference images, etc.
2024-11-29 13:12:32 +10:00
psychedelicious
c276b60af9 tidy(ui): use object for addRegions graph builder util arg 2024-11-29 08:49:41 +10:00
Ryan Dick
5d8dd6e26e Fix FLUX regional negative prompts. 2024-11-28 18:49:29 +00:00
Emmanuel Ferdman
5bca68d873 docs: update code of conduct reference
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-27 17:38:33 -08:00
Ryan Dick
64364e7911 Short-circuit if there are no region masks in FLUX and don't apply attention masking. 2024-11-27 22:40:10 +00:00
Ryan Dick
6565cea039 Comment unused _prepare_unrestricted_attn_mask(...) for future reference. 2024-11-27 22:16:44 +00:00
Ryan Dick
3ebd8d6c07 Delete outdated TODO comment. 2024-11-27 22:13:25 +00:00
Ryan Dick
e970185161 Tweak flux regional prompting attention scheme based on latest experimentation. 2024-11-27 22:13:07 +00:00
Ryan Dick
fa5653cdf7 Remove unused 'denoise' param to addRegions(). 2024-11-27 17:08:42 +00:00
Ryan Dick
9a7b000995 Update frontend to support regional prompts with FLUX in the canvas. 2024-11-27 17:04:43 +00:00
Ryan Dick
3a27242838 Bump transformers. The main motivation for this bump is to ingest a fix for DepthAnything postprocessing artifacts. 2024-11-27 07:46:16 -08:00
Ryan Dick
8cfb032051 Add utility ImagePanelLayoutInvocation for working with In-Context LoRA workflows. 2024-11-26 20:58:31 -08:00
Ryan Dick
06a9d4e2b2 Use a Textarea component for the FluxTextEncoderInvocation prompt field. 2024-11-26 20:58:31 -08:00
Brandon Rising
ed46acee79 fix: Fail scan on InvalidMagicError in picklescan, update default for read_checkpoint_meta to scan unless explicitly told not to 2024-11-26 16:17:12 -05:00
Ryan Dick
b54463d294 Allow regional prompting background regions to attend to themselves and to the entire txt embedding. 2024-11-26 17:57:31 +00:00
Ryan Dick
faee79dc95 Distinguish between restricted and unrestricted attn masks in FLUX regional prompting. 2024-11-26 16:55:52 +00:00
Mary Hipp
965cd76e33 lint fix 2024-11-26 11:25:53 -05:00
Mary Hipp
e5e8cbf34c shorten reference image mode descriptions; 2024-11-26 11:25:53 -05:00
Mary Hipp
3412a52594 (ui): updates various informational tooltips, adds descriptons to IP adapter method options 2024-11-26 11:25:53 -05:00
Ryan Dick
e01f66b026 Apply regional attention masks in the single stream blocks in addition to the double stream blocks. 2024-11-25 22:40:08 +00:00
Ryan Dick
53abdde242 Update Flux RegionalPromptingExtension to prepare both a mask with restricted image self-attention and a mask with unrestricted image self attention. 2024-11-25 22:04:23 +00:00
Ryan Dick
94c088300f Be smarter about selecting the global CLIP embedding for FLUX regional prompting. 2024-11-25 20:15:04 +00:00
Ryan Dick
3741a6f5e0 Fix device handling for regional masks and apply the attention mask in the FLUX double stream block. 2024-11-25 16:02:03 +00:00
Kent Keirsey
059336258f Create SECURITY.md 2024-11-25 04:10:03 -08:00
Ryan Dick
2c23b8414c Use a single global CLIP embedding for FLUX regional guidance. 2024-11-22 23:01:43 +00:00
Mary Hipp
271cc52c80 fix(ui): use token for download if its in store 2024-11-22 12:08:05 -05:00
Ryan Dick
20356c0746 Fixup the logic for preparing FLUX regional prompt attention masks. 2024-11-21 22:46:25 +00:00
psychedelicious
e44458609f chore: bump version to v5.4.3rc1 2024-11-21 10:32:43 -08:00
psychedelicious
69d86a7696 feat(ui): address feedback 2024-11-21 09:54:35 -08:00
Hippalectryon
56db1a9292 Use proxyrect and setEntityPosition to sync transformer position 2024-11-21 09:54:35 -08:00
Hippalectryon
cf50e5eeee Make sure the canvas is focused 2024-11-21 09:54:35 -08:00
Hippalectryon
c9c07968d2 lint 2024-11-21 09:54:35 -08:00
Hippalectryon
97d0757176 use $isInteractable instead of $isDisabled 2024-11-21 09:54:35 -08:00
Hippalectryon
0f51b677a9 refactor 2024-11-21 09:54:35 -08:00
Hippalectryon
56ca94c3a9 Don't move if the layer is disabled
Lint
2024-11-21 09:54:35 -08:00
Hippalectryon
28d169f859 Allow moving layers using the keyboard 2024-11-21 09:54:35 -08:00
psychedelicious
92f71d99ee tweak(ui): use X icon for rg ref image delete button 2024-11-21 08:50:39 -08:00
psychedelicious
0764c02b1d tweak(ui): code style 2024-11-21 08:50:39 -08:00
psychedelicious
081c7569fe feat(ui): add global ref image empty state 2024-11-21 08:50:39 -08:00
psychedelicious
20f6532ee8 feat(ui): add empty state for regional guidance ref image 2024-11-21 08:50:39 -08:00
Mary Hipp
b9e8910478 feat(ui): add actions for video modal clicks 2024-11-21 11:15:55 -05:00
Mary Hipp
ded8391e3c use nanostore for schema parsed instead 2024-11-20 20:13:31 -05:00
Mary Hipp
e9dd2c396a limit to one hook 2024-11-20 20:13:31 -05:00
Mary Hipp
0d86de0cb5 fix(ui): make sure schema has loaded before trying to load any workflows 2024-11-20 20:13:31 -05:00
Ryan Dick
bad1149504 WIP - add rough logic for preparing the FLUX regional prompting attention mask. 2024-11-20 22:29:36 +00:00
Ryan Dick
fda7aaa7ca Pass RegionalPromptingExtension down to the CustomDoubleStreamBlockProcessor in FLUX. 2024-11-20 19:48:04 +00:00
Ryan Dick
85c616fa34 WIP - Pass prompt masks to FLUX model during denoising. 2024-11-20 18:51:43 +00:00
psychedelicious
549f4e9794 feat(ui): set default infill method to lama 2024-11-20 11:19:17 -05:00
psychedelicious
ef8ededd2f fix(ui): disable width and height output on image batch output
There's a technical challenge with outputting these values directly. `ImageField` does not store them, so the batch's `ImageField` collection does not have width and height for each image.

In order to set up the batch and pass along width and height for each image, we'd need to make a network request for each image when the user clicks Invoke. It would often be cached, but this will eventually create a scaling issue and poor user experience.

As a very simple workaround, users can output the batch image output into an `Image Primitive` node to access the width and height.

This change is implemented by adding some simple special handling when parsing the output fields for the `image_batch` node.

I'll keep this situation in mind when extending the batching system to other field types.
2024-11-20 11:16:54 -05:00
Mary Hipp
1948ffe106 make sure Soft Edge Detection has preprocessor applied 2024-11-20 08:46:02 -05:00
psychedelicious
c70f4404c4 fix(ui): special node icon tooltip 2024-11-19 14:29:09 -08:00
psychedelicious
b157ae928c chore(ui): update what's new copy 2024-11-19 14:29:09 -08:00
psychedelicious
7a0871992d chore: bump version to v5.4.2 2024-11-19 14:29:09 -08:00
Hosted Weblate
b38e2e14f4 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-11-19 14:12:00 -08:00
psychedelicious
7c0e70ec84 tweak(ui): "Watch on YouTube" -> "Watch" 2024-11-19 14:02:11 -08:00
psychedelicious
a89ae9d2bf feat(ui): add links to studio sessions/discord 2024-11-19 14:02:11 -08:00
psychedelicious
ad1fcb3f07 chore(ui): bump @invoke-ai/ui-library
Brings in a fix for `ExternalLink`
2024-11-19 14:02:11 -08:00
psychedelicious
87d74b910b feat(ui): support videos modal 2024-11-19 14:02:11 -08:00
psychedelicious
7ad1c297a4 feat(ui): add actions for reset canvas layers / generation settings to session menus 2024-11-19 13:55:16 -08:00
psychedelicious
fbc629faa6 feat(ui): change reset canvas button to new session menu 2024-11-19 13:55:16 -08:00
psychedelicious
7baa6b3c09 feat(ui): split up new from image into submenus
- `New Canvas from Image` -> `As Raster Layer`, `As Raster Layer (Resize)`, `As Control Layer`, `As Control Layer (Resize)`
- `New Layer from Image` -> (each layer type)
2024-11-19 10:34:00 -08:00
psychedelicious
53d482bade feat(ui): add image ctx menu new canvas without resize option 2024-11-19 10:34:00 -08:00
psychedelicious
5aca04b51b feat(ui): change reset canvas icon to "empty" 2024-11-19 09:56:25 -08:00
psychedelicious
ea8787c8ff feat(ui): update invoke button tooltip for batching
- Split up logic to determine reason why the user cannot invoke for each tab.
- Fix issue where the workflows tab would show reasons related to canvas/upscale tab. The tooltip now only shows information relevant to the current tab.
- Add calculation for batch size to the queue count prediction.
- Use a constant for the enqueue mutation's fixed cache key, instead of a string. Just some typo protection.
2024-11-19 09:53:59 -08:00
psychedelicious
cead2c4445 feat(ui): split up selector utils for useIsReadyToEnqueue 2024-11-19 09:53:59 -08:00
Mary Hipp
f76ac1808c fix(ui): simplify logic for non-local invocation progress alerts 2024-11-19 12:40:40 -05:00
psychedelicious
f01210861b chore: ruff 2024-11-19 07:02:37 -08:00
psychedelicious
f757f23ef0 chore(ui): typegen 2024-11-19 07:02:37 -08:00
psychedelicious
872a6ef209 tidy(nodes): extract slerp from lblend to util fn 2024-11-19 07:02:37 -08:00
psychedelicious
4267e5ffc4 tidy(nodes): bring masked blend latents masking logic into invoke core 2024-11-19 07:02:37 -08:00
Brandon Rising
a69c5ff9ef Add copyright notice for CIELab_to_UPLab.icc 2024-11-19 07:02:37 -08:00
Brandon Rising
3ebd8d7d1b Fix .icc asset file in pyproject.toml 2024-11-19 07:02:37 -08:00
Brandon Rising
1fd80d54a4 Run Ruff 2024-11-19 07:02:37 -08:00
Brandon Rising
991f63e455 Store CIELab_to_UPLab.icc within the repo 2024-11-19 07:02:37 -08:00
Brandon Rising
6a1efd3527 Add validation to some of the node inputs 2024-11-19 07:02:37 -08:00
Brandon Rising
0eadc0dd9e feat: Support a subset of composition nodes within base invokeai 2024-11-19 07:02:37 -08:00
youjayjeel
481423d678 translationBot(ui): update translation (Chinese (Simplified Han script))
Currently translated at 86.0% (1367 of 1588 strings)

Co-authored-by: youjayjeel <youjayjeel@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-11-18 19:29:29 -08:00
Riccardo Giovanetti
89ede0aef3 translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1578 of 1588 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-18 19:29:29 -08:00
gallegonovato
359bdee9c6 translationBot(ui): update translation (Spanish)
Currently translated at 42.3% (672 of 1588 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 28.0% (445 of 1588 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-11-18 19:29:29 -08:00
psychedelicious
0e6fba3763 chore: bump version to v5.4.2rc1 2024-11-18 19:25:39 -08:00
psychedelicious
652502d7a6 fix(ui): add sd-3 grid size of 16px to grid util 2024-11-18 19:15:15 -08:00
psychedelicious
91d981a49e fix(ui): reactflow drag interactions with custom scrollbar 2024-11-18 19:12:27 -08:00
psychedelicious
24f61d21b2 feat(ui): make image field collection scrollable 2024-11-18 19:12:27 -08:00
psychedelicious
eb9a4177c5 feat(ui): allow removing individual images from batch 2024-11-18 19:12:27 -08:00
psychedelicious
3c43351a5b feat(ui): add reset to default value button to field title 2024-11-18 19:12:27 -08:00
psychedelicious
b1359b6dff feat(ui): update field validation logic to handle collection sizes 2024-11-18 19:12:27 -08:00
psychedelicious
bddccf6d2f feat(ui): add graph validation for image collection size 2024-11-18 19:12:27 -08:00
psychedelicious
21ffaab2a2 fix(ui): do not allow invoking when canvas is selectig object 2024-11-18 19:12:27 -08:00
psychedelicious
1e969f938f feat(ui): autosize image collection field grid 2024-11-18 19:12:27 -08:00
psychedelicious
9c6c86ee4f fix(ui): image field collection dnd adds instead of replaces 2024-11-18 19:12:27 -08:00
psychedelicious
6b53a48b48 fix(ui): zod schema refiners must return boolean 2024-11-18 19:12:27 -08:00
psychedelicious
c813fa3fc0 feat(ui): support min and max length for image collections 2024-11-18 19:12:27 -08:00
psychedelicious
a08e61184a chore(ui): typegen 2024-11-18 19:12:27 -08:00
psychedelicious
a0d62a5f41 feat(nodes): add minimum image count to ImageBatchInvocation 2024-11-18 19:12:27 -08:00
psychedelicious
616c0f11e1 feat(ui): image batching in workflows
- Add special handling for `ImageBatchInvocation`
- Add input component for image collections, supporting multi-image upload and dnd
- Minor rework of some hooks for accessing node data
2024-11-18 19:12:27 -08:00
psychedelicious
e1626a4e49 chore(ui): typegen 2024-11-18 19:12:27 -08:00
psychedelicious
6ab891a319 feat(nodes): add ImageBatchInvocation 2024-11-18 19:12:27 -08:00
psychedelicious
492de41316 feat(app): add Classification.Special, used for batch nodes 2024-11-18 19:12:27 -08:00
psychedelicious
c064efc866 feat(app): add ImageField as an allowed batching data type 2024-11-18 19:12:27 -08:00
Ryan Dick
1a0885bfb1 Update FLUX IP-Adapter starter model from XLabs v1 to XLabs v2. 2024-11-18 17:06:53 -08:00
Ryan Dick
e8b202d0a5 Update FLUX IP-Adapter graph construction to optimize for XLabs IP-Adapter v2 over v1. This results in degraded performance with v1 IP-Adapters. 2024-11-18 17:06:53 -08:00
Ryan Dick
c6fc82f756 Infer the clip_extra_context_tokens param from the state dict for FLUX XLabs IP-Adapter V2 models. 2024-11-18 17:06:53 -08:00
Ryan Dick
9a77e951d2 Add unit test for FLUX XLabs IP-Adapter V2 model format. 2024-11-18 17:06:53 -08:00
psychedelicious
8bd4207a27 docs(ui): add docstring to CanvasEntityStateGate 2024-11-18 13:40:08 -08:00
psychedelicious
0bb601aaf7 fix(ui): prevent entity not found errors
The canvas react components pass canvas entity identifiers around, then redux selectors are used to access that entity. This is good for perf - entity states may rapidly change. Passing only the identifiers allows components and other logic to have more granular state updates.

Unfortunately, this design opens the possibility for for an entity identifier to point to an entity that does not exist.

To get around this, I had created a redux selector `selectEntityOrThrow` for canvas entities. As the name implies, it throws if the entity is not found.

While it prevents components/hooks from needing to deal with missing entities, it results in mysterious errors if an entity is missing. Without sourcemaps, it's very difficult to determine what component or hook couldn't find the entity.

Refactoring the app to not depend on this behaviour is tricky. We could pass the entity state around directly as a prop or via context, but as mentioned, this could cause performance issues with rapidly changing entities.

As a workaround, I've made two changes:
- `<CanvasEntityStateGate/>` is a component that takes an entity identifier, returning its children if the entity state exists, or null if not. This component is wraps every usage of `selectEntityOrThrow`.  Theoretically, this should prevent the entity not found errors.
- Add a `caller: string` arg to `selectEntityOrThrow`. This string is now added to the error message when the assertion fails, so we can more easily track the source of the errors.

In the future we can work out a way to not use this throwing selector and retain perf. The app has changed quite a bit since that selector was created - so we may not have to worry about perf at all.
2024-11-18 13:40:08 -08:00
psychedelicious
2da25a0043 fix(ui): progress bar not throbbing when it should (#7332)
When we added more progress events during generation, we indirectly broke the logic that controls when the progress bar throbs.

Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2024-11-18 14:02:20 +00:00
Mary Hipp
51d0931898 remove GPL-3 licensed package easing-functions 2024-11-18 08:55:17 -05:00
Riccardo Giovanetti
357b68d1ba translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1577 of 1587 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-16 05:49:57 +11:00
Mary Hipp
d9ddb6c32e fix(ui): add padding to the metadata recall section so buttons are not blocked 2024-11-16 05:47:45 +11:00
Mary Hipp
ad02a99a83 fix(ui): ignore user setting for commercial, remove unused state 2024-11-16 05:21:30 +11:00
Mary Hipp
b707dafc7b translation 2024-11-16 05:21:30 +11:00
Mary Hipp
02906c8f5d feat(ui): deferred invocation progress details for model loading 2024-11-16 05:21:30 +11:00
psychedelicious
8538e508f1 chore(ui): lint 2024-11-15 12:59:30 +11:00
Hosted Weblate
8c333ffd14 translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riccardo Giovanetti
72ace5fdff translationBot(ui): update translation (Italian)
Currently translated at 99.4% (1575 of 1583 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Gohsuke Shimada
9b7583fc84 translationBot(ui): update translation (Japanese)
Currently translated at 33.6% (533 of 1583 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 30.3% (481 of 1583 strings)

Co-authored-by: Gohsuke Shimada <ghoskay@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
dakota2472
989eee338e translationBot(ui): update translation (Italian)
Currently translated at 99.8% (1580 of 1583 strings)

Co-authored-by: dakota2472 <gardaweb.net@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Linos
acc3d7b91b translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1583 of 1583 strings)

Co-authored-by: Linos <tt250208@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riccardo Giovanetti
49de868658 translationBot(ui): update translation (Italian)
Currently translated at 99.4% (1575 of 1583 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.4% (1573 of 1581 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Hosted Weblate
b1702c7d90 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riccardo Giovanetti
e49e19ea13 translationBot(ui): update translation (Italian)
Currently translated at 99.4% (1569 of 1577 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
gallegonovato
c9f91f391e translationBot(ui): update translation (Spanish)
Currently translated at 17.6% (278 of 1575 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 17.3% (274 of 1575 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Hosted Weblate
4cb6b2b701 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riccardo Giovanetti
7d132ea148 translationBot(ui): update translation (Italian)
Currently translated at 99.1% (1564 of 1577 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.4% (1566 of 1575 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riku
1088accd91 translationBot(ui): update translation (German)
Currently translated at 71.8% (1131 of 1575 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
dakota2472
8d237d8f8b translationBot(ui): update translation (Italian)
Currently translated at 99.6% (1569 of 1575 strings)

Co-authored-by: dakota2472 <gardaweb.net@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Linos
0c86a3232d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1581 of 1581 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1576 of 1576 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1575 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 85.0% (1340 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 78.7% (1240 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 73.1% (1152 of 1575 strings)

translationBot(ui): update translation (English)

Currently translated at 99.9% (1574 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 57.9% (913 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 37.0% (584 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 3.2% (51 of 1575 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 3.2% (51 of 1575 strings)

Co-authored-by: Linos <tt250208@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
aidawanglion
dbfb0359cb translationBot(ui): update translation (Chinese (Simplified Han script))
Currently translated at 79.9% (1266 of 1583 strings)

translationBot(ui): update translation (Chinese (Simplified Han script))

Currently translated at 74.4% (1171 of 1573 strings)

Co-authored-by: aidawanglion <youjayjeel@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
Riccardo Giovanetti
b4c2aa596b translationBot(ui): update translation (Italian)
Currently translated at 99.6% (1569 of 1575 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.4% (1567 of 1575 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.4% (1565 of 1573 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-11-15 12:59:30 +11:00
psychedelicious
87e89b7995 fix(ui): remove progress message condition for canvas destinations 2024-11-15 12:55:46 +11:00
psychedelicious
9b089430e2 chore: bump version to v5.4.1 2024-11-15 11:51:06 +11:00
psychedelicious
f2b0025958 chore(ui): update what's new 2024-11-15 11:51:06 +11:00
psychedelicious
4b390906bc fix(ui): multiple selection dnd sometimes doesn't get full selection
Turns out a gallery image's `imageDTO` object can actually be a different object by reference. I thought this was not possible thanks to how we have a quasi-normalized cache.

Need to check against image name instead of reference equality when deciding whether or not to use the single image or the gallery selection for the dnd payload.
2024-11-15 11:21:03 +11:00
psychedelicious
c5b8efe03b fix(ui): unable to use text inputs within draggable 2024-11-15 10:25:30 +11:00
psychedelicious
4d08d00ad8 chore(ui): knip 2024-11-14 13:38:40 -08:00
psychedelicious
9b0130262b fix(ui): use silent upload for single-image upload buttons 2024-11-14 13:38:40 -08:00
psychedelicious
878093f64e fix(ui): image uploading handling
Rework uploadImage and uploadImages helpers and the RTK listener, ensuring gallery view isn't changed unexpectedly and preventing extraneous toasts.

Fix staging area save to gallery button to essentially make a copy of the image, instead of changing its intermediate status.
2024-11-14 13:38:40 -08:00
psychedelicious
d5ff7ef250 feat(ui): update output only masked regions
- New name: "Output only Generated Regions"
- New default: true (this was the intention, but at some point the behaviour of the setting was inverted without the default being changed)
2024-11-14 13:35:55 -08:00
psychedelicious
f36583f866 feat(ui): tweak image selection/hover styling
The styling in gallery for selected vs hovered was very similar, leading users to think that the hovered image was also selected.

Reducing the borders for hovered images to a single pixel makes it easier to distinguish between selected and hovered.
2024-11-14 16:28:53 -05:00
psychedelicious
829bc1bc7d feat(ui): progress alert config setting
- Add `invocationProgressAlert` as a disable-able feature. Hide the alert and the setting in system settings when disabled.
- Fix merge conflict
2024-11-15 05:49:05 +11:00
Mary Hipp
17c7b57145 (ui): make detailed progress view a setting that can be hidden 2024-11-15 05:49:05 +11:00
psychedelicious
6a12189542 feat(ui): updated progress event display
- Tweak layout/styling of alerts for consistent spacing
- Add percentage to message if it has percentage
- Only show events if the destination is canvas (so workflows events are hidden for example)
2024-11-15 05:49:05 +11:00
psychedelicious
96a31a5563 feat(app): add more events when loading/running models 2024-11-15 05:49:05 +11:00
psychedelicious
067747eca9 feat(app): tweak model load events
- Pass in the `UtilInterface` to the `ModelsInterface` so we can call the simple `signal_progress` method instead of the complicated `emit_invocation_progress` method.
- Only emit load events when starting to load - not after.
- Add more detail to the messages, like submodel type
2024-11-15 05:49:05 +11:00
Mary Hipp
c7878fddc6 (pytest) mock emit_invocation_progress on events service 2024-11-15 05:49:05 +11:00
maryhipp
54c51e0a06 (worker) add progress images for downloading remote models 2024-11-15 05:49:05 +11:00
Mary Hipp
1640ea0298 (pytest) add missing arg for mocked context 2024-11-15 05:49:05 +11:00
Mary Hipp
0c32ae9775 (pytest) fix import 2024-11-15 05:49:05 +11:00
maryhipp
fdb8ca5165 (worker) use source if name is not available 2024-11-15 05:49:05 +11:00
Mary Hipp
571faf6d7c (pytest) add queue_item and invocation to data in context for test 2024-11-15 05:49:05 +11:00
Mary Hipp
bdbdb22b74 (ui) add Canvas Alert for invocation progress messages 2024-11-15 05:49:05 +11:00
maryhipp
9bbb5644af (worker) add invocation_progress events to model loading 2024-11-15 05:49:05 +11:00
Mary Hipp
e90ad19f22 (ui): update en string for full IP adapter 2024-11-14 10:07:42 -08:00
Ryan Dick
0ba11e8f73 SD3 Image-to-Image and Inpainting (#7295)
## Summary

Add support for SD3 image-to-image and inpainting. Similar to FLUX, the
implementation supports fractional denoise_start/denoise_end for more
fine-grained denoise strength control, and a gradient mask adjustment
schedule for smoother inpainting seams.

## Example
Workflow
<img width="1016" alt="image"
src="https://github.com/user-attachments/assets/ee598d77-be80-4ca7-9355-c3cbefa2ef43">

Result

![image](https://github.com/user-attachments/assets/43953fa7-0e4e-42b5-84e8-85cfeeeee00b)

## QA Instructions

- [x] Regression test of text-to-image
- [x] Test image-to-image without mask
- [x] Test that adjusting denoising_start allows fine-grained control of
amount of change in image-to-image
- [x] Test inpainting with mask
- [x] Smoke test SD1, SDXL, FLUX image-to-image to make sure there was
no regression with the frontend changes.

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-11-14 09:33:51 -08:00
Ryan Dick
1cf7600f5b Merge branch 'main' into ryan/sd3-image-to-image 2024-11-14 09:25:23 -08:00
Ryan Dick
4f9d12b872 Fix FLUX diffusers LoRA models with no .proj_mlp layers (#7313)
## Summary

Add support for FLUX diffusers LoRA models without `.proj_mlp` layers.

## Related Issues / Discussions

Closes #7129 

## QA Instructions

- [x] FLUX diffusers LoRA **without .proj_mlp** layers
- [x] FLUX diffusers LoRA **with .proj_mlp** layers
- [x] FLUX diffusers LoRA **without .proj_mlp** layers, quantized base
model
- [x] FLUX diffusers LoRA **with .proj_mlp** layers, quantized base
model

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-11-14 09:09:10 -08:00
Ryan Dick
68c3b0649b Add unit tests for FLUX diffusers LoRA without .proj_mlp layers. 2024-11-14 16:53:49 +00:00
Ryan Dick
8ef8bd4261 Add state dict tensor shapes for existing LoRA unit tests. 2024-11-14 16:53:49 +00:00
Ryan Dick
50897ba066 Add flag to optionally allow missing layer keys in FLUX lora loader. 2024-11-14 16:53:49 +00:00
Ryan Dick
3510643870 Support FLUX LoRAs without .proj_mlp layers. 2024-11-14 16:53:49 +00:00
Ryan Dick
ca9cb1c9ef Flux Vae broke for float16, force bfloat16 or float32 were compatible (#7213)
## Summary

The Flux VAE, like many VAEs, is broken if run using float16 inputs
returning black images due to NaNs
This will fix the issue by forcing the VAE to run in bfloat16 or float32
were compatible

## Related Issues / Discussions

Fix for issue https://github.com/invoke-ai/InvokeAI/issues/7208

## QA Instructions

Tested on MacOS, VAE works with float16 in the invoke.yaml and left to
default.
I also briefly forced it down the float32 route to check that to.
Needs testing on CUDA / ROCm

## Merge Plan

It should be a straight forward merge,
2024-11-13 15:51:40 -08:00
Ryan Dick
b89caa02bd Merge branch 'main' into flux_vae_fp16_broke 2024-11-13 15:33:43 -08:00
Ryan Dick
eaf4e08c44 Use vae.parameters() for more efficient access of the first model parameter. 2024-11-13 23:32:40 +00:00
Darrell
fb19621361 Updated link to flux ip adapter model 2024-11-12 08:11:40 -05:00
Mary Hipp
9179619077 actually use optimized denoising 2024-11-08 20:46:08 -05:00
Mary Hipp
13cb5f0ba2 Merge remote-tracking branch 'origin/main' into ryan/sd3-image-to-image 2024-11-08 20:29:56 -05:00
Mary Hipp
7e52fc1c17 Merge branch 'ryan/sd3-image-to-image' of https://github.com/invoke-ai/InvokeAI into ryan/sd3-image-to-image 2024-11-08 20:14:24 -05:00
Mary Hipp
7f60a4a282 (ui): update more generation settings for SD3 linear UI 2024-11-08 20:14:13 -05:00
psychedelicious
3f880496f7 feat(ui): clarify denoising strength badge text 2024-11-09 08:38:41 +11:00
Ryan Dick
f05efd3270 Fix import for getInfill. 2024-11-08 20:42:44 +00:00
psychedelicious
79eb8172b6 feat(ui): update warnings on upscaling tab based on model arch
When an unsupported model architecture is selected, show that warning only, without the extra warnings (i.e. no "missing tile controlnet" warning)

Update Invoke tooltip warnings accordingly

Closes #7239
Closes #7177
2024-11-09 07:34:03 +11:00
Ryan Dick
7732b5d478 Fix bug related to i2l nodes during graph construction of image-to-image workflows. 2024-11-08 20:15:34 +00:00
Mary Hipp
a2a1934b66 Merge branch 'ryan/sd3-image-to-image' of https://github.com/invoke-ai/InvokeAI into ryan/sd3-image-to-image 2024-11-08 13:43:19 -05:00
Mary Hipp
dff6570078 (ui) SD3 support in linear UI 2024-11-08 13:42:57 -05:00
maryhipp
04e4fb63af add SD3 generation modes for metadata validation 2024-11-08 13:13:58 -05:00
Vargol
83609d5008 Merge branch 'invoke-ai:main' into flux_vae_fp16_broke 2024-11-08 10:37:31 +00:00
David Burnett
2618ed0ae7 ruff complained 2024-11-08 10:31:53 +00:00
David Burnett
bb3cedddd5 Rework change based on comments 2024-11-08 10:27:47 +00:00
psychedelicious
5b3e1593ca fix(ui): restore missing image paste handler
Missed migrating this logic over during dnd migration.
2024-11-08 16:42:39 +11:00
psychedelicious
2d08078a7d fix(ui): fit bbox to layers math 2024-11-08 16:40:24 +11:00
psychedelicious
75acece1f1 fix(ui): excessive toasts when generating on canvas
- Add `withToast` flag to `uploadImage` util
- Skip the toast if this is not set
- Use the flag to disable toasts when canvas does internal image-uploading stuff that should be invisible to user
2024-11-08 10:30:04 +11:00
psychedelicious
a9db2ffefd fix(ui): ensure clip vision model is set correctly for FLUX IP Adapters 2024-11-08 10:02:41 +11:00
psychedelicious
cdd148b4d1 feat(ui): add toast for graph building errors 2024-11-08 10:02:41 +11:00
psychedelicious
730fabe2de feat(ui): add util to extract message from a tsafe AssertionError 2024-11-08 10:02:41 +11:00
psychedelicious
6c59790a7f chore: bump version to v5.4.1rc2 2024-11-08 10:00:20 +11:00
Ryan Dick
0e6cb91863 Update SD3 InpaintExtension with gradient adjustment to match FLUX. 2024-11-07 22:55:30 +00:00
Ryan Dick
a0fefcd43f Switch to using a custom scheduler implementation for SD3 rather than the diffusers FlowMatchEulerDiscreteScheduler. It is easier to work with and enables us to re-use the clip_timestep_schedule_fractional() utility from FLUX. 2024-11-07 22:46:52 +00:00
psychedelicious
c37251d6f7 tweak(ui): workflow linear field styling 2024-11-08 07:39:09 +11:00
psychedelicious
2854210162 fix(ui): dnd autoscroll on elements w/ custom scrollbar
Have to do a bit of fanagling to get it to work and get `pragmatic-drag-and-drop` to not complain.
2024-11-08 07:39:09 +11:00
psychedelicious
5545b980af fix(ui): workflow field sorting doesn't use unique identifier for fields 2024-11-08 07:39:09 +11:00
psychedelicious
0c9434c464 chore(ui): lint 2024-11-08 07:39:09 +11:00
psychedelicious
8771de917d feat(ui): migrate fullscreen drop zone to pdnd 2024-11-08 07:39:09 +11:00
psychedelicious
122946ef4c feat(ui): DndDropOverlay supports react node for label 2024-11-08 07:39:09 +11:00
psychedelicious
2d974f670c feat(ui): restore missing upload buttons 2024-11-08 07:39:09 +11:00
psychedelicious
75f0da9c35 fix(ui): use revised uploader for CL empty state 2024-11-08 07:39:09 +11:00
psychedelicious
5df3c00e28 feat(ui): remove SerializableObject, use type-fest's JsonObject 2024-11-08 07:39:09 +11:00
psychedelicious
b049880502 fix(ui): uploads initiated from canvas 2024-11-08 07:39:09 +11:00
psychedelicious
e5293fdd1a fix(ui): match new default controlnet behaviour 2024-11-08 07:39:09 +11:00
psychedelicious
8883775762 feat(ui): rework image uploads (wip) 2024-11-08 07:39:09 +11:00
psychedelicious
cfadb313d2 fix(ui): ts issues 2024-11-08 07:39:09 +11:00
psychedelicious
b5cadd9a1a fix(ui): scroll issue w/ boards list 2024-11-08 07:39:09 +11:00
psychedelicious
5361b6e014 refactor(ui): image actions sep of concerns 2024-11-08 07:39:09 +11:00
psychedelicious
ff346172af feat(ui): use new image actions system for image menu 2024-11-08 07:39:09 +11:00
psychedelicious
92f660018b refactor(ui): dnd actions to image actions
We don't need a "dnd" image system. We need a "image action" system. We need to execute specific flows with images from various "origins":
- internal dnd e.g. from gallery
- external dnd e.g. user drags an image file into the browser
- direct file upload e.g. user clicks an upload button
- some other internal app button e.g. a context menu

The actions are now generalized to better support these various use-cases.
2024-11-08 07:39:09 +11:00
psychedelicious
1afc2cba4e feat(ui): support different labels for external drop targets (e.g. uploads) 2024-11-08 07:39:09 +11:00
psychedelicious
ee8359242c feat(ui): more dnd cleanup and tidy 2024-11-08 07:39:09 +11:00
psychedelicious
f0c80a8d7a tidy(ui): dnd stuff 2024-11-08 07:39:09 +11:00
psychedelicious
8da9e7c1f6 fix(ui): min height for workflow image field drop target 2024-11-08 07:39:09 +11:00
psychedelicious
6d7a486e5b feat(ui): restore dnd to workflow fields 2024-11-08 07:39:09 +11:00
psychedelicious
57122c6aa3 feat(ui): layer reordering styling 2024-11-08 07:39:09 +11:00
psychedelicious
54abd8d4d1 feat(ui): dnd layer reordering (wip) 2024-11-08 07:39:09 +11:00
psychedelicious
06283cffed feat(ui): use custom drag previews for images 2024-11-08 07:39:09 +11:00
psychedelicious
27fa0e1140 tidy(ui): more efficient dnd overlay styling 2024-11-08 07:39:09 +11:00
psychedelicious
533d48abdb feat(ui): multi-image drag preview 2024-11-08 07:39:09 +11:00
psychedelicious
6845cae4c9 tidy(ui): move new dnd impl into features/dnd 2024-11-08 07:39:09 +11:00
psychedelicious
31c9acb1fa tidy(ui): clean up old dnd stuff 2024-11-08 07:39:09 +11:00
psychedelicious
fb5e462300 tidy(ui): document & clean up dnd 2024-11-08 07:39:09 +11:00
psychedelicious
2f3abc29b1 feat(ui): better types for getData 2024-11-08 07:39:09 +11:00
psychedelicious
c5c071f285 feat(ui): better type name 2024-11-08 07:39:09 +11:00
psychedelicious
93a3ed56e7 feat(ui): simpler dnd typing implementation 2024-11-08 07:39:09 +11:00
psychedelicious
406fc58889 feat(ui): migrate to pragmatic-drag-and-drop (wip 4) 2024-11-08 07:39:09 +11:00
psychedelicious
cf67d084fd feat(ui): migrate to pragmatic-drag-and-drop (wip 3) 2024-11-08 07:39:09 +11:00
psychedelicious
d4a95af14f perf(ui): more gallery perf improvements 2024-11-08 07:39:09 +11:00
psychedelicious
8c8e7102c2 perf(ui): improved gallery perf 2024-11-08 07:39:09 +11:00
psychedelicious
b6b9ea9d70 feat(ui): migrate to pragmatic-drag-and-drop (wip 2) 2024-11-08 07:39:09 +11:00
psychedelicious
63126950bc feat(ui): migrate to pragmatic-drag-and-drop (wip) 2024-11-08 07:39:09 +11:00
psychedelicious
29d63d5dea fix(app): silence pydantic protected namespace warning
Closes #7287
2024-11-08 07:36:50 +11:00
Ryan Dick
a5f8c23dee Add inpainting support for SD3. 2024-11-07 20:21:43 +00:00
Ryan Dick
7bb4ea57c6 Add SD3ImageToLatentsInvocation. 2024-11-07 16:07:57 +00:00
Ryan Dick
75dc961bcb Add image-to-image support for SD3 - WIP. 2024-11-07 15:48:35 +00:00
Vargol
a9a1f6ef21 Merge branch 'invoke-ai:main' into flux_vae_fp16_broke 2024-11-07 14:02:51 +00:00
Jonathan
aa40161f26 Update flux_denoise.py
Added a bool to allow the node user to add noise in to initial latents (default) or to leave them alone.
2024-11-07 14:02:20 +00:00
psychedelicious
6efa812874 chore(ui): bump version to v5.4.1rc1 2024-11-07 14:02:20 +00:00
psychedelicious
8a683f5a3c feat(ui): updated whats new handling and v5.4.1 items 2024-11-07 14:02:20 +00:00
Brandon Rising
f4b0b6a93d fix: Look in known subfolders for configs for clip variants 2024-11-07 14:02:20 +00:00
Brandon Rising
1337c33ad3 fix: Avoid downloading unsafe .bin files if a safetensors file is available 2024-11-07 14:02:20 +00:00
Jonathan
2f6b035138 Update flux_denoise.py
Added a bool to allow the node user to add noise in to initial latents (default) or to leave them alone.
2024-11-07 08:44:10 -05:00
psychedelicious
4f9ae44472 chore(ui): bump version to v5.4.1rc1 2024-11-07 12:19:28 +11:00
psychedelicious
c682330852 feat(ui): updated whats new handling and v5.4.1 items 2024-11-07 12:19:28 +11:00
Brandon Rising
c064257759 fix: Look in known subfolders for configs for clip variants 2024-11-07 12:01:02 +11:00
Brandon Rising
8a4c629576 fix: Avoid downloading unsafe .bin files if a safetensors file is available 2024-11-06 19:31:18 -05:00
David Burnett
496b02a3bc Same issue affects image2image, so do the same again 2024-11-06 17:47:22 -05:00
David Burnett
7b5efc2203 Flux Vae broke for float16, force bfloat16 or float32 were compatible 2024-11-06 17:47:22 -05:00
349 changed files with 20296 additions and 8562 deletions

14
SECURITY.md Normal file
View File

@@ -0,0 +1,14 @@
# Security Policy
## Supported Versions
Only the latest version of Invoke will receive security updates.
We do not currently maintain multiple versions of the application with updates.
## Reporting a Vulnerability
To report a vulnerability, contact the Invoke team directly at security@invoke.ai
At this time, we do not maintain a formal bug bounty program.
You can also share identified security issues with our team on huntr.com

View File

@@ -50,7 +50,7 @@ Applications are built on top of the invoke framework. They should construct `in
### Web UI
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/frontend` and the backend code is found in `/ldm/invoke/app/api_app.py` and `/ldm/invoke/app/api/`. The code is further organized as such:
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/invokeai/frontend` and the backend code is found in `/invokeai/app/api_app.py` and `/invokeai/app/api/`. The code is further organized as such:
| Component | Description |
| --- | --- |
@@ -62,7 +62,7 @@ The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.t
### CLI
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/ldm/invoke/app/cli_app.py`.
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/invokeai/frontend/cli`.
## Invoke
@@ -70,7 +70,7 @@ The Invoke framework provides the interface to the underlying AI systems and is
### Invoker
The invoker (`/ldm/invoke/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
The invoker (`/invokeai/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
- **invocation services**, which are used by invocations to interact with core functionality.
- **invoker services**, which are used by the invoker to manage sessions and manage the invocation queue.
@@ -82,12 +82,12 @@ The session graph does not support looping. This is left as an application probl
### Invocations
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/ldm/invoke/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/invokeai/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
### Services
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/ldm/invoke/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/invokeai/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
## AI Core
The AI Core is represented by the rest of the code base (i.e. the code outside of `/ldm/invoke/app/`).
The AI Core is represented by the rest of the code base (i.e. the code outside of `/invokeai/app/`).

View File

@@ -287,8 +287,8 @@ new Invocation ready to be used.
Once you've created a Node, the next step is to share it with the community! The
best way to do this is to submit a Pull Request to add the Node to the
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](contributingNodes).
[Community Nodes](../nodes/communityNodes.md) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](../nodes/contributingNodes.md).
## Advanced

View File

@@ -9,20 +9,20 @@ model. These are the:
configuration information. Among other things, the record service
tracks the type of the model, its provenance, and where it can be
found on disk.
* _ModelInstallServiceBase_ A service for installing models to
disk. It uses `DownloadQueueServiceBase` to download models and
their metadata, and `ModelRecordServiceBase` to store that
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _DownloadQueueServiceBase_
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelLoadServiceBase_
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
@@ -207,9 +207,9 @@ for use in the InvokeAI web server. Its signature is:
```
def open(
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
cls,
config: InvokeAIAppConfig,
conn: Optional[sqlite3.Connection] = None,
lock: Optional[threading.Lock] = None
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
```
@@ -363,7 +363,7 @@ functionality:
* Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
* Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
@@ -371,21 +371,21 @@ functionality:
* Probing of models to determine their type, base type and other key
information.
* Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
* Downloading a model from an arbitrary URL and installing it in
`models_dir`.
* Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
* Saving tags and other metadata about the model into the invokeai database
when fetching from a repo that provides that type of information,
(currently only HuggingFace).
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
@@ -461,7 +461,7 @@ revision.
`config` is an optional dict of values that will override the
autoprobed values for model type, base, scheduler prediction type, and
so forth. See [Model configuration and
probing](#Model-configuration-and-probing) for details.
probing](#model-configuration-and-probing) for details.
`access_token` is an optional access token for accessing resources
that need authentication.
@@ -494,7 +494,7 @@ source8 = URLModelSource(url='https://civitai.com/api/download/models/63006', ac
for source in [source1, source2, source3, source4, source5, source6, source7]:
install_job = installer.install_model(source)
source2job = installer.wait_for_installs(timeout=120)
for source in sources:
job = source2job[source]
@@ -504,7 +504,7 @@ for source in sources:
print(f"{source} installed as {model_key}")
elif job.errored:
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of

View File

@@ -1,6 +1,6 @@
# InvokeAI Backend Tests
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
We use `pytest` to run the backend python tests. (See [pyproject.toml](https://github.com/invoke-ai/InvokeAI/blob/main/pyproject.toml) for the default `pytest` options.)
## Fast vs. Slow
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
@@ -33,7 +33,7 @@ pytest tests -m ""
## Test Organization
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
All backend tests are in the [`tests/`](https://github.com/invoke-ai/InvokeAI/tree/main/tests) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.

View File

@@ -2,7 +2,7 @@
## **What do I need to know to help?**
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
## **Get Started**
@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Frontend Documentation](../frontend/index.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
@@ -20,15 +20,15 @@ Once you're setup, for more information, you can review the documentation specif
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
There are two paths to making a development contribution:
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*
## Best Practices:
## Best Practices:
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
* Comments! Commenting your code helps reviewers easily understand your contribution
* Use Python and Typescripts typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
@@ -38,7 +38,7 @@ There are two paths to making a development contribution:
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.

View File

@@ -22,15 +22,15 @@ Before starting these steps, ensure you have your local environment [configured
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
3. Clone the repository to your local machine using:
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
```bash
git clone https://github.com/your-GitHub-username/InvokeAI.git
```
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface. 4. Create a new branch for your fix using:
```bash
git checkout -b branch-name-here
```
```bash
git checkout -b branch-name-here
```
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:

View File

@@ -27,9 +27,9 @@ If you just want to use Invoke, you should use the [installer][installer link].
5. Activate the venv (you'll need to do this every time you want to run the app):
```sh
source .venv/bin/activate
```
```sh
source .venv/bin/activate
```
6. Install the repo as an [editable install][editable install link]:
@@ -37,7 +37,7 @@ If you just want to use Invoke, you should use the [installer][installer link].
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
Refer to the [manual installation][manual install link] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
7. Install the frontend dev toolchain:

View File

@@ -34,11 +34,11 @@ Please reach out to @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy)
## Contributors
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](contributors.md). We thank them for their time, hard work and effort.
## Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](../CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:

View File

@@ -99,7 +99,6 @@ their descriptions.
| Scale Latents | Scales latents by a given factor. |
| Segment Anything Processor | Applies segment anything processing to image |
| Show Image | Displays a provided image, and passes it forward in the pipeline. |
| Step Param Easing | Experimental per-step parameter easing for denoising steps |
| String Primitive Collection | A collection of string primitive values |
| String Primitive | A string primitive value |
| Subtract Integers | Subtracts two numbers |

View File

@@ -110,7 +110,7 @@ async def cancel_by_batch_ids(
@session_queue_router.put(
"/{queue_id}/cancel_by_destination",
operation_id="cancel_by_destination",
responses={200: {"model": CancelByBatchIDsResult}},
responses={200: {"model": CancelByDestinationResult}},
)
async def cancel_by_destination(
queue_id: str = Path(description="The queue id to perform this operation on"),

View File

@@ -63,6 +63,7 @@ class Classification(str, Enum, metaclass=MetaEnum):
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
- `Deprecated`: The invocation is deprecated and may be removed in a future version.
- `Internal`: The invocation is not intended for use by end-users. It may be changed or removed at any time, but is exposed for users to play with.
- `Special`: The invocation is a special case and does not fit into any of the other classifications.
"""
Stable = "stable"
@@ -70,6 +71,7 @@ class Classification(str, Enum, metaclass=MetaEnum):
Prototype = "prototype"
Deprecated = "deprecated"
Internal = "internal"
Special = "special"
class UIConfigBase(BaseModel):

View File

@@ -1,98 +1,120 @@
from typing import Any, Union
from typing import Optional, Union
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
def slerp(
t: Union[float, np.ndarray],
v0: Union[torch.Tensor, np.ndarray],
v1: Union[torch.Tensor, np.ndarray],
device: torch.device,
DOT_THRESHOLD: float = 0.9995,
):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
tags=["latents", "blend", "mask"],
category="latents",
version="1.0.3",
version="1.1.0",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
"""Blend two latents using a given alpha. If a mask is provided, the second latents will be masked before blending.
Latents must have same size. Masking functionality added by @dwringer."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
latents_a: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
latents_b: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
mask: Optional[ImageField] = InputField(default=None, description="Mask for blending in latents B")
alpha: float = InputField(ge=0, default=0.5, description=FieldDescriptions.blend_alpha)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
return mask_tensor
def replace_tensor_from_masked_tensor(
self, tensor: torch.Tensor, other_tensor: torch.Tensor, mask_tensor: torch.Tensor
):
output = tensor.clone()
mask_tensor = mask_tensor.expand(output.shape)
if output.dtype != torch.float16:
output = torch.add(output, mask_tensor * torch.sub(other_tensor, tensor))
else:
output = torch.add(output, mask_tensor.half() * torch.sub(other_tensor, tensor))
return output
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if self.mask is None:
mask_tensor = torch.zeros(latents_a.shape[-2:])
else:
mask_tensor = self.prep_mask_tensor(context.images.get_pil(self.mask.image_name))
mask_tensor = tv_resize(mask_tensor, latents_a.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
latents_b = self.replace_tensor_from_masked_tensor(latents_b, latents_a, mask_tensor)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
raise ValueError("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
blended_latents = slerp(self.alpha, latents_a, latents_b, device)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
TorchDevice.empty_cache()
torch.cuda.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
return LatentsOutput.build(latents_name=name, latents=blended_latents)

View File

@@ -95,6 +95,7 @@ class CompelInvocation(BaseInvocation):
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, CLIPTextModel)
assert isinstance(tokenizer, CLIPTokenizer)
compel = Compel(
@@ -191,6 +192,7 @@ class SDXLPromptInvocationBase:
ti_manager,
),
):
context.util.signal_progress("Building conditioning")
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(tokenizer, CLIPTokenizer)

File diff suppressed because it is too large Load Diff

View File

@@ -65,6 +65,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)

View File

@@ -131,6 +131,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
context.util.signal_progress("Running VAE encoder")
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)

View File

@@ -250,6 +250,11 @@ class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class SD3ConditioningField(BaseModel):

View File

@@ -30,6 +30,7 @@ from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlN
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
@@ -42,6 +43,7 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
@@ -56,7 +58,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.0",
version="3.2.2",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -81,15 +83,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
add_noise: bool = InputField(default=True, description="Add noise based on denoising start.")
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField = InputField(
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | None = InputField(
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
@@ -138,36 +141,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
@@ -182,15 +161,45 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=image_seq_len,
image_seq_len=packed_h * packed_w,
shift=not is_schnell,
)
@@ -207,9 +216,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"to be poor. Consider using a FLUX dev model instead."
)
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
if self.add_noise:
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
x = init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
@@ -224,28 +236,17 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
@@ -334,12 +335,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
model=transformer,
img=x,
img_ids=img_ids,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
@@ -353,6 +350,43 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int

View File

@@ -1,11 +1,18 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Tuple
from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -22,7 +29,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.0",
version="1.1.1",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
@@ -41,7 +48,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.")
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
@@ -54,7 +64,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
return FluxConditioningOutput(
conditioning=FluxConditioningField(conditioning_name=conditioning_name, mask=self.mask)
)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
@@ -71,6 +83,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
@@ -111,6 +124,7 @@ class FluxTextEncoderInvocation(BaseInvocation):
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(pooled_prompt_embeds, torch.Tensor)

View File

@@ -41,7 +41,8 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
vae_dtype = next(iter(vae.parameters())).dtype
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
img = vae.decode(latents)
img = img.clamp(-1, 1)
@@ -53,6 +54,7 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
context.util.signal_progress("Running VAE")
image = self._vae_decode(vae_info=vae_info, latents=latents)
TorchDevice.empty_cache()

View File

@@ -44,9 +44,8 @@ class FluxVaeEncodeInvocation(BaseInvocation):
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
image_tensor = image_tensor.to(
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
latents = vae.encode(image_tensor, sample=True, generator=generator)
return latents
@@ -60,6 +59,7 @@ class FluxVaeEncodeInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE")
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -0,0 +1,59 @@
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("image_panel_coordinate_output")
class ImagePanelCoordinateOutput(BaseInvocationOutput):
x_left: int = OutputField(description="The left x-coordinate of the panel.")
y_top: int = OutputField(description="The top y-coordinate of the panel.")
width: int = OutputField(description="The width of the panel.")
height: int = OutputField(description="The height of the panel.")
@invocation(
"image_panel_layout",
title="Image Panel Layout",
tags=["image", "panel", "layout"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class ImagePanelLayoutInvocation(BaseInvocation):
"""Get the coordinates of a single panel in a grid. (If the full image shape cannot be divided evenly into panels,
then the grid may not cover the entire image.)
"""
width: int = InputField(description="The width of the entire grid.")
height: int = InputField(description="The height of the entire grid.")
num_cols: int = InputField(ge=1, default=1, description="The number of columns in the grid.")
num_rows: int = InputField(ge=1, default=1, description="The number of rows in the grid.")
panel_col_idx: int = InputField(ge=0, default=0, description="The column index of the panel to be processed.")
panel_row_idx: int = InputField(ge=0, default=0, description="The row index of the panel to be processed.")
@field_validator("panel_col_idx")
def validate_panel_col_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_cols"]:
raise ValueError(f"panel_col_idx must be between 0 and {info.data['num_cols'] - 1}")
return v
@field_validator("panel_row_idx")
def validate_panel_row_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_rows"]:
raise ValueError(f"panel_row_idx must be between 0 and {info.data['num_rows'] - 1}")
return v
def invoke(self, context: InvocationContext) -> ImagePanelCoordinateOutput:
x_left = self.panel_col_idx * (self.width // self.num_cols)
y_top = self.panel_row_idx * (self.height // self.num_rows)
width = self.width // self.num_cols
height = self.height // self.num_rows
return ImagePanelCoordinateOutput(x_left=x_left, y_top=y_top, width=width, height=height)

View File

@@ -117,6 +117,7 @@ class ImageToLatentsInvocation(BaseInvocation):
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
)

View File

@@ -60,6 +60,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
context.util.signal_progress("Running VAE decoder")
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:

View File

@@ -147,6 +147,10 @@ GENERATION_MODES = Literal[
"flux_img2img",
"flux_inpaint",
"flux_outpaint",
"sd3_txt2img",
"sd3_img2img",
"sd3_inpaint",
"sd3_outpaint",
]

View File

@@ -1,43 +1,4 @@
import io
from typing import Literal, Optional
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from easing_functions import (
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
CubicEaseIn,
CubicEaseInOut,
CubicEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
ExponentialEaseIn,
ExponentialEaseInOut,
ExponentialEaseOut,
LinearInOut,
QuadEaseIn,
QuadEaseInOut,
QuadEaseOut,
QuarticEaseIn,
QuarticEaseInOut,
QuarticEaseOut,
QuinticEaseIn,
QuinticEaseInOut,
QuinticEaseOut,
SineEaseIn,
SineEaseInOut,
SineEaseOut,
)
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
@@ -65,191 +26,3 @@ class FloatLinearRangeInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(collection=param_list)
EASING_FUNCTIONS_MAP = {
"Linear": LinearInOut,
"QuadIn": QuadEaseIn,
"QuadOut": QuadEaseOut,
"QuadInOut": QuadEaseInOut,
"CubicIn": CubicEaseIn,
"CubicOut": CubicEaseOut,
"CubicInOut": CubicEaseInOut,
"QuarticIn": QuarticEaseIn,
"QuarticOut": QuarticEaseOut,
"QuarticInOut": QuarticEaseInOut,
"QuinticIn": QuinticEaseIn,
"QuinticOut": QuinticEaseOut,
"QuinticInOut": QuinticEaseInOut,
"SineIn": SineEaseIn,
"SineOut": SineEaseOut,
"SineInOut": SineEaseInOut,
"CircularIn": CircularEaseIn,
"CircularOut": CircularEaseOut,
"CircularInOut": CircularEaseInOut,
"ExponentialIn": ExponentialEaseIn,
"ExponentialOut": ExponentialEaseOut,
"ExponentialInOut": ExponentialEaseInOut,
"ElasticIn": ElasticEaseIn,
"ElasticOut": ElasticEaseOut,
"ElasticInOut": ElasticEaseInOut,
"BackIn": BackEaseIn,
"BackOut": BackEaseOut,
"BackInOut": BackEaseInOut,
"BounceIn": BounceEaseIn,
"BounceOut": BounceEaseOut,
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
# actually I think for now could just use CollectionOutput (which is list[Any]
@invocation(
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.2",
)
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
easing: EASING_FUNCTION_KEYS = InputField(default="Linear", description="The easing function to use")
num_steps: int = InputField(default=20, description="number of denoising steps")
start_value: float = InputField(default=0.0, description="easing starting value")
end_value: float = InputField(default=1.0, description="easing ending value")
start_step_percent: float = InputField(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = InputField(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = InputField(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = InputField(default=None, description="value after easing end")
mirror: bool = InputField(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = InputField(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = InputField(default=False, description="show easing plot")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
# start_step = int(np.floor(self.num_steps * self.start_step_percent))
start_step = int(np.round(self.num_steps * self.start_step_percent))
# convert from end_step_percent to nearest step >= (steps * end_step_percent)
# end_step = int(np.ceil((self.num_steps - 1) * self.end_step_percent))
end_step = int(np.round((self.num_steps - 1) * self.end_step_percent))
# end_step = int(np.ceil(self.num_steps * self.end_step_percent))
num_easing_steps = end_step - start_step + 1
# num_presteps = max(start_step - 1, 0)
num_presteps = start_step
num_poststeps = self.num_steps - (num_presteps + num_easing_steps)
prelist = list(num_presteps * [self.pre_start_value])
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.logger.debug("start_step: " + str(start_step))
context.logger.debug("end_step: " + str(end_step))
context.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.logger.debug("num_presteps: " + str(num_presteps))
context.logger.debug("num_poststeps: " + str(num_poststeps))
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist: " + str(prelist))
context.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.logger.debug("easing class: " + str(easing_class))
easing_list = []
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
# if number of steps is odd, squeeze duration down to ceil(number_of_steps/2)
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics:
context.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1,
)
base_easing_vals = []
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.logger.debug("base easing vals: " + str(base_easing_vals))
context.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# elif self.alt_mirror: # function mirroring (unintuitive behavior (at least to me))
# # half_ease_duration = round(num_easing_steps - 1 / 2)
# half_ease_duration = round((num_easing_steps - 1) / 2)
# easing_function = easing_class(start=self.start_value,
# end=self.end_value,
# duration=half_ease_duration,
# )
#
# mirror_function = easing_class(start=self.end_value,
# end=self.start_value,
# duration=half_ease_duration,
# )
# for step_index in range(num_easing_steps):
# if step_index <= half_ease_duration:
# step_val = easing_function.ease(step_index)
# else:
# step_val = mirror_function.ease(step_index - half_ease_duration)
# easing_list.append(step_val)
# if log_diagnostics: logger.debug(step_index, step_val)
#
else: # no mirroring (default)
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("easing_list size: " + str(len(easing_list)))
context.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist
if self.show_easing_plot:
plt.figure()
plt.xlabel("Step")
plt.ylabel("Param Value")
plt.title("Per-Step Values Based On Easing: " + self.easing)
plt.bar(range(len(param_list)), param_list)
# plt.plot(param_list)
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(collection=param_list)

View File

@@ -4,7 +4,13 @@ from typing import Optional
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
@@ -533,3 +539,23 @@ class BoundingBoxInvocation(BaseInvocation):
# endregion
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "internal"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
def __init__(self):
raise NotImplementedError("This class should never be executed or instantiated directly.")
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotImplementedError("This class should never be executed or instantiated directly.")

View File

@@ -1,16 +1,19 @@
from typing import Callable, Tuple
from typing import Callable, Optional, Tuple
import torch
import torchvision.transforms as tv_transforms
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
SD3ConditioningField,
WithBoard,
WithMetadata,
@@ -19,7 +22,9 @@ from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -30,16 +35,24 @@ from invokeai.backend.util.devices import TorchDevice
title="SD3 Denoise",
tags=["image", "sd3"],
category="image",
version="1.0.0",
version="1.1.0",
classification=Classification.Prototype,
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.sd3_model,
input=Input.Connection,
title="Transformer",
description=FieldDescriptions.sd3_model, input=Input.Connection, title="Transformer"
)
positive_conditioning: SD3ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
@@ -61,6 +74,41 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. Used to determine the target shape, device, and dtype for the
inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask
def _load_text_conditioning(
self,
context: InvocationContext,
@@ -170,14 +218,20 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
prompt_embeds = torch.cat([neg_prompt_embeds, pos_prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([neg_pooled_prompt_embeds, pos_pooled_prompt_embeds], dim=0)
# Prepare the scheduler.
scheduler = FlowMatchEulerDiscreteScheduler()
scheduler.set_timesteps(num_inference_steps=self.steps, device=device)
timesteps = scheduler.timesteps
assert isinstance(timesteps, torch.Tensor)
# Prepare the timestep schedule.
# We add an extra step to the end to account for the final timestep of 0.0.
timesteps: list[float] = torch.linspace(1, 0, self.steps + 1).tolist()
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
total_steps = len(timesteps) - 1
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(len(timesteps))
cfg_scale = self._prepare_cfg_scale(total_steps)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=device, dtype=inference_dtype)
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels
@@ -191,9 +245,34 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
device=device,
seed=self.seed,
)
latents: torch.Tensor = noise
total_steps = len(timesteps)
# Prepare input latent image.
if init_latents is not None:
# Noise the init_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
latents = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
latents = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return latents
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
step_callback = self._build_step_callback(context)
step_callback(
@@ -210,11 +289,12 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert isinstance(transformer, SD3Transformer2DModel)
# 6. Denoising loop
for step_idx, t in tqdm(list(enumerate(timesteps))):
for step_idx, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
# Expand the latents if we are doing CFG.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Expand the timestep to match the latent model input.
timestep = t.expand(latent_model_input.shape[0])
# Multiply by 1000 to match the default FlowMatchEulerDiscreteScheduler num_train_timesteps.
timestep = torch.tensor([t_curr * 1000], device=device).expand(latent_model_input.shape[0])
noise_pred = transformer(
hidden_states=latent_model_input,
@@ -232,21 +312,19 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
latents = scheduler.step(model_output=noise_pred, timestep=t, sample=latents, return_dict=False)[0]
latents = latents.to(dtype=torch.float32)
latents = latents + (t_prev - t_curr) * noise_pred
latents = latents.to(dtype=latents_dtype)
# TODO(ryand): This MPS dtype handling was copied from diffusers, I haven't tested to see if it's
# needed.
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if inpaint_extension is not None:
latents = inpaint_extension.merge_intermediate_latents_with_init_latents(latents, t_prev)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t),
timestep=int(t_curr),
latents=latents,
),
)

View File

@@ -0,0 +1,65 @@
import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation(
"sd3_i2l",
title="SD3 Image to Latents",
tags=["image", "latents", "vae", "i2l", "sd3"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""
image: ImageField = InputField(description="The image to encode")
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.
latents: torch.Tensor = image_tensor_dist.sample().to(dtype=vae.dtype)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -47,6 +47,7 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(vae.device)

View File

@@ -95,6 +95,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
context.util.signal_progress("Running T5 encoder")
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
@@ -137,6 +138,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
clip_tokenizer_info as clip_tokenizer,
ExitStack() as exit_stack,
):
context.util.signal_progress("Running CLIP encoder")
assert isinstance(clip_text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(clip_tokenizer, CLIPTokenizer)

View File

@@ -86,7 +86,7 @@ class ModelLoadService(ModelLoadServiceBase):
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result

View File

@@ -378,6 +378,9 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now()
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
# Make sure the cancel event is for the currently processing queue item
if self._queue_item and self._queue_item.item_id != event[1].item_id:
return
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel

View File

@@ -16,6 +16,7 @@ from pydantic import (
from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.fields import ImageField
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowWithoutID,
@@ -51,11 +52,7 @@ class SessionQueueItemNotFoundError(ValueError):
# region Batch
BatchDataType = Union[
StrictStr,
float,
int,
]
BatchDataType = Union[StrictStr, float, int, ImageField]
class NodeFieldValue(BaseModel):

View File

@@ -160,6 +160,10 @@ class LoggerInterface(InvocationContextInterface):
class ImagesInterface(InvocationContextInterface):
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def save(
self,
image: Image,
@@ -186,6 +190,8 @@ class ImagesInterface(InvocationContextInterface):
The saved image DTO.
"""
self._util.signal_progress("Saving image")
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
metadata_ = None
if metadata:
@@ -336,6 +342,10 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def __init__(self, services: InvocationServices, data: InvocationContextData, util: "UtilInterface") -> None:
super().__init__(services, data)
self._util = util
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Check if a model exists.
@@ -368,11 +378,15 @@ class ModelsInterface(InvocationContextInterface):
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type)
else:
_submodel_type = submodel_type or identifier.submodel_type
submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
return self._services.model_manager.load.load_model(model, _submodel_type)
message = f"Loading model {model.name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(model, submodel_type)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@@ -397,6 +411,10 @@ class ModelsInterface(InvocationContextInterface):
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
message = f"Loading model {name}"
if submodel_type:
message += f" ({submodel_type.value})"
self._util.signal_progress(message)
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
@@ -467,6 +485,7 @@ class ModelsInterface(InvocationContextInterface):
Returns:
Path to the downloaded model
"""
self._util.signal_progress(f"Downloading model {source}")
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
@@ -489,6 +508,8 @@ class ModelsInterface(InvocationContextInterface):
Returns:
A LoadedModelWithoutConfig object.
"""
self._util.signal_progress(f"Loading model {model_path.name}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
@@ -514,6 +535,8 @@ class ModelsInterface(InvocationContextInterface):
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
self._util.signal_progress(f"Loading model {source}")
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
@@ -707,12 +730,12 @@ def build_invocation_context(
"""
logger = LoggerInterface(services=services, data=data)
images = ImagesInterface(services=services, data=data)
tensors = TensorsInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data)
config = ConfigInterface(services=services, data=data)
util = UtilInterface(services=services, data=data, is_canceled=is_canceled)
conditioning = ConditioningInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data, util=util)
images = ImagesInterface(services=services, data=data, util=util)
boards = BoardsInterface(services=services, data=data)
ctx = InvocationContext(

View File

@@ -1,9 +1,10 @@
import einops
import torch
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, SingleStreamBlock
class CustomDoubleStreamBlockProcessor:
@@ -13,7 +14,12 @@ class CustomDoubleStreamBlockProcessor:
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
@@ -40,7 +46,7 @@ class CustomDoubleStreamBlockProcessor:
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
@@ -63,11 +69,15 @@ class CustomDoubleStreamBlockProcessor:
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
attn_mask = regional_prompting_extension.get_double_stream_attn_mask(block_index)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(
block, img, txt, vec, pe, attn_mask=attn_mask
)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
@@ -81,3 +91,48 @@ class CustomDoubleStreamBlockProcessor:
)
return img, txt
class CustomSingleStreamBlockProcessor:
"""A class containing a custom implementation of SingleStreamBlock.forward() with additional features (masking,
etc.)
"""
@staticmethod
def _single_stream_block_forward(
block: SingleStreamBlock,
x: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""This function is a direct copy of SingleStreamBlock.forward()."""
mod, _ = block.modulation(vec)
x_mod = (1 + mod.scale) * block.pre_norm(x) + mod.shift
qkv, mlp = torch.split(block.linear1(x_mod), [3 * block.hidden_size, block.mlp_hidden_dim], dim=-1)
q, k, v = einops.rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
q, k = block.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = block.linear2(torch.cat((attn, block.mlp_act(mlp)), 2))
return x + mod.gate * output
@staticmethod
def custom_single_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: SingleStreamBlock,
img: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
regional_prompting_extension: RegionalPromptingExtension,
) -> torch.Tensor:
"""A custom implementation of SingleStreamBlock.forward() with additional features:
- Masking
"""
attn_mask = regional_prompting_extension.get_single_stream_attn_mask(block_index)
return CustomSingleStreamBlockProcessor._single_stream_block_forward(block, img, vec, pe, attn_mask=attn_mask)

View File

@@ -7,6 +7,7 @@ from tqdm import tqdm
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
@@ -18,14 +19,8 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
pos_regional_prompting_extension: RegionalPromptingExtension,
neg_regional_prompting_extension: RegionalPromptingExtension | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
@@ -61,9 +56,9 @@ def denoise(
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
)
@@ -78,9 +73,9 @@ def denoise(
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -88,6 +83,7 @@ def denoise(
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
step_cfg_scale = cfg_scale[step_index]
@@ -97,15 +93,15 @@ def denoise(
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
if neg_regional_prompting_extension is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -113,6 +109,7 @@ def denoise(
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)

View File

@@ -0,0 +1,276 @@
from typing import Optional
import torch
import torchvision
from invokeai.backend.flux.text_conditioning import FluxRegionalTextConditioning, FluxTextConditioning
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.mask import to_standard_float_mask
class RegionalPromptingExtension:
"""A class for managing regional prompting with FLUX.
This implementation is inspired by https://arxiv.org/pdf/2411.02395 (though there are significant differences).
"""
def __init__(
self,
regional_text_conditioning: FluxRegionalTextConditioning,
restricted_attn_mask: torch.Tensor | None = None,
):
self.regional_text_conditioning = regional_text_conditioning
self.restricted_attn_mask = restricted_attn_mask
def get_double_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
def get_single_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
@classmethod
def from_text_conditioning(cls, text_conditioning: list[FluxTextConditioning], img_seq_len: int):
"""Create a RegionalPromptingExtension from a list of text conditionings.
Args:
text_conditioning (list[FluxTextConditioning]): The text conditionings to use for regional prompting.
img_seq_len (int): The image sequence length (i.e. packed_height * packed_width).
"""
regional_text_conditioning = cls._concat_regional_text_conditioning(text_conditioning)
attn_mask_with_restricted_img_self_attn = cls._prepare_restricted_attn_mask(
regional_text_conditioning, img_seq_len
)
return cls(
regional_text_conditioning=regional_text_conditioning,
restricted_attn_mask=attn_mask_with_restricted_img_self_attn,
)
# Keeping _prepare_unrestricted_attn_mask for reference as an alternative masking strategy:
#
# @classmethod
# def _prepare_unrestricted_attn_mask(
# cls,
# regional_text_conditioning: FluxRegionalTextConditioning,
# img_seq_len: int,
# ) -> torch.Tensor:
# """Prepare an 'unrestricted' attention mask. In this context, 'unrestricted' means that:
# - img self-attention is not masked.
# - img regions attend to both txt within their own region and to global prompts.
# """
# device = TorchDevice.choose_torch_device()
# # Infer txt_seq_len from the t5_embeddings tensor.
# txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# # In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# # Concatenation happens in the following order: [txt_seq, img_seq].
# # There are 4 portions of the attention mask to consider as we prepare it:
# # 1. txt attends to itself
# # 2. txt attends to corresponding regional img
# # 3. regional img attends to corresponding txt
# # 4. regional img attends to itself
# # Initialize empty attention mask.
# regional_attention_mask = torch.zeros(
# (txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
# )
# for image_mask, t5_embedding_range in zip(
# regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
# ):
# # 1. txt attends to itself
# regional_attention_mask[
# t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
# ] = 1.0
# # 2. txt attends to corresponding regional img
# # Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
# fill_value = image_mask.view(1, img_seq_len) if image_mask is not None else 1.0
# regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = fill_value
# # 3. regional img attends to corresponding txt
# # Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
# fill_value = image_mask.view(img_seq_len, 1) if image_mask is not None else 1.0
# regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = fill_value
# # 4. regional img attends to itself
# # Allow unrestricted img self attention.
# regional_attention_mask[txt_seq_len:, txt_seq_len:] = 1.0
# # Convert attention mask to boolean.
# regional_attention_mask = regional_attention_mask > 0.5
# return regional_attention_mask
@classmethod
def _prepare_restricted_attn_mask(
cls,
regional_text_conditioning: FluxRegionalTextConditioning,
img_seq_len: int,
) -> torch.Tensor | None:
"""Prepare a 'restricted' attention mask. In this context, 'restricted' means that:
- img self-attention is only allowed within regions.
- img regions only attend to txt within their own region, not to global prompts.
"""
# Identify background region. I.e. the region that is not covered by any region masks.
background_region_mask: None | torch.Tensor = None
for image_mask in regional_text_conditioning.image_masks:
if image_mask is not None:
if background_region_mask is None:
background_region_mask = torch.ones_like(image_mask)
background_region_mask *= 1 - image_mask
if background_region_mask is None:
# There are no region masks, short-circuit and return None.
# TODO(ryand): We could restrict txt-txt attention across multiple global prompts, but this would
# is a rare use case and would make the logic here significantly more complicated.
return None
device = TorchDevice.choose_torch_device()
# Infer txt_seq_len from the t5_embeddings tensor.
txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# Concatenation happens in the following order: [txt_seq, img_seq].
# There are 4 portions of the attention mask to consider as we prepare it:
# 1. txt attends to itself
# 2. txt attends to corresponding regional img
# 3. regional img attends to corresponding txt
# 4. regional img attends to itself
# Initialize empty attention mask.
regional_attention_mask = torch.zeros(
(txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
)
for image_mask, t5_embedding_range in zip(
regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
):
# 1. txt attends to itself
regional_attention_mask[
t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
] = 1.0
if image_mask is not None:
# 2. txt attends to corresponding regional img
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
image_mask.view(1, img_seq_len)
)
# 3. regional img attends to corresponding txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
image_mask.view(img_seq_len, 1)
)
# 4. regional img attends to itself
image_mask = image_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += image_mask @ image_mask.T
else:
# We don't allow attention between non-background image regions and global prompts. This helps to ensure
# that regions focus on their local prompts. We do, however, allow attention between background regions
# and global prompts. If we didn't do this, then the background regions would not attend to any txt
# embeddings, which we found experimentally to cause artifacts.
# 2. global txt attends to background region
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
background_region_mask.view(1, img_seq_len)
)
# 3. background region attends to global txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
background_region_mask.view(img_seq_len, 1)
)
# Allow background regions to attend to themselves.
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(1, img_seq_len)
# Convert attention mask to boolean.
regional_attention_mask = regional_attention_mask > 0.5
return regional_attention_mask
@classmethod
def _concat_regional_text_conditioning(
cls,
text_conditionings: list[FluxTextConditioning],
) -> FluxRegionalTextConditioning:
"""Concatenate regional text conditioning data into a single conditioning tensor (with associated masks)."""
concat_t5_embeddings: list[torch.Tensor] = []
concat_t5_embedding_ranges: list[Range] = []
image_masks: list[torch.Tensor | None] = []
# Choose global CLIP embedding.
# Use the first global prompt's CLIP embedding as the global CLIP embedding. If there is no global prompt, use
# the first prompt's CLIP embedding.
global_clip_embedding: torch.Tensor = text_conditionings[0].clip_embeddings
for text_conditioning in text_conditionings:
if text_conditioning.mask is None:
global_clip_embedding = text_conditioning.clip_embeddings
break
cur_t5_embedding_len = 0
for text_conditioning in text_conditionings:
concat_t5_embeddings.append(text_conditioning.t5_embeddings)
concat_t5_embedding_ranges.append(
Range(start=cur_t5_embedding_len, end=cur_t5_embedding_len + text_conditioning.t5_embeddings.shape[1])
)
image_masks.append(text_conditioning.mask)
cur_t5_embedding_len += text_conditioning.t5_embeddings.shape[1]
t5_embeddings = torch.cat(concat_t5_embeddings, dim=1)
# Initialize the txt_ids tensor.
pos_bs, pos_t5_seq_len, _ = t5_embeddings.shape
t5_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=t5_embeddings.dtype, device=TorchDevice.choose_torch_device()
)
return FluxRegionalTextConditioning(
t5_embeddings=t5_embeddings,
clip_embeddings=global_clip_embedding,
t5_txt_ids=t5_txt_ids,
image_masks=image_masks,
t5_embedding_ranges=concat_t5_embedding_ranges,
)
@staticmethod
def preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], packed_height: int, packed_width: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
packed_height and packed_width are the target height and width of the mask in the 'packed' latent space.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, packed_height * packed_width).
"""
if mask is None:
return torch.ones((1, 1, packed_height * packed_width), dtype=dtype, device=device)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(packed_height, packed_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
# Flatten the height and width dimensions into a single image_seq_len dimension.
return resized_mask.flatten(start_dim=2)

View File

@@ -41,10 +41,12 @@ def infer_xlabs_ip_adapter_params_from_state_dict(state_dict: dict[str, torch.Te
hidden_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[0]
context_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[1]
clip_embeddings_dim = state_dict["ip_adapter_proj_model.proj.weight"].shape[1]
clip_extra_context_tokens = state_dict["ip_adapter_proj_model.proj.weight"].shape[0] // context_dim
return XlabsIpAdapterParams(
num_double_blocks=num_double_blocks,
context_dim=context_dim,
hidden_dim=hidden_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
)

View File

@@ -31,13 +31,16 @@ class XlabsIpAdapterParams:
hidden_dim: int
clip_embeddings_dim: int
clip_extra_context_tokens: int
class XlabsIpAdapterFlux(torch.nn.Module):
def __init__(self, params: XlabsIpAdapterParams):
super().__init__()
self.image_proj = ImageProjModel(
cross_attention_dim=params.context_dim, clip_embeddings_dim=params.clip_embeddings_dim
cross_attention_dim=params.context_dim,
clip_embeddings_dim=params.clip_embeddings_dim,
clip_extra_context_tokens=params.clip_extra_context_tokens,
)
self.ip_adapter_double_blocks = IPAdapterDoubleBlocks(
num_double_blocks=params.num_double_blocks, context_dim=params.context_dim, hidden_dim=params.hidden_dim

View File

@@ -5,10 +5,10 @@ from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Tensor | None = None) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = rearrange(x, "B H L D -> B L (H D)")
return x
@@ -24,12 +24,12 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
return out.to(dtype=pos.dtype, device=pos.device)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_ = xq.view(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
return xq_out.view(*xq.shape).type_as(xq), xk_out.view(*xk.shape).type_as(xk)

View File

@@ -5,7 +5,11 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.custom_block_processor import (
CustomDoubleStreamBlockProcessor,
CustomSingleStreamBlockProcessor,
)
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
@@ -95,6 +99,7 @@ class Flux(nn.Module):
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -117,7 +122,6 @@ class Flux(nn.Module):
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
@@ -128,6 +132,7 @@ class Flux(nn.Module):
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_double_block_residuals is not None:
@@ -140,7 +145,17 @@ class Flux(nn.Module):
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
assert isinstance(block, SingleStreamBlock)
img = CustomSingleStreamBlockProcessor.custom_single_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
vec=vec,
pe=pe,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]

View File

@@ -66,10 +66,7 @@ class RMSNorm(torch.nn.Module):
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
return torch.nn.functional.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
class QKNorm(torch.nn.Module):

View File

@@ -0,0 +1,36 @@
from dataclasses import dataclass
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
@dataclass
class FluxTextConditioning:
t5_embeddings: torch.Tensor
clip_embeddings: torch.Tensor
# If mask is None, the prompt is a global prompt.
mask: torch.Tensor | None
@dataclass
class FluxRegionalTextConditioning:
# Concatenated text embeddings.
# Shape: (1, concatenated_txt_seq_len, 4096)
t5_embeddings: torch.Tensor
# Shape: (1, concatenated_txt_seq_len, 3)
t5_txt_ids: torch.Tensor
# Global CLIP embeddings.
# Shape: (1, 768)
clip_embeddings: torch.Tensor
# A binary mask indicating the regions of the image that the prompt should be applied to. If None, the prompt is a
# global prompt.
# image_masks[i] is the mask for the ith prompt.
# image_masks[i] has shape (1, image_seq_len) and dtype torch.bool.
image_masks: list[torch.Tensor | None]
# List of ranges that represent the embedding ranges for each mask.
# t5_embedding_ranges[i] contains the range of the t5 embeddings that correspond to image_masks[i].
t5_embedding_ranges: list[Range]

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -45,8 +45,9 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
# Constants for FLUX.1
num_double_layers = 19
num_single_layers = 38
# inner_dim = 3072
# mlp_ratio = 4.0
hidden_size = 3072
mlp_ratio = 4.0
mlp_hidden_dim = int(hidden_size * mlp_ratio)
layers: dict[str, AnyLoRALayer] = {}
@@ -62,30 +63,43 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
layers[dst_key] = LoRALayer.from_state_dict_values(values=value)
assert len(src_layer_dict) == 0
def add_qkv_lora_layer_if_present(src_keys: list[str], dst_qkv_key: str) -> None:
def add_qkv_lora_layer_if_present(
src_keys: list[str],
src_weight_shapes: list[tuple[int, int]],
dst_qkv_key: str,
allow_missing_keys: bool = False,
) -> None:
"""Handle the Q, K, V matrices for a transformer block. We need special handling because the diffusers format
stores them in separate matrices, whereas the BFL format used internally by InvokeAI concatenates them.
"""
# We expect that either all src keys are present or none of them are. Verify this.
keys_present = [key in grouped_state_dict for key in src_keys]
assert all(keys_present) or not any(keys_present)
# If none of the keys are present, return early.
keys_present = [key in grouped_state_dict for key in src_keys]
if not any(keys_present):
return
src_layer_dicts = [grouped_state_dict.pop(key) for key in src_keys]
sub_layers: list[LoRALayer] = []
for src_layer_dict in src_layer_dicts:
values = {
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
}
if alpha is not None:
values["alpha"] = torch.tensor(alpha)
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
assert len(src_layer_dict) == 0
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers, concat_axis=0)
for src_key, src_weight_shape in zip(src_keys, src_weight_shapes, strict=True):
src_layer_dict = grouped_state_dict.pop(src_key, None)
if src_layer_dict is not None:
values = {
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
}
if alpha is not None:
values["alpha"] = torch.tensor(alpha)
assert values["lora_down.weight"].shape[1] == src_weight_shape[1]
assert values["lora_up.weight"].shape[0] == src_weight_shape[0]
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
assert len(src_layer_dict) == 0
else:
if not allow_missing_keys:
raise ValueError(f"Missing LoRA layer: '{src_key}'.")
values = {
"lora_up.weight": torch.zeros((src_weight_shape[0], 1)),
"lora_down.weight": torch.zeros((1, src_weight_shape[1])),
}
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers)
# time_text_embed.timestep_embedder -> time_in.
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_1", "time_in.in_layer")
@@ -118,6 +132,7 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"transformer_blocks.{i}.attn.to_k",
f"transformer_blocks.{i}.attn.to_v",
],
[(hidden_size, hidden_size), (hidden_size, hidden_size), (hidden_size, hidden_size)],
f"double_blocks.{i}.img_attn.qkv",
)
add_qkv_lora_layer_if_present(
@@ -126,6 +141,7 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"transformer_blocks.{i}.attn.add_k_proj",
f"transformer_blocks.{i}.attn.add_v_proj",
],
[(hidden_size, hidden_size), (hidden_size, hidden_size), (hidden_size, hidden_size)],
f"double_blocks.{i}.txt_attn.qkv",
)
@@ -175,7 +191,14 @@ def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor
f"single_transformer_blocks.{i}.attn.to_v",
f"single_transformer_blocks.{i}.proj_mlp",
],
[
(hidden_size, hidden_size),
(hidden_size, hidden_size),
(hidden_size, hidden_size),
(mlp_hidden_dim, hidden_size),
],
f"single_blocks.{i}.linear1",
allow_missing_keys=True,
)
# Output projections.

View File

@@ -165,6 +165,8 @@ class SubmodelDefinition(BaseModel):
model_type: ModelType
variant: AnyVariant = None
model_config = ConfigDict(protected_namespaces=())
class MainModelDefaultSettings(BaseModel):
vae: str | None = Field(default=None, description="Default VAE for this model (model key)")

View File

@@ -35,6 +35,7 @@ class ModelLoader(ModelLoaderBase):
self._logger = logger
self._ram_cache = ram_cache
self._torch_dtype = TorchDevice.choose_torch_dtype()
self._torch_device = TorchDevice.choose_torch_device()
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""

View File

@@ -84,7 +84,15 @@ class FluxVAELoader(ModelLoader):
model = AutoEncoder(ae_params[config.config_path])
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
model.to(dtype=self._torch_dtype)
# VAE is broken in float16, which mps defaults to
if self._torch_dtype == torch.float16:
try:
vae_dtype = torch.tensor([1.0], dtype=torch.bfloat16, device=self._torch_device).dtype
except TypeError:
vae_dtype = torch.float32
else:
vae_dtype = self._torch_dtype
model.to(vae_dtype)
return model

View File

@@ -469,7 +469,7 @@ class ModelProbe(object):
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
@@ -485,6 +485,7 @@ MODEL_NAME_TO_PREPROCESSOR = {
"lineart anime": "lineart_anime_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"lineart": "lineart_image_processor",
"soft": "hed_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",

View File

@@ -298,13 +298,12 @@ ip_adapter_sdxl = StarterModel(
previous_names=["IP Adapter SDXL"],
)
ip_adapter_flux = StarterModel(
name="Standard Reference (XLabs FLUX IP-Adapter)",
name="Standard Reference (XLabs FLUX IP-Adapter v2)",
base=BaseModelType.Flux,
source="https://huggingface.co/XLabs-AI/flux-ip-adapter/resolve/main/flux-ip-adapter.safetensors",
source="https://huggingface.co/XLabs-AI/flux-ip-adapter-v2/resolve/main/ip_adapter.safetensors",
description="References images with a more generalized/looser degree of precision.",
type=ModelType.IPAdapter,
dependencies=[clip_vit_l_image_encoder],
previous_names=["XLabs FLUX IP-Adapter"],
)
# endregion
# region ControlNet

View File

@@ -44,7 +44,7 @@ def _fast_safetensors_reader(path: str) -> Dict[str, torch.Tensor]:
return checkpoint
def read_checkpoint_meta(path: Union[str, Path], scan: bool = False) -> Dict[str, torch.Tensor]:
def read_checkpoint_meta(path: Union[str, Path], scan: bool = True) -> Dict[str, torch.Tensor]:
if str(path).endswith(".safetensors"):
try:
path_str = path.as_posix() if isinstance(path, Path) else path
@@ -52,16 +52,15 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = False) -> Dict[str
except Exception:
# TODO: create issue for support "meta"?
checkpoint = safetensors.torch.load_file(path, device="cpu")
elif str(path).endswith(".gguf"):
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
else:
if scan:
scan_result = scan_file_path(path)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.')
if str(path).endswith(".gguf"):
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
else:
checkpoint = torch.load(path, map_location=torch.device("meta"))
checkpoint = torch.load(path, map_location=torch.device("meta"))
return checkpoint
@@ -172,6 +171,8 @@ def get_clip_variant_type(location: str) -> Optional[ClipVariantType]:
try:
path = Path(location)
config_path = path / "config.json"
if not config_path.exists():
config_path = path / "text_encoder" / "config.json"
if not config_path.exists():
return ClipVariantType.L
with open(config_path) as file:

View File

@@ -85,6 +85,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
"""Select the proper variant files from a list of HuggingFace repo_id paths."""
result: set[Path] = set()
subfolder_weights: dict[Path, list[SubfolderCandidate]] = {}
safetensors_detected = False
for path in files:
if path.suffix in [".onnx", ".pb", ".onnx_data"]:
if variant == ModelRepoVariant.ONNX:
@@ -119,10 +120,16 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
# We prefer safetensors over other file formats and an exact variant match. We'll score each file based on
# variant and format and select the best one.
if safetensors_detected and path.suffix == ".bin":
continue
parent = path.parent
score = 0
if path.suffix == ".safetensors":
safetensors_detected = True
if parent in subfolder_weights:
subfolder_weights[parent] = [sfc for sfc in subfolder_weights[parent] if sfc.path.suffix != ".bin"]
score += 1
candidate_variant_label = path.suffixes[0] if len(path.suffixes) == 2 else None

View File

View File

@@ -0,0 +1,58 @@
import torch
class InpaintExtension:
"""A class for managing inpainting with SD3."""
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
"""Initialize InpaintExtension.
Args:
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0).
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
inpainted region with the background.
noise (torch.Tensor): The noise tensor used to noise the init_latents.
"""
assert init_latents.dim() == inpaint_mask.dim() == noise.dim() == 4
assert init_latents.shape[-2:] == inpaint_mask.shape[-2:] == noise.shape[-2:]
self._init_latents = init_latents
self._inpaint_mask = inpaint_mask
self._noise = noise
def _apply_mask_gradient_adjustment(self, t_prev: float) -> torch.Tensor:
"""Applies inpaint mask gradient adjustment and returns the inpaint mask to be used at the current timestep."""
# As we progress through the denoising process, we promote gradient regions of the mask to have a full weight of
# 1.0. This helps to produce more coherent seams around the inpainted region. We experimented with a (small)
# number of promotion strategies (e.g. gradual promotion based on timestep), but found that a simple cutoff
# threshold worked well.
# We use a small epsilon to avoid any potential issues with floating point precision.
eps = 1e-4
mask_gradient_t_cutoff = 0.5
if t_prev > mask_gradient_t_cutoff:
# Early in the denoising process, use the inpaint mask as-is.
return self._inpaint_mask
else:
# After the cut-off, promote all non-zero mask values to 1.0.
mask = self._inpaint_mask.where(self._inpaint_mask <= (0.0 + eps), 1.0)
return mask
def merge_intermediate_latents_with_init_latents(
self, intermediate_latents: torch.Tensor, t_prev: float
) -> torch.Tensor:
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
trajectory.
This function should be called after each denoising step.
"""
mask = self._apply_mask_gradient_adjustment(t_prev)
# Noise the init latents for the current timestep.
noised_init_latents = self._noise * t_prev + (1.0 - t_prev) * self._init_latents
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
return intermediate_latents * mask + noised_init_latents * (1.0 - mask)

View File

@@ -1,3 +1,3 @@
# Invoke UI
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/OVERVIEW/>
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/>

View File

@@ -52,13 +52,13 @@
}
},
"dependencies": {
"@atlaskit/pragmatic-drag-and-drop": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^1.4.0",
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.0.3",
"@dagrejs/dagre": "^1.1.4",
"@dagrejs/graphlib": "^2.2.4",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.43",
"@invoke-ai/ui-library": "^0.0.44",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",

View File

@@ -5,27 +5,27 @@ settings:
excludeLinksFromLockfile: false
dependencies:
'@atlaskit/pragmatic-drag-and-drop':
specifier: ^1.4.0
version: 1.4.0
'@atlaskit/pragmatic-drag-and-drop-auto-scroll':
specifier: ^1.4.0
version: 1.4.0
'@atlaskit/pragmatic-drag-and-drop-hitbox':
specifier: ^1.0.3
version: 1.0.3
'@dagrejs/dagre':
specifier: ^1.1.4
version: 1.1.4
'@dagrejs/graphlib':
specifier: ^2.2.4
version: 2.2.4
'@dnd-kit/core':
specifier: ^6.1.0
version: 6.1.0(react-dom@18.3.1)(react@18.3.1)
'@dnd-kit/sortable':
specifier: ^8.0.0
version: 8.0.0(@dnd-kit/core@6.1.0)(react@18.3.1)
'@dnd-kit/utilities':
specifier: ^3.2.2
version: 3.2.2(react@18.3.1)
'@fontsource-variable/inter':
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.43
version: 0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.44
version: 0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -319,6 +319,28 @@ packages:
'@jridgewell/trace-mapping': 0.3.25
dev: true
/@atlaskit/pragmatic-drag-and-drop-auto-scroll@1.4.0:
resolution: {integrity: sha512-5GoikoTSW13UX76F9TDeWB8x3jbbGlp/Y+3aRkHe1MOBMkrWkwNpJ42MIVhhX/6NSeaZiPumP0KbGJVs2tOWSQ==}
dependencies:
'@atlaskit/pragmatic-drag-and-drop': 1.4.0
'@babel/runtime': 7.25.7
dev: false
/@atlaskit/pragmatic-drag-and-drop-hitbox@1.0.3:
resolution: {integrity: sha512-/Sbu/HqN2VGLYBhnsG7SbRNg98XKkbF6L7XDdBi+izRybfaK1FeMfodPpm/xnBHPJzwYMdkE0qtLyv6afhgMUA==}
dependencies:
'@atlaskit/pragmatic-drag-and-drop': 1.4.0
'@babel/runtime': 7.25.7
dev: false
/@atlaskit/pragmatic-drag-and-drop@1.4.0:
resolution: {integrity: sha512-qRY3PTJIcxfl/QB8Gwswz+BRvlmgAC5pB+J2hL6dkIxgqAgVwOhAamMUKsrOcFU/axG2Q7RbNs1xfoLKDuhoPg==}
dependencies:
'@babel/runtime': 7.25.7
bind-event-listener: 3.0.0
raf-schd: 4.0.3
dev: false
/@babel/code-frame@7.25.7:
resolution: {integrity: sha512-0xZJFNE5XMpENsgfHYTw8FbX4kv53mFLn2i3XPoq69LyhYSCBJtitaHx9QnsVTrsogI4Z3+HtEfZ2/GFPOtf5g==}
engines: {node: '>=6.9.0'}
@@ -493,8 +515,8 @@ packages:
resolution: {integrity: sha512-MV6D4VLRIHr4PkW4zMyqfrNS1mPlCTiCXwvYGtDFQYr+xHFfonhAuf9WjsSc0nyp2m0OdkSLnzmVKkZFLo25Tg==}
dev: false
/@chakra-ui/anatomy@2.3.4:
resolution: {integrity: sha512-fFIYN7L276gw0Q7/ikMMlZxP7mvnjRaWJ7f3Jsf9VtDOi6eAYIBRrhQe6+SZ0PGmoOkRaBc7gSE5oeIbgFFyrw==}
/@chakra-ui/anatomy@2.3.5:
resolution: {integrity: sha512-3im33cUOxCbISjaBlINE2u8BOwJSCdzpjCX0H+0JxK2xz26UaVA5xeI3NYHUoxDnr/QIrgfrllGxS0szYwOcyg==}
dev: false
/@chakra-ui/breakpoint-utils@2.0.8:
@@ -551,12 +573,12 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/hooks@2.4.2(react@18.3.1):
resolution: {integrity: sha512-LRKiVE1oA7afT5tbbSKAy7Uas2xFHE6IkrQdbhWCHmkHBUtPvjQQDgwtnd4IRZPmoEfNGwoJ/MQpwOM/NRTTwA==}
/@chakra-ui/hooks@2.4.3(react@18.3.1):
resolution: {integrity: sha512-Sr2zsoTZw3p7HbrUy4aLpTIkE2XXUelAUgg3NGwMzrmx75bE0qVyiuuTFOuyEzGxYVV2Fe8QtcKKilm6RwzTGg==}
peerDependencies:
react: '>=18'
dependencies:
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@zag-js/element-size': 0.31.1
copy-to-clipboard: 3.3.3
framesync: 6.1.2
@@ -574,13 +596,13 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1):
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1):
resolution: {integrity: sha512-l5QdBgwrAg3Sc2BRqtNkJpfuLw/pWRDwwT58J6c4PqQT6wzXxyNa8Q0PForu1ltB5qEiFb1kxr/F/HO1EwNa6g==}
peerDependencies:
'@chakra-ui/react': '>=2.0.0'
react: '>=18'
dependencies:
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
react: 18.3.1
dev: false
@@ -803,8 +825,8 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/react@2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-TfIHTqTlxTHYJZBtpiR5EZasPUrLYKJxdbHkdOJb5G1OQ+2c5kKl5XA7c2pMtsEptzb7KxAAIB62t3hxdfWp1w==}
/@chakra-ui/react@2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-XyRWnuZ1Uw7Mlj5pKUGO5/WhnIHP/EOrpy6lGZC1yWlkd0eIfIpYMZ1ALTZx4KPEdbBaes48dgiMT2ROCqLhkA==}
peerDependencies:
'@emotion/react': '>=11'
'@emotion/styled': '>=11'
@@ -812,10 +834,10 @@ packages:
react: '>=18'
react-dom: '>=18'
dependencies:
'@chakra-ui/hooks': 2.4.2(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme': 3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/hooks': 2.4.3(react@18.3.1)
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme': 3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@popperjs/core': 2.11.8
@@ -846,10 +868,10 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/styled-system@2.11.2(react@18.3.1):
resolution: {integrity: sha512-y++z2Uop+hjfZX9mbH88F1ikazPv32asD2er56zMJBemUAzweXnHTpiCQbluEDSUDhqmghVZAdb+5L4XLbsRxA==}
/@chakra-ui/styled-system@2.12.1(react@18.3.1):
resolution: {integrity: sha512-DQph1nDiCPtgze7nDe0a36530ByXb5VpPosKGyWMvKocVeZJcDtYG6XM0+V5a0wKuFBXsViBBRIFUTiUesJAcg==}
dependencies:
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
csstype: 3.1.3
transitivePeerDependencies:
- react
@@ -893,14 +915,14 @@ packages:
color2k: 2.0.3
dev: false
/@chakra-ui/theme-tools@2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-3UhKPyzKbV3l/bg1iQN9PBvffYp+EBOoYMUaeTUdieQRPFzo2jbYR0lNCxqv8h5aGM/k54nCHU2M/GStyi9F2A==}
/@chakra-ui/theme-tools@2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-K/VJd0QcnKik7m+qZTkggqNLep6+MPUu8IP5TUpHsnSM5R/RVjsJIR7gO8IZVAIMIGLLTIhGshHxeMekqv6LcQ==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.0.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
color2k: 2.0.3
transitivePeerDependencies:
- react
@@ -926,15 +948,15 @@ packages:
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
dev: false
/@chakra-ui/theme@3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-ZwFBLfiMC3URwaO31ONXoKH9k0TX0OW3UjdPF3EQkQpYyrk/fm36GkkzajjtdpWEd7rzDLRsQjPmvwNaSoNDtg==}
/@chakra-ui/theme@3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-pfewthgZTFNUYeUwGvhPQO/FTIyf375cFV1AT8N1y0aJiw4KDe7YTGm7p0aFy4AwAjH2ydMgeEx/lua4tx8qyQ==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.8.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
transitivePeerDependencies:
- react
dev: false
@@ -959,8 +981,8 @@ packages:
lodash.mergewith: 4.6.2
dev: false
/@chakra-ui/utils@2.2.2(react@18.3.1):
resolution: {integrity: sha512-jUPLT0JzRMWxpdzH6c+t0YMJYrvc5CLericgITV3zDSXblkfx3DsYXqU11DJTSGZI9dUKzM1Wd0Wswn4eJwvFQ==}
/@chakra-ui/utils@2.2.3(react@18.3.1):
resolution: {integrity: sha512-cldoCQuexZ6e07/9hWHKD4l1QXXlM1Nax9tuQOBvVf/EgwNZt3nZu8zZRDFlhAOKCTQDkmpLTTu+eXXjChNQOw==}
peerDependencies:
react: '>=16.8.0'
dependencies:
@@ -980,49 +1002,6 @@ packages:
engines: {node: '>17.0.0'}
dev: false
/@dnd-kit/accessibility@3.1.0(react@18.3.1):
resolution: {integrity: sha512-ea7IkhKvlJUv9iSHJOnxinBcoOI3ppGnnL+VDJ75O45Nss6HtZd8IdN8touXPDtASfeI2T2LImb8VOZcL47wjQ==}
peerDependencies:
react: '>=16.8.0'
dependencies:
react: 18.3.1
tslib: 2.7.0
dev: false
/@dnd-kit/core@6.1.0(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-J3cQBClB4TVxwGo3KEjssGEXNJqGVWx17aRTZ1ob0FliR5IjYgTxl5YJbKTzA6IzrtelotH19v6y7uoIRUZPSg==}
peerDependencies:
react: '>=16.8.0'
react-dom: '>=16.8.0'
dependencies:
'@dnd-kit/accessibility': 3.1.0(react@18.3.1)
'@dnd-kit/utilities': 3.2.2(react@18.3.1)
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
tslib: 2.7.0
dev: false
/@dnd-kit/sortable@8.0.0(@dnd-kit/core@6.1.0)(react@18.3.1):
resolution: {integrity: sha512-U3jk5ebVXe1Lr7c2wU7SBZjcWdQP+j7peHJfCspnA81enlu88Mgd7CC8Q+pub9ubP7eKVETzJW+IBAhsqbSu/g==}
peerDependencies:
'@dnd-kit/core': ^6.1.0
react: '>=16.8.0'
dependencies:
'@dnd-kit/core': 6.1.0(react-dom@18.3.1)(react@18.3.1)
'@dnd-kit/utilities': 3.2.2(react@18.3.1)
react: 18.3.1
tslib: 2.7.0
dev: false
/@dnd-kit/utilities@3.2.2(react@18.3.1):
resolution: {integrity: sha512-+MKAJEOfaBe5SmV6t34p80MMKhjvUz0vRrvVJbPT0WElzaOJ/1xs+D+KDv+tD/NE5ujfrChEcshd4fLn0wpiqg==}
peerDependencies:
react: '>=16.8.0'
dependencies:
react: 18.3.1
tslib: 2.7.0
dev: false
/@emotion/babel-plugin@11.12.0:
resolution: {integrity: sha512-y2WQb+oP8Jqvvclh8Q55gLUyb7UFvgv7eJfsj7td5TToBrIUtPay2kMrZi4xjq9qw2vD0ZR5fSho0yqoFgX7Rw==}
dependencies:
@@ -1696,20 +1675,20 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-t3fPYyks07ue3dEBPJuTHbeDLnDckDCOrtvc07mMDbLOnlPEZ0StaeiNGH+oO8qLzAuMAlSTdswgHfzTc2MmPw==}
/@invoke-ai/ui-library@0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-PDseHmdr8oi8cmrpx3UwIYHn4NduAJX2R0pM0pyM54xrCMPMgYiCbC/eOs8Gt4fBc2ziiPZ9UGoW4evnE3YJsg==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@fontsource-variable/inter': 5.1.0
@@ -4313,6 +4292,10 @@ packages:
open: 8.4.2
dev: true
/bind-event-listener@3.0.0:
resolution: {integrity: sha512-PJvH288AWQhKs2v9zyfYdPzlPqf5bXbGMmhmUIY9x4dAUGIWgomO771oBQNwJnMQSnUIXhKu6sgzpBRXTlvb8Q==}
dev: false
/bl@4.1.0:
resolution: {integrity: sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==}
dependencies:
@@ -7557,6 +7540,10 @@ packages:
resolution: {integrity: sha512-NuaNSa6flKT5JaSYQzJok04JzTL1CA6aGhv5rfLW3PgqA+M2ChpZQnAC8h8i4ZFkBS8X5RqkDBHA7r4hej3K9A==}
dev: true
/raf-schd@4.0.3:
resolution: {integrity: sha512-tQkJl2GRWh83ui2DiPTJz9wEiMN20syf+5oKfB03yYP7ioZcJwsIK8FjrtLwH1m7C7e+Tt2yYBlrOpdT+dyeIQ==}
dev: false
/raf-throttle@2.0.6:
resolution: {integrity: sha512-C7W6hy78A+vMmk5a/B6C5szjBHrUzWJkVyakjKCK59Uy2CcA7KhO1JUvvH32IXYFIcyJ3FMKP3ZzCc2/71I6Vg==}
dev: false

View File

@@ -96,7 +96,9 @@
"new": "Neu",
"ok": "OK",
"close": "Schließen",
"clipboard": "Zwischenablage"
"clipboard": "Zwischenablage",
"generating": "Generieren",
"loadingModel": "Lade Modell"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -591,7 +593,15 @@
"loraTriggerPhrases": "LoRA-Auslösephrasen",
"installingBundle": "Bündel wird installiert",
"triggerPhrases": "Auslösephrasen",
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen"
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen",
"noDefaultSettings": "Für dieses Modell sind keine Standardeinstellungen konfiguriert. Besuchen Sie den Modell-Manager, um Standardeinstellungen hinzuzufügen.",
"defaultSettingsOutOfSync": "Einige Einstellungen stimmen nicht mit den Standardeinstellungen des Modells überein:",
"clipLEmbed": "CLIP-L einbetten",
"clipGEmbed": "CLIP-G einbetten",
"hfTokenLabel": "HuggingFace-Token (für einige Modelle erforderlich)",
"hfTokenHelperText": "Für die Nutzung einiger Modelle ist ein HF-Token erforderlich. Klicken Sie hier, um Ihr Token zu erstellen oder zu erhalten.",
"hfForbidden": "Sie haben keinen Zugriff auf dieses HF-Modell",
"hfTokenInvalid": "Ungültiges oder fehlendes HF-Token"
},
"parameters": {
"images": "Bilder",
@@ -632,12 +642,6 @@
"remixImage": "Remix des Bilds erstellen",
"imageActions": "Weitere Bildaktionen",
"invoke": {
"layer": {
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Breite ist {{width}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Breite ist {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Höhe ist {{height}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Höhe ist {{height}}"
},
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Breite ist {{width}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Höhe ist {{height}}",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Bbox-Breite ist {{width}}",
@@ -768,7 +772,8 @@
"deletedPrivateBoardsCannotbeRestored": "Gelöschte Boards können nicht wiederhergestellt werden. Wenn Sie „Nur Board löschen“ wählen, werden die Bilder in einen privaten, nicht kategorisierten Status für den Ersteller des Bildes versetzt.",
"assetsWithCount_one": "{{count}} in der Sammlung",
"assetsWithCount_other": "{{count}} in der Sammlung",
"deletedBoardsCannotbeRestored": "Gelöschte Ordner können nicht wiederhergestellt werden. Die Auswahl von \"Nur Ordner löschen\" verschiebt Bilder in einen unkategorisierten Zustand."
"deletedBoardsCannotbeRestored": "Gelöschte Ordner können nicht wiederhergestellt werden. Die Auswahl von \"Nur Ordner löschen\" verschiebt Bilder in einen unkategorisierten Zustand.",
"updateBoardError": "Fehler beim Aktualisieren des Ordners"
},
"queue": {
"status": "Status",
@@ -840,7 +845,8 @@
"upscaling": "Hochskalierung",
"canvas": "Leinwand",
"prompts_one": "Prompt",
"prompts_other": "Prompts"
"prompts_other": "Prompts",
"batchSize": "Stapelgröße"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
@@ -871,7 +877,9 @@
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen",
"canvasV2Metadata": "Leinwand",
"guidance": "Führung"
"guidance": "Führung",
"seamlessXAxis": "Nahtlose X Achse",
"seamlessYAxis": "Nahtlose Y Achse"
},
"popovers": {
"noiseUseCPU": {
@@ -1078,6 +1086,21 @@
},
"patchmatchDownScaleSize": {
"heading": "Herunterskalieren"
},
"paramHeight": {
"heading": "Höhe",
"paragraphs": [
"Höhe des generierten Bildes. Muss ein Vielfaches von 8 sein."
]
},
"paramUpscaleMethod": {
"heading": "Vergrößerungsmethode",
"paragraphs": [
"Methode zum Hochskalieren des Bildes für High Resolution Fix."
]
},
"paramHrf": {
"heading": "High Resolution Fix aktivieren"
}
},
"invocationCache": {
@@ -1392,7 +1415,13 @@
"pullBboxIntoLayerOk": "Bbox in die Ebene gezogen",
"saveBboxToGallery": "Bbox in Galerie speichern",
"tool": {
"bbox": "Bbox"
"bbox": "Bbox",
"brush": "Pinsel",
"eraser": "Radiergummi",
"colorPicker": "Farbwähler",
"view": "Ansicht",
"rectangle": "Rechteck",
"move": "Verschieben"
},
"transform": {
"fitToBbox": "An Bbox anpassen",
@@ -1434,7 +1463,6 @@
"deleteReferenceImage": "Referenzbild löschen",
"referenceImage": "Referenzbild",
"opacity": "Opazität",
"resetCanvas": "Leinwand zurücksetzen",
"removeBookmark": "Lesezeichen entfernen",
"rasterLayer": "Raster-Ebene",
"rasterLayers_withCount_visible": "Raster-Ebenen ({{count}})",
@@ -1511,7 +1539,30 @@
"layer_one": "Ebene",
"layer_other": "Ebenen",
"layer_withCount_one": "Ebene ({{count}})",
"layer_withCount_other": "Ebenen ({{count}})"
"layer_withCount_other": "Ebenen ({{count}})",
"fill": {
"fillStyle": "Füllstil",
"diagonal": "Diagonal",
"vertical": "Vertikal",
"fillColor": "Füllfarbe",
"grid": "Raster",
"solid": "Solide",
"crosshatch": "Kreuzschraffur",
"horizontal": "Horizontal"
},
"filter": {
"apply": "Anwenden",
"reset": "Zurücksetzen",
"cancel": "Abbrechen",
"spandrel_filter": {
"label": "Bild-zu-Bild Modell",
"description": "Ein Bild-zu-Bild Modell auf der ausgewählten Ebene ausführen.",
"model": "Modell"
},
"filters": "Filter",
"filterType": "Filtertyp",
"filter": "Filter"
}
},
"upsell": {
"shareAccess": "Zugang teilen",

View File

@@ -122,6 +122,7 @@
"goTo": "Go to",
"hotkeysLabel": "Hotkeys",
"loadingImage": "Loading Image",
"loadingModel": "Loading Model",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
"inpaint": "inpaint",
@@ -174,7 +175,9 @@
"placeholderSelectAModel": "Select a model",
"reset": "Reset",
"none": "None",
"new": "New"
"new": "New",
"generating": "Generating",
"warnings": "Warnings"
},
"hrf": {
"hrf": "High Resolution Fix",
@@ -261,7 +264,8 @@
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations"
"generations_other": "Generations",
"batchSize": "Batch Size"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@@ -704,6 +708,8 @@
"baseModel": "Base Model",
"cancel": "Cancel",
"clipEmbed": "CLIP Embed",
"clipLEmbed": "CLIP-L Embed",
"clipGEmbed": "CLIP-G Embed",
"config": "Config",
"convert": "Convert",
"convertingModelBegin": "Converting Model. Please wait.",
@@ -973,6 +979,8 @@
"zoomOutNodes": "Zoom Out",
"betaDesc": "This invocation is in beta. Until it is stable, it may have breaking changes during app updates. We plan to support this invocation long-term.",
"prototypeDesc": "This invocation is a prototype. It may have breaking changes during app updates and may be removed at any time.",
"internalDesc": "This invocation is used internally by Invoke. It may have breaking changes during app updates and may be removed at any time.",
"specialDesc": "This invocation some special handling in the app. For example, Batch nodes are used to queue multiple graphs from a single workflow.",
"imageAccessError": "Unable to find image {{image_name}}, resetting to default",
"boardAccessError": "Unable to find board {{board_id}}, resetting to default",
"modelAccessError": "Unable to find model {{key}}, resetting to default",
@@ -997,7 +1005,7 @@
"controlNetControlMode": "Control Mode",
"copyImage": "Copy Image",
"denoisingStrength": "Denoising Strength",
"noRasterLayers": "No Raster Layers",
"disabledNoRasterContent": "Disabled (No Raster Content)",
"downloadImage": "Download Image",
"general": "General",
"guidance": "Guidance",
@@ -1011,8 +1019,11 @@
"addingImagesTo": "Adding images to",
"invoke": "Invoke",
"missingFieldTemplate": "Missing field template",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} missing input",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: missing input",
"missingNodeTemplate": "Missing node template",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} empty collection",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: too few items, minimum {{minItems}}",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: too many items, maximum {{maxItems}}",
"noModelSelected": "No model selected",
"noT5EncoderModelSelected": "No T5 Encoder model selected for FLUX generation",
"noFLUXVAEModelSelected": "No VAE model selected for FLUX generation",
@@ -1021,26 +1032,14 @@
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), bbox height is {{height}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), scaled bbox width is {{width}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), scaled bbox height is {{height}}",
"canvasIsFiltering": "Canvas is filtering",
"canvasIsTransforming": "Canvas is transforming",
"canvasIsRasterizing": "Canvas is rasterizing",
"canvasIsCompositing": "Canvas is compositing",
"canvasIsFiltering": "Canvas is busy (filtering)",
"canvasIsTransforming": "Canvas is busy (transforming)",
"canvasIsRasterizing": "Canvas is busy (rasterizing)",
"canvasIsCompositing": "Canvas is busy (compositing)",
"canvasIsSelectingObject": "Canvas is busy (selecting object)",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected",
"layer": {
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox width is {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox height is {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox width is {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, scaled bbox height is {{height}}",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
"systemDisconnected": "System disconnected"
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
@@ -1137,6 +1136,7 @@
"resetWebUI": "Reset Web UI",
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
"showDetailedInvocationProgress": "Show Progress Details",
"showProgressInViewer": "Show Progress Images in Viewer",
"ui": "User Interface",
"clearIntermediatesDisabled": "Queue must be empty to clear intermediates",
@@ -1307,8 +1307,9 @@
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"The part of the of the denoising process that will have the Control Adapter applied.",
"Generally, Control Adapters applied at the start of the process guide composition, and Control Adapters applied at the end guide details."
"This setting determines which portion of the denoising (generation) process incorporates the guidance from this layer.",
"• Start Step (%): Specifies when to begin applying the guidance from this layer during the generation process.",
"• End Step (%): Specifies when to stop applying this layer's guidance and revert general guidance from the model and other settings."
]
},
"controlNetControlMode": {
@@ -1318,7 +1319,7 @@
"controlNetProcessor": {
"heading": "Processor",
"paragraphs": [
"Method of processing the input image to guide the generation process. Different processors will providedifferent effects or styles in your generated images."
"Method of processing the input image to guide the generation process. Different processors will provide different effects or styles in your generated images."
]
},
"controlNetResizeMode": {
@@ -1326,13 +1327,15 @@
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
},
"ipAdapterMethod": {
"heading": "Method",
"paragraphs": ["Method by which to apply the current IP Adapter."]
"heading": "Mode",
"paragraphs": ["The mode defines how the reference image will guide the generation process."]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
"Weight of the Control Adapter. Higher weight will lead to larger impacts on the final image."
"Adjusts how strongly the layer influences the generation process",
"• Higher Weight (.75-2): Creates a more significant impact on the final result.",
"• Lower Weight (0-.75): Creates a smaller impact on the final result."
]
},
"dynamicPrompts": {
@@ -1654,7 +1657,6 @@
"newControlLayerError": "Problem Creating Control Layer",
"newRasterLayerOk": "Created Raster Layer",
"newRasterLayerError": "Problem Creating Raster Layer",
"newFromImage": "New from Image",
"pullBboxIntoLayerOk": "Bbox Pulled Into Layer",
"pullBboxIntoLayerError": "Problem Pulling BBox Into Layer",
"pullBboxIntoReferenceImageOk": "Bbox Pulled Into ReferenceImage",
@@ -1667,11 +1669,11 @@
"mergingLayers": "Merging layers",
"clearHistory": "Clear History",
"bboxOverlay": "Show Bbox Overlay",
"resetCanvas": "Reset Canvas",
"newSession": "New Session",
"clearCaches": "Clear Caches",
"recalculateRects": "Recalculate Rects",
"clipToBbox": "Clip Strokes to Bbox",
"outputOnlyMaskedRegions": "Output Only Masked Regions",
"outputOnlyMaskedRegions": "Output Only Generated Regions",
"addLayer": "Add Layer",
"duplicate": "Duplicate",
"moveToFront": "Move to Front",
@@ -1699,8 +1701,12 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"canvasAsRasterLayer": "$t(controlLayers.canvas) as $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) as $t(controlLayers.controlLayer)",
"referenceImageRegional": "Reference Image (Regional)",
"referenceImageGlobal": "Reference Image (Global)",
"asRasterLayer": "As $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "As $t(controlLayers.rasterLayer) (Resize)",
"asControlLayer": "As $t(controlLayers.controlLayer)",
"asControlLayerResize": "As $t(controlLayers.controlLayer) (Resize)",
"referenceImage": "Reference Image",
"regionalReferenceImage": "Regional Reference Image",
"globalReferenceImage": "Global Reference Image",
@@ -1768,6 +1774,7 @@
"pullBboxIntoLayer": "Pull Bbox into Layer",
"pullBboxIntoReferenceImage": "Pull Bbox into Reference Image",
"showProgressOnCanvas": "Show Progress on Canvas",
"useImage": "Use Image",
"prompt": "Prompt",
"negativePrompt": "Negative Prompt",
"beginEndStepPercentShort": "Begin/End %",
@@ -1776,8 +1783,26 @@
"newGallerySessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be sent to the gallery.",
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"resetCanvasLayers": "Reset Canvas Layers",
"resetGenerationSettings": "Reset Generation Settings",
"replaceCurrent": "Replace Current",
"controlLayerEmptyState": "<UploadButton>Upload an image</UploadButton>, drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer, or draw on the canvas to get started.",
"referenceImageEmptyState": "<UploadButton>Upload an image</UploadButton> or drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer to get started.",
"warnings": {
"problemsFound": "Problems found",
"unsupportedModel": "layer not supported for selected base model",
"controlAdapterNoModelSelected": "no Control Layer model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Layer base model",
"controlAdapterNoControl": "no control selected/drawn",
"ipAdapterNoModelSelected": "no Reference Image model selected",
"ipAdapterIncompatibleBaseModel": "incompatible Reference Image base model",
"ipAdapterNoImageSelected": "no Reference Image image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or Reference Images",
"rgNegativePromptNotSupported": "Negative Prompt not supported for selected base model",
"rgReferenceImagesNotSupported": "regional Reference Images not supported for selected base model",
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
"rgNoRegion": "no region drawn"
},
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced (recommended)",
@@ -1786,10 +1811,13 @@
"megaControl": "Mega Control"
},
"ipAdapterMethod": {
"ipAdapterMethod": "IP Adapter Method",
"full": "Full",
"ipAdapterMethod": "Mode",
"full": "Style and Composition",
"fullDesc": "Applies visual style (colors, textures) & composition (layout, structure).",
"style": "Style Only",
"composition": "Composition Only"
"styleDesc": "Applies visual style (colors, textures) without considering its layout.",
"composition": "Composition Only",
"compositionDesc": "Replicates layout & structure while ignoring the reference's style."
},
"fill": {
"fillColor": "Fill Color",
@@ -1999,7 +2027,9 @@
"upscaleModelDesc": "Upscale (image to image) model",
"missingUpscaleInitialImage": "Missing initial image for upscaling",
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed"
"missingTileControlNetModel": "No valid tile ControlNet models installed",
"incompatibleBaseModel": "Unsupported main model architecture for upscaling",
"incompatibleBaseModelDesc": "Upscaling is supported for SD1.5 and SDXL architecture models only. Change the main model to enable upscaling."
},
"stylePresets": {
"active": "Active",
@@ -2102,10 +2132,74 @@
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"line1": "<StrongComponent>Layer Merging</StrongComponent>: New <StrongComponent>Merge Down</StrongComponent> and improved <StrongComponent>Merge Visible</StrongComponent> for all layers, with special handling for Regional Guidance and Control Layers.",
"line2": "<StrongComponent>HF Token Support</StrongComponent>: Upload models that require Hugging Face authentication.",
"items": [
"<StrongComponent>FLUX Regional Guidance (beta)</StrongComponent>: Our beta release of FLUX Regional Guidance is live for regional prompt control.",
"<StrongComponent>Various UX Improvements</StrongComponent>: A number of small UX and Quality of Life improvements throughout the app."
],
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
},
"supportVideos": {
"supportVideos": "Support Videos",
"gettingStarted": "Getting Started",
"controlCanvas": "Control Canvas",
"watch": "Watch",
"studioSessionsDesc1": "Check out the <StudioSessionsPlaylistLink /> for Invoke deep dives.",
"studioSessionsDesc2": "Join our <DiscordLink /> to participate in the live sessions and ask questions. Sessions are uploaded to the playlist the following week.",
"videos": {
"creatingYourFirstImage": {
"title": "Creating Your First Image",
"description": "Introduction to creating an image from scratch using Invoke's tools."
},
"usingControlLayersAndReferenceGuides": {
"title": "Using Control Layers and Reference Guides",
"description": "Learn how to guide your image creation with control layers and reference images."
},
"understandingImageToImageAndDenoising": {
"title": "Understanding Image-to-Image and Denoising",
"description": "Overview of image-to-image transformations and denoising in Invoke."
},
"exploringAIModelsAndConceptAdapters": {
"title": "Exploring AI Models and Concept Adapters",
"description": "Dive into AI models and how to use concept adapters for creative control."
},
"creatingAndComposingOnInvokesControlCanvas": {
"title": "Creating and Composing on Invoke's Control Canvas",
"description": "Learn to compose images using Invoke's control canvas."
},
"upscaling": {
"title": "Upscaling",
"description": "How to upscale images with Invoke's tools to enhance resolution."
},
"howDoIGenerateAndSaveToTheGallery": {
"title": "How Do I Generate and Save to the Gallery?",
"description": "Steps to generate and save images to the gallery."
},
"howDoIEditOnTheCanvas": {
"title": "How Do I Edit on the Canvas?",
"description": "Guide to editing images directly on the canvas."
},
"howDoIDoImageToImageTransformation": {
"title": "How Do I Do Image-to-Image Transformation?",
"description": "Tutorial on performing image-to-image transformations in Invoke."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "How Do I Use Control Nets and Control Layers?",
"description": "Learn to apply control layers and controlnets to your images."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "How Do I Use Global IP Adapters and Reference Images?",
"description": "Introduction to adding reference images and global IP adapters."
},
"howDoIUseInpaintMasks": {
"title": "How Do I Use Inpaint Masks?",
"description": "How to apply inpaint masks for image correction and variation."
},
"howDoIOutpaint": {
"title": "How Do I Outpaint?",
"description": "Guide to outpainting beyond the original image borders."
}
}
}
}

View File

@@ -13,7 +13,7 @@
"discordLabel": "Discord",
"back": "Atrás",
"loading": "Cargando",
"postprocessing": "Postprocesado",
"postprocessing": "Postprocesamiento",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar",
@@ -64,7 +64,7 @@
"prevPage": "Página Anterior",
"red": "Rojo",
"alpha": "Transparencia",
"outputs": "Salidas",
"outputs": "Resultados",
"learnMore": "Aprende más",
"enabled": "Activado",
"disabled": "Desactivado",
@@ -73,7 +73,32 @@
"created": "Creado",
"save": "Guardar",
"unknownError": "Error Desconocido",
"blue": "Azul"
"blue": "Azul",
"clipboard": "Portapapeles",
"loadingImage": "Cargando la imagen",
"inpaint": "inpaint",
"ipAdapter": "Adaptador IP",
"t2iAdapter": "Adaptador T2I",
"apply": "Aplicar",
"openInViewer": "Abrir en el visor",
"off": "Apagar",
"generating": "Generando",
"ok": "De acuerdo",
"placeholderSelectAModel": "Seleccionar un modelo",
"reset": "Restablecer",
"none": "Ninguno",
"new": "Nuevo",
"dontShowMeThese": "No mostrar estos",
"loadingModel": "Cargando el modelo",
"view": "Ver",
"edit": "Editar",
"safetensors": "Safetensors",
"toResolve": "Para resolver",
"localSystem": "Sistema local",
"notInstalled": "No $t(common.installed)",
"outpaint": "outpaint",
"simple": "Sencillo",
"close": "Cerrar"
},
"gallery": {
"galleryImageSize": "Tamaño de la imagen",
@@ -85,7 +110,63 @@
"deleteImage_other": "Eliminar {{count}} Imágenes",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"
"autoAssignBoardOnClick": "Asignar automática tableros al hacer clic",
"gallery": "Galería",
"noImageSelected": "Sin imágenes seleccionadas",
"bulkDownloadRequestFailed": "Error al preparar la descarga",
"oldestFirst": "La más antigua primero",
"sideBySide": "conjuntamente",
"selectForCompare": "Seleccionar para comparar",
"alwaysShowImageSizeBadge": "Mostrar siempre las dimensiones de la imagen",
"currentlyInUse": "Esta imagen se utiliza actualmente con las siguientes funciones:",
"unableToLoad": "No se puede cargar la galería",
"selectAllOnPage": "Seleccionar todo en la página",
"selectAnImageToCompare": "Seleccione una imagen para comparar",
"bulkDownloadFailed": "Error en la descarga",
"compareHelp2": "Presione <Kbd> M </Kbd> para recorrer los modos de comparación.",
"move": "Mover",
"copy": "Copiar",
"drop": "Gota",
"displayBoardSearch": "Tablero de búsqueda",
"deleteSelection": "Borrar selección",
"downloadSelection": "Descargar selección",
"openInViewer": "Abrir en el visor",
"searchImages": "Búsqueda por metadatos",
"swapImages": "Intercambiar imágenes",
"sortDirection": "Orden de clasificación",
"showStarredImagesFirst": "Mostrar imágenes destacadas primero",
"go": "Ir",
"bulkDownloadRequested": "Preparando la descarga",
"image": "imagen",
"compareHelp4": "Presione <Kbd> Z </Kbd> o <Kbd> Esc </Kbd> para salir.",
"viewerImage": "Ver imagen",
"dropOrUpload": "$t(gallery.drop) o cargar",
"displaySearch": "Buscar imagen",
"download": "Descargar",
"exitBoardSearch": "Finalizar búsqueda",
"exitSearch": "Salir de la búsqueda de imágenes",
"featuresWillReset": "Si elimina esta imagen, dichas funciones se restablecerán inmediatamente.",
"jump": "Omitir",
"loading": "Cargando",
"newestFirst": "La más nueva primero",
"unstarImage": "Dejar de ser favorita",
"bulkDownloadRequestedDesc": "Su solicitud de descarga se está preparando. Esto puede tardar unos minutos.",
"hover": "Desplazar",
"compareHelp1": "Mantenga presionada la tecla <Kbd> Alt </Kbd> mientras hace clic en una imagen de la galería o utiliza las teclas de flecha para cambiar la imagen de comparación.",
"stretchToFit": "Estirar para encajar",
"exitCompare": "Salir de la comparación",
"starImage": "Imágenes favoritas",
"dropToUpload": "$t(gallery.drop) para cargar",
"slider": "Deslizador",
"assetsTab": "Archivos que has cargado para utilizarlos en tus proyectos.",
"imagesTab": "Imágenes que ha creado y guardado en Invoke.",
"compareImage": "Comparar imagen",
"boardsSettings": "Ajustes de los tableros",
"imagesSettings": "Configuración de imágenes de la galería",
"compareHelp3": "Presione <Kbd> C </Kbd> para intercambiar las imágenes comparadas.",
"showArchivedBoards": "Mostrar paneles archivados",
"closeViewer": "Cerrar visor",
"openViewer": "Abrir visor"
},
"modelManager": {
"modelManager": "Gestor de Modelos",
@@ -131,7 +212,13 @@
"modelDeleted": "Modelo eliminado",
"modelDeleteFailed": "Error al borrar el modelo",
"settings": "Ajustes",
"syncModels": "Sincronizar las plantillas"
"syncModels": "Sincronizar las plantillas",
"clipEmbed": "Incrustar CLIP",
"addModels": "Añadir modelos",
"advanced": "Avanzado",
"clipGEmbed": "Incrustar CLIP-G",
"cancel": "Cancelar",
"clipLEmbed": "Incrustar CLIP-L"
},
"parameters": {
"images": "Imágenes",
@@ -158,19 +245,19 @@
"useSeed": "Usar Semilla",
"useAll": "Usar Todo",
"info": "Información",
"showOptionsPanel": "Mostrar panel de opciones",
"showOptionsPanel": "Mostrar panel lateral (O o T)",
"symmetry": "Simetría",
"copyImage": "Copiar la imagen",
"general": "General",
"denoisingStrength": "Intensidad de la eliminación del ruido",
"seamlessXAxis": "Eje x",
"seamlessYAxis": "Eje y",
"seamlessXAxis": "Eje X sin juntas",
"seamlessYAxis": "Eje Y sin juntas",
"scheduler": "Programador",
"positivePromptPlaceholder": "Prompt Positivo",
"negativePromptPlaceholder": "Prompt Negativo",
"controlNetControlMode": "Modo de control",
"clipSkip": "Omitir el CLIP",
"maskBlur": "Difuminar",
"maskBlur": "Desenfoque de máscara",
"patchmatchDownScaleSize": "Reducir a escala",
"coherenceMode": "Modo"
},
@@ -202,16 +289,19 @@
"serverError": "Error en el servidor",
"canceled": "Procesando la cancelación",
"connected": "Conectado al servidor",
"uploadFailedInvalidUploadDesc": "Debe ser una sola imagen PNG o JPEG",
"parameterSet": "Conjunto de parámetros",
"parameterNotSet": "Parámetro no configurado",
"uploadFailedInvalidUploadDesc": "Deben ser imágenes PNG o JPEG.",
"parameterSet": "Parámetro recuperado",
"parameterNotSet": "Parámetro no recuperado",
"problemCopyingImage": "No se puede copiar la imagen",
"errorCopied": "Error al copiar",
"baseModelChanged": "Modelo base cambiado",
"addedToBoard": "Añadido al tablero",
"addedToBoard": "Se agregó a los activos del panel {{name}}",
"baseModelChangedCleared_one": "Borrado o desactivado {{count}} submodelo incompatible",
"baseModelChangedCleared_many": "Borrados o desactivados {{count}} submodelos incompatibles",
"baseModelChangedCleared_other": "Borrados o desactivados {{count}} submodelos incompatibles"
"baseModelChangedCleared_other": "Borrados o desactivados {{count}} submodelos incompatibles",
"addedToUncategorized": "Añadido a los activos del tablero $t(boards.uncategorized)",
"imagesWillBeAddedTo": "Las imágenes subidas se añadirán a los activos del panel {{boardName}}.",
"layerCopiedToClipboard": "Capa copiada en el portapapeles"
},
"accessibility": {
"invokeProgressBar": "Activar la barra de progreso",
@@ -226,7 +316,8 @@
"mode": "Modo",
"submitSupportTicket": "Enviar Ticket de Soporte",
"toggleRightPanel": "Activar o desactivar el panel derecho (G)",
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)"
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)",
"uploadImages": "Cargar imagen(es)"
},
"nodes": {
"zoomInNodes": "Acercar",
@@ -238,7 +329,8 @@
"showMinimapnodes": "Mostrar el minimapa",
"reloadNodeTemplates": "Recargar las plantillas de nodos",
"loadWorkflow": "Cargar el flujo de trabajo",
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON"
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON",
"boardAccessError": "No se puede encontrar el panel {{board_id}}, se está restableciendo al valor predeterminado"
},
"boards": {
"autoAddBoard": "Agregar panel automáticamente",
@@ -255,7 +347,7 @@
"bottomMessage": "Al eliminar este panel y las imágenes que contiene, se restablecerán las funciones que los estén utilizando actualmente.",
"deleteBoardAndImages": "Borrar el panel y las imágenes",
"loading": "Cargando...",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al Seleccionar 'Borrar Solo el Panel' transferirá las imágenes a un estado sin categorizar.",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al Seleccionar 'Borrar solo el panel' transferirá las imágenes a un estado sin categorizar.",
"move": "Mover",
"menuItemAutoAdd": "Agregar automáticamente a este panel",
"searchBoard": "Buscando paneles…",
@@ -263,29 +355,33 @@
"downloadBoard": "Descargar panel",
"deleteBoardOnly": "Borrar solo el panel",
"myBoard": "Mi panel",
"noMatching": "No hay paneles que coincidan",
"noMatching": "Sin paneles coincidentes",
"imagesWithCount_one": "{{count}} imagen",
"imagesWithCount_many": "{{count}} imágenes",
"imagesWithCount_other": "{{count}} imágenes",
"assetsWithCount_one": "{{count}} activo",
"assetsWithCount_many": "{{count}} activos",
"assetsWithCount_other": "{{count}} activos",
"hideBoards": "Ocultar Paneles",
"addPrivateBoard": "Agregar un tablero privado",
"addSharedBoard": "Agregar Panel Compartido",
"hideBoards": "Ocultar paneles",
"addPrivateBoard": "Agregar un panel privado",
"addSharedBoard": "Añadir panel compartido",
"boards": "Paneles",
"archiveBoard": "Archivar Panel",
"archiveBoard": "Archivar panel",
"archived": "Archivado",
"selectedForAutoAdd": "Seleccionado para agregar automáticamente",
"unarchiveBoard": "Desarchivar el tablero",
"noBoards": "No hay tableros {{boardType}}",
"shared": "Carpetas compartidas",
"deletedPrivateBoardsCannotbeRestored": "Los tableros eliminados no se pueden restaurar. Al elegir \"Eliminar solo tablero\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen."
"unarchiveBoard": "Desarchivar el panel",
"noBoards": "No hay paneles {{boardType}}",
"shared": "Paneles compartidos",
"deletedPrivateBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar. Al elegir \"Eliminar solo el panel\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen.",
"viewBoards": "Ver paneles",
"private": "Paneles privados",
"updateBoardError": "No se pudo actualizar el panel"
},
"accordions": {
"compositing": {
"title": "Composición",
"infillTab": "Relleno"
"infillTab": "Relleno",
"coherenceTab": "Parámetros de la coherencia"
},
"generation": {
"title": "Generación"
@@ -309,7 +405,10 @@
"workflows": "Flujos de trabajo",
"models": "Modelos",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)"
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"upscaling": "Upscaling",
"gallery": "Galería",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
}
},
"queue": {
@@ -317,12 +416,81 @@
"front": "Delante",
"batchQueuedDesc_one": "Se agregó {{count}} sesión a {{direction}} la cola",
"batchQueuedDesc_many": "Se agregaron {{count}} sesiones a {{direction}} la cola",
"batchQueuedDesc_other": "Se agregaron {{count}} sesiones a {{direction}} la cola"
"batchQueuedDesc_other": "Se agregaron {{count}} sesiones a {{direction}} la cola",
"clearQueueAlertDialog": "Al vaciar la cola se cancela inmediatamente cualquier elemento de procesamiento y se vaciará la cola por completo. Los filtros pendientes se cancelarán.",
"time": "Tiempo",
"clearFailed": "Error al vaciar la cola",
"cancelFailed": "Error al cancelar el elemento",
"resumeFailed": "Error al reanudar el proceso",
"pause": "Pausar",
"pauseTooltip": "Pausar el proceso",
"cancelBatchSucceeded": "Lote cancelado",
"pruneSucceeded": "Se purgaron {{item_count}} elementos completados de la cola",
"pruneFailed": "Error al purgar la cola",
"cancelBatchFailed": "Error al cancelar los lotes",
"pauseFailed": "Error al pausar el proceso",
"status": "Estado",
"origin": "Origen",
"destination": "Destino",
"generations_one": "Generación",
"generations_many": "Generaciones",
"generations_other": "Generaciones",
"resume": "Reanudar",
"queueEmpty": "Cola vacía",
"cancelItem": "Cancelar elemento",
"cancelBatch": "Cancelar lote",
"openQueue": "Abrir la cola",
"completed": "Completado",
"enqueueing": "Añadir lotes a la cola",
"clear": "Limpiar",
"pauseSucceeded": "Proceso pausado",
"resumeSucceeded": "Proceso reanudado",
"resumeTooltip": "Reanudar proceso",
"cancel": "Cancelar",
"cancelTooltip": "Cancelar artículo actual",
"pruneTooltip": "Purgar {{item_count}} elementos completados",
"batchQueued": "Lote en cola",
"pending": "Pendiente",
"item": "Elemento",
"total": "Total",
"in_progress": "En proceso",
"failed": "Fallido",
"completedIn": "Completado en",
"upscaling": "Upscaling",
"canvas": "Lienzo",
"generation": "Generación",
"workflows": "Flujo de trabajo",
"other": "Otro",
"queueFront": "Añadir al principio de la cola",
"gallery": "Galería",
"batchFieldValues": "Valores de procesamiento por lotes",
"session": "Sesión",
"notReady": "La cola aún no está lista",
"graphQueued": "Gráfico en cola",
"clearQueueAlertDialog2": "¿Estás seguro que deseas vaciar la cola?",
"next": "Siguiente",
"iterations_one": "Interacción",
"iterations_many": "Interacciones",
"iterations_other": "Interacciones",
"current": "Actual",
"queue": "Cola",
"queueBack": "Añadir a la cola",
"cancelSucceeded": "Elemento cancelado",
"clearTooltip": "Cancelar y limpiar todos los elementos",
"clearSucceeded": "Cola vaciada",
"canceled": "Cancelado",
"batch": "Lote",
"graphFailedToQueue": "Error al poner el gráfico en cola",
"batchFailedToQueue": "Error al poner en cola el lote",
"prompts_one": "Prompt",
"prompts_many": "Prompts",
"prompts_other": "Prompts",
"prune": "Eliminar"
},
"upsell": {
"inviteTeammates": "Invitar compañeros de equipo",
"shareAccess": "Compartir acceso",
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haz clic aquí o visita invoke.com/pricing para obtener más detalles."
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haga clic aquí o visite invoke.com/pricing para obtener más detalles."
},
"controlLayers": {
"layer_one": "Capa",
@@ -330,6 +498,415 @@
"layer_other": "Capas",
"layer_withCount_one": "({{count}}) capa",
"layer_withCount_many": "({{count}}) capas",
"layer_withCount_other": "({{count}}) capas"
"layer_withCount_other": "({{count}}) capas",
"copyToClipboard": "Copiar al portapapeles"
},
"whatsNew": {
"readReleaseNotes": "Leer las notas de la versión",
"watchRecentReleaseVideos": "Ver videos de versiones recientes",
"watchUiUpdatesOverview": "Descripción general de las actualizaciones de la interfaz de usuario de Watch",
"whatsNewInInvoke": "Novedades en Invoke",
"items": [
"<StrongComponent>SD 3.5</StrongComponent>: compatibilidad con SD 3.5 Medium y Large.",
"<StrongComponent>Lienzo</StrongComponent>: Se ha simplificado el procesamiento de la capa de control y se ha mejorado la configuración predeterminada del control."
]
},
"invocationCache": {
"enableFailed": "Error al activar la cache",
"cacheSize": "Tamaño de la caché",
"hits": "Accesos a la caché",
"invocationCache": "Caché",
"misses": "Errores de la caché",
"clear": "Limpiar",
"maxCacheSize": "Tamaño máximo de la caché",
"enableSucceeded": "Cache activada",
"clearFailed": "Error al borrar la cache",
"enable": "Activar",
"useCache": "Uso de la caché",
"disableSucceeded": "Caché desactivada",
"clearSucceeded": "Caché borrada",
"disable": "Desactivar",
"disableFailed": "Error al desactivar la caché"
},
"hrf": {
"hrf": "Solución de alta resolución",
"enableHrf": "Activar corrección de alta resolución",
"metadata": {
"enabled": "Corrección de alta resolución activada",
"strength": "Forzar la corrección de alta resolución",
"method": "Método de corrección de alta resolución"
},
"upscaleMethod": "Método de expansión"
},
"prompt": {
"addPromptTrigger": "Añadir activador de los avisos",
"compatibleEmbeddings": "Incrustaciones compatibles",
"noMatchingTriggers": "No hay activadores coincidentes"
},
"hotkeys": {
"hotkeys": "Atajo del teclado",
"canvas": {
"selectViewTool": {
"desc": "Selecciona la herramienta de Visualización.",
"title": "Visualización"
},
"cancelFilter": {
"title": "Cancelar el filtro",
"desc": "Cancelar el filtro pendiente."
},
"applyTransform": {
"title": "Aplicar la transformación",
"desc": "Aplicar la transformación pendiente a la capa seleccionada."
},
"applyFilter": {
"desc": "Aplicar el filtro pendiente a la capa seleccionada.",
"title": "Aplicar filtro"
},
"selectBrushTool": {
"title": "Pincel",
"desc": "Selecciona la herramienta pincel."
},
"selectBboxTool": {
"desc": "Seleccionar la herramienta de selección del marco.",
"title": "Selección del marco"
},
"selectMoveTool": {
"desc": "Selecciona la herramienta Mover.",
"title": "Mover"
},
"selectRectTool": {
"title": "Rectángulo",
"desc": "Selecciona la herramienta Rectángulo."
},
"decrementToolWidth": {
"title": "Reducir el ancho de la herramienta",
"desc": "Disminuye la anchura de la herramienta pincel o goma de borrar, según la que esté seleccionada."
},
"incrementToolWidth": {
"title": "Incrementar la anchura de la herramienta",
"desc": "Aumenta la anchura de la herramienta pincel o goma de borrar, según la que esté seleccionada."
},
"fitBboxToCanvas": {
"title": "Ajustar bordes al lienzo",
"desc": "Escala y posiciona la vista para ajustarla a los bodes."
},
"fitLayersToCanvas": {
"title": "Ajustar capas al lienzo",
"desc": "Escala y posiciona la vista para que se ajuste a todas las capas visibles."
},
"setFillToWhite": {
"title": "Establecer color en blanco",
"desc": "Establece el color actual de la herramienta en blanco."
},
"resetSelected": {
"title": "Restablecer capa",
"desc": "Restablecer la capa seleccionada. Solo se aplica a Máscara de retoque y Guía regional."
},
"setZoomTo400Percent": {
"desc": "Ajuste la aplicación del lienzo al 400%.",
"title": "Ampliar al 400%"
},
"transformSelected": {
"desc": "Transformar la capa seleccionada.",
"title": "Transformar"
},
"selectColorPickerTool": {
"title": "Selector de color",
"desc": "Seleccione la herramienta de selección de color."
},
"selectEraserTool": {
"title": "Borrador",
"desc": "Selecciona la herramienta Borrador."
},
"setZoomTo100Percent": {
"title": "Ampliar al 100%",
"desc": "Ajuste ampliar el lienzo al 100%."
},
"undo": {
"title": "Deshacer",
"desc": "Deshacer la última acción en el lienzo."
},
"nextEntity": {
"desc": "Seleccione la siguiente capa de la lista.",
"title": "Capa siguiente"
},
"redo": {
"title": "Rehacer",
"desc": "Rehacer la última acción en el lienzo."
},
"prevEntity": {
"title": "Capa anterior",
"desc": "Seleccione la capa anterior de la lista."
},
"title": "Lienzo",
"setZoomTo200Percent": {
"title": "Ampliar al 200%",
"desc": "Ajuste la ampliación del lienzo al 200%."
},
"setZoomTo800Percent": {
"title": "Ampliar al 800%",
"desc": "Ajuste la ampliación del lienzo al 800%."
},
"filterSelected": {
"desc": "Filtra la capa seleccionada. Solo se aplica a las capas Ráster y Control.",
"title": "Filtrar"
},
"cancelTransform": {
"title": "Cancelar transformación",
"desc": "Cancelar la transformación pendiente."
},
"deleteSelected": {
"title": "Borrar la capa",
"desc": "Borrar la capa seleccionada."
},
"quickSwitch": {
"desc": "Cambiar entre las dos últimas capas seleccionadas. Si una capa está seleccionada, cambia siempre entre ella y la última capa no seleccionada.",
"title": "Cambio rápido de capa"
}
},
"app": {
"selectModelsTab": {
"title": "Seleccione la pestaña Modelos",
"desc": "Selecciona la pestaña Modelos."
},
"focusPrompt": {
"desc": "Mueve el foco del cursor a la indicación positiva.",
"title": "Enfoque"
},
"toggleLeftPanel": {
"title": "Alternar panel izquierdo",
"desc": "Mostrar u ocultar el panel izquierdo."
},
"selectQueueTab": {
"title": "Seleccione la pestaña Cola",
"desc": "Seleccione la pestaña Cola."
},
"selectCanvasTab": {
"title": "Seleccione la pestaña Lienzo",
"desc": "Selecciona la pestaña Lienzo."
},
"clearQueue": {
"title": "Vaciar cola",
"desc": "Cancelar y variar todos los elementos de la cola."
},
"selectUpscalingTab": {
"title": "Selecciona la pestaña Ampliar",
"desc": "Selecciona la pestaña Aumento de escala."
},
"togglePanels": {
"desc": "Muestra u oculta los paneles izquierdo y derecho a la vez.",
"title": "Alternar paneles"
},
"toggleRightPanel": {
"title": "Alternar panel derecho",
"desc": "Mostrar u ocultar el panel derecho."
},
"invokeFront": {
"desc": "Pone en cola la solicitud de compilación y la agrega al principio de la cola.",
"title": "Invocar (frente)"
},
"cancelQueueItem": {
"title": "Cancelar",
"desc": "Cancelar el elemento de la cola que se está procesando."
},
"invoke": {
"desc": "Pone en cola la solicitud de compilación y la agrega al final de la cola.",
"title": "Invocar"
},
"title": "Aplicación",
"selectWorkflowsTab": {
"title": "Seleccione la pestaña Flujos de trabajo",
"desc": "Selecciona la pestaña Flujos de trabajo."
},
"resetPanelLayout": {
"title": "Reiniciar la posición del panel",
"desc": "Restablece los paneles izquierdo y derecho a su tamaño y disposición por defecto."
}
},
"workflows": {
"addNode": {
"title": "Añadir nodo",
"desc": "Abrir añadir nodo."
},
"selectAll": {
"title": "Seleccionar todo",
"desc": "Seleccione todos los nodos y enlaces."
},
"deleteSelection": {
"desc": "Borrar todos los nodos y enlaces seleccionados.",
"title": "Borrar"
},
"undo": {
"desc": "Deshaga la última acción.",
"title": "Deshacer"
},
"redo": {
"desc": "Rehacer la última acción.",
"title": "Rehacer"
},
"pasteSelection": {
"desc": "Pegar nodos y bordes copiados.",
"title": "Pegar"
},
"title": "Flujos de trabajo",
"copySelection": {
"desc": "Copiar nodos y bordes seleccionados.",
"title": "Copiar"
},
"pasteSelectionWithEdges": {
"desc": "Pega los nodos copiados, los enlaces y todos los enlaces conectados a los nodos copiados.",
"title": "Pegar con enlaces"
}
},
"viewer": {
"useSize": {
"title": "Usar dimensiones",
"desc": "Utiliza las dimensiones de la imagen actual como el tamaño del borde."
},
"remix": {
"title": "Remezcla",
"desc": "Recupera todos los metadatos excepto la semilla de la imagen actual."
},
"loadWorkflow": {
"desc": "Carga el flujo de trabajo guardado de la imagen actual (si tiene uno).",
"title": "Cargar flujo de trabajo"
},
"recallAll": {
"desc": "Recupera todos los metadatos de la imagen actual.",
"title": "Recuperar todos los metadatos"
},
"recallPrompts": {
"desc": "Recuerde las indicaciones positivas y negativas de la imagen actual.",
"title": "Recordatorios"
},
"recallSeed": {
"title": "Recuperar semilla",
"desc": "Recupera la semilla de la imagen actual."
},
"runPostprocessing": {
"title": "Ejecutar posprocesamiento",
"desc": "Ejecutar el posprocesamiento seleccionado en la imagen actual."
},
"toggleMetadata": {
"title": "Mostrar/ocultar los metadatos",
"desc": "Mostrar u ocultar la superposición de metadatos de la imagen actual."
},
"nextComparisonMode": {
"desc": "Desplácese por los modos de comparación.",
"title": "Siguiente comparación"
},
"title": "Visor de imágenes",
"toggleViewer": {
"title": "Mostrar/Ocultar el visor de imágenes",
"desc": "Mostrar u ocultar el visor de imágenes. Solo disponible en la pestaña Lienzo."
},
"swapImages": {
"title": "Intercambiar imágenes en la comparación",
"desc": "Intercambia las imágenes que se están comparando."
}
},
"gallery": {
"clearSelection": {
"title": "Limpiar selección",
"desc": "Borrar la selección actual, si hay alguna."
},
"galleryNavUp": {
"title": "Subir",
"desc": "Navega hacia arriba en la cuadrícula de la galería y selecciona esa imagen. Si estás en la parte superior de la página, ve a la página anterior."
},
"galleryNavLeft": {
"title": "Izquierda",
"desc": "Navegue hacia la izquierda en la rejilla de la galería, seleccionando esa imagen. Si está en la primera imagen de la fila, vaya a la fila anterior. Si está en la primera imagen de la página, vaya a la página anterior."
},
"galleryNavDown": {
"title": "Bajar",
"desc": "Navegue hacia abajo en la parrilla de la galería, seleccionando esa imagen. Si se encuentra al final de la página, vaya a la página siguiente."
},
"galleryNavRight": {
"title": "A la derecha",
"desc": "Navegue hacia la derecha en la rejilla de la galería, seleccionando esa imagen. Si está en la última imagen de la fila, vaya a la fila siguiente. Si está en la última imagen de la página, vaya a la página siguiente."
},
"galleryNavUpAlt": {
"desc": "Igual que arriba, pero selecciona la imagen de comparación, abriendo el modo de comparación si no está ya abierto.",
"title": "Arriba (Comparar imagen)"
},
"deleteSelection": {
"desc": "Borrar todas las imágenes seleccionadas. Por defecto, se le pedirá que confirme la eliminación. Si las imágenes están actualmente en uso en la aplicación, se te avisará.",
"title": "Borrar"
},
"title": "Galería",
"selectAllOnPage": {
"title": "Seleccionar todo en la página",
"desc": "Seleccionar todas las imágenes en la página actual."
}
},
"searchHotkeys": "Buscar teclas de acceso rápido",
"noHotkeysFound": "Sin teclas de acceso rápido",
"clearSearch": "Limpiar la búsqueda"
},
"metadata": {
"guidance": "Orientación",
"createdBy": "Creado por",
"noImageDetails": "Sin detalles en la imagen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"height": "Altura",
"imageDimensions": "Dimensiones de la imagen",
"seamlessXAxis": "Eje X sin juntas",
"seamlessYAxis": "Eje Y sin juntas",
"generationMode": "Modo de generación",
"scheduler": "Programador",
"width": "Ancho",
"Threshold": "Umbral de ruido",
"canvasV2Metadata": "Lienzo",
"metadata": "Metadatos",
"model": "Modelo",
"allPrompts": "Todas las indicaciones",
"cfgScale": "Escala CFG",
"imageDetails": "Detalles de la imagen",
"negativePrompt": "Indicación negativa",
"noMetaData": "Sin metadatos",
"parameterSet": "Parámetro {{parameter}} establecido",
"vae": "Autocodificador",
"workflow": "Flujo de trabajo",
"seed": "Semilla",
"strength": "Forzar imagen a imagen",
"recallParameters": "Parámetros de recuperación",
"recallParameter": "Recuperar {{label}}",
"steps": "Pasos",
"noRecallParameters": "Sin parámetros para recuperar",
"parsingFailed": "Error al analizar"
},
"system": {
"logLevel": {
"debug": "Depurar",
"info": "Información",
"warn": "Advertir",
"fatal": "Grave",
"error": "Error",
"trace": "Rastro",
"logLevel": "Nivel del registro"
},
"enableLogging": "Activar registro",
"logNamespaces": {
"workflows": "Flujos de trabajo",
"system": "Sistema",
"metadata": "Metadatos",
"gallery": "Galería",
"logNamespaces": "Espacios para los nombres de registro",
"generation": "Generación",
"events": "Eventos",
"canvas": "Lienzo",
"config": "Ajustes",
"models": "Modelos",
"queue": "Cola"
}
},
"newUserExperience": {
"downloadStarterModels": "Descargar modelos de inicio",
"toGetStarted": "Para empezar, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en <StrongComponent>Lienzo</StrongComponent>.",
"importModels": "Importar modelos",
"noModelsInstalled": "Parece que no tienes ningún modelo instalado",
"gettingStartedSeries": "¿Desea más orientación? Consulte nuestra <LinkComponent>Serie de introducción</LinkComponent> para obtener consejos sobre cómo aprovechar todo el potencial de Invoke Studio.",
"toGetStartedLocal": "Para empezar, asegúrate de descargar o importar los modelos necesarios para ejecutar Invoke. A continuación, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en el <StrongComponent>Lienzo</StrongComponent>."
}
}

View File

@@ -317,19 +317,6 @@
"info": "Info",
"showOptionsPanel": "Afficher le panneau latéral (O ou T)",
"invoke": {
"layer": {
"rgNoPromptsOrIPAdapters": "aucun prompts ou IP Adapters",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box mise à l'échelle est {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box mise à l'échelle est {{height}}",
"ipAdapterNoModelSelected": "aucun IP adapter sélectionné",
"ipAdapterNoImageSelected": "aucune image d'IP adapter sélectionnée",
"controlAdapterIncompatibleBaseModel": "modèle de base de Control Adapter incompatible",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box est {{height}}",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box est {{width}}",
"ipAdapterIncompatibleBaseModel": "modèle de base d'IP adapter incompatible",
"rgNoRegion": "aucune zone sélectionnée",
"controlAdapterNoModelSelected": "aucun modèle de Control Adapter sélectionné"
},
"noPrompts": "Aucun prompts généré",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} entrée manquante",
"missingFieldTemplate": "Modèle de champ manquant",
@@ -1985,7 +1972,6 @@
"inpaintMask_withCount_many": "Remplir les masques",
"inpaintMask_withCount_other": "Remplir les masques",
"newImg2ImgCanvasFromImage": "Nouvelle Img2Img à partir de l'image",
"resetCanvas": "Réinitialiser la Toile",
"bboxOverlay": "Afficher la superposition des Bounding Box",
"moveToFront": "Déplacer vers le permier plan",
"moveToBack": "Déplacer vers l'arrière plan",
@@ -2034,7 +2020,6 @@
"help2": "Commencez par un point <Bold>Inclure</Bold> au sein de l'objet cible. Ajoutez d'autres points pour affiner la sélection. Moins de points produisent généralement de meilleurs résultats.",
"help3": "Inversez la sélection pour sélectionner tout sauf l'objet cible."
},
"canvasAsControlLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.controlLayer)",
"convertRegionalGuidanceTo": "Convertir $t(controlLayers.regionalGuidance) vers",
"copyRasterLayerTo": "Copier $t(controlLayers.rasterLayer) vers",
"newControlLayer": "Nouveau $t(controlLayers.controlLayer)",
@@ -2044,8 +2029,7 @@
"convertInpaintMaskTo": "Convertir $t(controlLayers.inpaintMask) vers",
"copyControlLayerTo": "Copier $t(controlLayers.controlLayer) vers",
"newInpaintMask": "Nouveau $t(controlLayers.inpaintMask)",
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.rasterLayer)"
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)"
},
"upscaling": {
"exceedsMaxSizeDetails": "La limite maximale d'agrandissement est de {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Veuillez essayer une image plus petite ou réduire votre sélection d'échelle.",

View File

@@ -94,7 +94,10 @@
"view": "Vista",
"close": "Chiudi",
"clipboard": "Appunti",
"ok": "Ok"
"ok": "Ok",
"generating": "Generazione",
"loadingModel": "Caricamento del modello",
"warnings": "Avvisi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -597,7 +600,18 @@
"huggingFace": "HuggingFace",
"huggingFaceRepoID": "HuggingFace Repository ID",
"clipEmbed": "CLIP Embed",
"t5Encoder": "T5 Encoder"
"t5Encoder": "T5 Encoder",
"hfTokenInvalidErrorMessage": "Gettone HuggingFace non valido o mancante.",
"hfTokenRequired": "Stai tentando di scaricare un modello che richiede un gettone HuggingFace valido.",
"hfTokenUnableToVerifyErrorMessage": "Impossibile verificare il gettone HuggingFace. Ciò è probabilmente dovuto a un errore di rete. Riprova più tardi.",
"hfTokenHelperText": "Per utilizzare alcuni modelli è necessario un gettone HF. Fai clic qui per creare o ottenere il tuo gettone.",
"hfTokenInvalid": "Gettone HF non valido o mancante",
"hfTokenUnableToVerify": "Impossibile verificare il gettone HF",
"hfTokenSaved": "Gettone HF salvato",
"hfForbidden": "Non hai accesso a questo modello HF",
"hfTokenLabel": "Gettone HuggingFace (richiesto per alcuni modelli)",
"hfForbiddenErrorMessage": "Consigliamo di visitare la pagina del repository su HuggingFace.com. Il proprietario potrebbe richiedere l'accettazione dei termini per poter effettuare il download.",
"hfTokenInvalidErrorMessage2": "Aggiornalo in "
},
"parameters": {
"images": "Immagini",
@@ -649,21 +663,8 @@
"addingImagesTo": "Aggiungi immagini a",
"systemDisconnected": "Sistema disconnesso",
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante",
"layer": {
"controlAdapterNoModelSelected": "Nessun modello di adattatore di controllo selezionato",
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
"ipAdapterNoModelSelected": "Nessun adattatore IP selezionato",
"ipAdapterIncompatibleBaseModel": "Il modello base dell'adattatore IP non è compatibile",
"ipAdapterNoImageSelected": "Nessuna immagine dell'adattatore IP selezionata",
"rgNoPromptsOrIPAdapters": "Nessun prompt o adattatore IP",
"rgNoRegion": "Nessuna regione selezionata",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza riquadro è {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza riquadro è {{height}}",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza del riquadro scalato {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza del riquadro scalato {{height}}"
},
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), altezza riquadro è {{height}}",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza riquadro è {{width}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza del riquadro scalato è {{width}}",
@@ -671,10 +672,14 @@
"noT5EncoderModelSelected": "Nessun modello di encoder T5 selezionato per la generazione con FLUX",
"noCLIPEmbedModelSelected": "Nessun modello CLIP Embed selezionato per la generazione con FLUX",
"noFLUXVAEModelSelected": "Nessun modello VAE selezionato per la generazione con FLUX",
"canvasIsTransforming": "La tela sta trasformando",
"canvasIsRasterizing": "La tela sta rasterizzando",
"canvasIsCompositing": "La tela è in fase di composizione",
"canvasIsFiltering": "La tela sta filtrando"
"canvasIsTransforming": "La tela è occupata (sta trasformando)",
"canvasIsRasterizing": "La tela è occupata (sta rasterizzando)",
"canvasIsCompositing": "La tela è occupata (in composizione)",
"canvasIsFiltering": "La tela è occupata (sta filtrando)",
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi elementi, massimo {{maxItems}}",
"canvasIsSelectingObject": "La tela è occupata (selezione dell'oggetto)",
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi pochi elementi, minimo {{minItems}}",
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} raccolta vuota"
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
@@ -699,7 +704,9 @@
"staged": "Maschera espansa",
"optimizedImageToImage": "Immagine-a-immagine ottimizzata",
"sendToCanvas": "Invia alla Tela",
"coherenceMinDenoise": "Riduzione minima del rumore"
"coherenceMinDenoise": "Min rid. rumore",
"recallMetadata": "Richiama i metadati",
"disabledNoRasterContent": "Disabilitato (nessun contenuto Raster)"
},
"settings": {
"models": "Modelli",
@@ -737,7 +744,8 @@
"confirmOnNewSession": "Conferma su nuova sessione",
"enableModelDescriptions": "Abilita le descrizioni dei modelli nei menu a discesa",
"modelDescriptionsDisabled": "Descrizioni dei modelli nei menu a discesa disabilitate",
"modelDescriptionsDisabledDesc": "Le descrizioni dei modelli nei menu a discesa sono state disabilitate. Abilitale nelle Impostazioni."
"modelDescriptionsDisabledDesc": "Le descrizioni dei modelli nei menu a discesa sono state disabilitate. Abilitale nelle Impostazioni.",
"showDetailedInvocationProgress": "Mostra dettagli avanzamento"
},
"toast": {
"uploadFailed": "Caricamento fallito",
@@ -956,7 +964,9 @@
"saveToGallery": "Salva nella Galleria",
"noMatchingWorkflows": "Nessun flusso di lavoro corrispondente",
"noWorkflows": "Nessun flusso di lavoro",
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>."
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>.",
"specialDesc": "Questa invocazione comporta una gestione speciale nell'applicazione. Ad esempio, i nodi Lotto vengono utilizzati per mettere in coda più grafici da un singolo flusso di lavoro.",
"internalDesc": "Questa invocazione è utilizzata internamente da Invoke. Potrebbe subire modifiche significative durante gli aggiornamenti dell'app e potrebbe essere rimossa in qualsiasi momento."
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1077,7 +1087,8 @@
"workflows": "Flussi di lavoro",
"generation": "Generazione",
"other": "Altro",
"gallery": "Galleria"
"gallery": "Galleria",
"batchSize": "Dimensione del lotto"
},
"models": {
"noMatchingModels": "Nessun modello corrispondente",
@@ -1179,8 +1190,9 @@
"controlNetBeginEnd": {
"heading": "Percentuale passi Inizio / Fine",
"paragraphs": [
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli."
"Questa impostazione determina quale parte del processo di rimozione del rumore (generazione) incorpora la guida da questo livello.",
"• Passo iniziale (%): specifica quando iniziare ad applicare la guida da questo livello durante il processo di generazione.",
"• Passo finale (%): specifica quando interrompere l'applicazione della guida di questo livello e ripristinare la guida generale dal modello e altre impostazioni."
]
},
"noiseUseCPU": {
@@ -1263,8 +1275,9 @@
},
"paramDenoisingStrength": {
"paragraphs": [
"Quanto rumore viene aggiunto all'immagine in ingresso.",
"0 risulterà in un'immagine identica, mentre 1 risulterà in un'immagine completamente nuova."
"Controlla la differenza tra l'immagine generata e il/i livello/i raster.",
"Una forza inferiore rimane più vicina ai livelli raster visibili combinati. Una forza superiore si basa maggiormente sul prompt globale.",
"Se non sono presenti livelli raster con contenuto visibile, questa impostazione viene ignorata."
],
"heading": "Forza di riduzione del rumore"
},
@@ -1276,14 +1289,16 @@
},
"infillMethod": {
"paragraphs": [
"Metodo di riempimento durante il processo di Outpainting o Inpainting."
"Metodo di riempimento durante il processo di Outpaint o Inpaint."
],
"heading": "Metodo di riempimento"
},
"controlNetWeight": {
"heading": "Peso",
"paragraphs": [
"Peso dell'adattatore di controllo. Un peso maggiore porterà a impatti maggiori sull'immagine finale."
"Regola la forza con cui il livello influenza il processo di generazione",
"• Peso maggiore (0.75-2): crea un impatto più significativo sul risultato finale.",
"• Peso inferiore (0-0.75): crea un impatto minore sul risultato finale."
]
},
"paramCFGScale": {
@@ -1444,7 +1459,7 @@
"heading": "Livello minimo di riduzione del rumore",
"paragraphs": [
"Intensità minima di riduzione rumore per la modalità di Coerenza",
"L'intensità minima di riduzione del rumore per la regione di coerenza durante l'inpainting o l'outpainting"
"L'intensità minima di riduzione del rumore per la regione di coerenza durante l'inpaint o l'outpaint"
]
},
"compositingMaskBlur": {
@@ -1460,9 +1475,9 @@
]
},
"ipAdapterMethod": {
"heading": "Metodo",
"heading": "Modalità",
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
"La modalità definisce il modo in cui l'immagine di riferimento guiderà il processo di generazione."
]
},
"scale": {
@@ -1498,7 +1513,7 @@
"optimizedDenoising": {
"heading": "Immagine-a-immagine ottimizzata",
"paragraphs": [
"Abilita 'Immagine-a-immagine ottimizzata' per una scala di riduzione del rumore più graduale per le trasformazioni da immagine a immagine e di inpainting con modelli Flux. Questa impostazione migliora la capacità di controllare la quantità di modifica applicata a un'immagine, ma può essere disattivata se preferisci usare la scala di riduzione rumore standard. Questa impostazione è ancora in fase di messa a punto ed è in stato beta."
"Abilita 'Immagine-a-immagine ottimizzata' per una scala di riduzione del rumore più graduale per le trasformazioni da immagine a immagine e di inpaint con modelli Flux. Questa impostazione migliora la capacità di controllare la quantità di modifica applicata a un'immagine, ma può essere disattivata se preferisci usare la scala di riduzione rumore standard. Questa impostazione è ancora in fase di messa a punto ed è in stato beta."
]
},
"paramGuidance": {
@@ -1733,8 +1748,7 @@
"newRegionalReferenceImageError": "Problema nella creazione dell'immagine di riferimento regionale",
"newControlLayerOk": "Livello di controllo creato",
"bboxOverlay": "Mostra sovrapposizione riquadro",
"resetCanvas": "Reimposta la tela",
"outputOnlyMaskedRegions": "Solo regioni mascherate in uscita",
"outputOnlyMaskedRegions": "In uscita solo le regioni generate",
"enableAutoNegative": "Abilita Auto Negativo",
"disableAutoNegative": "Disabilita Auto Negativo",
"showHUD": "Mostra HUD",
@@ -1771,7 +1785,7 @@
"globalReferenceImage_withCount_many": "Immagini di riferimento Globali",
"globalReferenceImage_withCount_other": "Immagini di riferimento Globali",
"controlMode": {
"balanced": "Bilanciato",
"balanced": "Bilanciato (consigliato)",
"controlMode": "Modalità di controllo",
"prompt": "Prompt",
"control": "Controllo",
@@ -1782,10 +1796,13 @@
"beginEndStepPercentShort": "Inizio/Fine %",
"stagingOnCanvas": "Genera immagini nella",
"ipAdapterMethod": {
"full": "Completo",
"full": "Stile e Composizione",
"style": "Solo Stile",
"composition": "Solo Composizione",
"ipAdapterMethod": "Metodo Adattatore IP"
"ipAdapterMethod": "Modalità",
"fullDesc": "Applica lo stile visivo (colori, texture) e la composizione (disposizione, struttura).",
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione.",
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento."
},
"showingType": "Mostra {{type}}",
"dynamicGrid": "Griglia dinamica",
@@ -1881,7 +1898,10 @@
"lineart_anime_edge_detection": {
"description": "Genera una mappa dei bordi dal livello selezionato utilizzando il modello di rilevamento dei bordi Lineart Anime.",
"label": "Rilevamento bordi Lineart Anime"
}
},
"forMoreControl": "Per un maggiore controllo, fare clic su Avanzate qui sotto.",
"advanced": "Avanzate",
"processingLayerWith": "Elaborazione del livello con il filtro {{type}}."
},
"controlLayers_withCount_hidden": "Livelli di controllo ({{count}} nascosti)",
"regionalGuidance_withCount_hidden": "Guida regionale ({{count}} nascosti)",
@@ -2016,8 +2036,6 @@
"convertControlLayerTo": "Converti $t(controlLayers.controlLayer) in",
"newRasterLayer": "Nuovo $t(controlLayers.rasterLayer)",
"newRegionalGuidance": "Nuova $t(controlLayers.regionalGuidance)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) come $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) come $t(controlLayers.controlLayer)",
"convertInpaintMaskTo": "Converti $t(controlLayers.inpaintMask) in",
"copyRegionalGuidanceTo": "Copia $t(controlLayers.regionalGuidance) in",
"convertRasterLayerTo": "Converti $t(controlLayers.rasterLayer) in",
@@ -2025,7 +2043,35 @@
"newControlLayer": "Nuovo $t(controlLayers.controlLayer)",
"newInpaintMask": "Nuova $t(controlLayers.inpaintMask)",
"replaceCurrent": "Sostituisci corrente",
"mergeDown": "Unire in basso"
"mergeDown": "Unire in basso",
"mergingLayers": "Unione dei livelli",
"controlLayerEmptyState": "<UploadButton>Carica un'immagine</UploadButton>, trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello oppure disegna sulla tela per iniziare.",
"useImage": "Usa immagine",
"resetGenerationSettings": "Ripristina impostazioni di generazione",
"referenceImageEmptyState": "Per iniziare, <UploadButton>carica un'immagine</UploadButton> oppure trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello.",
"asRasterLayer": "Come $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "Come $t(controlLayers.rasterLayer) (Ridimensiona)",
"asControlLayer": "Come $t(controlLayers.controlLayer)",
"asControlLayerResize": "Come $t(controlLayers.controlLayer) (Ridimensiona)",
"newSession": "Nuova sessione",
"resetCanvasLayers": "Ripristina livelli Tela",
"referenceImageRegional": "Immagine di riferimento (regionale)",
"referenceImageGlobal": "Immagine di riferimento (globale)",
"warnings": {
"controlAdapterNoModelSelected": "nessun modello selezionato per il livello di controllo",
"controlAdapterNoControl": "nessun controllo selezionato/disegnato",
"ipAdapterNoModelSelected": "nessun modello di immagine di riferimento selezionato",
"rgNoPromptsOrIPAdapters": "nessun prompt testuale o immagini di riferimento",
"rgReferenceImagesNotSupported": "Immagini di riferimento regionali non supportate per il modello base selezionato",
"rgNoRegion": "nessuna regione disegnata",
"problemsFound": "Problemi riscontrati",
"unsupportedModel": "livello non supportato per il modello base selezionato",
"controlAdapterIncompatibleBaseModel": "modello di base del livello di controllo incompatibile",
"rgNegativePromptNotSupported": "Prompt negativo non supportato per il modello base selezionato",
"ipAdapterIncompatibleBaseModel": "modello base dell'immagine di riferimento incompatibile",
"ipAdapterNoImageSelected": "nessuna immagine di riferimento selezionata",
"rgAutoNegativeNotSupported": "Auto-Negativo non supportato per il modello base selezionato"
}
},
"ui": {
"tabs": {
@@ -2057,7 +2103,9 @@
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata.",
"upscale": "Amplia"
"upscale": "Amplia",
"incompatibleBaseModel": "Architettura del modello principale non supportata per l'ampliamento",
"incompatibleBaseModelDesc": "L'ampliamento è supportato solo per i modelli di architettura SD1.5 e SDXL. Cambia il modello principale per abilitare l'ampliamento."
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
@@ -2119,12 +2167,13 @@
},
"whatsNew": {
"whatsNewInInvoke": "Novità in Invoke",
"line2": "Supporto Flux esteso, ora con immagini di riferimento globali",
"line3": "Tooltip e menu contestuali migliorati",
"readReleaseNotes": "Leggi le note di rilascio",
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"line1": "Strumento <ItalicComponent>Seleziona oggetto</ItalicComponent> per la selezione e la modifica precise degli oggetti",
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia"
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
"items": [
"<StrongComponent>FLUX Regional Guidance (beta)</StrongComponent>: la nostra versione beta di FLUX Regional Guidance è attiva per il controllo dei prompt regionali.",
"<StrongComponent>Vari miglioramenti dell'esperienza utente</StrongComponent>: numerosi piccoli miglioramenti dell'esperienza utente e della qualità della vita in tutta l'app."
]
},
"system": {
"logLevel": {
@@ -2150,5 +2199,67 @@
"logNamespaces": "Elementi del registro"
},
"enableLogging": "Abilita la registrazione"
},
"supportVideos": {
"gettingStarted": "Iniziare",
"supportVideos": "Video di supporto",
"videos": {
"usingControlLayersAndReferenceGuides": {
"title": "Utilizzo di livelli di controllo e guide di riferimento",
"description": "Scopri come guidare la creazione delle tue immagini con livelli di controllo e immagini di riferimento."
},
"creatingYourFirstImage": {
"description": "Introduzione alla creazione di un'immagine da zero utilizzando gli strumenti di Invoke.",
"title": "Creazione della tua prima immagine"
},
"understandingImageToImageAndDenoising": {
"description": "Panoramica delle trasformazioni immagine-a-immagine e della riduzione del rumore in Invoke.",
"title": "Comprendere immagine-a-immagine e riduzione del rumore"
},
"howDoIDoImageToImageTransformation": {
"description": "Tutorial su come eseguire trasformazioni da immagine a immagine in Invoke.",
"title": "Come si esegue la trasformazione da immagine-a-immagine?"
},
"howDoIUseInpaintMasks": {
"title": "Come si usano le maschere Inpaint?",
"description": "Come applicare maschere inpaint per la correzione e la variazione delle immagini."
},
"howDoIOutpaint": {
"description": "Guida all'outpainting oltre i confini dell'immagine originale.",
"title": "Come posso eseguire l'outpainting?"
},
"exploringAIModelsAndConceptAdapters": {
"description": "Approfondisci i modelli di intelligenza artificiale e scopri come utilizzare gli adattatori concettuali per il controllo creativo.",
"title": "Esplorazione dei modelli di IA e degli adattatori concettuali"
},
"upscaling": {
"title": "Ampliamento",
"description": "Come ampliare le immagini con gli strumenti di Invoke per migliorarne la risoluzione."
},
"creatingAndComposingOnInvokesControlCanvas": {
"description": "Impara a comporre immagini utilizzando la tela di controllo di Invoke.",
"title": "Creare e comporre sulla tela di controllo di Invoke"
},
"howDoIGenerateAndSaveToTheGallery": {
"description": "Passaggi per generare e salvare le immagini nella galleria.",
"title": "Come posso generare e salvare nella Galleria?"
},
"howDoIEditOnTheCanvas": {
"title": "Come posso apportare modifiche sulla tela?",
"description": "Guida alla modifica delle immagini direttamente sulla tela."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "Come posso utilizzare le Reti di Controllo e i Livelli di Controllo?",
"description": "Impara ad applicare livelli di controllo e reti di controllo alle tue immagini."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "Come si utilizzano gli adattatori IP globali e le immagini di riferimento?",
"description": "Introduzione all'aggiunta di immagini di riferimento e adattatori IP globali."
}
},
"controlCanvas": "Tela di Controllo",
"watch": "Guarda",
"studioSessionsDesc1": "Dai un'occhiata a <StudioSessionsPlaylistLink /> per approfondimenti su Invoke.",
"studioSessionsDesc2": "Unisciti al nostro <DiscordLink /> per partecipare alle sessioni live e fare domande. Le sessioni vengono caricate sulla playlist la settimana successiva."
}
}

View File

@@ -16,7 +16,7 @@
"discordLabel": "Discord",
"nodes": "ワークフロー",
"txt2img": "txt2img",
"postprocessing": "Post Processing",
"postprocessing": "ポストプロセス",
"t2iAdapter": "T2I アダプター",
"communityLabel": "コミュニティ",
"dontAskMeAgain": "次回から確認しない",
@@ -71,8 +71,8 @@
"orderBy": "並び順:",
"enabled": "有効",
"notInstalled": "未インストール",
"positivePrompt": "プロンプト",
"negativePrompt": "除外する要素",
"positivePrompt": "ポジティブプロンプト",
"negativePrompt": "ネガティブプロンプト",
"selected": "選択済み",
"aboutDesc": "Invokeを業務で利用する場合はマークしてください:",
"beta": "ベータ",
@@ -80,7 +80,20 @@
"editor": "エディタ",
"safetensors": "Safetensors",
"tab": "タブ",
"toResolve": "解決方法"
"toResolve": "解決方法",
"openInViewer": "ビューアで開く",
"placeholderSelectAModel": "モデルを選択",
"clipboard": "クリップボード",
"apply": "適用",
"loadingImage": "画像をロード中",
"off": "オフ",
"view": "ビュー",
"edit": "編集",
"ok": "OK",
"reset": "リセット",
"none": "なし",
"new": "新規",
"close": "閉じる"
},
"gallery": {
"galleryImageSize": "画像のサイズ",
@@ -125,12 +138,114 @@
"compareHelp1": "<Kbd>Alt</Kbd> キーを押しながらギャラリー画像をクリックするか、矢印キーを使用して比較画像を変更します。",
"compareHelp3": "<Kbd>C</Kbd>を押して、比較した画像を入れ替えます。",
"compareHelp4": "<Kbd>[Z</Kbd>]または<Kbd>[Esc</Kbd>]を押して終了します。",
"compareHelp2": "<Kbd>M</Kbd> キーを押して比較モードを切り替えます。"
"compareHelp2": "<Kbd>M</Kbd> キーを押して比較モードを切り替えます。",
"move": "移動",
"openViewer": "ビューアを開く",
"closeViewer": "ビューアを閉じる",
"exitSearch": "画像検索を終了",
"oldestFirst": "最古から",
"showStarredImagesFirst": "スター付き画像を最初に",
"exitBoardSearch": "ボード検索を終了",
"showArchivedBoards": "アーカイブされたボードを表示",
"searchImages": "メタデータで検索",
"gallery": "ギャラリー",
"newestFirst": "最新から",
"jump": "ジャンプ",
"go": "進む",
"sortDirection": "並び替え順",
"displayBoardSearch": "ボード検索",
"displaySearch": "画像を検索",
"boardsSettings": "ボード設定",
"imagesSettings": "ギャラリー画像設定"
},
"hotkeys": {
"searchHotkeys": "ホットキーを検索",
"clearSearch": "検索をクリア",
"noHotkeysFound": "ホットキーが見つかりません"
"noHotkeysFound": "ホットキーが見つかりません",
"viewer": {
"runPostprocessing": {
"title": "ポストプロセスを実行"
},
"useSize": {
"title": "サイズを使用"
},
"recallPrompts": {
"title": "プロンプトを再使用"
},
"recallAll": {
"title": "全てのメタデータを再使用"
},
"recallSeed": {
"title": "シード値を再使用"
}
},
"canvas": {
"redo": {
"title": "やり直し"
},
"transformSelected": {
"title": "変形"
},
"undo": {
"title": "取り消し"
},
"selectEraserTool": {
"title": "消しゴムツール"
},
"cancelTransform": {
"title": "変形をキャンセル"
},
"resetSelected": {
"title": "レイヤーをリセット"
},
"applyTransform": {
"title": "変形を適用"
},
"selectColorPickerTool": {
"title": "スポイトツール"
},
"fitBboxToCanvas": {
"title": "バウンディングボックスをキャンバスにフィット"
},
"selectBrushTool": {
"title": "ブラシツール"
},
"selectMoveTool": {
"title": "移動ツール"
},
"selectBboxTool": {
"title": "バウンディングボックスツール"
},
"title": "キャンバス",
"fitLayersToCanvas": {
"title": "レイヤーをキャンバスにフィット"
}
},
"workflows": {
"undo": {
"title": "取り消し"
},
"redo": {
"title": "やり直し"
}
},
"app": {
"toggleLeftPanel": {
"title": "左パネルをトグル",
"desc": "左パネルを表示または非表示。"
},
"title": "アプリケーション",
"invoke": {
"title": "Invoke"
},
"cancelQueueItem": {
"title": "キャンセル"
},
"clearQueue": {
"title": "キューをクリア"
}
},
"hotkeys": "ホットキー"
},
"modelManager": {
"modelManager": "モデルマネージャ",
@@ -165,7 +280,7 @@
"convertToDiffusers": "ディフューザーに変換",
"alpha": "アルファ",
"modelConverted": "モデル変換が完了しました",
"predictionType": "予測タイプ(安定したディフュージョン 2.x モデルおよび一部の安定したディフュージョン 1.x モデル用)",
"predictionType": "予測タイプ(SD 2.x モデルおよび一部のSD 1.x モデル用)",
"selectModel": "モデルを選択",
"advanced": "高度な設定",
"modelDeleted": "モデルが削除されました",
@@ -178,7 +293,9 @@
"convertToDiffusersHelpText1": "このモデルは 🧨 Diffusers フォーマットに変換されます。",
"convertToDiffusersHelpText3": "チェックポイントファイルは、InvokeAIルートフォルダ内にある場合、ディスクから削除されます。カスタムロケーションにある場合は、削除されません。",
"convertToDiffusersHelpText4": "これは一回限りのプロセスです。コンピュータの仕様によっては、約30秒から60秒かかる可能性があります。",
"cancel": "キャンセル"
"cancel": "キャンセル",
"uploadImage": "画像をアップロード",
"addModels": "モデルを追加"
},
"parameters": {
"images": "画像",
@@ -200,7 +317,19 @@
"info": "情報",
"showOptionsPanel": "オプションパネルを表示",
"iterations": "生成回数",
"general": "基本設定"
"general": "基本設定",
"setToOptimalSize": "サイズをモデルに最適化",
"invoke": {
"addingImagesTo": "画像の追加先"
},
"aspect": "縦横比",
"lockAspectRatio": "縦横比を固定",
"scheduler": "スケジューラー",
"sendToUpscale": "アップスケーラーに転送",
"useSize": "サイズを使用",
"postProcessing": "ポストプロセス (Shift + U)",
"denoisingStrength": "ノイズ除去強度",
"recallMetadata": "メタデータを再使用"
},
"settings": {
"models": "モデル",
@@ -213,7 +342,11 @@
},
"toast": {
"uploadFailed": "アップロード失敗",
"imageCopied": "画像をコピー"
"imageCopied": "画像をコピー",
"imageUploadFailed": "画像のアップロードに失敗しました",
"uploadFailedInvalidUploadDesc": "画像はPNGかJPGである必要があります。",
"sentToUpscale": "アップスケーラーに転送しました",
"imageUploaded": "画像をアップロードしました"
},
"accessibility": {
"invokeProgressBar": "進捗バー",
@@ -226,7 +359,10 @@
"resetUI": "$t(accessibility.reset) UI",
"mode": "モード:",
"about": "Invoke について",
"submitSupportTicket": "サポート依頼を送信する"
"submitSupportTicket": "サポート依頼を送信する",
"uploadImages": "画像をアップロード",
"toggleLeftPanel": "左パネルをトグル (T)",
"toggleRightPanel": "右パネルをトグル (G)"
},
"metadata": {
"Threshold": "ノイズ閾値",
@@ -237,7 +373,8 @@
"scheduler": "スケジューラー",
"positivePrompt": "ポジティブプロンプト",
"strength": "Image to Image 強度",
"recallParameters": "パラメータを呼び出す"
"recallParameters": "パラメータを再使用",
"recallParameter": "{{label}} を再使用"
},
"queue": {
"queueEmpty": "キューが空です",
@@ -297,14 +434,22 @@
"prune": "刈り込み",
"prompts_other": "プロンプト",
"iterations_other": "繰り返し",
"generations_other": "生成"
"generations_other": "生成",
"canvas": "キャンバス",
"workflows": "ワークフロー",
"upscaling": "アップスケール",
"generation": "生成",
"other": "その他",
"gallery": "ギャラリー"
},
"models": {
"noMatchingModels": "一致するモデルがありません",
"loading": "読み込み中",
"noMatchingLoRAs": "一致するLoRAがありません",
"noModelsAvailable": "使用可能なモデルがありません",
"selectModel": "モデルを選択してください"
"selectModel": "モデルを選択してください",
"concepts": "コンセプト",
"addLora": "LoRAを追加"
},
"nodes": {
"addNode": "ノードを追加",
@@ -339,7 +484,8 @@
"cannotConnectOutputToOutput": "出力から出力には接続できません",
"cannotConnectToSelf": "自身のノードには接続できません",
"colorCodeEdges": "カラー-Code Edges",
"loadingNodes": "ノードを読み込み中..."
"loadingNodes": "ノードを読み込み中...",
"scheduler": "スケジューラー"
},
"boards": {
"autoAddBoard": "自動追加するボード",
@@ -362,7 +508,18 @@
"deleteBoardAndImages": "ボードと画像の削除",
"deleteBoardOnly": "ボードのみ削除",
"deletedBoardsCannotbeRestored": "削除されたボードは復元できません",
"movingImagesToBoard_other": "{{count}} の画像をボードに移動:"
"movingImagesToBoard_other": "{{count}} の画像をボードに移動:",
"hideBoards": "ボードを隠す",
"assetsWithCount_other": "{{count}} のアセット",
"addPrivateBoard": "プライベートボードを追加",
"addSharedBoard": "共有ボードを追加",
"boards": "ボード",
"private": "プライベートボード",
"shared": "共有ボード",
"archiveBoard": "ボードをアーカイブ",
"archived": "アーカイブ完了",
"unarchiveBoard": "アーカイブされていないボード",
"imagesWithCount_other": "{{count}} の画像"
},
"invocationCache": {
"invocationCache": "呼び出しキャッシュ",
@@ -387,6 +544,33 @@
"paragraphs": [
"生成された画像の縦横比。"
]
},
"regionalGuidanceAndReferenceImage": {
"heading": "領域ガイダンスと領域参照画像"
},
"regionalReferenceImage": {
"heading": "領域参照画像"
},
"paramScheduler": {
"heading": "スケジューラー"
},
"regionalGuidance": {
"heading": "領域ガイダンス"
},
"rasterLayer": {
"heading": "ラスターレイヤー"
},
"globalReferenceImage": {
"heading": "全域参照画像"
},
"paramUpscaleMethod": {
"heading": "アップスケール手法"
},
"upscaleModel": {
"heading": "アップスケールモデル"
},
"paramAspect": {
"heading": "縦横比"
}
},
"accordions": {
@@ -427,5 +611,79 @@
"tabs": {
"queue": "キュー"
}
},
"controlLayers": {
"globalReferenceImage_withCount_other": "全域参照画像",
"regionalReferenceImage": "領域参照画像",
"saveLayerToAssets": "レイヤーをアセットに保存",
"global": "全域",
"inpaintMasks_withCount_hidden": "インペイントマスク ({{count}} hidden)",
"opacity": "透明度",
"canvasContextMenu": {
"newRegionalGuidance": "新規領域ガイダンス",
"bboxGroup": "バウンディングボックスから作成",
"cropCanvasToBbox": "キャンバスをバウンディングボックスでクロップ",
"newGlobalReferenceImage": "新規全域参照画像",
"newRegionalReferenceImage": "新規領域参照画像"
},
"regionalGuidance": "領域ガイダンス",
"globalReferenceImage": "全域参照画像",
"moveForward": "前面へ移動",
"copyInpaintMaskTo": "$t(controlLayers.inpaintMask) をコピー",
"transform": {
"fitToBbox": "バウンディングボックスにフィット",
"transform": "変形",
"apply": "適用",
"cancel": "キャンセル",
"reset": "リセット"
},
"cropLayerToBbox": "レイヤーをバウンディングボックスでクロップ",
"convertInpaintMaskTo": "$t(controlLayers.inpaintMask)を変換",
"regionalGuidance_withCount_other": "領域ガイダンス",
"tool": {
"colorPicker": "スポイト",
"brush": "ブラシ",
"rectangle": "矩形",
"move": "移動",
"eraser": "消しゴム"
},
"saveCanvasToGallery": "キャンバスをギャラリーに保存",
"saveBboxToGallery": "バウンディングボックスをギャラリーへ保存",
"moveToBack": "最背面へ移動",
"duplicate": "複製",
"addLayer": "レイヤーを追加",
"rasterLayer": "ラスターレイヤー",
"inpaintMasks_withCount_visible": "({{count}}) インペイントマスク",
"regional": "領域",
"rectangle": "矩形",
"moveBackward": "背面へ移動",
"moveToFront": "最前面へ移動",
"mergeDown": "レイヤーを統合",
"inpaintMask_withCount_other": "インペイントマスク",
"canvas": "キャンバス",
"fitBboxToLayers": "バウンディングボックスをレイヤーにフィット",
"removeBookmark": "ブックマークを外す",
"savedToGalleryOk": "ギャラリーに保存しました"
},
"stylePresets": {
"clearTemplateSelection": "選択したテンプレートをクリア",
"choosePromptTemplate": "プロンプトテンプレートを選択",
"myTemplates": "自分のテンプレート",
"flatten": "選択中のテンプレートをプロンプトに展開",
"uploadImage": "画像をアップロード",
"defaultTemplates": "デフォルトテンプレート",
"createPromptTemplate": "プロンプトテンプレートを作成",
"promptTemplateCleared": "プロンプトテンプレートをクリアしました",
"searchByName": "名前で検索",
"toggleViewMode": "表示モードを切り替え"
},
"upscaling": {
"upscaleModel": "アップスケールモデル",
"postProcessingModel": "ポストプロセスモデル",
"upscale": "アップスケール"
},
"sdxl": {
"denoisingStrength": "ノイズ除去強度",
"scheduler": "スケジューラー"
}
}

View File

@@ -230,16 +230,7 @@
"systemDisconnected": "Systeem is niet verbonden",
"missingNodeTemplate": "Knooppuntsjabloon ontbreekt",
"missingFieldTemplate": "Veldsjabloon ontbreekt",
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan",
"layer": {
"controlAdapterNoModelSelected": "geen controle-adaptermodel geselecteerd",
"controlAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor controle-adapter",
"ipAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor IP-adapter",
"ipAdapterNoImageSelected": "geen afbeelding voor IP-adapter geselecteerd",
"rgNoRegion": "geen gebied geselecteerd",
"rgNoPromptsOrIPAdapters": "geen tekstprompts of IP-adapters",
"ipAdapterNoModelSelected": "geen IP-adapter geselecteerd"
}
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan"
},
"patchmatchDownScaleSize": "Verklein",
"useCpuNoise": "Gebruik CPU-ruis",

View File

@@ -10,7 +10,24 @@
"load": "Załaduj",
"statusDisconnected": "Odłączono od serwera",
"githubLabel": "GitHub",
"discordLabel": "Discord"
"discordLabel": "Discord",
"clipboard": "Schowek",
"aboutDesc": "Wykorzystujesz Invoke do pracy? Sprawdź:",
"ai": "SI",
"areYouSure": "Czy jesteś pewien?",
"copyError": "$t(gallery.copy) Błąd",
"apply": "Zastosuj",
"copy": "Kopiuj",
"or": "albo",
"add": "Dodaj",
"off": "Wyłączony",
"accept": "Zaakceptuj",
"cancel": "Anuluj",
"advanced": "Zawansowane",
"back": "Do tyłu",
"auto": "Automatyczny",
"beta": "Beta",
"close": "Wyjdź"
},
"gallery": {
"galleryImageSize": "Rozmiar obrazów",
@@ -65,6 +82,42 @@
"uploadImage": "Wgrywanie obrazu",
"previousImage": "Poprzedni obraz",
"nextImage": "Następny obraz",
"menu": "Menu"
"menu": "Menu",
"mode": "Tryb"
},
"boards": {
"cancel": "Anuluj",
"noBoards": "Brak tablic typu {{boardType}}",
"imagesWithCount_one": "{{count}} zdjęcie",
"imagesWithCount_few": "{{count}} zdjęcia",
"imagesWithCount_many": "{{count}} zdjęcia",
"private": "Prywatne tablice",
"updateBoardError": "Błąd aktualizacji tablicy",
"uncategorized": "Nieskategoryzowane",
"selectBoard": "Wybierz tablicę",
"downloadBoard": "Pobierz tablice",
"loading": "Ładowanie...",
"move": "Przenieś",
"noMatching": "Brak pasujących tablic"
},
"accordions": {
"compositing": {
"title": "Kompozycja",
"infillTab": "Inskrypcja",
"coherenceTab": "Przebieg Koherencji"
},
"generation": {
"title": "Generowanie"
},
"image": {
"title": "Zdjęcie"
},
"advanced": {
"options": "$t(accordions.advanced.title) Opcje",
"title": "Zaawansowane"
},
"control": {
"title": "Kontrola"
}
}
}

View File

@@ -648,19 +648,6 @@
"missingFieldTemplate": "Отсутствует шаблон поля",
"addingImagesTo": "Добавление изображений в",
"invoke": "Создать",
"layer": {
"ipAdapterNoModelSelected": "IP адаптер не выбран",
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
"rgNoRegion": "регион не выбран",
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано",
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная ширина рамки {{width}}",
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, высота рамки {{height}}",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, ширина рамки {{width}}",
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная высота рамки {{height}}"
},
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), ширина рамки {{width}}",
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), высота рамки {{height}}",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), масштабированная высота рамки {{height}}",
@@ -1660,7 +1647,6 @@
"clearCaches": "Очистить кэши",
"recalculateRects": "Пересчитать прямоугольники",
"saveBboxToGallery": "Сохранить рамку в галерею",
"resetCanvas": "Сбросить холст",
"canvas": "Холст",
"global": "Глобальный",
"newGlobalReferenceImageError": "Проблема с созданием глобального эталонного изображения",

File diff suppressed because it is too large Load Diff

View File

@@ -96,7 +96,9 @@
"view": "视图",
"alpha": "透明度通道",
"openInViewer": "在查看器中打开",
"clipboard": "剪贴板"
"clipboard": "剪贴板",
"loadingModel": "加载模型",
"generating": "生成中"
},
"gallery": {
"galleryImageSize": "预览大小",
@@ -587,7 +589,27 @@
"huggingFace": "HuggingFace",
"hfTokenInvalid": "HF 令牌无效或缺失",
"hfTokenLabel": "HuggingFace 令牌(某些模型所需)",
"hfTokenHelperText": "使用某些模型需要 HF 令牌。点击这里创建或获取你的令牌。"
"hfTokenHelperText": "使用某些模型需要 HF 令牌。点击这里创建或获取你的令牌。",
"includesNModels": "包括 {{n}} 个模型及其依赖项",
"starterBundles": "启动器包",
"learnMoreAboutSupportedModels": "了解更多关于我们支持的模型的信息",
"hfForbidden": "您没有权限访问这个 HF 模型",
"hfTokenInvalidErrorMessage": "无效或缺失 HuggingFace 令牌。",
"hfTokenRequired": "您正在尝试下载一个需要有效 HuggingFace 令牌的模型。",
"hfTokenSaved": "HF 令牌已保存",
"hfForbiddenErrorMessage": "我们建议访问 HuggingFace.com 上的仓库页面。所有者可能要求您接受条款才能下载。",
"hfTokenUnableToVerifyErrorMessage": "无法验证 HuggingFace 令牌。这可能是由于网络错误导致的。请稍后再试。",
"hfTokenInvalidErrorMessage2": "在这里更新它。 ",
"hfTokenUnableToVerify": "无法验证 HF 令牌",
"skippingXDuplicates_other": "跳过 {{count}} 个重复项",
"starterBundleHelpText": "轻松安装所有用于启动基础模型所需的模型包括主模型、ControlNets、IP适配器等。选择一个安装包时会跳过已安装的模型。",
"installingBundle": "正在安装模型包",
"installingModel": "正在安装模型",
"installingXModels_other": "正在安装 {{count}} 个模型",
"t5Encoder": "T5 编码器",
"clipLEmbed": "CLIP-L 嵌入",
"clipGEmbed": "CLIP-G 嵌入",
"loraModels": "LoRAs低秩适配"
},
"parameters": {
"images": "图像",
@@ -639,15 +661,17 @@
"missingFieldTemplate": "缺失模板",
"addingImagesTo": "添加图像到",
"noPrompts": "没有已生成的提示词",
"layer": {
"ipAdapterNoModelSelected": "未选择IP adapter",
"controlAdapterNoModelSelected": "未选择Control Adapter模型",
"rgNoPromptsOrIPAdapters": "无文本提示或IP Adapters",
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
"rgNoRegion": "未选择区域"
}
"canvasIsFiltering": "画布正在过滤",
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16),缩放后的边界框高度为 {{height}}",
"noCLIPEmbedModelSelected": "未为FLUX生成选择CLIP嵌入模型",
"noFLUXVAEModelSelected": "未为FLUX生成选择VAE模型",
"canvasIsRasterizing": "画布正在栅格化",
"canvasIsCompositing": "画布正在合成",
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16),边界框宽度为 {{width}}",
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16),缩放后的边界框宽度为 {{width}}",
"noT5EncoderModelSelected": "未为FLUX生成选择T5编码器模型",
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16),边界框高度为 {{height}}",
"canvasIsTransforming": "画布正在变换"
},
"patchmatchDownScaleSize": "缩小",
"clipSkip": "CLIP 跳过层",
@@ -669,7 +693,15 @@
"sendToUpscale": "发送到放大",
"processImage": "处理图像",
"infillColorValue": "填充颜色",
"coherenceMinDenoise": "最小去噪"
"coherenceMinDenoise": "最小去噪",
"sendToCanvas": "发送到画布",
"disabledNoRasterContent": "已禁用(无栅格内容)",
"optimizedImageToImage": "优化的图生图",
"guidance": "引导",
"gaussianBlur": "高斯模糊",
"recallMetadata": "调用元数据",
"boxBlur": "方框模糊",
"staged": "已分阶段处理"
},
"settings": {
"models": "模型",
@@ -699,7 +731,12 @@
"enableInformationalPopovers": "启用信息弹窗",
"reloadingIn": "重新加载中",
"informationalPopoversDisabled": "信息提示框已禁用",
"informationalPopoversDisabledDesc": "信息提示框已被禁用.请在设置中重新启用."
"informationalPopoversDisabledDesc": "信息提示框已被禁用.请在设置中重新启用.",
"enableModelDescriptions": "在下拉菜单中启用模型描述",
"confirmOnNewSession": "新会话时确认",
"modelDescriptionsDisabledDesc": "下拉菜单中的模型描述已被禁用。可在设置中启用。",
"modelDescriptionsDisabled": "下拉菜单中的模型描述已禁用",
"showDetailedInvocationProgress": "显示进度详情"
},
"toast": {
"uploadFailed": "上传失败",
@@ -740,7 +777,24 @@
"errorCopied": "错误信息已复制",
"modelImportCanceled": "模型导入已取消",
"importFailed": "导入失败",
"importSuccessful": "导入成功"
"importSuccessful": "导入成功",
"layerSavedToAssets": "图层已保存到资产",
"sentToUpscale": "已发送到放大处理",
"addedToUncategorized": "已添加到看板 $t(boards.uncategorized) 的资产中",
"linkCopied": "链接已复制",
"uploadFailedInvalidUploadDesc_withCount_other": "最多只能上传 {{count}} 张 PNG 或 JPEG 图像。",
"problemSavingLayer": "无法保存图层",
"unableToLoadImage": "无法加载图像",
"imageNotLoadedDesc": "无法找到图像",
"unableToLoadStylePreset": "无法加载样式预设",
"stylePresetLoaded": "样式预设已加载",
"problemCopyingLayer": "无法复制图层",
"sentToCanvas": "已发送到画布",
"unableToLoadImageMetadata": "无法加载图像元数据",
"imageSaved": "图像已保存",
"imageSavingFailed": "图像保存失败",
"layerCopiedToClipboard": "图层已复制到剪贴板",
"imagesWillBeAddedTo": "上传的图像将添加到看板 {{boardName}} 的资产中。"
},
"accessibility": {
"invokeProgressBar": "Invoke 进度条",
@@ -890,7 +944,12 @@
"clearWorkflow": "清除工作流",
"imageAccessError": "无法找到图像 {{image_name}},正在恢复默认设置",
"boardAccessError": "无法找到面板 {{board_id}},正在恢复默认设置",
"modelAccessError": "无法找到模型 {{key}},正在恢复默认设置"
"modelAccessError": "无法找到模型 {{key}},正在恢复默认设置",
"noWorkflows": "无工作流程",
"workflowHelpText": "需要帮助?请查看我们的《<LinkComponent>工作流程入门指南</LinkComponent>》。",
"noMatchingWorkflows": "无匹配的工作流程",
"saveToGallery": "保存到图库",
"singleFieldType": "{{name}}(单一模型)"
},
"queue": {
"status": "状态",
@@ -1221,7 +1280,8 @@
"heading": "去噪强度",
"paragraphs": [
"为输入图像添加的噪声量。",
"输入 0 会导致结果图像和输入完全相同,输入 1 则会生成全新的图像。"
"输入 0 会导致结果图像和输入完全相同,输入 1 则会生成全新的图像。",
"当没有具有可见内容的栅格图层时,此设置将被忽略。"
]
},
"paramSeed": {
@@ -1410,7 +1470,8 @@
"paragraphs": [
"控制提示对生成过程的影响程度.",
"与生成CFG Scale相似."
]
],
"heading": "CFG比例"
},
"structure": {
"heading": "结构",
@@ -1441,6 +1502,62 @@
"paragraphs": [
"比例控制决定了输出图像的大小,它是基于输入图像分辨率的倍数来计算的.例如对一张1024x1024的图像进行2倍上采样将会得到一张2048x2048的输出图像."
]
},
"globalReferenceImage": {
"heading": "全局参考图像",
"paragraphs": [
"应用参考图像以影响整个生成过程。"
]
},
"rasterLayer": {
"paragraphs": [
"画布的基于像素的内容,用于图像生成过程。"
],
"heading": "栅格图层"
},
"regionalGuidanceAndReferenceImage": {
"paragraphs": [
"对于区域引导,使用画笔引导全局提示中的元素应出现的位置。",
"对于区域参考图像,使用画笔将参考图像应用到特定区域。"
],
"heading": "区域引导与区域参考图像"
},
"regionalReferenceImage": {
"heading": "区域参考图像",
"paragraphs": [
"使用画笔将参考图像应用到特定区域。"
]
},
"optimizedDenoising": {
"heading": "优化的图生图",
"paragraphs": [
"启用‘优化的图生图’功能,可在使用 Flux 模型进行图生图和图像修复转换时提供更平滑的降噪强度调节。此设置可以提高对图像变化程度的控制能力,但如果您更倾向于使用标准的降噪强度调节方式,也可以关闭此功能。该设置仍在优化中,目前处于测试阶段。"
]
},
"inpainting": {
"paragraphs": [
"控制由降噪强度引导的修改区域。"
],
"heading": "图像重绘"
},
"regionalGuidance": {
"heading": "区域引导",
"paragraphs": [
"使用画笔引导全局提示中的元素应出现的位置。"
]
},
"fluxDevLicense": {
"heading": "非商业许可",
"paragraphs": [
"FLUX.1 [dev] 模型受 FLUX [dev] 非商业许可协议的约束。如需在 Invoke 中将此模型类型用于商业目的,请访问我们的网站了解更多信息。"
]
},
"paramGuidance": {
"paragraphs": [
"控制提示对生成过程的影响程度。",
"较高的引导值可能导致过度饱和而过高或过低的引导值可能导致生成结果失真。引导仅适用于FLUX DEV模型。"
],
"heading": "引导"
}
},
"invocationCache": {
@@ -1503,7 +1620,18 @@
"convertGraph": "转换图表",
"loadWorkflow": "$t(common.load) 工作流",
"loadFromGraph": "从图表加载工作流",
"autoLayout": "自动布局"
"autoLayout": "自动布局",
"edit": "编辑",
"copyShareLinkForWorkflow": "复制工作流程的分享链接",
"delete": "删除",
"download": "下载",
"defaultWorkflows": "默认工作流程",
"userWorkflows": "用户工作流程",
"projectWorkflows": "项目工作流程",
"copyShareLink": "复制分享链接",
"chooseWorkflowFromLibrary": "从库中选择工作流程",
"uploadAndSaveWorkflow": "上传到库",
"deleteWorkflow2": "您确定要删除此工作流程吗?此操作无法撤销。"
},
"accordions": {
"compositing": {
@@ -1542,7 +1670,108 @@
"addPositivePrompt": "添加 $t(controlLayers.prompt)",
"addNegativePrompt": "添加 $t(controlLayers.negativePrompt)",
"rectangle": "矩形",
"opacity": "透明度"
"opacity": "透明度",
"canvas": "画布",
"fitBboxToLayers": "将边界框适配到图层",
"cropLayerToBbox": "将图层裁剪到边界框",
"saveBboxToGallery": "将边界框保存到图库",
"savedToGalleryOk": "已保存到图库",
"saveLayerToAssets": "将图层保存到资产",
"removeBookmark": "移除书签",
"regional": "区域",
"saveCanvasToGallery": "将画布保存到图库",
"global": "全局",
"bookmark": "添加书签以快速切换",
"regionalReferenceImage": "局部参考图像",
"mergingLayers": "正在合并图层",
"newControlLayerError": "创建控制层时出现问题",
"pullBboxIntoReferenceImageError": "将边界框导入参考图像时出现问题",
"mergeVisibleOk": "已合并图层",
"maskFill": "遮罩填充",
"newCanvasFromImage": "从图像创建新画布",
"pullBboxIntoReferenceImageOk": "边界框已导入到参考图像",
"globalReferenceImage_withCount_other": "全局参考图像",
"addInpaintMask": "添加 $t(controlLayers.inpaintMask)",
"referenceImage": "参考图像",
"globalReferenceImage": "全局参考图像",
"newRegionalGuidance": "新建 $t(controlLayers.regionalGuidance)",
"savedToGalleryError": "保存到图库时出错",
"copyRasterLayerTo": "复制 $t(controlLayers.rasterLayer) 到",
"clearHistory": "清除历史记录",
"inpaintMask": "修复遮罩",
"regionalGuidance_withCount_visible": "区域引导({{count}} 个)",
"inpaintMasks_withCount_hidden": "修复遮罩({{count}} 个已隐藏)",
"enableAutoNegative": "启用自动负面提示",
"disableAutoNegative": "禁用自动负面提示",
"deleteReferenceImage": "删除参考图像",
"sendToCanvas": "发送到画布",
"controlLayers_withCount_visible": "控制图层({{count}} 个)",
"rasterLayers_withCount_visible": "栅格图层({{count}} 个)",
"convertRegionalGuidanceTo": "将 $t(controlLayers.regionalGuidance) 转换为",
"newInpaintMask": "新建 $t(controlLayers.inpaintMask)",
"regionIsEmpty": "选定区域为空",
"mergeVisible": "合并可见图层",
"showHUD": "显示 HUD抬头显示",
"newLayerFromImage": "从图像创建新图层",
"layer_other": "图层",
"transparency": "透明度",
"addRasterLayer": "添加 $t(controlLayers.rasterLayer)",
"newRasterLayerOk": "已创建栅格层",
"newRasterLayerError": "创建栅格层时出现问题",
"inpaintMasks_withCount_visible": "修复遮罩({{count}} 个)",
"convertRasterLayerTo": "将 $t(controlLayers.rasterLayer) 转换为",
"copyControlLayerTo": "复制 $t(controlLayers.controlLayer) 到",
"copyInpaintMaskTo": "复制 $t(controlLayers.inpaintMask) 到",
"copyRegionalGuidanceTo": "复制 $t(controlLayers.regionalGuidance) 到",
"newRasterLayer": "新建 $t(controlLayers.rasterLayer)",
"newControlLayer": "新建 $t(controlLayers.controlLayer)",
"newImg2ImgCanvasFromImage": "从图像创建新的图生图",
"rasterLayer": "栅格层",
"controlLayer": "控制层",
"outputOnlyMaskedRegions": "仅输出生成的区域",
"addControlLayer": "添加 $t(controlLayers.controlLayer)",
"newGlobalReferenceImageOk": "已创建全局参考图像",
"newGlobalReferenceImageError": "创建全局参考图像时出现问题",
"newRegionalReferenceImageOk": "已创建局部参考图像",
"newControlLayerOk": "已创建控制层",
"mergeVisibleError": "合并图层时出错",
"bboxOverlay": "显示边界框覆盖层",
"clipToBbox": "将Clip限制到边界框",
"width": "宽度",
"addGlobalReferenceImage": "添加 $t(controlLayers.globalReferenceImage)",
"inpaintMask_withCount_other": "修复遮罩",
"regionalGuidance_withCount_other": "区域引导",
"newRegionalReferenceImageError": "创建局部参考图像时出现问题",
"pullBboxIntoLayerError": "将边界框导入图层时出现问题",
"pullBboxIntoLayerOk": "边界框已导入到图层",
"sendToCanvasDesc": "按下“Invoke”按钮会将您的工作进度暂存到画布上。",
"sendToGallery": "发送到图库",
"sendToGalleryDesc": "按下“Invoke”键会生成并保存一张唯一的图像到您的图库中。",
"rasterLayer_withCount_other": "栅格图层",
"mergeDown": "向下合并",
"clearCaches": "清除缓存",
"recalculateRects": "重新计算矩形",
"duplicate": "复制",
"regionalGuidance_withCount_hidden": "区域引导({{count}} 个已隐藏)",
"convertControlLayerTo": "将 $t(controlLayers.controlLayer) 转换为",
"convertInpaintMaskTo": "将 $t(controlLayers.inpaintMask) 转换为",
"viewProgressInViewer": "在 <Btn>图像查看器</Btn> 中查看进度和输出结果。",
"viewProgressOnCanvas": "在 <Btn>画布</Btn> 上查看进度和暂存的输出内容。",
"sendingToGallery": "将生成内容发送到图库",
"copyToClipboard": "复制到剪贴板",
"controlLayer_withCount_other": "控制图层",
"sendingToCanvas": "在画布上准备生成",
"addReferenceImage": "添加 $t(controlLayers.referenceImage)",
"addRegionalGuidance": "添加 $t(controlLayers.regionalGuidance)",
"controlLayers_withCount_hidden": "控制图层({{count}} 个已隐藏)",
"rasterLayers_withCount_hidden": "栅格图层({{count}} 个已隐藏)",
"globalReferenceImages_withCount_hidden": "全局参考图像({{count}} 个已隐藏)",
"globalReferenceImages_withCount_visible": "全局参考图像({{count}} 个)",
"layer_withCount_other": "图层({{count}} 个)",
"enableTransparencyEffect": "启用透明效果",
"disableTransparencyEffect": "禁用透明效果",
"hidingType": "隐藏 {{type}}",
"showingType": "显示 {{type}}"
},
"ui": {
"tabs": {

View File

@@ -8,10 +8,8 @@ import { useSyncLoggingConfig } from 'app/logging/useSyncLoggingConfig';
import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import type { PartialAppConfig } from 'app/types/invokeai';
import ImageUploadOverlay from 'common/components/ImageUploadOverlay';
import { useFocusRegionWatcher } from 'common/hooks/focus';
import { useClearStorage } from 'common/hooks/useClearStorage';
import { useFullscreenDropzone } from 'common/hooks/useFullscreenDropzone';
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal';
import {
@@ -19,6 +17,7 @@ import {
NewGallerySessionDialog,
} from 'features/controlLayers/components/NewSessionConfirmationAlertDialog';
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import { FullscreenDropzone } from 'features/dnd/FullscreenDropzone';
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
import DeleteBoardModal from 'features/gallery/components/Boards/DeleteBoardModal';
import { ImageContextMenu } from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
@@ -28,6 +27,7 @@ import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/Cl
import { DeleteStylePresetDialog } from 'features/stylePresets/components/DeleteStylePresetDialog';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import RefreshAfterResetModal from 'features/system/components/SettingsModal/RefreshAfterResetModal';
import { VideosModal } from 'features/system/components/VideosModal/VideosModal';
import { configChanged } from 'features/system/store/configSlice';
import { selectLanguage } from 'features/system/store/systemSelectors';
import { AppContent } from 'features/ui/components/AppContent';
@@ -62,8 +62,6 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
useGetOpenAPISchemaQuery();
useSyncLoggingConfig();
const { dropzone, isHandlingUpload, setIsHandlingUpload } = useFullscreenDropzone();
const handleReset = useCallback(() => {
clearStorage();
location.reload();
@@ -92,19 +90,8 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
return (
<ErrorBoundary onReset={handleReset} FallbackComponent={AppErrorBoundaryFallback}>
<Box
id="invoke-app-wrapper"
w="100dvw"
h="100dvh"
position="relative"
overflow="hidden"
{...dropzone.getRootProps()}
>
<input {...dropzone.getInputProps()} />
<Box id="invoke-app-wrapper" w="100dvw" h="100dvh" position="relative" overflow="hidden">
<AppContent />
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
)}
</Box>
<DeleteImageModal />
<ChangeBoardModal />
@@ -121,6 +108,8 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
<NewGallerySessionDialog />
<NewCanvasSessionDialog />
<ImageContextMenu />
<FullscreenDropzone />
<VideosModal />
</ErrorBoundary>
);
};

View File

@@ -1,4 +1,3 @@
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppSelector } from 'app/store/storeHooks';
import { useIsRegionFocused } from 'common/hooks/focus';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
@@ -8,13 +7,11 @@ import { selectLastSelectedImage } from 'features/gallery/store/gallerySelectors
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { memo } from 'react';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
export const GlobalImageHotkeys = memo(() => {
useAssertSingleton('GlobalImageHotkeys');
const lastSelectedImage = useAppSelector(selectLastSelectedImage);
const { currentData: imageDTO } = useGetImageDTOQuery(lastSelectedImage?.image_name ?? skipToken);
const imageDTO = useAppSelector(selectLastSelectedImage);
if (!imageDTO) {
return null;

View File

@@ -19,7 +19,6 @@ import { $workflowCategories } from 'app/store/nanostores/workflowCategories';
import { createStore } from 'app/store/store';
import type { PartialAppConfig } from 'app/types/invokeai';
import Loading from 'common/components/Loading/Loading';
import AppDndContext from 'features/dnd/components/AppDndContext';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useLayoutEffect, useMemo } from 'react';
@@ -237,9 +236,7 @@ const InvokeAIUI = ({
<Provider store={store}>
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<AppDndContext>
<App config={config} studioInitAction={studioInitAction} />
</AppDndContext>
<App config={config} studioInitAction={studioInitAction} />
</ThemeLocaleProvider>
</React.Suspense>
</Provider>

View File

@@ -1,3 +1,4 @@
import { useStore } from '@nanostores/react';
import { useAppStore } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { withResultAsync } from 'common/util/result';
@@ -9,6 +10,7 @@ import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import { $imageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { sentImageToCanvas } from 'features/gallery/store/actions';
import { parseAndRecallAllMetadata } from 'features/metadata/util/handlers';
import { $hasTemplates } from 'features/nodes/store/nodesSlice';
import { $isWorkflowListMenuIsOpen } from 'features/nodes/store/workflowListMenu';
import { $isStylePresetsMenuOpen, activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { toast } from 'features/toast/toast';
@@ -51,6 +53,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
const { t } = useTranslation();
// Use a ref to ensure that we only perform the action once
const didInit = useRef(false);
const didParseOpenAPISchema = useStore($hasTemplates);
const store = useAppStore();
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
@@ -174,7 +177,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
);
useEffect(() => {
if (didInit.current || !action) {
if (didInit.current || !action || !didParseOpenAPISchema) {
return;
}
@@ -187,22 +190,29 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
case 'selectStylePreset':
handleSelectStylePreset(action.data.stylePresetId);
break;
case 'sendToCanvas':
handleSendToCanvas(action.data.imageName);
break;
case 'useAllParameters':
handleUseAllMetadata(action.data.imageName);
break;
case 'goToDestination':
handleGoToDestination(action.data.destination);
break;
default:
break;
}
}, [
handleSendToCanvas,
handleUseAllMetadata,
action,
handleLoadWorkflow,
handleSelectStylePreset,
handleGoToDestination,
handleLoadWorkflow,
didParseOpenAPISchema,
]);
};

View File

@@ -17,6 +17,7 @@ const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
export const zLogNamespace = z.enum([
'canvas',
'config',
'dnd',
'events',
'gallery',
'generation',

View File

@@ -1,4 +1,3 @@
export const STORAGE_PREFIX = '@@invokeai-';
export const EMPTY_ARRAY = [];
/** @knipignore */
export const EMPTY_OBJECT = {};

View File

@@ -16,7 +16,6 @@ import { addGalleryOffsetChangedListener } from 'app/store/middleware/listenerMi
import { addGetOpenAPISchemaListener } from 'app/store/middleware/listenerMiddleware/listeners/getOpenAPISchema';
import { addImageAddedToBoardFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/imageAddedToBoard';
import { addImageDeletionListeners } from 'app/store/middleware/listenerMiddleware/listeners/imageDeletionListeners';
import { addImageDroppedListener } from 'app/store/middleware/listenerMiddleware/listeners/imageDropped';
import { addImageRemovedFromBoardFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/imageRemovedFromBoard';
import { addImagesStarredListener } from 'app/store/middleware/listenerMiddleware/listeners/imagesStarred';
import { addImagesUnstarredListener } from 'app/store/middleware/listenerMiddleware/listeners/imagesUnstarred';
@@ -93,9 +92,6 @@ addGetOpenAPISchemaListener(startAppListening);
addWorkflowLoadRequestedListener(startAppListening);
addUpdateAllNodesRequestedListener(startAppListening);
// DND
addImageDroppedListener(startAppListening);
// Models
addModelSelectedListener(startAppListening);

View File

@@ -1,12 +1,12 @@
import { createAction } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { buildAdHocPostProcessingGraph } from 'features/nodes/util/graph/buildAdHocPostProcessingGraph';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO } from 'services/api/types';
import type { JsonObject } from 'type-fest';
const log = logger('queue');
@@ -32,16 +32,14 @@ export const addAdHocPostProcessingRequestedListener = (startAppListening: AppSt
try {
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, enqueueMutationFixedCacheKeyOptions)
);
const enqueueResult = await req.unwrap();
req.reset();
log.debug({ enqueueResult } as SerializableObject, t('queue.graphQueued'));
log.debug({ enqueueResult } as JsonObject, t('queue.graphQueued'));
} catch (error) {
log.error({ enqueueBatchArg } as SerializableObject, t('queue.graphFailedToQueue'));
log.error({ enqueueBatchArg } as JsonObject, t('queue.graphFailedToQueue'));
if (error instanceof Object && 'status' in error && error.status === 403) {
return;

View File

@@ -1,12 +1,12 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { truncate, upperFirst } from 'lodash-es';
import { serializeError } from 'serialize-error';
import { queueApi } from 'services/api/endpoints/queue';
import type { JsonObject } from 'type-fest';
const log = logger('queue');
@@ -17,7 +17,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
effect: (action) => {
const enqueueResult = action.payload;
const arg = action.meta.arg.originalArgs;
log.debug({ enqueueResult } as SerializableObject, 'Batch enqueued');
log.debug({ enqueueResult } as JsonObject, 'Batch enqueued');
toast({
id: 'QUEUE_BATCH_SUCCEEDED',
@@ -45,7 +45,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
status: 'error',
description: t('common.unknownError'),
});
log.error({ batchConfig } as SerializableObject, t('queue.batchFailedToQueue'));
log.error({ batchConfig } as JsonObject, t('queue.batchFailedToQueue'));
return;
}
@@ -71,7 +71,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
description: t('common.unknownError'),
});
}
log.error({ batchConfig, error: serializeError(response) } as SerializableObject, t('queue.batchFailedToQueue'));
log.error({ batchConfig, error: serializeError(response) } as JsonObject, t('queue.batchFailedToQueue'));
},
});
};

View File

@@ -1,19 +1,22 @@
import { logger } from 'app/logging/logger';
import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { extractMessageFromAssertionError } from 'common/util/extractMessageFromAssertionError';
import type { Result } from 'common/util/result';
import { withResult, withResultAsync } from 'common/util/result';
import { $canvasManager } from 'features/controlLayers/store/ephemeral';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildFLUXGraph } from 'features/nodes/util/graph/generation/buildFLUXGraph';
import { buildSD1Graph } from 'features/nodes/util/graph/generation/buildSD1Graph';
import { buildSD3Graph } from 'features/nodes/util/graph/generation/buildSD3Graph';
import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGraph';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { toast } from 'features/toast/toast';
import { serializeError } from 'serialize-error';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { Invocation } from 'services/api/types';
import { assert } from 'tsafe';
import { assert, AssertionError } from 'tsafe';
import type { JsonObject } from 'type-fest';
const log = logger('generation');
@@ -32,8 +35,8 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
let buildGraphResult: Result<
{
g: Graph;
noise: Invocation<'noise' | 'flux_denoise'>;
posCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
noise: Invocation<'noise' | 'flux_denoise' | 'sd3_denoise'>;
posCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder' | 'sd3_text_encoder'>;
},
Error
>;
@@ -49,6 +52,9 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
case `sd-2`:
buildGraphResult = await withResultAsync(() => buildSD1Graph(state, manager));
break;
case `sd-3`:
buildGraphResult = await withResultAsync(() => buildSD3Graph(state, manager));
break;
case `flux`:
buildGraphResult = await withResultAsync(() => buildFLUXGraph(state, manager));
break;
@@ -57,7 +63,17 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
}
if (buildGraphResult.isErr()) {
log.error({ error: serializeError(buildGraphResult.error) }, 'Failed to build graph');
let description: string | null = null;
if (buildGraphResult.error instanceof AssertionError) {
description = extractMessageFromAssertionError(buildGraphResult.error);
}
const error = serializeError(buildGraphResult.error);
log.error({ error }, 'Failed to build graph');
toast({
status: 'error',
title: 'Failed to build graph',
description,
});
return;
}
@@ -75,9 +91,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
}
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, {
fixedCacheKey: 'enqueueBatch',
})
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, enqueueMutationFixedCacheKeyOptions)
);
req.reset();
@@ -88,7 +102,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
return;
}
log.debug({ batchConfig: prepareBatchResult.value } as SerializableObject, 'Enqueued batch');
log.debug({ batchConfig: prepareBatchResult.value } as JsonObject, 'Enqueued batch');
},
});
};

View File

@@ -1,10 +1,15 @@
import { logger } from 'app/logging/logger';
import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { selectNodesSlice } from 'features/nodes/store/selectors';
import { isImageFieldCollectionInputInstance } from 'features/nodes/types/field';
import { isInvocationNode } from 'features/nodes/types/invocation';
import { buildNodesGraph } from 'features/nodes/util/graph/buildNodesGraph';
import { buildWorkflowWithValidation } from 'features/nodes/util/workflow/buildWorkflow';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig } from 'services/api/types';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { Batch, BatchConfig } from 'services/api/types';
const log = logger('workflows');
export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) => {
startAppListening({
@@ -26,6 +31,33 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
delete builtWorkflow.id;
}
const data: Batch['data'] = [];
// Skip edges from batch nodes - these should not be in the graph, they exist only in the UI
const imageBatchNodes = nodes.nodes.filter(isInvocationNode).filter((node) => node.data.type === 'image_batch');
for (const node of imageBatchNodes) {
const images = node.data.inputs['images'];
if (!isImageFieldCollectionInputInstance(images)) {
log.warn({ nodeId: node.id }, 'Image batch images field is not an image collection');
break;
}
const edgesFromImageBatch = nodes.edges.filter((e) => e.source === node.id && e.sourceHandle === 'image');
const batchDataCollectionItem: NonNullable<Batch['data']>[number] = [];
for (const edge of edgesFromImageBatch) {
if (!edge.targetHandle) {
break;
}
batchDataCollectionItem.push({
node_path: edge.target,
field_name: edge.targetHandle,
items: images.value,
});
}
if (batchDataCollectionItem.length > 0) {
data.push(batchDataCollectionItem);
}
}
const batchConfig: BatchConfig = {
batch: {
graph,
@@ -33,15 +65,12 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
runs: state.params.iterations,
origin: 'workflows',
destination: 'gallery',
data,
},
prepend: action.payload.prepend,
};
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
try {
await req.unwrap();
} finally {

View File

@@ -2,7 +2,7 @@ import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildMultidiffusionUpscaleGraph } from 'features/nodes/util/graph/buildMultidiffusionUpscaleGraph';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening) => {
startAppListening({
@@ -16,11 +16,7 @@ export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening)
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond, 'upscaling', 'gallery');
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
try {
await req.unwrap();
} finally {

View File

@@ -1,12 +1,12 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { SerializableObject } from 'common/types';
import { parseify } from 'common/util/serialize';
import { $templates } from 'features/nodes/store/nodesSlice';
import { parseSchema } from 'features/nodes/util/schema/parseSchema';
import { size } from 'lodash-es';
import { serializeError } from 'serialize-error';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import type { JsonObject } from 'type-fest';
const log = logger('system');
@@ -16,12 +16,12 @@ export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening
effect: (action, { getState }) => {
const schemaJSON = action.payload;
log.debug({ schemaJSON: parseify(schemaJSON) } as SerializableObject, 'Received OpenAPI schema');
log.debug({ schemaJSON: parseify(schemaJSON) } as JsonObject, 'Received OpenAPI schema');
const { nodesAllowlist, nodesDenylist } = getState().config;
const nodeTemplates = parseSchema(schemaJSON, nodesAllowlist, nodesDenylist);
log.debug({ nodeTemplates } as SerializableObject, `Built ${size(nodeTemplates)} node templates`);
log.debug({ nodeTemplates } as JsonObject, `Built ${size(nodeTemplates)} node templates`);
$templates.set(nodeTemplates);
},

View File

@@ -1,333 +0,0 @@
import { createAction } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import {
controlLayerAdded,
entityRasterized,
entitySelected,
inpaintMaskAdded,
rasterLayerAdded,
referenceImageAdded,
referenceImageIPAdapterImageChanged,
rgAdded,
rgIPAdapterImageChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import type {
CanvasControlLayerState,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
} from 'features/controlLayers/store/types';
import { imageDTOToImageObject, imageDTOToImageWithDims, initialControlNet } from 'features/controlLayers/store/util';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { isValidDrop } from 'features/dnd/util/isValidDrop';
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { upscaleInitialImageChanged } from 'features/parameters/store/upscaleSlice';
import { imagesApi } from 'services/api/endpoints/images';
export const dndDropped = createAction<{
overData: TypesafeDroppableData;
activeData: TypesafeDraggableData;
}>('dnd/dndDropped');
const log = logger('system');
export const addImageDroppedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: dndDropped,
effect: (action, { dispatch, getState }) => {
const { activeData, overData } = action.payload;
if (!isValidDrop(overData, activeData)) {
return;
}
if (activeData.payloadType === 'IMAGE_DTO') {
log.debug({ activeData, overData }, 'Image dropped');
} else if (activeData.payloadType === 'GALLERY_SELECTION') {
log.debug({ activeData, overData }, `Images (${getState().gallery.selection.length}) dropped`);
} else if (activeData.payloadType === 'NODE_FIELD') {
log.debug({ activeData, overData }, 'Node field dropped');
} else {
log.debug({ activeData, overData }, `Unknown payload dropped`);
}
/**
* Image dropped on IP Adapter Layer
*/
if (
overData.actionType === 'SET_IPA_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { id } = overData.context;
dispatch(
referenceImageIPAdapterImageChanged({
entityIdentifier: { id, type: 'reference_image' },
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on RG Layer IP Adapter
*/
if (
overData.actionType === 'SET_RG_IP_ADAPTER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { id, referenceImageId } = overData.context;
dispatch(
rgIPAdapterImageChanged({
entityIdentifier: { id, type: 'regional_guidance' },
referenceImageId,
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on Raster layer
*/
if (
overData.actionType === 'ADD_RASTER_LAYER_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasRasterLayerState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(rasterLayerAdded({ overrides, isSelected: true }));
return;
}
/**
/**
* Image dropped on Inpaint Mask
*/
if (
overData.actionType === 'ADD_INPAINT_MASK_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasInpaintMaskState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(inpaintMaskAdded({ overrides, isSelected: true }));
return;
}
/**
/**
* Image dropped on Regional Guidance
*/
if (
overData.actionType === 'ADD_REGIONAL_GUIDANCE_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasRegionalGuidanceState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(rgAdded({ overrides, isSelected: true }));
return;
}
/**
* Image dropped on Raster layer
*/
if (
overData.actionType === 'ADD_CONTROL_LAYER_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const state = getState();
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(state).bbox.rect;
const overrides: Partial<CanvasControlLayerState> = {
objects: [imageObject],
position: { x, y },
controlAdapter: deepClone(initialControlNet),
};
dispatch(controlLayerAdded({ overrides, isSelected: true }));
return;
}
if (
overData.actionType === 'ADD_REGIONAL_REFERENCE_IMAGE_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const state = getState();
const ipAdapter = deepClone(selectDefaultIPAdapter(state));
ipAdapter.image = imageDTOToImageWithDims(activeData.payload.imageDTO);
const overrides: Partial<CanvasRegionalGuidanceState> = {
referenceImages: [{ id: getPrefixedId('regional_guidance_reference_image'), ipAdapter }],
};
dispatch(rgAdded({ overrides, isSelected: true }));
return;
}
if (
overData.actionType === 'ADD_GLOBAL_REFERENCE_IMAGE_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const state = getState();
const ipAdapter = deepClone(selectDefaultIPAdapter(state));
ipAdapter.image = imageDTOToImageWithDims(activeData.payload.imageDTO);
const overrides: Partial<CanvasReferenceImageState> = {
ipAdapter,
};
dispatch(referenceImageAdded({ overrides, isSelected: true }));
return;
}
/**
* Image dropped on Raster layer
*/
if (overData.actionType === 'REPLACE_LAYER_WITH_IMAGE' && activeData.payloadType === 'IMAGE_DTO') {
const state = getState();
const { entityIdentifier } = overData.context;
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(state).bbox.rect;
dispatch(entityRasterized({ entityIdentifier, imageObject, position: { x, y }, replaceObjects: true }));
dispatch(entitySelected({ entityIdentifier }));
return;
}
/**
* Image dropped on node image field
*/
if (
overData.actionType === 'SET_NODES_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { fieldName, nodeId } = overData.context;
dispatch(
fieldImageValueChanged({
nodeId,
fieldName,
value: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image selected for compare
*/
if (
overData.actionType === 'SELECT_FOR_COMPARE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
dispatch(imageToCompareChanged(imageDTO));
return;
}
/**
* Image dropped on user board
*/
if (
overData.actionType === 'ADD_TO_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
const { boardId } = overData.context;
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO,
board_id: boardId,
})
);
dispatch(selectionChanged([]));
return;
}
/**
* Image dropped on 'none' board
*/
if (
overData.actionType === 'REMOVE_FROM_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
dispatch(
imagesApi.endpoints.removeImageFromBoard.initiate({
imageDTO,
})
);
dispatch(selectionChanged([]));
return;
}
/**
* Image dropped on upscale initial image
*/
if (
overData.actionType === 'SET_UPSCALE_INITIAL_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
dispatch(upscaleInitialImageChanged(imageDTO));
return;
}
/**
* Multiple images dropped on user board
*/
if (overData.actionType === 'ADD_TO_BOARD' && activeData.payloadType === 'GALLERY_SELECTION') {
const imageDTOs = getState().gallery.selection;
const { boardId } = overData.context;
dispatch(
imagesApi.endpoints.addImagesToBoard.initiate({
imageDTOs,
board_id: boardId,
})
);
dispatch(selectionChanged([]));
return;
}
/**
* Multiple images dropped on 'none' board
*/
if (overData.actionType === 'REMOVE_FROM_BOARD' && activeData.payloadType === 'GALLERY_SELECTION') {
const imageDTOs = getState().gallery.selection;
dispatch(
imagesApi.endpoints.removeImagesFromBoard.initiate({
imageDTOs,
})
);
dispatch(selectionChanged([]));
return;
}
},
});
};

View File

@@ -1,18 +1,8 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { RootState } from 'app/store/store';
import {
entityRasterized,
entitySelected,
referenceImageIPAdapterImageChanged,
rgIPAdapterImageChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import { selectListBoardsQueryArgs } from 'features/gallery/store/gallerySelectors';
import { boardIdSelected, galleryViewChanged } from 'features/gallery/store/gallerySlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { upscaleInitialImageChanged } from 'features/parameters/store/upscaleSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { omit } from 'lodash-es';
@@ -51,12 +41,14 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
log.debug({ imageDTO }, 'Image uploaded');
const { postUploadAction } = action.meta.arg.originalArgs;
if (!postUploadAction) {
if (action.meta.arg.originalArgs.silent || imageDTO.is_intermediate) {
// When a "silent" upload is requested, or the image is intermediate, we can skip all post-upload actions,
// like toasts and switching the gallery view
return;
}
const boardId = imageDTO.board_id ?? 'none';
const DEFAULT_UPLOADED_TOAST = {
id: 'IMAGE_UPLOADED',
title: t('toast.imageUploaded'),
@@ -64,80 +56,34 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
} as const;
// default action - just upload and alert user
if (postUploadAction.type === 'TOAST') {
const boardId = imageDTO.board_id ?? 'none';
if (lastUploadedToastTimeout !== null) {
window.clearTimeout(lastUploadedToastTimeout);
}
const toastApi = toast({
...DEFAULT_UPLOADED_TOAST,
title: postUploadAction.title || DEFAULT_UPLOADED_TOAST.title,
description: getUploadedToastDescription(boardId, state),
duration: null, // we will close the toast manually
});
lastUploadedToastTimeout = window.setTimeout(() => {
toastApi.close();
}, 3000);
/**
* We only want to change the board and view if this is the first upload of a batch, else we end up hijacking
* the user's gallery board and view selection:
* - User uploads multiple images
* - A couple uploads finish, but others are pending still
* - User changes the board selection
* - Pending uploads finish and change the board back to the original board
* - User is confused as to why the board changed
*
* Default to true to not require _all_ image upload handlers to set this value
*/
const isFirstUploadOfBatch = action.meta.arg.originalArgs.isFirstUploadOfBatch ?? true;
if (isFirstUploadOfBatch) {
dispatch(boardIdSelected({ boardId }));
dispatch(galleryViewChanged('assets'));
}
return;
if (lastUploadedToastTimeout !== null) {
window.clearTimeout(lastUploadedToastTimeout);
}
const toastApi = toast({
...DEFAULT_UPLOADED_TOAST,
title: DEFAULT_UPLOADED_TOAST.title,
description: getUploadedToastDescription(boardId, state),
duration: null, // we will close the toast manually
});
lastUploadedToastTimeout = window.setTimeout(() => {
toastApi.close();
}, 3000);
if (postUploadAction.type === 'SET_UPSCALE_INITIAL_IMAGE') {
dispatch(upscaleInitialImageChanged(imageDTO));
toast({
...DEFAULT_UPLOADED_TOAST,
description: 'set as upscale initial image',
});
return;
}
if (postUploadAction.type === 'SET_IPA_IMAGE') {
const { id } = postUploadAction;
dispatch(referenceImageIPAdapterImageChanged({ entityIdentifier: { id, type: 'reference_image' }, imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
return;
}
if (postUploadAction.type === 'SET_RG_IP_ADAPTER_IMAGE') {
const { id, referenceImageId } = postUploadAction;
dispatch(
rgIPAdapterImageChanged({ entityIdentifier: { id, type: 'regional_guidance' }, referenceImageId, imageDTO })
);
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
return;
}
if (postUploadAction.type === 'SET_NODES_IMAGE') {
const { nodeId, fieldName } = postUploadAction;
dispatch(fieldImageValueChanged({ nodeId, fieldName, value: imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: `${t('toast.setNodeField')} ${fieldName}` });
return;
}
if (postUploadAction.type === 'REPLACE_LAYER_WITH_IMAGE') {
const { entityIdentifier } = postUploadAction;
const state = getState();
const imageObject = imageDTOToImageObject(imageDTO);
const { x, y } = selectCanvasSlice(state).bbox.rect;
dispatch(entityRasterized({ entityIdentifier, imageObject, position: { x, y }, replaceObjects: true }));
dispatch(entitySelected({ entityIdentifier }));
return;
/**
* We only want to change the board and view if this is the first upload of a batch, else we end up hijacking
* the user's gallery board and view selection:
* - User uploads multiple images
* - A couple uploads finish, but others are pending still
* - User changes the board selection
* - Pending uploads finish and change the board back to the original board
* - User is confused as to why the board changed
*
* Default to true to not require _all_ image upload handlers to set this value
*/
const isFirstUploadOfBatch = action.meta.arg.originalArgs.isFirstUploadOfBatch ?? true;
if (isFirstUploadOfBatch) {
dispatch(boardIdSelected({ boardId }));
dispatch(galleryViewChanged('assets'));
}
},
});

View File

@@ -1,7 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { AppDispatch, RootState } from 'app/store/store';
import type { SerializableObject } from 'common/types';
import {
controlLayerModelChanged,
referenceImageIPAdapterModelChanged,
@@ -41,6 +40,7 @@ import {
isSpandrelImageToImageModelConfig,
isT5EncoderModelConfig,
} from 'services/api/types';
import type { JsonObject } from 'type-fest';
const log = logger('models');
@@ -85,7 +85,7 @@ type ModelHandler = (
models: AnyModelConfig[],
state: RootState,
dispatch: AppDispatch,
log: Logger<SerializableObject>
log: Logger<JsonObject>
) => undefined;
const handleMainModels: ModelHandler = (models, state, dispatch, log) => {

View File

@@ -3,7 +3,6 @@ import { autoBatchEnhancer, combineReducers, configureStore } from '@reduxjs/too
import { logger } from 'app/logging/logger';
import { idbKeyValDriver } from 'app/store/enhancers/reduxRemember/driver';
import { errorHandler } from 'app/store/enhancers/reduxRemember/errors';
import type { SerializableObject } from 'common/types';
import { deepClone } from 'common/util/deepClone';
import { changeBoardModalSlice } from 'features/changeBoardModal/store/slice';
import { canvasSettingsPersistConfig, canvasSettingsSlice } from 'features/controlLayers/store/canvasSettingsSlice';
@@ -37,6 +36,7 @@ import undoable from 'redux-undo';
import { serializeError } from 'serialize-error';
import { api } from 'services/api';
import { authToastMiddleware } from 'services/api/authToastMiddleware';
import type { JsonObject } from 'type-fest';
import { STORAGE_PREFIX } from './constants';
import { actionSanitizer } from './middleware/devtools/actionSanitizer';
@@ -139,7 +139,7 @@ const unserialize: UnserializeFunction = (data, key) => {
{
persistedData: parsed,
rehydratedData: transformed,
diff: diff(parsed, transformed) as SerializableObject, // this is always serializable
diff: diff(parsed, transformed) as JsonObject, // this is always serializable
},
`Rehydrated slice "${key}"`
);

View File

@@ -26,7 +26,6 @@ export type AppFeature =
| 'bulkDownload'
| 'starterModels'
| 'hfToken';
/**
* A disable-able Stable Diffusion feature
*/

View File

@@ -1,251 +0,0 @@
import type { ChakraProps, FlexProps, SystemStyleObject } from '@invoke-ai/ui-library';
import { Flex, Icon, Image } from '@invoke-ai/ui-library';
import { IAILoadingImageFallback, IAINoContentFallback } from 'common/components/IAIImageFallback';
import ImageMetadataOverlay from 'common/components/ImageMetadataOverlay';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { useImageContextMenu } from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
import type { MouseEvent, ReactElement, ReactNode, SyntheticEvent } from 'react';
import { memo, useCallback, useMemo, useRef } from 'react';
import { PiImageBold, PiUploadSimpleBold } from 'react-icons/pi';
import type { ImageDTO, PostUploadAction } from 'services/api/types';
import IAIDraggable from './IAIDraggable';
import IAIDroppable from './IAIDroppable';
const defaultUploadElement = <Icon as={PiUploadSimpleBold} boxSize={16} />;
const defaultNoContentFallback = <IAINoContentFallback icon={PiImageBold} />;
const baseStyles: SystemStyleObject = {
touchAction: 'none',
userSelect: 'none',
webkitUserSelect: 'none',
};
const sx: SystemStyleObject = {
...baseStyles,
'.gallery-image-container::before': {
content: '""',
display: 'inline-block',
position: 'absolute',
top: 0,
left: 0,
right: 0,
bottom: 0,
pointerEvents: 'none',
borderRadius: 'base',
},
'&[data-selected="selected"]>.gallery-image-container::before': {
boxShadow:
'inset 0px 0px 0px 3px var(--invoke-colors-invokeBlue-500), inset 0px 0px 0px 4px var(--invoke-colors-invokeBlue-800)',
},
'&[data-selected="selectedForCompare"]>.gallery-image-container::before': {
boxShadow:
'inset 0px 0px 0px 3px var(--invoke-colors-invokeGreen-300), inset 0px 0px 0px 4px var(--invoke-colors-invokeGreen-800)',
},
'&:hover>.gallery-image-container::before': {
boxShadow:
'inset 0px 0px 0px 2px var(--invoke-colors-invokeBlue-300), inset 0px 0px 0px 3px var(--invoke-colors-invokeBlue-800)',
},
'&:hover[data-selected="selected"]>.gallery-image-container::before': {
boxShadow:
'inset 0px 0px 0px 3px var(--invoke-colors-invokeBlue-400), inset 0px 0px 0px 4px var(--invoke-colors-invokeBlue-800)',
},
'&:hover[data-selected="selectedForCompare"]>.gallery-image-container::before': {
boxShadow:
'inset 0px 0px 0px 3px var(--invoke-colors-invokeGreen-200), inset 0px 0px 0px 4px var(--invoke-colors-invokeGreen-800)',
},
};
type IAIDndImageProps = FlexProps & {
imageDTO: ImageDTO | undefined;
onError?: (event: SyntheticEvent<HTMLImageElement>) => void;
onLoad?: (event: SyntheticEvent<HTMLImageElement>) => void;
onClick?: (event: MouseEvent<HTMLDivElement>) => void;
withMetadataOverlay?: boolean;
isDragDisabled?: boolean;
isDropDisabled?: boolean;
isUploadDisabled?: boolean;
minSize?: number;
postUploadAction?: PostUploadAction;
imageSx?: ChakraProps['sx'];
fitContainer?: boolean;
droppableData?: TypesafeDroppableData;
draggableData?: TypesafeDraggableData;
dropLabel?: string;
isSelected?: boolean;
isSelectedForCompare?: boolean;
thumbnail?: boolean;
noContentFallback?: ReactElement;
useThumbailFallback?: boolean;
withHoverOverlay?: boolean;
children?: JSX.Element;
uploadElement?: ReactNode;
dataTestId?: string;
};
const IAIDndImage = (props: IAIDndImageProps) => {
const {
imageDTO,
onError,
onClick,
withMetadataOverlay = false,
isDropDisabled = false,
isDragDisabled = false,
isUploadDisabled = false,
minSize = 24,
postUploadAction,
imageSx,
fitContainer = false,
droppableData,
draggableData,
dropLabel,
isSelected = false,
isSelectedForCompare = false,
thumbnail = false,
noContentFallback = defaultNoContentFallback,
uploadElement = defaultUploadElement,
useThumbailFallback,
withHoverOverlay = false,
children,
dataTestId,
...rest
} = props;
const openInNewTab = useCallback(
(e: MouseEvent) => {
if (!imageDTO) {
return;
}
if (e.button !== 1) {
return;
}
window.open(imageDTO.image_url, '_blank');
},
[imageDTO]
);
const ref = useRef<HTMLDivElement>(null);
useImageContextMenu(imageDTO, ref);
return (
<Flex
ref={ref}
width="full"
height="full"
alignItems="center"
justifyContent="center"
position="relative"
minW={minSize ? minSize : undefined}
minH={minSize ? minSize : undefined}
userSelect="none"
cursor={isDragDisabled || !imageDTO ? 'default' : 'pointer'}
sx={withHoverOverlay ? sx : baseStyles}
data-selected={isSelectedForCompare ? 'selectedForCompare' : isSelected ? 'selected' : undefined}
{...rest}
>
{imageDTO && (
<Flex
className="gallery-image-container"
w="full"
h="full"
position={fitContainer ? 'absolute' : 'relative'}
alignItems="center"
justifyContent="center"
>
<Image
src={thumbnail ? imageDTO.thumbnail_url : imageDTO.image_url}
fallbackStrategy="beforeLoadOrError"
fallbackSrc={useThumbailFallback ? imageDTO.thumbnail_url : undefined}
fallback={useThumbailFallback ? undefined : <IAILoadingImageFallback image={imageDTO} />}
onError={onError}
draggable={false}
w={imageDTO.width}
objectFit="contain"
maxW="full"
maxH="full"
borderRadius="base"
sx={imageSx}
data-testid={dataTestId}
/>
{withMetadataOverlay && <ImageMetadataOverlay imageDTO={imageDTO} />}
</Flex>
)}
{!imageDTO && !isUploadDisabled && (
<UploadButton
isUploadDisabled={isUploadDisabled}
postUploadAction={postUploadAction}
uploadElement={uploadElement}
minSize={minSize}
/>
)}
{!imageDTO && isUploadDisabled && noContentFallback}
{imageDTO && !isDragDisabled && (
<IAIDraggable
data={draggableData}
disabled={isDragDisabled || !imageDTO}
onClick={onClick}
onAuxClick={openInNewTab}
/>
)}
{children}
{!isDropDisabled && <IAIDroppable data={droppableData} disabled={isDropDisabled} dropLabel={dropLabel} />}
</Flex>
);
};
export default memo(IAIDndImage);
const UploadButton = memo(
({
isUploadDisabled,
postUploadAction,
uploadElement,
minSize,
}: {
isUploadDisabled: boolean;
postUploadAction?: PostUploadAction;
uploadElement: ReactNode;
minSize: number;
}) => {
const { getUploadButtonProps, getUploadInputProps } = useImageUploadButton({
postUploadAction,
isDisabled: isUploadDisabled,
});
const uploadButtonStyles = useMemo<SystemStyleObject>(() => {
const styles: SystemStyleObject = {
minH: minSize,
w: 'full',
h: 'full',
alignItems: 'center',
justifyContent: 'center',
borderRadius: 'base',
transitionProperty: 'common',
transitionDuration: '0.1s',
color: 'base.500',
};
if (!isUploadDisabled) {
Object.assign(styles, {
cursor: 'pointer',
bg: 'base.700',
_hover: {
bg: 'base.650',
color: 'base.300',
},
});
}
return styles;
}, [isUploadDisabled, minSize]);
return (
<Flex sx={uploadButtonStyles} {...getUploadButtonProps()}>
<input {...getUploadInputProps()} />
{uploadElement}
</Flex>
);
}
);
UploadButton.displayName = 'UploadButton';

View File

@@ -1,38 +0,0 @@
import type { BoxProps } from '@invoke-ai/ui-library';
import { Box } from '@invoke-ai/ui-library';
import { useDraggableTypesafe } from 'features/dnd/hooks/typesafeHooks';
import type { TypesafeDraggableData } from 'features/dnd/types';
import { memo, useRef } from 'react';
import { v4 as uuidv4 } from 'uuid';
type IAIDraggableProps = BoxProps & {
disabled?: boolean;
data?: TypesafeDraggableData;
};
const IAIDraggable = (props: IAIDraggableProps) => {
const { data, disabled, ...rest } = props;
const dndId = useRef(uuidv4());
const { attributes, listeners, setNodeRef } = useDraggableTypesafe({
id: dndId.current,
disabled,
data,
});
return (
<Box
ref={setNodeRef}
position="absolute"
w="full"
h="full"
top={0}
insetInlineStart={0}
{...attributes}
{...listeners}
{...rest}
/>
);
};
export default memo(IAIDraggable);

View File

@@ -1,64 +0,0 @@
import { Flex, Text } from '@invoke-ai/ui-library';
import { memo } from 'react';
type Props = {
isOver: boolean;
label?: string;
withBackdrop?: boolean;
};
const IAIDropOverlay = (props: Props) => {
const { isOver, label, withBackdrop = true } = props;
return (
<Flex position="absolute" top={0} right={0} bottom={0} left={0}>
<Flex
position="absolute"
top={0}
right={0}
bottom={0}
left={0}
w="full"
h="full"
bg={withBackdrop ? 'base.900' : 'transparent'}
opacity={0.7}
borderRadius="base"
alignItems="center"
justifyContent="center"
transitionProperty="common"
transitionDuration="0.1s"
/>
<Flex
position="absolute"
top={0.5}
right={0.5}
bottom={0.5}
left={0.5}
opacity={1}
borderWidth={1.5}
borderColor={isOver ? 'invokeYellow.300' : 'base.500'}
borderRadius="base"
borderStyle="dashed"
transitionProperty="common"
transitionDuration="0.1s"
alignItems="center"
justifyContent="center"
>
{label && (
<Text
fontSize="lg"
fontWeight="semibold"
color={isOver ? 'invokeYellow.300' : 'base.500'}
transitionProperty="common"
transitionDuration="0.1s"
textAlign="center"
>
{label}
</Text>
)}
</Flex>
</Flex>
);
};
export default memo(IAIDropOverlay);

View File

@@ -1,46 +0,0 @@
import { Box } from '@invoke-ai/ui-library';
import { useDroppableTypesafe } from 'features/dnd/hooks/typesafeHooks';
import type { TypesafeDroppableData } from 'features/dnd/types';
import { isValidDrop } from 'features/dnd/util/isValidDrop';
import { AnimatePresence } from 'framer-motion';
import { memo, useRef } from 'react';
import { v4 as uuidv4 } from 'uuid';
import IAIDropOverlay from './IAIDropOverlay';
type IAIDroppableProps = {
dropLabel?: string;
disabled?: boolean;
data?: TypesafeDroppableData;
};
const IAIDroppable = (props: IAIDroppableProps) => {
const { dropLabel, data, disabled } = props;
const dndId = useRef(uuidv4());
const { isOver, setNodeRef, active } = useDroppableTypesafe({
id: dndId.current,
disabled,
data,
});
return (
<Box
ref={setNodeRef}
position="absolute"
top={0}
right={0}
bottom={0}
left={0}
w="full"
h="full"
pointerEvents={active ? 'auto' : 'none'}
>
<AnimatePresence>
{isValidDrop(data, active?.data.current) && <IAIDropOverlay isOver={isOver} label={dropLabel} />}
</AnimatePresence>
</Box>
);
};
export default memo(IAIDroppable);

View File

@@ -1,24 +0,0 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Box, Skeleton } from '@invoke-ai/ui-library';
import { memo } from 'react';
const skeletonStyles: SystemStyleObject = {
position: 'relative',
height: 'full',
width: 'full',
'::before': {
content: "''",
display: 'block',
pt: '100%',
},
};
const IAIFillSkeleton = () => {
return (
<Skeleton sx={skeletonStyles}>
<Box position="absolute" top={0} insetInlineStart={0} height="full" width="full" />
</Skeleton>
);
};
export default memo(IAIFillSkeleton);

View File

@@ -6,7 +6,7 @@ import type { ImageDTO } from 'services/api/types';
type Props = { image: ImageDTO | undefined };
export const IAILoadingImageFallback = memo((props: Props) => {
const IAILoadingImageFallback = memo((props: Props) => {
if (props.image) {
return (
<Skeleton

View File

@@ -1,28 +0,0 @@
import { Badge, Flex } from '@invoke-ai/ui-library';
import { memo } from 'react';
import type { ImageDTO } from 'services/api/types';
type ImageMetadataOverlayProps = {
imageDTO: ImageDTO;
};
const ImageMetadataOverlay = ({ imageDTO }: ImageMetadataOverlayProps) => {
return (
<Flex
pointerEvents="none"
flexDirection="column"
position="absolute"
top={0}
insetInlineStart={0}
p={2}
alignItems="flex-start"
gap={2}
>
<Badge variant="solid" colorScheme="base">
{imageDTO.width} × {imageDTO.height}
</Badge>
</Flex>
);
};
export default memo(ImageMetadataOverlay);

View File

@@ -1,89 +0,0 @@
import { Box, Flex, Heading } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { memo } from 'react';
import type { DropzoneState } from 'react-dropzone';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import { useBoardName } from 'services/api/hooks/useBoardName';
type ImageUploadOverlayProps = {
dropzone: DropzoneState;
setIsHandlingUpload: (isHandlingUpload: boolean) => void;
};
const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
const { dropzone, setIsHandlingUpload } = props;
useHotkeys(
'esc',
() => {
setIsHandlingUpload(false);
},
[setIsHandlingUpload]
);
return (
<Box position="absolute" top={0} right={0} bottom={0} left={0} zIndex={999} backdropFilter="blur(20px)">
<Flex position="absolute" top={0} right={0} bottom={0} left={0} bg="base.900" opacity={0.7} />
<Flex
position="absolute"
flexDir="column"
gap={4}
top={2}
right={2}
bottom={2}
left={2}
opacity={1}
borderWidth={2}
borderColor={dropzone.isDragAccept ? 'invokeYellow.300' : 'error.500'}
borderRadius="base"
borderStyle="dashed"
transitionProperty="common"
transitionDuration="0.1s"
alignItems="center"
justifyContent="center"
color={dropzone.isDragReject ? 'error.300' : undefined}
>
{dropzone.isDragAccept && <DragAcceptMessage />}
{!dropzone.isDragAccept && <DragRejectMessage />}
</Flex>
</Box>
);
};
export default memo(ImageUploadOverlay);
const DragAcceptMessage = () => {
const { t } = useTranslation();
const selectedBoardId = useAppSelector(selectSelectedBoardId);
const boardName = useBoardName(selectedBoardId);
return (
<>
<Heading size="lg">{t('gallery.dropToUpload')}</Heading>
<Heading size="md">{t('toast.imagesWillBeAddedTo', { boardName })}</Heading>
</>
);
};
const DragRejectMessage = () => {
const { t } = useTranslation();
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
if (maxImageUploadCount === undefined) {
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc')}</Heading>
</>
);
}
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount })}</Heading>
</>
);
};

View File

@@ -1,9 +1,13 @@
import { combine } from '@atlaskit/pragmatic-drag-and-drop/combine';
import { autoScrollForElements } from '@atlaskit/pragmatic-drag-and-drop-auto-scroll/element';
import { autoScrollForExternal } from '@atlaskit/pragmatic-drag-and-drop-auto-scroll/external';
import type { ChakraProps } from '@invoke-ai/ui-library';
import { Box, Flex } from '@invoke-ai/ui-library';
import { getOverlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
import type { OverlayScrollbarsComponentRef } from 'overlayscrollbars-react';
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
import type { CSSProperties, PropsWithChildren } from 'react';
import { memo, useMemo } from 'react';
import { memo, useEffect, useMemo, useState } from 'react';
type Props = PropsWithChildren & {
maxHeight?: ChakraProps['maxHeight'];
@@ -11,17 +15,38 @@ type Props = PropsWithChildren & {
overflowY?: 'hidden' | 'scroll';
};
const styles: CSSProperties = { height: '100%', width: '100%' };
const styles: CSSProperties = { position: 'absolute', top: 0, left: 0, right: 0, bottom: 0 };
const ScrollableContent = ({ children, maxHeight, overflowX = 'hidden', overflowY = 'scroll' }: Props) => {
const overlayscrollbarsOptions = useMemo(
() => getOverlayScrollbarsParams(overflowX, overflowY).options,
[overflowX, overflowY]
);
const [os, osRef] = useState<OverlayScrollbarsComponentRef | null>(null);
useEffect(() => {
const osInstance = os?.osInstance();
if (!osInstance) {
return;
}
const element = osInstance.elements().viewport;
// `pragmatic-drag-and-drop-auto-scroll` requires the element to have `overflow-y: scroll` or `overflow-y: auto`
// else it logs an ugly warning. In our case, using a custom scrollbar library, it will be 'hidden' by default.
// To prevent the erroneous warning, we temporarily set the overflow-y to 'scroll' and then revert it back.
const overflowY = element.style.overflowY; // starts 'hidden'
element.style.setProperty('overflow-y', 'scroll', 'important');
const cleanup = combine(autoScrollForElements({ element }), autoScrollForExternal({ element }));
element.style.setProperty('overflow-y', overflowY);
return cleanup;
}, [os]);
return (
<Flex w="full" h="full" maxHeight={maxHeight} position="relative">
<Box position="absolute" top={0} left={0} right={0} bottom={0}>
<OverlayScrollbarsComponent defer style={styles} options={overlayscrollbarsOptions}>
<OverlayScrollbarsComponent ref={osRef} style={styles} options={overlayscrollbarsOptions}>
{children}
</OverlayScrollbarsComponent>
</Box>

View File

@@ -2,6 +2,7 @@ import { deepClone } from 'common/util/deepClone';
import { merge } from 'lodash-es';
import { ClickScrollPlugin, OverlayScrollbars } from 'overlayscrollbars';
import type { UseOverlayScrollbarsParams } from 'overlayscrollbars-react';
import type { CSSProperties } from 'react';
OverlayScrollbars.plugin(ClickScrollPlugin);
@@ -27,3 +28,8 @@ export const getOverlayScrollbarsParams = (
merge(params, { options: { overflow: { y: overflowY, x: overflowX } } });
return params;
};
export const overlayScrollbarsStyles: CSSProperties = {
height: '100%',
width: '100%',
};

Some files were not shown because too many files have changed in this diff Show More