mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-16 23:58:03 -05:00
Compare commits
256 Commits
ryan/conse
...
v5.6.1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d3a40d85b9 | ||
|
|
b224cc8158 | ||
|
|
b75d08a2d0 | ||
|
|
5f1a30ea82 | ||
|
|
d09e600802 | ||
|
|
f4ee59b92a | ||
|
|
ad0b40b669 | ||
|
|
f3fbcf0014 | ||
|
|
588e8a0195 | ||
|
|
c194281f4d | ||
|
|
7daff465d3 | ||
|
|
0747a5f464 | ||
|
|
e7aafdfdbf | ||
|
|
ecb38c2bae | ||
|
|
d3ef94cb3e | ||
|
|
eb27b437ee | ||
|
|
25bb96ed66 | ||
|
|
a9568e00a7 | ||
|
|
c8a5d3bbf9 | ||
|
|
ed2b2868ce | ||
|
|
35de49aa01 | ||
|
|
8bac8d3d3a | ||
|
|
e63bd26b19 | ||
|
|
91ded4bd15 | ||
|
|
1656d3dd21 | ||
|
|
fe67dfefab | ||
|
|
6420882a5b | ||
|
|
568e3bd714 | ||
|
|
d9c2115396 | ||
|
|
3e13249983 | ||
|
|
2c2ee7fe20 | ||
|
|
50cb27cd0b | ||
|
|
d66cd4e81b | ||
|
|
8556a2558e | ||
|
|
2fb35d25dd | ||
|
|
a8eb47769a | ||
|
|
592e45a078 | ||
|
|
c5e5641f0e | ||
|
|
dfb9e300d4 | ||
|
|
d7f80fc299 | ||
|
|
c9b1eb2d83 | ||
|
|
13d505a621 | ||
|
|
6674d95dae | ||
|
|
c1f5383e63 | ||
|
|
71690715db | ||
|
|
641489c2f8 | ||
|
|
5f0bd2e1db | ||
|
|
98b8ab0147 | ||
|
|
50bf5b7f44 | ||
|
|
0184cb27c4 | ||
|
|
c374ab24cb | ||
|
|
6313ab6a40 | ||
|
|
a4d58aab09 | ||
|
|
b74fb40cbc | ||
|
|
47dc954385 | ||
|
|
8fc5d3dd20 | ||
|
|
6f1a198af4 | ||
|
|
9c7bac693b | ||
|
|
8c9fc45341 | ||
|
|
f93571f7ef | ||
|
|
cc27730cb4 | ||
|
|
fdf9740f3c | ||
|
|
58255ab7ba | ||
|
|
64475b8f21 | ||
|
|
cc9d215a9b | ||
|
|
f7315f0432 | ||
|
|
285313b282 | ||
|
|
debcbd6e2c | ||
|
|
229834a5e8 | ||
|
|
6c919e1bca | ||
|
|
5357d6e08e | ||
|
|
7fef569e38 | ||
|
|
e7fb435cc5 | ||
|
|
5d472ac1b8 | ||
|
|
28514ba59a | ||
|
|
5ea7953537 | ||
|
|
0db6639b4b | ||
|
|
b8eed2bdcb | ||
|
|
1054283f5c | ||
|
|
f4a0b78a8d | ||
|
|
409b69ee5d | ||
|
|
206f261e45 | ||
|
|
7eee4da896 | ||
|
|
908976ac08 | ||
|
|
dfa253e75b | ||
|
|
4f369e3dfb | ||
|
|
faa4fa02c0 | ||
|
|
5bd6428fdd | ||
|
|
8b4f411f7b | ||
|
|
9d2f8b4ac8 | ||
|
|
80c3d8bc5c | ||
|
|
b681132da4 | ||
|
|
f60a5a5015 | ||
|
|
6efd108481 | ||
|
|
f88c1ba0c3 | ||
|
|
e2f05d0800 | ||
|
|
83e33a4810 | ||
|
|
e635028477 | ||
|
|
b7b8f8a9e5 | ||
|
|
e926d2f24b | ||
|
|
ad8885c456 | ||
|
|
cf4c79fe2e | ||
|
|
e0edfe6c40 | ||
|
|
8a0a37191a | ||
|
|
7dbd5f150a | ||
|
|
1ad65ffd53 | ||
|
|
14b5c871dc | ||
|
|
8d2b4e2bf5 | ||
|
|
aba70eacab | ||
|
|
4b67175b1b | ||
|
|
e3423d1ba8 | ||
|
|
87fb00ff5d | ||
|
|
d99a9ffb72 | ||
|
|
7964f438dc | ||
|
|
b130a3a9ee | ||
|
|
a6b32160b2 | ||
|
|
7d110cc9d3 | ||
|
|
82122645e8 | ||
|
|
f5c5b73383 | ||
|
|
2b2ec67cd6 | ||
|
|
66bc225bd3 | ||
|
|
7535d2e188 | ||
|
|
3dff87aeee | ||
|
|
b14bf1e0f4 | ||
|
|
4fdc6eec9d | ||
|
|
180a67d11b | ||
|
|
ec816d3c04 | ||
|
|
7dcc2dafbc | ||
|
|
81da5210f0 | ||
|
|
eb976a2ab0 | ||
|
|
724028d974 | ||
|
|
43c98fd99e | ||
|
|
526d64a5e2 | ||
|
|
58c6c6db53 | ||
|
|
8a41e09de3 | ||
|
|
c24eae1968 | ||
|
|
a6b207a0d9 | ||
|
|
eea5ecdd69 | ||
|
|
50de54dcfd | ||
|
|
04b893f982 | ||
|
|
4c655eeb48 | ||
|
|
298abab883 | ||
|
|
bd477ded2e | ||
|
|
0b64d21980 | ||
|
|
91d5f8537d | ||
|
|
e498e1f07c | ||
|
|
73a3f195dc | ||
|
|
8cc790a030 | ||
|
|
57265c8869 | ||
|
|
66d08eaa1c | ||
|
|
d69e90ca5e | ||
|
|
f345fde512 | ||
|
|
508c702289 | ||
|
|
8fbd2f9a97 | ||
|
|
bfb26af36a | ||
|
|
4400bc69f2 | ||
|
|
10f2c0dc9a | ||
|
|
5b0326fc49 | ||
|
|
2f9a0a250d | ||
|
|
5d03328dc6 | ||
|
|
1fb32aec28 | ||
|
|
2bbcd42036 | ||
|
|
2f40f7bafd | ||
|
|
65dd01bf3a | ||
|
|
81fc525f8a | ||
|
|
d2dd5ee408 | ||
|
|
b4b1daeb26 | ||
|
|
90c4c10e14 | ||
|
|
30e33d30d5 | ||
|
|
3df3be6c34 | ||
|
|
4e917bf2b2 | ||
|
|
26e6e28a13 | ||
|
|
f9cee42a06 | ||
|
|
1b8da023b8 | ||
|
|
05f1026812 | ||
|
|
ca1bd254ea | ||
|
|
29645326b9 | ||
|
|
c23a2abc82 | ||
|
|
803ec8e904 | ||
|
|
0abc0be931 | ||
|
|
edff16124f | ||
|
|
2e4110a29a | ||
|
|
7ee51f3e14 | ||
|
|
8ae75dbc35 | ||
|
|
9265716b07 | ||
|
|
27b9c07711 | ||
|
|
9dcbe3cc8f | ||
|
|
30165f66c3 | ||
|
|
deb70edc75 | ||
|
|
d82d990b23 | ||
|
|
2c64b60d32 | ||
|
|
4e8c6d931d | ||
|
|
9049e6e0f3 | ||
|
|
3cb5f8536b | ||
|
|
38e50cc7aa | ||
|
|
5bff6123b9 | ||
|
|
d63ff560d6 | ||
|
|
acceac8304 | ||
|
|
96671d12bd | ||
|
|
584601d03f | ||
|
|
b1c4ec0888 | ||
|
|
db5f016826 | ||
|
|
c1fd28472d | ||
|
|
0c5958675a | ||
|
|
912e07f2c8 | ||
|
|
f853b24868 | ||
|
|
4f900b22dc | ||
|
|
5823532941 | ||
|
|
bfe6d98cba | ||
|
|
c26b3cd54f | ||
|
|
c012d832d2 | ||
|
|
9d11d2aabd | ||
|
|
a5f1587ce7 | ||
|
|
0b26bb1ca3 | ||
|
|
0f1e632117 | ||
|
|
b212332b3e | ||
|
|
90a91ff438 | ||
|
|
b52b271dc4 | ||
|
|
e077fe8046 | ||
|
|
368957b208 | ||
|
|
27277e1fd6 | ||
|
|
236c0d89e7 | ||
|
|
b807170701 | ||
|
|
c5d2de3169 | ||
|
|
f7511bfd94 | ||
|
|
0abb5ea114 | ||
|
|
ce57c4ed2e | ||
|
|
0cf51cefe8 | ||
|
|
e5e848d239 | ||
|
|
da589b3f1f | ||
|
|
36a3869af0 | ||
|
|
c76d08d1fd | ||
|
|
04087c38ce | ||
|
|
b2bb359d47 | ||
|
|
b57aa06d9e | ||
|
|
f856246c36 | ||
|
|
195df2ebe6 | ||
|
|
7b5cef6bd7 | ||
|
|
69e7ffaaf5 | ||
|
|
993401ad6c | ||
|
|
8d570dcffc | ||
|
|
3f70e947fd | ||
|
|
157290bef4 | ||
|
|
b7389da89b | ||
|
|
254b89b1f5 | ||
|
|
2b122d7882 | ||
|
|
ded9213eb4 | ||
|
|
9d51eb49cd | ||
|
|
0a6e22bc9e | ||
|
|
b301785dc8 | ||
|
|
edcdff4f78 | ||
|
|
66e04ea7ab | ||
|
|
497bc916cc | ||
|
|
ebe1873712 | ||
|
|
59926c320c | ||
|
|
2d3e2f1907 |
183
docs/faq.md
183
docs/faq.md
@@ -1,26 +1,18 @@
|
||||
# FAQ
|
||||
|
||||
!!! info "How to Reinstall"
|
||||
|
||||
Many issues can be resolved by re-installing the application. You won't lose any data by re-installing. We suggest downloading the [latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) and using it to re-install the application. Consult the [installer guide](./installation/installer.md) for more information.
|
||||
|
||||
When you run the installer, you'll have an option to select the version to install. If you aren't ready to upgrade, you choose the current version to fix a broken install.
|
||||
|
||||
If the troubleshooting steps on this page don't get you up and running, please either [create an issue] or hop on [discord] for help.
|
||||
|
||||
## How to Install
|
||||
|
||||
You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases).
|
||||
|
||||
Note that any releases marked as _pre-release_ are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the [latest release].
|
||||
Follow the [Quick Start guide](./installation/quick_start.md) to install Invoke.
|
||||
|
||||
## Downloading models and using existing models
|
||||
|
||||
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
|
||||
|
||||
## Missing models after updating to v4
|
||||
## Missing models after updating from v3
|
||||
|
||||
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
|
||||
If you find some models are missing after updating from v3, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
|
||||
|
||||
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
|
||||
|
||||
@@ -37,115 +29,27 @@ Follow the same steps to scan and import the missing models.
|
||||
## Slow generation
|
||||
|
||||
- Check the [system requirements] to ensure that your system is capable of generating images.
|
||||
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
|
||||
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
|
||||
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
|
||||
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
|
||||
|
||||
## Shared GPU Memory (Windows)
|
||||
|
||||
!!! tip "Nvidia GPUs with driver 536.40"
|
||||
|
||||
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
|
||||
|
||||
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
|
||||
|
||||
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
|
||||
|
||||
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
|
||||
|
||||
Here's how to get the python path required in the linked guide:
|
||||
|
||||
- Run `invoke.bat`.
|
||||
- Select option 2 for developer console.
|
||||
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
|
||||
|
||||
## Installer cannot find python (Windows)
|
||||
|
||||
Ensure that you checked **Add python.exe to PATH** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, you can re-run the python installer, choose the Modify option and check the box.
|
||||
- Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
|
||||
- Check that your generations are happening on your GPU (if you have one). Invoke will log what is being used for generation upon startup. If your GPU isn't used, re-install to and ensure you select the appropriate GPU option.
|
||||
- If you are on Windows with an Nvidia GPU, you may have exceeded your GPU's VRAM capacity and are triggering Nvidia's "sysmem fallback". There's a guide to opt out of this behaviour in the [Low-VRAM mode guide](./features/low-vram.md).
|
||||
|
||||
## Triton error on startup
|
||||
|
||||
This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
|
||||
This can be safely ignored. Invoke doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
|
||||
|
||||
## Updated to 3.4.0 and xformers can’t load C++/CUDA
|
||||
## Unable to Copy on Firefox
|
||||
|
||||
An issue occurred with your PyTorch update. Follow these steps to fix :
|
||||
Firefox does not allow Invoke to directly access the clipboard by default. As a result, you may be unable to use certain copy functions. You can fix this by configuring Firefox to allow access to write to the clipboard:
|
||||
|
||||
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
|
||||
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
|
||||
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
|
||||
|
||||
Note that v3.4.0 is an old, unsupported version. Please upgrade to the [latest release].
|
||||
|
||||
## Install failed and says `pip` is out of date
|
||||
|
||||
An out of date `pip` typically won't cause an installation to fail. The cause of the error can likely be found above the message that says `pip` is out of date.
|
||||
|
||||
If you saw that warning but the install went well, don't worry about it (but you can update `pip` afterwards if you'd like).
|
||||
- Go to `about:config` and click the Accept button
|
||||
- Search for `dom.events.asyncClipboard.clipboardItem`
|
||||
- Set it to `true` by clicking the toggle button
|
||||
- Restart Firefox
|
||||
|
||||
## Replicate image found online
|
||||
|
||||
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
|
||||
|
||||
## OSErrors on Windows while installing dependencies
|
||||
|
||||
During a zip file installation or an update, installation stops with an error like this:
|
||||
|
||||
{:width="800px"}
|
||||
|
||||
To resolve this, re-install the application as described above.
|
||||
|
||||
## HuggingFace install failed due to invalid access token
|
||||
|
||||
Some HuggingFace models require you to authenticate using an [access token].
|
||||
|
||||
Invoke doesn't manage this token for you, but it's easy to set it up:
|
||||
|
||||
- Follow the instructions in the link above to create an access token. Copy it.
|
||||
- Run the launcher script.
|
||||
- Select option 2 (developer console).
|
||||
- Paste the following command:
|
||||
|
||||
```sh
|
||||
python -c "import huggingface_hub; huggingface_hub.login()"
|
||||
```
|
||||
|
||||
- Paste your access token when prompted and press Enter. You won't see anything when you paste it.
|
||||
- Type `n` if prompted about git credentials.
|
||||
|
||||
If you get an error, try the command again - maybe the token didn't paste correctly.
|
||||
|
||||
Once your token is set, start Invoke and try downloading the model again. The installer will automatically use the access token.
|
||||
|
||||
If the install still fails, you may not have access to the model.
|
||||
|
||||
## Stable Diffusion XL generation fails after trying to load UNet
|
||||
|
||||
InvokeAI is working in other respects, but when trying to generate
|
||||
images with Stable Diffusion XL you get a "Server Error". The text log
|
||||
in the launch window contains this log line above several more lines of
|
||||
error messages:
|
||||
|
||||
`INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet`
|
||||
|
||||
This failure mode occurs when there is a network glitch during
|
||||
downloading the very large SDXL model.
|
||||
|
||||
To address this, first go to the Model Manager and delete the
|
||||
Stable-Diffusion-XL-base-1.X model. Then, click the HuggingFace tab,
|
||||
paste the Repo ID stabilityai/stable-diffusion-xl-base-1.0 and install
|
||||
the model.
|
||||
|
||||
## Package dependency conflicts during installation or update
|
||||
|
||||
If you have previously installed InvokeAI or another Stable Diffusion
|
||||
package, the installer may occasionally pick up outdated libraries and
|
||||
either the installer or `invoke` will fail with complaints about
|
||||
library conflicts.
|
||||
|
||||
To resolve this, re-install the application as described above.
|
||||
|
||||
## Invalid configuration file
|
||||
|
||||
Everything seems to install ok, you get a `ValidationError` when starting up the app.
|
||||
@@ -154,64 +58,9 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
|
||||
|
||||
Check the [configuration docs] for more detail about the settings and how to specify them.
|
||||
|
||||
## `ModuleNotFoundError: No module named 'controlnet_aux'`
|
||||
## Out of Memory Errors
|
||||
|
||||
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
|
||||
|
||||
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
|
||||
|
||||
- Run the Invoke launcher
|
||||
- Choose the developer console option
|
||||
- Run this command: `pip cache remove controlnet_aux`
|
||||
- Close the terminal window
|
||||
- Download and run the [installer][latest release], selecting your current install location
|
||||
|
||||
## Out of Memory Issues
|
||||
|
||||
The models are large, VRAM is expensive, and you may find yourself
|
||||
faced with Out of Memory errors when generating images. Here are some
|
||||
tips to reduce the problem:
|
||||
|
||||
!!! info "Optimizing for GPU VRAM"
|
||||
|
||||
=== "4GB VRAM GPU"
|
||||
|
||||
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
|
||||
and derived models, provided that you do not use the NSFW checker. It won't be loaded unless you go into the UI settings and turn it on.
|
||||
|
||||
If you are on a CUDA-enabled GPU, we will automatically use xformers or torch-sdp to reduce VRAM requirements, though you can explicitly configure this. See the [configuration docs].
|
||||
|
||||
=== "6GB VRAM GPU"
|
||||
|
||||
This is a border case. Using the SD 1.5 series you should be able to
|
||||
generate images up to 640x640 with the NSFW checker enabled, and up to
|
||||
1024x1024 with it disabled.
|
||||
|
||||
If you run into persistent memory issues there are a series of
|
||||
environment variables that you can set before launching InvokeAI that
|
||||
alter how the PyTorch machine learning library manages memory. See
|
||||
<https://pytorch.org/docs/stable/notes/cuda.html#memory-management> for
|
||||
a list of these tweaks.
|
||||
|
||||
=== "12GB VRAM GPU"
|
||||
|
||||
This should be sufficient to generate larger images up to about 1280x1280.
|
||||
|
||||
## Checkpoint Models Load Slowly or Use Too Much RAM
|
||||
|
||||
The difference between diffusers models (a folder containing multiple
|
||||
subfolders) and checkpoint models (a file ending with .safetensors or
|
||||
.ckpt) is that InvokeAI is able to load diffusers models into memory
|
||||
incrementally, while checkpoint models must be loaded all at
|
||||
once. With very large models, or systems with limited RAM, you may
|
||||
experience slowdowns and other memory-related issues when loading
|
||||
checkpoint models.
|
||||
|
||||
To solve this, go to the Model Manager tab (the cube), select the
|
||||
checkpoint model that's giving you trouble, and press the "Convert"
|
||||
button in the upper right of your browser window. This will convert the
|
||||
checkpoint into a diffusers model, after which loading should be
|
||||
faster and less memory-intensive.
|
||||
The models are large, VRAM is expensive, and you may find yourself faced with Out of Memory errors when generating images. Follow our [Low-VRAM mode guide](./features/low-vram.md) to configure Invoke to prevent these.
|
||||
|
||||
## Memory Leak (Linux)
|
||||
|
||||
@@ -253,8 +102,6 @@ Note the differences between memory allocated as chunks in an arena vs. memory a
|
||||
|
||||
[model install docs]: ./installation/models.md
|
||||
[system requirements]: ./installation/requirements.md
|
||||
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
|
||||
[discord]: https://discord.gg/ZmtBAhwWhy
|
||||
[configuration docs]: ./configuration.md
|
||||
[access token]: https://huggingface.co/docs/hub/security-tokens#how-to-manage-user-access-tokens
|
||||
|
||||
@@ -28,11 +28,12 @@ It is possible to fine-tune the settings for best performance or if you still ge
|
||||
|
||||
## Details and fine-tuning
|
||||
|
||||
Low-VRAM mode involves 3 features, each of which can be configured or fine-tuned:
|
||||
Low-VRAM mode involves 4 features, each of which can be configured or fine-tuned:
|
||||
|
||||
- Partial model loading
|
||||
- Dynamic RAM and VRAM cache sizes
|
||||
- Working memory
|
||||
- Partial model loading (`enable_partial_loading`)
|
||||
- Dynamic RAM and VRAM cache sizes (`max_cache_ram_gb`, `max_cache_vram_gb`)
|
||||
- Working memory (`device_working_mem_gb`)
|
||||
- Keeping a RAM weight copy (`keep_ram_copy_of_weights`)
|
||||
|
||||
Read on to learn about these features and understand how to fine-tune them for your system and use-cases.
|
||||
|
||||
@@ -67,12 +68,20 @@ As of v5.6.0, the caches are dynamically sized. The `ram` and `vram` settings ar
|
||||
But, if your GPU has enough VRAM to hold models fully, you might get a perf boost by manually setting the cache sizes in `invokeai.yaml`:
|
||||
|
||||
```yaml
|
||||
# Set the RAM cache size to as large as possible, leaving a few GB free for the rest of your system and Invoke.
|
||||
# For example, if your system has 32GB RAM, 28GB is a good value.
|
||||
# The default max cache RAM size is logged on InvokeAI startup. It is determined based on your system RAM / VRAM.
|
||||
# You can override the default value by setting `max_cache_ram_gb`.
|
||||
# Increasing `max_cache_ram_gb` will increase the amount of RAM used to cache inactive models, resulting in faster model
|
||||
# reloads for the cached models.
|
||||
# As an example, if your system has 32GB of RAM and no other heavy processes, setting the `max_cache_ram_gb` to 28GB
|
||||
# might be a good value to achieve aggressive model caching.
|
||||
max_cache_ram_gb: 28
|
||||
# Set the VRAM cache size to be as large as possible while leaving enough room for the working memory of the tasks you will be doing.
|
||||
# For example, on a 24GB GPU that will be running unquantized FLUX without any auxiliary models,
|
||||
# 18GB is a good value.
|
||||
# The default max cache VRAM size is adjusted dynamically based on the amount of available VRAM (taking into
|
||||
# consideration the VRAM used by other processes).
|
||||
# You can override the default value by setting `max_cache_vram_gb`. Note that this value takes precedence over the
|
||||
# `device_working_mem_gb`.
|
||||
# It is recommended to set the VRAM cache size to be as large as possible while leaving enough room for the working
|
||||
# memory of the tasks you will be doing. For example, on a 24GB GPU that will be running unquantized FLUX without any
|
||||
# auxiliary models, 18GB might be a good value.
|
||||
max_cache_vram_gb: 18
|
||||
```
|
||||
|
||||
@@ -109,6 +118,15 @@ device_working_mem_gb: 4
|
||||
|
||||
Once decoding completes, the model manager "reclaims" the extra VRAM allocated as working memory for future model loading operations.
|
||||
|
||||
### Keeping a RAM weight copy
|
||||
|
||||
Invoke has the option of keeping a RAM copy of all model weights, even when they are loaded onto the GPU. This optimization is _on_ by default, and enables faster model switching and LoRA patching. Disabling this feature will reduce the average RAM load while running Invoke (peak RAM likely won't change), at the cost of slower model switching and LoRA patching. If you have limited RAM, you can disable this optimization:
|
||||
|
||||
```yaml
|
||||
# Set to false to reduce the average RAM usage at the cost of slower model switching and LoRA patching.
|
||||
keep_ram_copy_of_weights: false
|
||||
```
|
||||
|
||||
### Disabling Nvidia sysmem fallback (Windows only)
|
||||
|
||||
On Windows, Nvidia GPUs are able to use system RAM when their VRAM fills up via **sysmem fallback**. While it sounds like a good idea on the surface, in practice it causes massive slowdowns during generation.
|
||||
@@ -127,3 +145,19 @@ It is strongly suggested to disable this feature:
|
||||
If the sysmem fallback feature sounds familiar, that's because Invoke's partial model loading strategy is conceptually very similar - use VRAM when there's room, else fall back to RAM.
|
||||
|
||||
Unfortunately, the Nvidia implementation is not optimized for applications like Invoke and does more harm than good.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Windows page file
|
||||
|
||||
Invoke has high virtual memory (a.k.a. 'committed memory') requirements. This can cause issues on Windows if the page file size limits are hit. (See this issue for the technical details on why this happens: https://github.com/invoke-ai/InvokeAI/issues/7563).
|
||||
|
||||
If you run out of page file space, InvokeAI may crash. Often, these crashes will happen with one of the following errors:
|
||||
|
||||
- InvokeAI exits with Windows error code `3221225477`
|
||||
- InvokeAI crashes without an error, but `eventvwr.msc` reveals an error with code `0xc0000005` (the hex equivalent of `3221225477`)
|
||||
|
||||
If you are running out of page file space, try the following solutions:
|
||||
|
||||
- Make sure that you have sufficient disk space for the page file to grow. Watch your disk usage as Invoke runs. If it climbs near 100% leading up to the crash, then this is very likely the source of the issue. Clear out some disk space to resolve the issue.
|
||||
- Make sure that your page file is set to "System managed size" (this is the default) rather than a custom size. Under the "System managed size" policy, the page file will grow dynamically as needed.
|
||||
|
||||
@@ -88,13 +88,13 @@ The following commands vary depending on the version of Invoke being installed a
|
||||
8. Install the `invokeai` package. Substitute the package specifier and version.
|
||||
|
||||
```sh
|
||||
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
|
||||
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
|
||||
```
|
||||
|
||||
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
|
||||
|
||||
```sh
|
||||
uv pip install <PACKAGE_SPECIFIER>=<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
|
||||
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
|
||||
```
|
||||
|
||||
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
|
||||
|
||||
@@ -99,6 +99,20 @@ We recommend watching our [Getting Started Playlist](https://www.youtube.com/pla
|
||||
- Using control layers and reference guides.
|
||||
- Refining images with advanced workflows.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
If installation fails, retrying the install in Repair Mode may fix it. There's a checkbox to enable this on the Review step of the install flow.
|
||||
|
||||
If that doesn't fix it, [clearing the `uv` cache](https://docs.astral.sh/uv/reference/cli/#uv-cache-clean) might do the trick:
|
||||
|
||||
- Open and start the dev console (button at the bottom-left of the launcher).
|
||||
- Run `uv cache clean`.
|
||||
- Retry the installation. Enable Repair Mode for good measure.
|
||||
|
||||
If you are still unable to install, try installing to a different location and see if that works.
|
||||
|
||||
If you still have problems, ask for help on the Invoke [discord](https://discord.gg/ZmtBAhwWhy).
|
||||
|
||||
## Other Installation Methods
|
||||
|
||||
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
|
||||
|
||||
@@ -4,7 +4,9 @@ Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
|
||||
|
||||
## Hardware
|
||||
|
||||
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
|
||||
Hardware requirements vary significantly depending on model and image output size.
|
||||
|
||||
The requirements below are rough guidelines for best performance. GPUs with less VRAM typically still work, if a bit slower. Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
|
||||
|
||||
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
|
||||
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
|
||||
|
||||
@@ -858,6 +858,18 @@ async def get_stats() -> Optional[CacheStats]:
|
||||
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
|
||||
|
||||
|
||||
@model_manager_router.post(
|
||||
"/empty_model_cache",
|
||||
operation_id="empty_model_cache",
|
||||
status_code=200,
|
||||
)
|
||||
async def empty_model_cache() -> None:
|
||||
"""Drop all models from the model cache to free RAM/VRAM. 'Locked' models that are in active use will not be dropped."""
|
||||
# Request 1000GB of room in order to force the cache to drop all models.
|
||||
ApiDependencies.invoker.services.logger.info("Emptying model cache.")
|
||||
ApiDependencies.invoker.services.model_manager.load.ram_cache.make_room(1000 * 2**30)
|
||||
|
||||
|
||||
class HFTokenStatus(str, Enum):
|
||||
VALID = "valid"
|
||||
INVALID = "invalid"
|
||||
|
||||
@@ -10,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelAllExceptCurrentResult,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByDestinationResult,
|
||||
ClearResult,
|
||||
@@ -94,6 +95,18 @@ async def Pause(
|
||||
return ApiDependencies.invoker.services.session_processor.pause()
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/cancel_all_except_current",
|
||||
operation_id="cancel_all_except_current",
|
||||
responses={200: {"model": CancelAllExceptCurrentResult}},
|
||||
)
|
||||
async def cancel_all_except_current(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> CancelAllExceptCurrentResult:
|
||||
"""Immediately cancels all queue items except in-processing items"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/cancel_by_batch_ids",
|
||||
operation_id="cancel_by_batch_ids",
|
||||
|
||||
@@ -25,6 +25,7 @@ async def parse_dynamicprompts(
|
||||
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
|
||||
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
|
||||
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
|
||||
seed: int | None = Body(None, description="The seed to use for random generation. Only used if not combinatorial"),
|
||||
) -> DynamicPromptsResponse:
|
||||
"""Creates a batch process"""
|
||||
max_prompts = min(max_prompts, 10000)
|
||||
@@ -35,7 +36,7 @@ async def parse_dynamicprompts(
|
||||
generator = CombinatorialPromptGenerator()
|
||||
prompts = generator.generate(prompt, max_prompts=max_prompts)
|
||||
else:
|
||||
generator = RandomPromptGenerator()
|
||||
generator = RandomPromptGenerator(seed=seed)
|
||||
prompts = generator.generate(prompt, num_images=max_prompts)
|
||||
except ParseException as e:
|
||||
prompts = [prompt]
|
||||
|
||||
237
invokeai/app/invocations/batch.py
Normal file
237
invokeai/app/invocations/batch.py
Normal file
@@ -0,0 +1,237 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
OutputField,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import (
|
||||
FloatOutput,
|
||||
ImageOutput,
|
||||
IntegerOutput,
|
||||
StringOutput,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
BATCH_GROUP_IDS = Literal[
|
||||
"None",
|
||||
"Group 1",
|
||||
"Group 2",
|
||||
"Group 3",
|
||||
"Group 4",
|
||||
"Group 5",
|
||||
]
|
||||
|
||||
|
||||
class NotExecutableNodeError(Exception):
|
||||
def __init__(self, message: str = "This class should never be executed or instantiated directly."):
|
||||
super().__init__(message)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class BaseBatchInvocation(BaseInvocation):
|
||||
batch_group_id: BATCH_GROUP_IDS = InputField(
|
||||
default="None",
|
||||
description="The ID of this batch node's group. If provided, all batch nodes in with the same ID will be 'zipped' before execution, and all nodes' collections must be of the same size.",
|
||||
input=Input.Direct,
|
||||
title="Batch Group",
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation(
|
||||
"image_batch",
|
||||
title="Image Batch",
|
||||
tags=["primitives", "image", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class ImageBatchInvocation(BaseBatchInvocation):
|
||||
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
|
||||
|
||||
images: list[ImageField] = InputField(
|
||||
default=[], min_length=1, description="The images to batch over", input=Input.Direct
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation(
|
||||
"string_batch",
|
||||
title="String Batch",
|
||||
tags=["primitives", "string", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class StringBatchInvocation(BaseBatchInvocation):
|
||||
"""Create a batched generation, where the workflow is executed once for each string in the batch."""
|
||||
|
||||
strings: list[str] = InputField(
|
||||
default=[],
|
||||
min_length=1,
|
||||
description="The strings to batch over",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> StringOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation_output("string_generator_output")
|
||||
class StringGeneratorOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of strings"""
|
||||
|
||||
strings: list[str] = OutputField(description="The generated strings")
|
||||
|
||||
|
||||
class StringGeneratorField(BaseModel):
|
||||
pass
|
||||
|
||||
|
||||
@invocation(
|
||||
"string_generator",
|
||||
title="String Generator",
|
||||
tags=["primitives", "string", "number", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class StringGenerator(BaseInvocation):
|
||||
"""Generated a range of strings for use in a batched generation"""
|
||||
|
||||
generator: StringGeneratorField = InputField(
|
||||
description="The string generator.",
|
||||
input=Input.Direct,
|
||||
title="Generator Type",
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
def invoke(self, context: InvocationContext) -> StringGeneratorOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation(
|
||||
"integer_batch",
|
||||
title="Integer Batch",
|
||||
tags=["primitives", "integer", "number", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class IntegerBatchInvocation(BaseBatchInvocation):
|
||||
"""Create a batched generation, where the workflow is executed once for each integer in the batch."""
|
||||
|
||||
integers: list[int] = InputField(
|
||||
default=[],
|
||||
min_length=1,
|
||||
description="The integers to batch over",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation_output("integer_generator_output")
|
||||
class IntegerGeneratorOutput(BaseInvocationOutput):
|
||||
integers: list[int] = OutputField(description="The generated integers")
|
||||
|
||||
|
||||
class IntegerGeneratorField(BaseModel):
|
||||
pass
|
||||
|
||||
|
||||
@invocation(
|
||||
"integer_generator",
|
||||
title="Integer Generator",
|
||||
tags=["primitives", "int", "number", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class IntegerGenerator(BaseInvocation):
|
||||
"""Generated a range of integers for use in a batched generation"""
|
||||
|
||||
generator: IntegerGeneratorField = InputField(
|
||||
description="The integer generator.",
|
||||
input=Input.Direct,
|
||||
title="Generator Type",
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerGeneratorOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_batch",
|
||||
title="Float Batch",
|
||||
tags=["primitives", "float", "number", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class FloatBatchInvocation(BaseBatchInvocation):
|
||||
"""Create a batched generation, where the workflow is executed once for each float in the batch."""
|
||||
|
||||
floats: list[float] = InputField(
|
||||
default=[],
|
||||
min_length=1,
|
||||
description="The floats to batch over",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FloatOutput:
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
|
||||
@invocation_output("float_generator_output")
|
||||
class FloatGeneratorOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of floats"""
|
||||
|
||||
floats: list[float] = OutputField(description="The generated floats")
|
||||
|
||||
|
||||
class FloatGeneratorField(BaseModel):
|
||||
pass
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_generator",
|
||||
title="Float Generator",
|
||||
tags=["primitives", "float", "number", "batch", "special"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class FloatGenerator(BaseInvocation):
|
||||
"""Generated a range of floats for use in a batched generation"""
|
||||
|
||||
generator: FloatGeneratorField = InputField(
|
||||
description="The float generator.",
|
||||
input=Input.Direct,
|
||||
title="Generator Type",
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
raise NotExecutableNodeError()
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FloatGeneratorOutput:
|
||||
raise NotExecutableNodeError()
|
||||
@@ -40,6 +40,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.patches.layer_patcher import LayerPatcher
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
@@ -85,6 +86,7 @@ def get_scheduler(
|
||||
scheduler_info: ModelIdentifierField,
|
||||
scheduler_name: str,
|
||||
seed: int,
|
||||
unet_config: AnyModelConfig,
|
||||
) -> Scheduler:
|
||||
"""Load a scheduler and apply some scheduler-specific overrides."""
|
||||
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
|
||||
@@ -103,6 +105,9 @@ def get_scheduler(
|
||||
"_backup": scheduler_config,
|
||||
}
|
||||
|
||||
if hasattr(unet_config, "prediction_type"):
|
||||
scheduler_config["prediction_type"] = unet_config.prediction_type
|
||||
|
||||
# make dpmpp_sde reproducable(seed can be passed only in initializer)
|
||||
if scheduler_class is DPMSolverSDEScheduler:
|
||||
scheduler_config["noise_sampler_seed"] = seed
|
||||
@@ -829,6 +834,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
|
||||
# get the unet's config so that we can pass the base to sd_step_callback()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
conditioning_data = self.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
@@ -848,6 +856,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
unet_config=unet_config,
|
||||
)
|
||||
|
||||
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
@@ -859,9 +868,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
denoising_end=self.denoising_end,
|
||||
)
|
||||
|
||||
# get the unet's config so that we can pass the base to sd_step_callback()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
### preview
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
context.util.sd_step_callback(state, unet_config.base)
|
||||
@@ -1030,6 +1036,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
unet_config=unet_config,
|
||||
)
|
||||
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
|
||||
@@ -300,6 +300,13 @@ class BoundingBoxField(BaseModel):
|
||||
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
|
||||
return self
|
||||
|
||||
def tuple(self) -> Tuple[int, int, int, int]:
|
||||
"""
|
||||
Returns the bounding box as a tuple suitable for use with PIL's `Image.crop()` method.
|
||||
This method returns a tuple of the form (left, upper, right, lower) == (x_min, y_min, x_max, y_max).
|
||||
"""
|
||||
return (self.x_min, self.y_min, self.x_max, self.y_max)
|
||||
|
||||
|
||||
class MetadataField(RootModel[dict[str, Any]]):
|
||||
"""
|
||||
|
||||
@@ -8,7 +8,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, TransformerField
|
||||
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
@@ -21,6 +21,9 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
|
||||
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
|
||||
)
|
||||
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
||||
t5_encoder: Optional[T5EncoderField] = OutputField(
|
||||
default=None, description=FieldDescriptions.t5_encoder, title="T5 Encoder"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -28,7 +31,7 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
|
||||
title="FLUX LoRA",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.1.0",
|
||||
version="1.2.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
@@ -50,6 +53,12 @@ class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
)
|
||||
t5_encoder: T5EncoderField | None = InputField(
|
||||
default=None,
|
||||
title="T5 Encoder",
|
||||
description=FieldDescriptions.t5_encoder,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
|
||||
lora_key = self.lora.key
|
||||
@@ -62,6 +71,8 @@ class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
raise ValueError(f'LoRA "{lora_key}" already applied to transformer.')
|
||||
if self.clip and any(lora.lora.key == lora_key for lora in self.clip.loras):
|
||||
raise ValueError(f'LoRA "{lora_key}" already applied to CLIP encoder.')
|
||||
if self.t5_encoder and any(lora.lora.key == lora_key for lora in self.t5_encoder.loras):
|
||||
raise ValueError(f'LoRA "{lora_key}" already applied to T5 encoder.')
|
||||
|
||||
output = FluxLoRALoaderOutput()
|
||||
|
||||
@@ -82,6 +93,14 @@ class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
weight=self.weight,
|
||||
)
|
||||
)
|
||||
if self.t5_encoder is not None:
|
||||
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
|
||||
output.t5_encoder.loras.append(
|
||||
LoRAField(
|
||||
lora=self.lora,
|
||||
weight=self.weight,
|
||||
)
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
@@ -91,14 +110,14 @@ class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
title="FLUX LoRA Collection Loader",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.1.0",
|
||||
version="1.3.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FLUXLoRACollectionLoader(BaseInvocation):
|
||||
"""Applies a collection of LoRAs to a FLUX transformer."""
|
||||
|
||||
loras: LoRAField | list[LoRAField] = InputField(
|
||||
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
loras: Optional[LoRAField | list[LoRAField]] = InputField(
|
||||
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
)
|
||||
|
||||
transformer: Optional[TransformerField] = InputField(
|
||||
@@ -113,13 +132,30 @@ class FLUXLoRACollectionLoader(BaseInvocation):
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
)
|
||||
t5_encoder: T5EncoderField | None = InputField(
|
||||
default=None,
|
||||
title="T5 Encoder",
|
||||
description=FieldDescriptions.t5_encoder,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
|
||||
output = FluxLoRALoaderOutput()
|
||||
loras = self.loras if isinstance(self.loras, list) else [self.loras]
|
||||
added_loras: list[str] = []
|
||||
|
||||
if self.transformer is not None:
|
||||
output.transformer = self.transformer.model_copy(deep=True)
|
||||
|
||||
if self.clip is not None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
|
||||
if self.t5_encoder is not None:
|
||||
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
|
||||
|
||||
for lora in loras:
|
||||
if lora is None:
|
||||
continue
|
||||
if lora.lora.key in added_loras:
|
||||
continue
|
||||
|
||||
@@ -130,14 +166,13 @@ class FLUXLoRACollectionLoader(BaseInvocation):
|
||||
|
||||
added_loras.append(lora.lora.key)
|
||||
|
||||
if self.transformer is not None:
|
||||
if output.transformer is None:
|
||||
output.transformer = self.transformer.model_copy(deep=True)
|
||||
if self.transformer is not None and output.transformer is not None:
|
||||
output.transformer.loras.append(lora)
|
||||
|
||||
if self.clip is not None:
|
||||
if output.clip is None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
if self.clip is not None and output.clip is not None:
|
||||
output.clip.loras.append(lora)
|
||||
|
||||
if self.t5_encoder is not None and output.t5_encoder is not None:
|
||||
output.t5_encoder.loras.append(lora)
|
||||
|
||||
return output
|
||||
|
||||
@@ -10,6 +10,10 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.t5_model_identifier import (
|
||||
preprocess_t5_encoder_model_identifier,
|
||||
preprocess_t5_tokenizer_model_identifier,
|
||||
)
|
||||
from invokeai.backend.flux.util import max_seq_lengths
|
||||
from invokeai.backend.model_manager.config import (
|
||||
CheckpointConfigBase,
|
||||
@@ -36,7 +40,7 @@ class FluxModelLoaderOutput(BaseInvocationOutput):
|
||||
title="Flux Main Model",
|
||||
tags=["model", "flux"],
|
||||
category="model",
|
||||
version="1.0.4",
|
||||
version="1.0.5",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxModelLoaderInvocation(BaseInvocation):
|
||||
@@ -74,8 +78,8 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
tokenizer2 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model)
|
||||
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model)
|
||||
|
||||
transformer_config = context.models.get_config(transformer)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
@@ -83,7 +87,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder, loras=[]),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
)
|
||||
|
||||
@@ -2,7 +2,7 @@ from contextlib import ExitStack
|
||||
from typing import Iterator, Literal, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
@@ -19,7 +19,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.conditioner import HFEncoder
|
||||
from invokeai.backend.model_manager.config import ModelFormat
|
||||
from invokeai.backend.patches.layer_patcher import LayerPatcher
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX, FLUX_LORA_T5_PREFIX
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
|
||||
|
||||
@@ -71,12 +71,44 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
|
||||
prompt = [self.prompt]
|
||||
|
||||
t5_encoder_info = context.models.load(self.t5_encoder.text_encoder)
|
||||
t5_encoder_config = t5_encoder_info.config
|
||||
assert t5_encoder_config is not None
|
||||
|
||||
with (
|
||||
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
|
||||
t5_encoder_info.model_on_device() as (cached_weights, t5_text_encoder),
|
||||
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
|
||||
ExitStack() as exit_stack,
|
||||
):
|
||||
assert isinstance(t5_text_encoder, T5EncoderModel)
|
||||
assert isinstance(t5_tokenizer, T5Tokenizer)
|
||||
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
|
||||
|
||||
# Determine if the model is quantized.
|
||||
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
|
||||
# slower inference than direct patching, but is agnostic to the quantization format.
|
||||
if t5_encoder_config.format in [ModelFormat.T5Encoder, ModelFormat.Diffusers]:
|
||||
model_is_quantized = False
|
||||
elif t5_encoder_config.format in [
|
||||
ModelFormat.BnbQuantizedLlmInt8b,
|
||||
ModelFormat.BnbQuantizednf4b,
|
||||
ModelFormat.GGUFQuantized,
|
||||
]:
|
||||
model_is_quantized = True
|
||||
else:
|
||||
raise ValueError(f"Unsupported model format: {t5_encoder_config.format}")
|
||||
|
||||
# Apply LoRA models to the T5 encoder.
|
||||
# Note: We apply the LoRA after the encoder has been moved to its target device for faster patching.
|
||||
exit_stack.enter_context(
|
||||
LayerPatcher.apply_smart_model_patches(
|
||||
model=t5_text_encoder,
|
||||
patches=self._t5_lora_iterator(context),
|
||||
prefix=FLUX_LORA_T5_PREFIX,
|
||||
dtype=t5_text_encoder.dtype,
|
||||
cached_weights=cached_weights,
|
||||
force_sidecar_patching=model_is_quantized,
|
||||
)
|
||||
)
|
||||
|
||||
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
|
||||
|
||||
@@ -132,3 +164,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
assert isinstance(lora_info.model, ModelPatchRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
def _t5_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
|
||||
for lora in self.t5_encoder.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, ModelPatchRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
@@ -21,7 +21,7 @@ class IdealSizeOutput(BaseInvocationOutput):
|
||||
"ideal_size",
|
||||
title="Ideal Size",
|
||||
tags=["latents", "math", "ideal_size"],
|
||||
version="1.0.3",
|
||||
version="1.0.4",
|
||||
)
|
||||
class IdealSizeInvocation(BaseInvocation):
|
||||
"""Calculates the ideal size for generation to avoid duplication"""
|
||||
@@ -41,11 +41,16 @@ class IdealSizeInvocation(BaseInvocation):
|
||||
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
aspect = self.width / self.height
|
||||
dimension: float = 512
|
||||
if unet_config.base == BaseModelType.StableDiffusion2:
|
||||
|
||||
if unet_config.base == BaseModelType.StableDiffusion1:
|
||||
dimension = 512
|
||||
elif unet_config.base == BaseModelType.StableDiffusion2:
|
||||
dimension = 768
|
||||
elif unet_config.base == BaseModelType.StableDiffusionXL:
|
||||
elif unet_config.base in (BaseModelType.StableDiffusionXL, BaseModelType.Flux, BaseModelType.StableDiffusion3):
|
||||
dimension = 1024
|
||||
else:
|
||||
raise ValueError(f"Unsupported model type: {unet_config.base}")
|
||||
|
||||
dimension = dimension * self.multiplier
|
||||
min_dimension = math.floor(dimension * 0.5)
|
||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
||||
|
||||
@@ -13,6 +13,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
)
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
from invokeai.app.invocations.fields import (
|
||||
BoundingBoxField,
|
||||
ColorField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -23,6 +24,7 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
@@ -161,12 +163,12 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
crop: bool = InputField(default=False, description="Crop to base image dimensions")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
base_image = context.images.get_pil(self.base_image.image_name)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
base_image = context.images.get_pil(self.base_image.image_name, mode="RGBA")
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
||||
mask = None
|
||||
if self.mask is not None:
|
||||
mask = context.images.get_pil(self.mask.image_name)
|
||||
mask = ImageOps.invert(mask.convert("L"))
|
||||
mask = context.images.get_pil(self.mask.image_name, mode="L")
|
||||
mask = ImageOps.invert(mask)
|
||||
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
||||
|
||||
min_x = min(0, self.x)
|
||||
@@ -176,7 +178,11 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
|
||||
new_image.paste(base_image, (abs(min_x), abs(min_y)))
|
||||
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
||||
|
||||
# Create a temporary image to paste the image with transparency
|
||||
temp_image = Image.new("RGBA", new_image.size)
|
||||
temp_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
||||
new_image = Image.alpha_composite(new_image, temp_image)
|
||||
|
||||
if self.crop:
|
||||
base_w, base_h = base_image.size
|
||||
@@ -301,14 +307,44 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
||||
|
||||
# Split the image into RGBA channels
|
||||
r, g, b, a = image.split()
|
||||
|
||||
# Premultiply RGB channels by alpha
|
||||
premultiplied_image = ImageChops.multiply(image, a.convert("RGBA"))
|
||||
premultiplied_image.putalpha(a)
|
||||
|
||||
# Apply the blur
|
||||
blur = (
|
||||
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
|
||||
)
|
||||
blur_image = image.filter(blur)
|
||||
blurred_image = premultiplied_image.filter(blur)
|
||||
|
||||
image_dto = context.images.save(image=blur_image)
|
||||
# Split the blurred image into RGBA channels
|
||||
r, g, b, a_orig = blurred_image.split()
|
||||
|
||||
# Convert to float using NumPy. float 32/64 division are much faster than float 16
|
||||
r = numpy.array(r, dtype=numpy.float32)
|
||||
g = numpy.array(g, dtype=numpy.float32)
|
||||
b = numpy.array(b, dtype=numpy.float32)
|
||||
a = numpy.array(a_orig, dtype=numpy.float32) / 255.0 # Normalize alpha to [0, 1]
|
||||
|
||||
# Unpremultiply RGB channels by alpha
|
||||
r /= a + 1e-6 # Add a small epsilon to avoid division by zero
|
||||
g /= a + 1e-6
|
||||
b /= a + 1e-6
|
||||
|
||||
# Convert back to PIL images
|
||||
r = Image.fromarray(numpy.uint8(numpy.clip(r, 0, 255)))
|
||||
g = Image.fromarray(numpy.uint8(numpy.clip(g, 0, 255)))
|
||||
b = Image.fromarray(numpy.uint8(numpy.clip(b, 0, 255)))
|
||||
|
||||
# Merge back into a single image
|
||||
result_image = Image.merge("RGBA", (r, g, b, a_orig))
|
||||
|
||||
image_dto = context.images.save(image=result_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
@@ -807,7 +843,7 @@ CHANNEL_FORMATS = {
|
||||
"value",
|
||||
],
|
||||
category="image",
|
||||
version="1.2.2",
|
||||
version="1.2.3",
|
||||
)
|
||||
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Add or subtract a value from a specific color channel of an image."""
|
||||
@@ -817,18 +853,22 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
offset: int = InputField(default=0, ge=-255, le=255, description="The amount to adjust the channel by")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_image = context.images.get_pil(self.image.image_name)
|
||||
image = context.images.get_pil(self.image.image_name, "RGBA")
|
||||
|
||||
# extract the channel and mode from the input and reference tuple
|
||||
mode = CHANNEL_FORMATS[self.channel][0]
|
||||
channel_number = CHANNEL_FORMATS[self.channel][1]
|
||||
|
||||
# Convert PIL image to new format
|
||||
converted_image = numpy.array(pil_image.convert(mode)).astype(int)
|
||||
converted_image = numpy.array(image.convert(mode)).astype(int)
|
||||
image_channel = converted_image[:, :, channel_number]
|
||||
|
||||
# Adjust the value, clipping to 0..255
|
||||
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
|
||||
if self.channel == "Hue (HSV)":
|
||||
# loop around the values because hue is special
|
||||
image_channel = (image_channel + self.offset) % 256
|
||||
else:
|
||||
# Adjust the value, clipping to 0..255
|
||||
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
|
||||
|
||||
# Put the channel back into the image
|
||||
converted_image[:, :, channel_number] = image_channel
|
||||
@@ -836,6 +876,10 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# Convert back to RGBA format and output
|
||||
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
|
||||
|
||||
# restore the alpha channel
|
||||
if self.channel != "Alpha (RGBA)":
|
||||
pil_image.putalpha(image.getchannel("A"))
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
@@ -863,7 +907,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"value",
|
||||
],
|
||||
category="image",
|
||||
version="1.2.2",
|
||||
version="1.2.3",
|
||||
)
|
||||
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Scale a specific color channel of an image."""
|
||||
@@ -874,14 +918,14 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
invert_channel: bool = InputField(default=False, description="Invert the channel after scaling")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
pil_image = context.images.get_pil(self.image.image_name)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
# extract the channel and mode from the input and reference tuple
|
||||
mode = CHANNEL_FORMATS[self.channel][0]
|
||||
channel_number = CHANNEL_FORMATS[self.channel][1]
|
||||
|
||||
# Convert PIL image to new format
|
||||
converted_image = numpy.array(pil_image.convert(mode)).astype(float)
|
||||
converted_image = numpy.array(image.convert(mode)).astype(float)
|
||||
image_channel = converted_image[:, :, channel_number]
|
||||
|
||||
# Adjust the value, clipping to 0..255
|
||||
@@ -897,6 +941,10 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# Convert back to RGBA format and output
|
||||
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
|
||||
|
||||
# restore the alpha channel
|
||||
if self.channel != "Alpha (RGBA)":
|
||||
pil_image.putalpha(image.getchannel("A"))
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
@@ -962,10 +1010,10 @@ class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
@invocation(
|
||||
"mask_from_id",
|
||||
title="Mask from ID",
|
||||
title="Mask from Segmented Image",
|
||||
tags=["image", "mask", "id"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
version="1.0.1",
|
||||
)
|
||||
class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generate a mask for a particular color in an ID Map"""
|
||||
@@ -975,40 +1023,24 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
threshold: int = InputField(default=100, description="Threshold for color detection")
|
||||
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
|
||||
|
||||
def rgba_to_hex(self, rgba_color: tuple[int, int, int, int]):
|
||||
r, g, b, a = rgba_color
|
||||
hex_code = "#{:02X}{:02X}{:02X}{:02X}".format(r, g, b, int(a * 255))
|
||||
return hex_code
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
||||
|
||||
def id_to_mask(self, id_mask: Image.Image, color: tuple[int, int, int, int], threshold: int = 100):
|
||||
if id_mask.mode != "RGB":
|
||||
id_mask = id_mask.convert("RGB")
|
||||
|
||||
# Can directly just use the tuple but I'll leave this rgba_to_hex here
|
||||
# incase anyone prefers using hex codes directly instead of the color picker
|
||||
hex_color_str = self.rgba_to_hex(color)
|
||||
rgb_color = numpy.array([int(hex_color_str[i : i + 2], 16) for i in (1, 3, 5)])
|
||||
np_color = numpy.array(self.color.tuple())
|
||||
|
||||
# Maybe there's a faster way to calculate this distance but I can't think of any right now.
|
||||
color_distance = numpy.linalg.norm(id_mask - rgb_color, axis=-1)
|
||||
color_distance = numpy.linalg.norm(image - np_color, axis=-1)
|
||||
|
||||
# Create a mask based on the threshold and the distance calculated above
|
||||
binary_mask = (color_distance < threshold).astype(numpy.uint8) * 255
|
||||
binary_mask = (color_distance < self.threshold).astype(numpy.uint8) * 255
|
||||
|
||||
# Convert the mask back to PIL
|
||||
binary_mask_pil = Image.fromarray(binary_mask)
|
||||
|
||||
return binary_mask_pil
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
mask = self.id_to_mask(image, self.color.tuple(), self.threshold)
|
||||
|
||||
if self.invert:
|
||||
mask = ImageOps.invert(mask)
|
||||
binary_mask_pil = ImageOps.invert(binary_mask_pil)
|
||||
|
||||
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
|
||||
image_dto = context.images.save(image=binary_mask_pil, image_category=ImageCategory.MASK)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
@@ -1055,3 +1087,123 @@ class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
image_dto = context.images.save(image=generated_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
@invocation(
|
||||
"img_noise",
|
||||
title="Add Image Noise",
|
||||
tags=["image", "noise"],
|
||||
category="image",
|
||||
version="1.0.1",
|
||||
)
|
||||
class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Add noise to an image"""
|
||||
|
||||
image: ImageField = InputField(description="The image to add noise to")
|
||||
seed: int = InputField(
|
||||
default=0,
|
||||
ge=0,
|
||||
le=SEED_MAX,
|
||||
description=FieldDescriptions.seed,
|
||||
)
|
||||
noise_type: Literal["gaussian", "salt_and_pepper"] = InputField(
|
||||
default="gaussian",
|
||||
description="The type of noise to add",
|
||||
)
|
||||
amount: float = InputField(default=0.1, ge=0, le=1, description="The amount of noise to add")
|
||||
noise_color: bool = InputField(default=True, description="Whether to add colored noise")
|
||||
size: int = InputField(default=1, ge=1, description="The size of the noise points")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGBA")
|
||||
|
||||
# Save out the alpha channel
|
||||
alpha = image.getchannel("A")
|
||||
|
||||
# Set the seed for numpy random
|
||||
rs = numpy.random.RandomState(numpy.random.MT19937(numpy.random.SeedSequence(self.seed)))
|
||||
|
||||
if self.noise_type == "gaussian":
|
||||
if self.noise_color:
|
||||
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size, 3)) * 255
|
||||
else:
|
||||
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size)) * 255
|
||||
noise = numpy.stack([noise] * 3, axis=-1)
|
||||
elif self.noise_type == "salt_and_pepper":
|
||||
if self.noise_color:
|
||||
noise = rs.choice(
|
||||
[0, 255], (image.height // self.size, image.width // self.size, 3), p=[1 - self.amount, self.amount]
|
||||
)
|
||||
else:
|
||||
noise = rs.choice(
|
||||
[0, 255], (image.height // self.size, image.width // self.size), p=[1 - self.amount, self.amount]
|
||||
)
|
||||
noise = numpy.stack([noise] * 3, axis=-1)
|
||||
|
||||
noise = Image.fromarray(noise.astype(numpy.uint8), mode="RGB").resize(
|
||||
(image.width, image.height), Image.Resampling.NEAREST
|
||||
)
|
||||
noisy_image = Image.blend(image.convert("RGB"), noise, self.amount).convert("RGBA")
|
||||
|
||||
# Paste back the alpha channel
|
||||
noisy_image.putalpha(alpha)
|
||||
|
||||
image_dto = context.images.save(image=noisy_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
@invocation(
|
||||
"crop_image_to_bounding_box",
|
||||
title="Crop Image to Bounding Box",
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
tags=["image", "crop"],
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Crop an image to the given bounding box. If the bounding box is omitted, the image is cropped to the non-transparent pixels."""
|
||||
|
||||
image: ImageField = InputField(description="The image to crop")
|
||||
bounding_box: BoundingBoxField | None = InputField(
|
||||
default=None, description="The bounding box to crop the image to"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
bounding_box = self.bounding_box.tuple() if self.bounding_box is not None else image.getbbox()
|
||||
|
||||
cropped_image = image.crop(bounding_box)
|
||||
|
||||
image_dto = context.images.save(image=cropped_image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
@invocation(
|
||||
"paste_image_into_bounding_box",
|
||||
title="Paste Image into Bounding Box",
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
tags=["image", "crop"],
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Paste the source image into the target image at the given bounding box.
|
||||
|
||||
The source image must be the same size as the bounding box, and the bounding box must fit within the target image."""
|
||||
|
||||
source_image: ImageField = InputField(description="The image to paste")
|
||||
target_image: ImageField = InputField(description="The image to paste into")
|
||||
bounding_box: BoundingBoxField = InputField(description="The bounding box to paste the image into")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
source_image = context.images.get_pil(self.source_image.image_name, mode="RGBA")
|
||||
target_image = context.images.get_pil(self.target_image.image_name, mode="RGBA")
|
||||
|
||||
bounding_box = self.bounding_box.tuple()
|
||||
|
||||
target_image.paste(source_image, bounding_box, source_image)
|
||||
|
||||
image_dto = context.images.save(image=target_image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
@@ -2,9 +2,22 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
Classification,
|
||||
InvocationContext,
|
||||
invocation,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
BoundingBoxField,
|
||||
ColorField,
|
||||
ImageField,
|
||||
InputField,
|
||||
TensorField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import BoundingBoxOutput, ImageOutput, MaskOutput
|
||||
from invokeai.backend.image_util.util import pil_to_np
|
||||
|
||||
|
||||
@@ -73,7 +86,7 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
|
||||
title="Invert Tensor Mask",
|
||||
tags=["conditioning"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class InvertTensorMaskInvocation(BaseInvocation):
|
||||
@@ -83,6 +96,15 @@ class InvertTensorMaskInvocation(BaseInvocation):
|
||||
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
|
||||
# Verify dtype and shape.
|
||||
assert mask.dtype == torch.bool
|
||||
assert mask.dim() in [2, 3]
|
||||
|
||||
# Unsqueeze the channel dimension if it is missing. The MaskOutput type expects a single channel.
|
||||
if mask.dim() == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
|
||||
inverted = ~mask
|
||||
|
||||
return MaskOutput(
|
||||
@@ -201,3 +223,48 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
image_dto = context.images.save(image=masked_image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
WHITE = ColorField(r=255, g=255, b=255, a=255)
|
||||
|
||||
|
||||
@invocation(
|
||||
"get_image_mask_bounding_box",
|
||||
title="Get Image Mask Bounding Box",
|
||||
tags=["mask"],
|
||||
category="mask",
|
||||
version="1.0.0",
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class GetMaskBoundingBoxInvocation(BaseInvocation):
|
||||
"""Gets the bounding box of the given mask image."""
|
||||
|
||||
mask: ImageField = InputField(description="The mask to crop.")
|
||||
margin: int = InputField(default=0, description="Margin to add to the bounding box.")
|
||||
mask_color: ColorField = InputField(default=WHITE, description="Color of the mask in the image.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
|
||||
mask = context.images.get_pil(self.mask.image_name, mode="RGBA")
|
||||
mask_np = np.array(mask)
|
||||
|
||||
# Convert mask_color to RGBA tuple
|
||||
mask_color_rgb = self.mask_color.tuple()
|
||||
|
||||
# Find the bounding box of the mask color
|
||||
y, x = np.where(np.all(mask_np == mask_color_rgb, axis=-1))
|
||||
|
||||
if len(x) == 0 or len(y) == 0:
|
||||
# No pixels found with the given color
|
||||
return BoundingBoxOutput(bounding_box=BoundingBoxField(x_min=0, y_min=0, x_max=0, y_max=0))
|
||||
|
||||
left, upper, right, lower = x.min(), y.min(), x.max(), y.max()
|
||||
|
||||
# Add the margin
|
||||
left = max(0, left - self.margin)
|
||||
upper = max(0, upper - self.margin)
|
||||
right = min(mask_np.shape[1], right + self.margin)
|
||||
lower = min(mask_np.shape[0], lower + self.margin)
|
||||
|
||||
bounding_box = BoundingBoxField(x_min=left, y_min=upper, x_max=right, y_max=lower)
|
||||
|
||||
return BoundingBoxOutput(bounding_box=bounding_box)
|
||||
|
||||
@@ -68,6 +68,7 @@ class CLIPField(BaseModel):
|
||||
class T5EncoderField(BaseModel):
|
||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class VAEField(BaseModel):
|
||||
@@ -205,7 +206,7 @@ class LoRALoaderInvocation(BaseInvocation):
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(lora_key):
|
||||
raise Exception(f"Unkown lora: {lora_key}!")
|
||||
raise Exception(f"Unknown lora: {lora_key}!")
|
||||
|
||||
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
|
||||
raise Exception(f'LoRA "{lora_key}" already applied to unet')
|
||||
@@ -256,12 +257,12 @@ class LoRASelectorInvocation(BaseInvocation):
|
||||
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
|
||||
|
||||
|
||||
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
|
||||
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.1.0")
|
||||
class LoRACollectionLoader(BaseInvocation):
|
||||
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
|
||||
|
||||
loras: LoRAField | list[LoRAField] = InputField(
|
||||
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
loras: Optional[LoRAField | list[LoRAField]] = InputField(
|
||||
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None,
|
||||
@@ -281,7 +282,14 @@ class LoRACollectionLoader(BaseInvocation):
|
||||
loras = self.loras if isinstance(self.loras, list) else [self.loras]
|
||||
added_loras: list[str] = []
|
||||
|
||||
if self.unet is not None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
if self.clip is not None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
|
||||
for lora in loras:
|
||||
if lora is None:
|
||||
continue
|
||||
if lora.lora.key in added_loras:
|
||||
continue
|
||||
|
||||
@@ -292,14 +300,10 @@ class LoRACollectionLoader(BaseInvocation):
|
||||
|
||||
added_loras.append(lora.lora.key)
|
||||
|
||||
if self.unet is not None:
|
||||
if output.unet is None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
if self.unet is not None and output.unet is not None:
|
||||
output.unet.loras.append(lora)
|
||||
|
||||
if self.clip is not None:
|
||||
if output.clip is None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
if self.clip is not None and output.clip is not None:
|
||||
output.clip.loras.append(lora)
|
||||
|
||||
return output
|
||||
@@ -399,13 +403,13 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
|
||||
title="SDXL LoRA Collection Loader",
|
||||
tags=["model"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class SDXLLoRACollectionLoader(BaseInvocation):
|
||||
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
|
||||
|
||||
loras: LoRAField | list[LoRAField] = InputField(
|
||||
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
loras: Optional[LoRAField | list[LoRAField]] = InputField(
|
||||
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None,
|
||||
@@ -431,7 +435,18 @@ class SDXLLoRACollectionLoader(BaseInvocation):
|
||||
loras = self.loras if isinstance(self.loras, list) else [self.loras]
|
||||
added_loras: list[str] = []
|
||||
|
||||
if self.unet is not None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
|
||||
if self.clip is not None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
|
||||
if self.clip2 is not None:
|
||||
output.clip2 = self.clip2.model_copy(deep=True)
|
||||
|
||||
for lora in loras:
|
||||
if lora is None:
|
||||
continue
|
||||
if lora.lora.key in added_loras:
|
||||
continue
|
||||
|
||||
@@ -442,19 +457,13 @@ class SDXLLoRACollectionLoader(BaseInvocation):
|
||||
|
||||
added_loras.append(lora.lora.key)
|
||||
|
||||
if self.unet is not None:
|
||||
if output.unet is None:
|
||||
output.unet = self.unet.model_copy(deep=True)
|
||||
if self.unet is not None and output.unet is not None:
|
||||
output.unet.loras.append(lora)
|
||||
|
||||
if self.clip is not None:
|
||||
if output.clip is None:
|
||||
output.clip = self.clip.model_copy(deep=True)
|
||||
if self.clip is not None and output.clip is not None:
|
||||
output.clip.loras.append(lora)
|
||||
|
||||
if self.clip2 is not None:
|
||||
if output.clip2 is None:
|
||||
output.clip2 = self.clip2.model_copy(deep=True)
|
||||
if self.clip2 is not None and output.clip2 is not None:
|
||||
output.clip2.loras.append(lora)
|
||||
|
||||
return output
|
||||
@@ -472,7 +481,7 @@ class VAELoaderInvocation(BaseInvocation):
|
||||
key = self.vae_model.key
|
||||
|
||||
if not context.models.exists(key):
|
||||
raise Exception(f"Unkown vae: {key}!")
|
||||
raise Exception(f"Unknown vae: {key}!")
|
||||
|
||||
return VAEOutput(vae=VAEField(vae=self.vae_model))
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ import torch
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
@@ -417,6 +416,7 @@ class ColorInvocation(BaseInvocation):
|
||||
class MaskOutput(BaseInvocationOutput):
|
||||
"""A torch mask tensor."""
|
||||
|
||||
# shape: [1, H, W], dtype: bool
|
||||
mask: TensorField = OutputField(description="The mask.")
|
||||
width: int = OutputField(description="The width of the mask in pixels.")
|
||||
height: int = OutputField(description="The height of the mask in pixels.")
|
||||
@@ -539,23 +539,3 @@ class BoundingBoxInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# endregion
|
||||
|
||||
|
||||
@invocation(
|
||||
"image_batch",
|
||||
title="Image Batch",
|
||||
tags=["primitives", "image", "batch", "internal"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
classification=Classification.Special,
|
||||
)
|
||||
class ImageBatchInvocation(BaseInvocation):
|
||||
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
|
||||
|
||||
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
|
||||
|
||||
def __init__(self):
|
||||
raise NotImplementedError("This class should never be executed or instantiated directly.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
raise NotImplementedError("This class should never be executed or instantiated directly.")
|
||||
|
||||
@@ -10,6 +10,10 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.t5_model_identifier import (
|
||||
preprocess_t5_encoder_model_identifier,
|
||||
preprocess_t5_tokenizer_model_identifier,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import SubModelType
|
||||
|
||||
|
||||
@@ -88,21 +92,13 @@ class Sd3ModelLoaderInvocation(BaseInvocation):
|
||||
if self.clip_g_model
|
||||
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
)
|
||||
tokenizer_t5 = (
|
||||
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
|
||||
if self.t5_encoder_model
|
||||
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
|
||||
)
|
||||
t5_encoder = (
|
||||
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
|
||||
if self.t5_encoder_model
|
||||
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
|
||||
)
|
||||
tokenizer_t5 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model or self.model)
|
||||
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model or self.model)
|
||||
|
||||
return Sd3ModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
|
||||
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder, loras=[]),
|
||||
vae=VAEField(vae=vae),
|
||||
)
|
||||
|
||||
@@ -49,7 +49,7 @@ class SAMPointsField(BaseModel):
|
||||
title="Segment Anything",
|
||||
tags=["prompt", "segmentation"],
|
||||
category="segmentation",
|
||||
version="1.1.0",
|
||||
version="1.2.0",
|
||||
)
|
||||
class SegmentAnythingInvocation(BaseInvocation):
|
||||
"""Runs a Segment Anything Model."""
|
||||
@@ -96,8 +96,10 @@ class SegmentAnythingInvocation(BaseInvocation):
|
||||
# masks contains bool values, so we merge them via max-reduce.
|
||||
combined_mask, _ = torch.stack(masks).max(dim=0)
|
||||
|
||||
# Unsqueeze the channel dimension.
|
||||
combined_mask = combined_mask.unsqueeze(0)
|
||||
mask_tensor_name = context.tensors.save(combined_mask)
|
||||
height, width = combined_mask.shape
|
||||
_, height, width = combined_mask.shape
|
||||
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -218,6 +218,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
unet_config=unet_config,
|
||||
)
|
||||
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
|
||||
@@ -87,6 +87,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
|
||||
device_working_mem_gb: The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.
|
||||
enable_partial_loading: Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.
|
||||
keep_ram_copy_of_weights: Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.
|
||||
ram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
|
||||
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
|
||||
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
|
||||
@@ -162,6 +163,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
|
||||
device_working_mem_gb: float = Field(default=3, description="The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.")
|
||||
enable_partial_loading: bool = Field(default=False, description="Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.")
|
||||
keep_ram_copy_of_weights: bool = Field(default=True, description="Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.")
|
||||
# Deprecated CACHE configs
|
||||
ram: Optional[float] = Field(default=None, gt=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
|
||||
vram: Optional[float] = Field(default=None, ge=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
|
||||
|
||||
@@ -84,6 +84,7 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
ram_cache = ModelCache(
|
||||
execution_device_working_mem_gb=app_config.device_working_mem_gb,
|
||||
enable_partial_loading=app_config.enable_partial_loading,
|
||||
keep_ram_copy_of_weights=app_config.keep_ram_copy_of_weights,
|
||||
max_ram_cache_size_gb=app_config.max_cache_ram_gb,
|
||||
max_vram_cache_size_gb=app_config.max_cache_vram_gb,
|
||||
execution_device=execution_device or TorchDevice.choose_torch_device(),
|
||||
|
||||
@@ -5,6 +5,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelAllExceptCurrentResult,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByDestinationResult,
|
||||
CancelByQueueIDResult,
|
||||
@@ -112,6 +113,11 @@ class SessionQueueBase(ABC):
|
||||
"""Cancels all queue items with matching queue ID"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
|
||||
"""Cancels all queue items except in-progress items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def list_queue_items(
|
||||
self,
|
||||
|
||||
@@ -108,8 +108,16 @@ class Batch(BaseModel):
|
||||
return v
|
||||
for batch_data_list in v:
|
||||
for datum in batch_data_list:
|
||||
if not datum.items:
|
||||
continue
|
||||
|
||||
# Special handling for numbers - they can be mixed
|
||||
# TODO(psyche): Update BatchDatum to have a `type` field to specify the type of the items, then we can have strict float and int fields
|
||||
if all(isinstance(item, (int, float)) for item in datum.items):
|
||||
continue
|
||||
|
||||
# Get the type of the first item in the list
|
||||
first_item_type = type(datum.items[0]) if datum.items else None
|
||||
first_item_type = type(datum.items[0])
|
||||
for item in datum.items:
|
||||
if type(item) is not first_item_type:
|
||||
raise BatchItemsTypeError("All items in a batch must have the same type")
|
||||
@@ -366,6 +374,12 @@ class CancelByQueueIDResult(CancelByBatchIDsResult):
|
||||
pass
|
||||
|
||||
|
||||
class CancelAllExceptCurrentResult(CancelByBatchIDsResult):
|
||||
"""Result of canceling all except current"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class IsEmptyResult(BaseModel):
|
||||
"""Result of checking if the session queue is empty"""
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelAllExceptCurrentResult,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByDestinationResult,
|
||||
CancelByQueueIDResult,
|
||||
@@ -510,6 +511,39 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
self.__lock.release()
|
||||
return CancelByQueueIDResult(canceled=count)
|
||||
|
||||
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
|
||||
try:
|
||||
where = """--sql
|
||||
WHERE
|
||||
queue_id == ?
|
||||
AND status == 'pending'
|
||||
"""
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = 'canceled'
|
||||
{where};
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return CancelAllExceptCurrentResult(canceled=count)
|
||||
|
||||
def get_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
|
||||
@@ -51,15 +51,18 @@ class Edge(BaseModel):
|
||||
source: EdgeConnection = Field(description="The connection for the edge's from node and field")
|
||||
destination: EdgeConnection = Field(description="The connection for the edge's to node and field")
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.source.node_id}.{self.source.field} -> {self.destination.node_id}.{self.destination.field}"
|
||||
|
||||
def get_output_field(node: BaseInvocation, field: str) -> Any:
|
||||
|
||||
def get_output_field_type(node: BaseInvocation, field: str) -> Any:
|
||||
node_type = type(node)
|
||||
node_outputs = get_type_hints(node_type.get_output_annotation())
|
||||
node_output_field = node_outputs.get(field) or None
|
||||
return node_output_field
|
||||
|
||||
|
||||
def get_input_field(node: BaseInvocation, field: str) -> Any:
|
||||
def get_input_field_type(node: BaseInvocation, field: str) -> Any:
|
||||
node_type = type(node)
|
||||
node_inputs = get_type_hints(node_type)
|
||||
node_input_field = node_inputs.get(field) or None
|
||||
@@ -93,6 +96,10 @@ def is_list_or_contains_list(t):
|
||||
return False
|
||||
|
||||
|
||||
def is_any(t: Any) -> bool:
|
||||
return t == Any or Any in get_args(t)
|
||||
|
||||
|
||||
def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
|
||||
if not from_type:
|
||||
return False
|
||||
@@ -102,13 +109,7 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
|
||||
# TODO: this is pretty forgiving on generic types. Clean that up (need to handle optionals and such)
|
||||
if from_type and to_type:
|
||||
# Ports are compatible
|
||||
if (
|
||||
from_type == to_type
|
||||
or from_type == Any
|
||||
or to_type == Any
|
||||
or Any in get_args(from_type)
|
||||
or Any in get_args(to_type)
|
||||
):
|
||||
if from_type == to_type or is_any(from_type) or is_any(to_type):
|
||||
return True
|
||||
|
||||
if from_type in get_args(to_type):
|
||||
@@ -140,10 +141,10 @@ def are_connections_compatible(
|
||||
"""Determines if a connection between fields of two nodes is compatible."""
|
||||
|
||||
# TODO: handle iterators and collectors
|
||||
from_node_field = get_output_field(from_node, from_field)
|
||||
to_node_field = get_input_field(to_node, to_field)
|
||||
from_type = get_output_field_type(from_node, from_field)
|
||||
to_type = get_input_field_type(to_node, to_field)
|
||||
|
||||
return are_connection_types_compatible(from_node_field, to_node_field)
|
||||
return are_connection_types_compatible(from_type, to_type)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
@@ -440,17 +441,19 @@ class Graph(BaseModel):
|
||||
self.get_node(edge.destination.node_id),
|
||||
edge.destination.field,
|
||||
):
|
||||
raise InvalidEdgeError(
|
||||
f"Invalid edge from {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
raise InvalidEdgeError(f"Edge source and target types do not match ({edge})")
|
||||
|
||||
# Validate all iterators & collectors
|
||||
# TODO: may need to validate all iterators & collectors in subgraphs so edge connections in parent graphs will be available
|
||||
for node in self.nodes.values():
|
||||
if isinstance(node, IterateInvocation) and not self._is_iterator_connection_valid(node.id):
|
||||
raise InvalidEdgeError(f"Invalid iterator node {node.id}")
|
||||
if isinstance(node, CollectInvocation) and not self._is_collector_connection_valid(node.id):
|
||||
raise InvalidEdgeError(f"Invalid collector node {node.id}")
|
||||
if isinstance(node, IterateInvocation):
|
||||
err = self._is_iterator_connection_valid(node.id)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Invalid iterator node ({node.id}): {err}")
|
||||
if isinstance(node, CollectInvocation):
|
||||
err = self._is_collector_connection_valid(node.id)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Invalid collector node ({node.id}): {err}")
|
||||
|
||||
return None
|
||||
|
||||
@@ -477,11 +480,11 @@ class Graph(BaseModel):
|
||||
|
||||
def _is_destination_field_Any(self, edge: Edge) -> bool:
|
||||
"""Checks if the destination field for an edge is of type typing.Any"""
|
||||
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == Any
|
||||
return get_input_field_type(self.get_node(edge.destination.node_id), edge.destination.field) == Any
|
||||
|
||||
def _is_destination_field_list_of_Any(self, edge: Edge) -> bool:
|
||||
"""Checks if the destination field for an edge is of type typing.Any"""
|
||||
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == list[Any]
|
||||
return get_input_field_type(self.get_node(edge.destination.node_id), edge.destination.field) == list[Any]
|
||||
|
||||
def _validate_edge(self, edge: Edge):
|
||||
"""Validates that a new edge doesn't create a cycle in the graph"""
|
||||
@@ -491,55 +494,40 @@ class Graph(BaseModel):
|
||||
from_node = self.get_node(edge.source.node_id)
|
||||
to_node = self.get_node(edge.destination.node_id)
|
||||
except NodeNotFoundError:
|
||||
raise InvalidEdgeError("One or both nodes don't exist: {edge.source.node_id} -> {edge.destination.node_id}")
|
||||
raise InvalidEdgeError(f"One or both nodes don't exist ({edge})")
|
||||
|
||||
# Validate that an edge to this node+field doesn't already exist
|
||||
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
|
||||
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
|
||||
raise InvalidEdgeError(
|
||||
f"Edge to node {edge.destination.node_id} field {edge.destination.field} already exists"
|
||||
)
|
||||
raise InvalidEdgeError(f"Edge already exists ({edge})")
|
||||
|
||||
# Validate that no cycles would be created
|
||||
g = self.nx_graph_flat()
|
||||
g.add_edge(edge.source.node_id, edge.destination.node_id)
|
||||
if not nx.is_directed_acyclic_graph(g):
|
||||
raise InvalidEdgeError(
|
||||
f"Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}"
|
||||
)
|
||||
raise InvalidEdgeError(f"Edge creates a cycle in the graph ({edge})")
|
||||
|
||||
# Validate that the field types are compatible
|
||||
if not are_connections_compatible(from_node, edge.source.field, to_node, edge.destination.field):
|
||||
raise InvalidEdgeError(
|
||||
f"Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
raise InvalidEdgeError(f"Field types are incompatible ({edge})")
|
||||
|
||||
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
|
||||
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
|
||||
if not self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source):
|
||||
raise InvalidEdgeError(
|
||||
f"Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
err = self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Iterator input type does not match iterator output type ({edge}): {err}")
|
||||
|
||||
# Validate if iterator input type matches output type (if this edge results in both being set)
|
||||
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
|
||||
if not self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination):
|
||||
raise InvalidEdgeError(
|
||||
f"Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
err = self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Iterator output type does not match iterator input type ({edge}): {err}")
|
||||
|
||||
# Validate if collector input type matches output type (if this edge results in both being set)
|
||||
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
|
||||
if not self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source):
|
||||
raise InvalidEdgeError(
|
||||
f"Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
|
||||
# Validate that we are not connecting collector to iterator (currently unsupported)
|
||||
if isinstance(from_node, CollectInvocation) and isinstance(to_node, IterateInvocation):
|
||||
raise InvalidEdgeError(
|
||||
f"Cannot connect collector to iterator: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
err = self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Collector output type does not match collector input type ({edge}): {err}")
|
||||
|
||||
# Validate if collector output type matches input type (if this edge results in both being set) - skip if the destination field is not Any or list[Any]
|
||||
if (
|
||||
@@ -548,10 +536,9 @@ class Graph(BaseModel):
|
||||
and not self._is_destination_field_list_of_Any(edge)
|
||||
and not self._is_destination_field_Any(edge)
|
||||
):
|
||||
if not self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination):
|
||||
raise InvalidEdgeError(
|
||||
f"Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
|
||||
)
|
||||
err = self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination)
|
||||
if err is not None:
|
||||
raise InvalidEdgeError(f"Collector input type does not match collector output type ({edge}): {err}")
|
||||
|
||||
def has_node(self, node_id: str) -> bool:
|
||||
"""Determines whether or not a node exists in the graph."""
|
||||
@@ -634,7 +621,7 @@ class Graph(BaseModel):
|
||||
node_id: str,
|
||||
new_input: Optional[EdgeConnection] = None,
|
||||
new_output: Optional[EdgeConnection] = None,
|
||||
) -> bool:
|
||||
) -> str | None:
|
||||
inputs = [e.source for e in self._get_input_edges(node_id, "collection")]
|
||||
outputs = [e.destination for e in self._get_output_edges(node_id, "item")]
|
||||
|
||||
@@ -645,29 +632,47 @@ class Graph(BaseModel):
|
||||
|
||||
# Only one input is allowed for iterators
|
||||
if len(inputs) > 1:
|
||||
return False
|
||||
return "Iterator may only have one input edge"
|
||||
|
||||
input_node = self.get_node(inputs[0].node_id)
|
||||
|
||||
# Get input and output fields (the fields linked to the iterator's input/output)
|
||||
input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
|
||||
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
input_field_type = get_output_field_type(input_node, inputs[0].field)
|
||||
output_field_types = [get_input_field_type(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
|
||||
# Input type must be a list
|
||||
if get_origin(input_field) is not list:
|
||||
return False
|
||||
if get_origin(input_field_type) is not list:
|
||||
return "Iterator input must be a collection"
|
||||
|
||||
# Validate that all outputs match the input type
|
||||
input_field_item_type = get_args(input_field)[0]
|
||||
if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)):
|
||||
return False
|
||||
input_field_item_type = get_args(input_field_type)[0]
|
||||
if not all((are_connection_types_compatible(input_field_item_type, t) for t in output_field_types)):
|
||||
return "Iterator outputs must connect to an input with a matching type"
|
||||
|
||||
return True
|
||||
# Collector input type must match all iterator output types
|
||||
if isinstance(input_node, CollectInvocation):
|
||||
# Traverse the graph to find the first collector input edge. Collectors validate that their collection
|
||||
# inputs are all of the same type, so we can use the first input edge to determine the collector's type
|
||||
first_collector_input_edge = self._get_input_edges(input_node.id, "item")[0]
|
||||
first_collector_input_type = get_output_field_type(
|
||||
self.get_node(first_collector_input_edge.source.node_id), first_collector_input_edge.source.field
|
||||
)
|
||||
resolved_collector_type = (
|
||||
first_collector_input_type
|
||||
if get_origin(first_collector_input_type) is None
|
||||
else get_args(first_collector_input_type)
|
||||
)
|
||||
if not all((are_connection_types_compatible(resolved_collector_type, t) for t in output_field_types)):
|
||||
return "Iterator collection type must match all iterator output types"
|
||||
|
||||
return None
|
||||
|
||||
def _is_collector_connection_valid(
|
||||
self,
|
||||
node_id: str,
|
||||
new_input: Optional[EdgeConnection] = None,
|
||||
new_output: Optional[EdgeConnection] = None,
|
||||
) -> bool:
|
||||
) -> str | None:
|
||||
inputs = [e.source for e in self._get_input_edges(node_id, "item")]
|
||||
outputs = [e.destination for e in self._get_output_edges(node_id, "collection")]
|
||||
|
||||
@@ -677,38 +682,42 @@ class Graph(BaseModel):
|
||||
outputs.append(new_output)
|
||||
|
||||
# Get input and output fields (the fields linked to the iterator's input/output)
|
||||
input_fields = [get_output_field(self.get_node(e.node_id), e.field) for e in inputs]
|
||||
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
input_field_types = [get_output_field_type(self.get_node(e.node_id), e.field) for e in inputs]
|
||||
output_field_types = [get_input_field_type(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
|
||||
# Validate that all inputs are derived from or match a single type
|
||||
input_field_types = {
|
||||
t
|
||||
for input_field in input_fields
|
||||
for t in ([input_field] if get_origin(input_field) is None else get_args(input_field))
|
||||
if t != NoneType
|
||||
resolved_type
|
||||
for input_field_type in input_field_types
|
||||
for resolved_type in (
|
||||
[input_field_type] if get_origin(input_field_type) is None else get_args(input_field_type)
|
||||
)
|
||||
if resolved_type != NoneType
|
||||
} # Get unique types
|
||||
type_tree = nx.DiGraph()
|
||||
type_tree.add_nodes_from(input_field_types)
|
||||
type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
|
||||
type_degrees = type_tree.in_degree(type_tree.nodes)
|
||||
if sum((t[1] == 0 for t in type_degrees)) != 1: # type: ignore
|
||||
return False # There is more than one root type
|
||||
return "Collector input collection items must be of a single type"
|
||||
|
||||
# Get the input root type
|
||||
input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # type: ignore
|
||||
|
||||
# Verify that all outputs are lists
|
||||
if not all(is_list_or_contains_list(f) for f in output_fields):
|
||||
return False
|
||||
if not all(is_list_or_contains_list(t) or is_any(t) for t in output_field_types):
|
||||
return "Collector output must connect to a collection input"
|
||||
|
||||
# Verify that all outputs match the input type (are a base class or the same class)
|
||||
if not all(
|
||||
is_union_subtype(input_root_type, get_args(f)[0]) or issubclass(input_root_type, get_args(f)[0])
|
||||
for f in output_fields
|
||||
is_any(t)
|
||||
or is_union_subtype(input_root_type, get_args(t)[0])
|
||||
or issubclass(input_root_type, get_args(t)[0])
|
||||
for t in output_field_types
|
||||
):
|
||||
return False
|
||||
return "Collector outputs must connect to a collection input with a matching type"
|
||||
|
||||
return True
|
||||
return None
|
||||
|
||||
def nx_graph(self) -> nx.DiGraph:
|
||||
"""Returns a NetworkX DiGraph representing the layout of this graph"""
|
||||
|
||||
26
invokeai/app/util/t5_model_identifier.py
Normal file
26
invokeai/app/util/t5_model_identifier.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.backend.model_manager.config import BaseModelType, SubModelType
|
||||
|
||||
|
||||
def preprocess_t5_encoder_model_identifier(model_identifier: ModelIdentifierField) -> ModelIdentifierField:
|
||||
"""A helper function to normalize a T5 encoder model identifier so that T5 models associated with FLUX
|
||||
or SD3 models can be used interchangeably.
|
||||
"""
|
||||
if model_identifier.base == BaseModelType.Any:
|
||||
return model_identifier.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
elif model_identifier.base == BaseModelType.StableDiffusion3:
|
||||
return model_identifier.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
|
||||
else:
|
||||
raise ValueError(f"Unsupported model base: {model_identifier.base}")
|
||||
|
||||
|
||||
def preprocess_t5_tokenizer_model_identifier(model_identifier: ModelIdentifierField) -> ModelIdentifierField:
|
||||
"""A helper function to normalize a T5 tokenizer model identifier so that T5 models associated with FLUX
|
||||
or SD3 models can be used interchangeably.
|
||||
"""
|
||||
if model_identifier.base == BaseModelType.Any:
|
||||
return model_identifier.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
elif model_identifier.base == BaseModelType.StableDiffusion3:
|
||||
return model_identifier.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
|
||||
else:
|
||||
raise ValueError(f"Unsupported model base: {model_identifier.base}")
|
||||
@@ -1,13 +1,19 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
from torch import Tensor, nn
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
class HFEncoder(nn.Module):
|
||||
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
|
||||
def __init__(
|
||||
self,
|
||||
encoder: PreTrainedModel,
|
||||
tokenizer: PreTrainedTokenizer | PreTrainedTokenizerFast,
|
||||
is_clip: bool,
|
||||
max_length: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.max_length = max_length
|
||||
self.is_clip = is_clip
|
||||
|
||||
@@ -9,12 +9,17 @@ class CachedModelOnlyFullLoad:
|
||||
MPS memory, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int):
|
||||
def __init__(
|
||||
self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int, keep_ram_copy: bool = False
|
||||
):
|
||||
"""Initialize a CachedModelOnlyFullLoad.
|
||||
Args:
|
||||
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
|
||||
compute_device (torch.device): The compute device to move the model to.
|
||||
total_bytes (int): The total size (in bytes) of all the weights in the model.
|
||||
keep_ram_copy (bool): Whether to keep a read-only copy of the model's state dict in RAM. Keeping a RAM copy
|
||||
increases RAM usage, but speeds up model offload from VRAM and LoRA patching (assuming there is
|
||||
sufficient RAM).
|
||||
"""
|
||||
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
|
||||
self._model = model
|
||||
@@ -23,7 +28,7 @@ class CachedModelOnlyFullLoad:
|
||||
|
||||
# A CPU read-only copy of the model's state dict.
|
||||
self._cpu_state_dict: dict[str, torch.Tensor] | None = None
|
||||
if isinstance(model, torch.nn.Module):
|
||||
if isinstance(model, torch.nn.Module) and keep_ram_copy:
|
||||
self._cpu_state_dict = model.state_dict()
|
||||
|
||||
self._total_bytes = total_bytes
|
||||
|
||||
@@ -14,33 +14,38 @@ class CachedModelWithPartialLoad:
|
||||
MPS memory, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, model: torch.nn.Module, compute_device: torch.device):
|
||||
def __init__(self, model: torch.nn.Module, compute_device: torch.device, keep_ram_copy: bool = False):
|
||||
self._model = model
|
||||
self._compute_device = compute_device
|
||||
|
||||
# A CPU read-only copy of the model's state dict.
|
||||
self._cpu_state_dict: dict[str, torch.Tensor] = model.state_dict()
|
||||
model_state_dict = model.state_dict()
|
||||
# A CPU read-only copy of the model's state dict. Used for faster model unloads from VRAM, and to speed up LoRA
|
||||
# patching. Set to `None` if keep_ram_copy is False.
|
||||
self._cpu_state_dict: dict[str, torch.Tensor] | None = model_state_dict if keep_ram_copy else None
|
||||
|
||||
# A dictionary of the size of each tensor in the state dict.
|
||||
# HACK(ryand): We use this dictionary any time we are doing byte tracking calculations. We do this for
|
||||
# consistency in case the application code has modified the model's size (e.g. by casting to a different
|
||||
# precision). Of course, this means that we are making model cache load/unload decisions based on model size
|
||||
# data that may not be fully accurate.
|
||||
self._state_dict_bytes = {k: calc_tensor_size(v) for k, v in self._cpu_state_dict.items()}
|
||||
self._state_dict_bytes = {k: calc_tensor_size(v) for k, v in model_state_dict.items()}
|
||||
|
||||
self._total_bytes = sum(self._state_dict_bytes.values())
|
||||
self._cur_vram_bytes: int | None = None
|
||||
|
||||
self._modules_that_support_autocast = self._find_modules_that_support_autocast()
|
||||
self._keys_in_modules_that_do_not_support_autocast = self._find_keys_in_modules_that_do_not_support_autocast()
|
||||
self._keys_in_modules_that_do_not_support_autocast = self._find_keys_in_modules_that_do_not_support_autocast(
|
||||
model_state_dict
|
||||
)
|
||||
self._state_dict_keys_by_module_prefix = self._group_state_dict_keys_by_module_prefix(model_state_dict)
|
||||
|
||||
def _find_modules_that_support_autocast(self) -> dict[str, torch.nn.Module]:
|
||||
"""Find all modules that support autocasting."""
|
||||
return {n: m for n, m in self._model.named_modules() if isinstance(m, CustomModuleMixin)} # type: ignore
|
||||
|
||||
def _find_keys_in_modules_that_do_not_support_autocast(self) -> set[str]:
|
||||
def _find_keys_in_modules_that_do_not_support_autocast(self, state_dict: dict[str, torch.Tensor]) -> set[str]:
|
||||
keys_in_modules_that_do_not_support_autocast: set[str] = set()
|
||||
for key in self._cpu_state_dict.keys():
|
||||
for key in state_dict.keys():
|
||||
for module_name in self._modules_that_support_autocast.keys():
|
||||
if key.startswith(module_name):
|
||||
break
|
||||
@@ -48,6 +53,47 @@ class CachedModelWithPartialLoad:
|
||||
keys_in_modules_that_do_not_support_autocast.add(key)
|
||||
return keys_in_modules_that_do_not_support_autocast
|
||||
|
||||
def _group_state_dict_keys_by_module_prefix(self, state_dict: dict[str, torch.Tensor]) -> dict[str, list[str]]:
|
||||
"""A helper function that groups state dict keys by module prefix.
|
||||
|
||||
Example:
|
||||
```
|
||||
state_dict = {
|
||||
"weight": ...,
|
||||
"module.submodule.weight": ...,
|
||||
"module.submodule.bias": ...,
|
||||
"module.other_submodule.weight": ...,
|
||||
"module.other_submodule.bias": ...,
|
||||
}
|
||||
|
||||
output = group_state_dict_keys_by_module_prefix(state_dict)
|
||||
|
||||
# The output will be:
|
||||
output = {
|
||||
"": [
|
||||
"weight",
|
||||
],
|
||||
"module.submodule": [
|
||||
"module.submodule.weight",
|
||||
"module.submodule.bias",
|
||||
],
|
||||
"module.other_submodule": [
|
||||
"module.other_submodule.weight",
|
||||
"module.other_submodule.bias",
|
||||
],
|
||||
}
|
||||
```
|
||||
"""
|
||||
state_dict_keys_by_module_prefix: dict[str, list[str]] = {}
|
||||
for key in state_dict.keys():
|
||||
split = key.rsplit(".", 1)
|
||||
# `split` will have length 1 if the root module has parameters.
|
||||
module_name = split[0] if len(split) > 1 else ""
|
||||
if module_name not in state_dict_keys_by_module_prefix:
|
||||
state_dict_keys_by_module_prefix[module_name] = []
|
||||
state_dict_keys_by_module_prefix[module_name].append(key)
|
||||
return state_dict_keys_by_module_prefix
|
||||
|
||||
def _move_non_persistent_buffers_to_device(self, device: torch.device):
|
||||
"""Move the non-persistent buffers to the target device. These buffers are not included in the state dict,
|
||||
so we need to move them manually.
|
||||
@@ -98,6 +144,82 @@ class CachedModelWithPartialLoad:
|
||||
"""Unload all weights from VRAM."""
|
||||
return self.partial_unload_from_vram(self.total_bytes())
|
||||
|
||||
def _load_state_dict_with_device_conversion(
|
||||
self, state_dict: dict[str, torch.Tensor], keys_to_convert: set[str], target_device: torch.device
|
||||
):
|
||||
if self._cpu_state_dict is not None:
|
||||
# Run the fast version.
|
||||
self._load_state_dict_with_fast_device_conversion(
|
||||
state_dict=state_dict,
|
||||
keys_to_convert=keys_to_convert,
|
||||
target_device=target_device,
|
||||
cpu_state_dict=self._cpu_state_dict,
|
||||
)
|
||||
else:
|
||||
# Run the low-virtual-memory version.
|
||||
self._load_state_dict_with_jit_device_conversion(
|
||||
state_dict=state_dict,
|
||||
keys_to_convert=keys_to_convert,
|
||||
target_device=target_device,
|
||||
)
|
||||
|
||||
def _load_state_dict_with_jit_device_conversion(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
keys_to_convert: set[str],
|
||||
target_device: torch.device,
|
||||
):
|
||||
"""A custom state dict loading implementation with good peak memory properties.
|
||||
|
||||
This implementation has the important property that it copies parameters to the target device one module at a time
|
||||
rather than applying all of the device conversions and then calling load_state_dict(). This is done to minimize the
|
||||
peak virtual memory usage. Specifically, we want to avoid a case where we hold references to all of the CPU weights
|
||||
and CUDA weights simultaneously, because Windows will reserve virtual memory for both.
|
||||
"""
|
||||
for module_name, module in self._model.named_modules():
|
||||
module_keys = self._state_dict_keys_by_module_prefix.get(module_name, [])
|
||||
# Calculate the length of the module name prefix.
|
||||
prefix_len = len(module_name)
|
||||
if prefix_len > 0:
|
||||
prefix_len += 1
|
||||
|
||||
module_state_dict = {}
|
||||
for key in module_keys:
|
||||
if key in keys_to_convert:
|
||||
# It is important that we overwrite `state_dict[key]` to avoid keeping two copies of the same
|
||||
# parameter.
|
||||
state_dict[key] = state_dict[key].to(target_device)
|
||||
# Note that we keep parameters that have not been moved to a new device in case the module implements
|
||||
# weird custom state dict loading logic that requires all parameters to be present.
|
||||
module_state_dict[key[prefix_len:]] = state_dict[key]
|
||||
|
||||
if len(module_state_dict) > 0:
|
||||
# We set strict=False, because if `module` has both parameters and child modules, then we are loading a
|
||||
# state dict that only contains the parameters of `module` (not its children).
|
||||
# We assume that it is rare for non-leaf modules to have parameters. Calling load_state_dict() on non-leaf
|
||||
# modules will recurse through all of the children, so is a bit wasteful.
|
||||
incompatible_keys = module.load_state_dict(module_state_dict, strict=False, assign=True)
|
||||
# Missing keys are ok, unexpected keys are not.
|
||||
assert len(incompatible_keys.unexpected_keys) == 0
|
||||
|
||||
def _load_state_dict_with_fast_device_conversion(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
keys_to_convert: set[str],
|
||||
target_device: torch.device,
|
||||
cpu_state_dict: dict[str, torch.Tensor],
|
||||
):
|
||||
"""Convert parameters to the target device and load them into the model. Leverages the `cpu_state_dict` to speed
|
||||
up transfers of weights to the CPU.
|
||||
"""
|
||||
for key in keys_to_convert:
|
||||
if target_device.type == "cpu":
|
||||
state_dict[key] = cpu_state_dict[key]
|
||||
else:
|
||||
state_dict[key] = state_dict[key].to(target_device)
|
||||
|
||||
self._model.load_state_dict(state_dict, assign=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def partial_load_to_vram(self, vram_bytes_to_load: int) -> int:
|
||||
"""Load more weights into VRAM without exceeding vram_bytes_to_load.
|
||||
@@ -112,26 +234,33 @@ class CachedModelWithPartialLoad:
|
||||
|
||||
cur_state_dict = self._model.state_dict()
|
||||
|
||||
# Identify the keys that will be loaded into VRAM.
|
||||
keys_to_load: set[str] = set()
|
||||
|
||||
# First, process the keys that *must* be loaded into VRAM.
|
||||
for key in self._keys_in_modules_that_do_not_support_autocast:
|
||||
param = cur_state_dict[key]
|
||||
if param.device.type == self._compute_device.type:
|
||||
continue
|
||||
|
||||
keys_to_load.add(key)
|
||||
param_size = self._state_dict_bytes[key]
|
||||
cur_state_dict[key] = param.to(self._compute_device, copy=True)
|
||||
vram_bytes_loaded += param_size
|
||||
|
||||
if vram_bytes_loaded > vram_bytes_to_load:
|
||||
logger = InvokeAILogger.get_logger()
|
||||
logger.warning(
|
||||
f"Loaded {vram_bytes_loaded / 2**20} MB into VRAM, but only {vram_bytes_to_load / 2**20} MB were "
|
||||
f"Loading {vram_bytes_loaded / 2**20} MB into VRAM, but only {vram_bytes_to_load / 2**20} MB were "
|
||||
"requested. This is the minimum set of weights in VRAM required to run the model."
|
||||
)
|
||||
|
||||
# Next, process the keys that can optionally be loaded into VRAM.
|
||||
fully_loaded = True
|
||||
for key, param in cur_state_dict.items():
|
||||
# Skip the keys that have already been processed above.
|
||||
if key in keys_to_load:
|
||||
continue
|
||||
|
||||
if param.device.type == self._compute_device.type:
|
||||
continue
|
||||
|
||||
@@ -142,14 +271,14 @@ class CachedModelWithPartialLoad:
|
||||
fully_loaded = False
|
||||
continue
|
||||
|
||||
cur_state_dict[key] = param.to(self._compute_device, copy=True)
|
||||
keys_to_load.add(key)
|
||||
vram_bytes_loaded += param_size
|
||||
|
||||
if vram_bytes_loaded > 0:
|
||||
if len(keys_to_load) > 0:
|
||||
# We load the entire state dict, not just the parameters that changed, in case there are modules that
|
||||
# override _load_from_state_dict() and do some funky stuff that requires the entire state dict.
|
||||
# Alternatively, in the future, grouping parameters by module could probably solve this problem.
|
||||
self._model.load_state_dict(cur_state_dict, assign=True)
|
||||
self._load_state_dict_with_device_conversion(cur_state_dict, keys_to_load, self._compute_device)
|
||||
|
||||
if self._cur_vram_bytes is not None:
|
||||
self._cur_vram_bytes += vram_bytes_loaded
|
||||
@@ -180,6 +309,10 @@ class CachedModelWithPartialLoad:
|
||||
|
||||
offload_device = "cpu"
|
||||
cur_state_dict = self._model.state_dict()
|
||||
|
||||
# Identify the keys that will be offloaded to CPU.
|
||||
keys_to_offload: set[str] = set()
|
||||
|
||||
for key, param in cur_state_dict.items():
|
||||
if vram_bytes_freed >= vram_bytes_to_free:
|
||||
break
|
||||
@@ -191,11 +324,11 @@ class CachedModelWithPartialLoad:
|
||||
required_weights_in_vram += self._state_dict_bytes[key]
|
||||
continue
|
||||
|
||||
cur_state_dict[key] = self._cpu_state_dict[key]
|
||||
keys_to_offload.add(key)
|
||||
vram_bytes_freed += self._state_dict_bytes[key]
|
||||
|
||||
if vram_bytes_freed > 0:
|
||||
self._model.load_state_dict(cur_state_dict, assign=True)
|
||||
if len(keys_to_offload) > 0:
|
||||
self._load_state_dict_with_device_conversion(cur_state_dict, keys_to_offload, torch.device("cpu"))
|
||||
|
||||
if self._cur_vram_bytes is not None:
|
||||
self._cur_vram_bytes -= vram_bytes_freed
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import gc
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
from functools import wraps
|
||||
from logging import Logger
|
||||
from typing import Dict, List, Optional
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
@@ -41,6 +43,17 @@ def get_model_cache_key(model_key: str, submodel_type: Optional[SubModelType] =
|
||||
return model_key
|
||||
|
||||
|
||||
def synchronized(method: Callable[..., Any]) -> Callable[..., Any]:
|
||||
"""A decorator that applies the class's self._lock to the method."""
|
||||
|
||||
@wraps(method)
|
||||
def wrapper(self, *args, **kwargs):
|
||||
with self._lock: # Automatically acquire and release the lock
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class ModelCache:
|
||||
"""A cache for managing models in memory.
|
||||
|
||||
@@ -78,6 +91,7 @@ class ModelCache:
|
||||
self,
|
||||
execution_device_working_mem_gb: float,
|
||||
enable_partial_loading: bool,
|
||||
keep_ram_copy_of_weights: bool,
|
||||
max_ram_cache_size_gb: float | None = None,
|
||||
max_vram_cache_size_gb: float | None = None,
|
||||
execution_device: torch.device | str = "cuda",
|
||||
@@ -105,6 +119,7 @@ class ModelCache:
|
||||
:param logger: InvokeAILogger to use (otherwise creates one)
|
||||
"""
|
||||
self._enable_partial_loading = enable_partial_loading
|
||||
self._keep_ram_copy_of_weights = keep_ram_copy_of_weights
|
||||
self._execution_device_working_mem_gb = execution_device_working_mem_gb
|
||||
self._execution_device: torch.device = torch.device(execution_device)
|
||||
self._storage_device: torch.device = torch.device(storage_device)
|
||||
@@ -121,16 +136,27 @@ class ModelCache:
|
||||
self._cached_models: Dict[str, CacheRecord] = {}
|
||||
self._cache_stack: List[str] = []
|
||||
|
||||
self._ram_cache_size_bytes = self._calc_ram_available_to_model_cache()
|
||||
|
||||
# A lock applied to all public method calls to make the ModelCache thread-safe.
|
||||
# At the time of writing, the ModelCache should only be accessed from two threads:
|
||||
# - The graph execution thread
|
||||
# - Requests to empty the cache from a separate thread
|
||||
self._lock = threading.RLock()
|
||||
|
||||
@property
|
||||
@synchronized
|
||||
def stats(self) -> Optional[CacheStats]:
|
||||
"""Return collected CacheStats object."""
|
||||
return self._stats
|
||||
|
||||
@stats.setter
|
||||
@synchronized
|
||||
def stats(self, stats: CacheStats) -> None:
|
||||
"""Set the CacheStats object for collecting cache statistics."""
|
||||
self._stats = stats
|
||||
|
||||
@synchronized
|
||||
def put(self, key: str, model: AnyModel) -> None:
|
||||
"""Add a model to the cache."""
|
||||
if key in self._cached_models:
|
||||
@@ -154,9 +180,13 @@ class ModelCache:
|
||||
|
||||
# Wrap model.
|
||||
if isinstance(model, torch.nn.Module) and running_with_cuda and self._enable_partial_loading:
|
||||
wrapped_model = CachedModelWithPartialLoad(model, self._execution_device)
|
||||
wrapped_model = CachedModelWithPartialLoad(
|
||||
model, self._execution_device, keep_ram_copy=self._keep_ram_copy_of_weights
|
||||
)
|
||||
else:
|
||||
wrapped_model = CachedModelOnlyFullLoad(model, self._execution_device, size)
|
||||
wrapped_model = CachedModelOnlyFullLoad(
|
||||
model, self._execution_device, size, keep_ram_copy=self._keep_ram_copy_of_weights
|
||||
)
|
||||
|
||||
cache_record = CacheRecord(key=key, cached_model=wrapped_model)
|
||||
self._cached_models[key] = cache_record
|
||||
@@ -165,6 +195,7 @@ class ModelCache:
|
||||
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size/MB:.2f}MB)"
|
||||
)
|
||||
|
||||
@synchronized
|
||||
def get(self, key: str, stats_name: Optional[str] = None) -> CacheRecord:
|
||||
"""Retrieve a model from the cache.
|
||||
|
||||
@@ -200,6 +231,7 @@ class ModelCache:
|
||||
self._logger.debug(f"Cache hit: {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
|
||||
return cache_entry
|
||||
|
||||
@synchronized
|
||||
def lock(self, cache_entry: CacheRecord, working_mem_bytes: Optional[int]) -> None:
|
||||
"""Lock a model for use and move it into VRAM."""
|
||||
if cache_entry.key not in self._cached_models:
|
||||
@@ -235,6 +267,7 @@ class ModelCache:
|
||||
|
||||
self._log_cache_state()
|
||||
|
||||
@synchronized
|
||||
def unlock(self, cache_entry: CacheRecord) -> None:
|
||||
"""Unlock a model."""
|
||||
if cache_entry.key not in self._cached_models:
|
||||
@@ -382,41 +415,77 @@ class ModelCache:
|
||||
# Alternative definition of VRAM in use:
|
||||
# return sum(ce.cached_model.cur_vram_bytes() for ce in self._cached_models.values())
|
||||
|
||||
def _get_ram_available(self) -> int:
|
||||
"""Get the amount of RAM available for the cache to use, while keeping memory pressure under control."""
|
||||
def _calc_ram_available_to_model_cache(self) -> int:
|
||||
"""Calculate the amount of RAM available for the cache to use."""
|
||||
# If self._max_ram_cache_size_gb is set, then it overrides the default logic.
|
||||
if self._max_ram_cache_size_gb is not None:
|
||||
ram_total_available_to_cache = int(self._max_ram_cache_size_gb * GB)
|
||||
return ram_total_available_to_cache - self._get_ram_in_use()
|
||||
self._logger.info(f"Using user-defined RAM cache size: {self._max_ram_cache_size_gb} GB.")
|
||||
return int(self._max_ram_cache_size_gb * GB)
|
||||
|
||||
virtual_memory = psutil.virtual_memory()
|
||||
ram_total = virtual_memory.total
|
||||
ram_available = virtual_memory.available
|
||||
ram_used = ram_total - ram_available
|
||||
# Heuristics for dynamically calculating the RAM cache size, **in order of increasing priority**:
|
||||
# 1. As an initial default, use 50% of the total RAM for InvokeAI.
|
||||
# - Assume a 2GB baseline for InvokeAI's non-model RAM usage, and use the rest of the RAM for the model cache.
|
||||
# 2. On a system with a lot of RAM, users probably don't want InvokeAI to eat up too much RAM.
|
||||
# There are diminishing returns to storing more and more models. So, we apply an upper bound. (Keep in mind
|
||||
# that most OSes have some amount of disk caching, which we still benefit from if there is excess memory,
|
||||
# even if we drop models from the cache.)
|
||||
# - On systems without a CUDA device, the upper bound is 32GB.
|
||||
# - On systems with a CUDA device, the upper bound is 1x the amount of VRAM (less the working memory).
|
||||
# 3. Absolute minimum of 4GB.
|
||||
|
||||
# The total size of all the models in the cache will often be larger than the amount of RAM reported by psutil
|
||||
# (due to lazy-loading and OS RAM caching behaviour). We could just rely on the psutil values, but it feels
|
||||
# like a bad idea to over-fill the model cache. So, for now, we'll try to keep the total size of models in the
|
||||
# cache under the total amount of system RAM.
|
||||
cache_ram_used = self._get_ram_in_use()
|
||||
ram_used = max(cache_ram_used, ram_used)
|
||||
# NOTE(ryand): We explored dynamically adjusting the RAM cache size based on memory pressure (using psutil), but
|
||||
# decided against it for now, for the following reasons:
|
||||
# - It was surprisingly difficult to get memory metrics with consistent definitions across OSes. (If you go
|
||||
# down this path again, don't underestimate the amount of complexity here and be sure to test rigorously on all
|
||||
# OSes.)
|
||||
# - Making the RAM cache size dynamic opens the door for performance regressions that are hard to diagnose and
|
||||
# hard for users to understand. It is better for users to see that their RAM is maxed out, and then override
|
||||
# the default value if desired.
|
||||
|
||||
# Aim to keep 10% of RAM free.
|
||||
ram_available_based_on_memory_usage = int(ram_total * 0.9) - ram_used
|
||||
# Lookup the total VRAM size for the CUDA execution device.
|
||||
total_cuda_vram_bytes: int | None = None
|
||||
if self._execution_device.type == "cuda":
|
||||
_, total_cuda_vram_bytes = torch.cuda.mem_get_info(self._execution_device)
|
||||
|
||||
# If we are running out of RAM, then there's an increased likelihood that we will run into this issue:
|
||||
# https://github.com/invoke-ai/InvokeAI/issues/7513
|
||||
# To keep things running smoothly, there's a minimum RAM cache size that we always allow (even if this means
|
||||
# using swap).
|
||||
min_ram_cache_size_bytes = 4 * GB
|
||||
ram_available_based_on_min_cache_size = min_ram_cache_size_bytes - cache_ram_used
|
||||
# Apply heuristic 1.
|
||||
# ------------------
|
||||
heuristics_applied = [1]
|
||||
total_system_ram_bytes = psutil.virtual_memory().total
|
||||
# Assumed baseline RAM used by InvokeAI for non-model stuff.
|
||||
baseline_ram_used_by_invokeai = 2 * GB
|
||||
ram_available_to_model_cache = int(total_system_ram_bytes * 0.5 - baseline_ram_used_by_invokeai)
|
||||
|
||||
return max(ram_available_based_on_memory_usage, ram_available_based_on_min_cache_size)
|
||||
# Apply heuristic 2.
|
||||
# ------------------
|
||||
max_ram_cache_size_bytes = 32 * GB
|
||||
if total_cuda_vram_bytes is not None:
|
||||
if self._max_vram_cache_size_gb is not None:
|
||||
max_ram_cache_size_bytes = int(self._max_vram_cache_size_gb * GB)
|
||||
else:
|
||||
max_ram_cache_size_bytes = total_cuda_vram_bytes - int(self._execution_device_working_mem_gb * GB)
|
||||
if ram_available_to_model_cache > max_ram_cache_size_bytes:
|
||||
heuristics_applied.append(2)
|
||||
ram_available_to_model_cache = max_ram_cache_size_bytes
|
||||
|
||||
# Apply heuristic 3.
|
||||
# ------------------
|
||||
if ram_available_to_model_cache < 4 * GB:
|
||||
heuristics_applied.append(3)
|
||||
ram_available_to_model_cache = 4 * GB
|
||||
|
||||
self._logger.info(
|
||||
f"Calculated model RAM cache size: {ram_available_to_model_cache / MB:.2f} MB. Heuristics applied: {heuristics_applied}."
|
||||
)
|
||||
return ram_available_to_model_cache
|
||||
|
||||
def _get_ram_in_use(self) -> int:
|
||||
"""Get the amount of RAM currently in use."""
|
||||
return sum(ce.cached_model.total_bytes() for ce in self._cached_models.values())
|
||||
|
||||
def _get_ram_available(self) -> int:
|
||||
"""Get the amount of RAM available for the cache to use."""
|
||||
return self._ram_cache_size_bytes - self._get_ram_in_use()
|
||||
|
||||
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
|
||||
if self._log_memory_usage:
|
||||
return MemorySnapshot.capture()
|
||||
@@ -532,6 +601,7 @@ class ModelCache:
|
||||
|
||||
self._logger.debug(log)
|
||||
|
||||
@synchronized
|
||||
def make_room(self, bytes_needed: int) -> None:
|
||||
"""Make enough room in the cache to accommodate a new model of indicated size.
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custo
|
||||
CustomModuleMixin,
|
||||
)
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer
|
||||
from invokeai.backend.patches.layers.lora_layer import LoRALayer
|
||||
|
||||
@@ -22,25 +21,6 @@ def linear_lora_forward(input: torch.Tensor, lora_layer: LoRALayer, lora_weight:
|
||||
return x
|
||||
|
||||
|
||||
def concatenated_lora_forward(
|
||||
input: torch.Tensor, concatenated_lora_layer: ConcatenatedLoRALayer, lora_weight: float
|
||||
) -> torch.Tensor:
|
||||
"""An optimized implementation of the residual calculation for a sidecar ConcatenatedLoRALayer."""
|
||||
x_chunks: list[torch.Tensor] = []
|
||||
for lora_layer in concatenated_lora_layer.lora_layers:
|
||||
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
|
||||
x_chunk *= lora_weight * lora_layer.scale()
|
||||
x_chunks.append(x_chunk)
|
||||
|
||||
# TODO(ryand): Generalize to support concat_axis != 0.
|
||||
assert concatenated_lora_layer.concat_axis == 0
|
||||
x = torch.cat(x_chunks, dim=-1)
|
||||
return x
|
||||
|
||||
|
||||
def autocast_linear_forward_sidecar_patches(
|
||||
orig_module: torch.nn.Linear, input: torch.Tensor, patches_and_weights: list[tuple[BaseLayerPatch, float]]
|
||||
) -> torch.Tensor:
|
||||
@@ -66,8 +46,6 @@ def autocast_linear_forward_sidecar_patches(
|
||||
output += linear_lora_forward(orig_input, patch, patch_weight)
|
||||
elif isinstance(patch, LoRALayer):
|
||||
output += linear_lora_forward(input, patch, patch_weight)
|
||||
elif isinstance(patch, ConcatenatedLoRALayer):
|
||||
output += concatenated_lora_forward(input, patch, patch_weight)
|
||||
else:
|
||||
unprocessed_patches_and_weights.append((patch, patch_weight))
|
||||
|
||||
|
||||
@@ -3,6 +3,8 @@ import copy
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.param_shape_utils import get_param_shape
|
||||
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
|
||||
|
||||
|
||||
class CustomModuleMixin:
|
||||
@@ -42,6 +44,20 @@ class CustomModuleMixin:
|
||||
device: torch.device | None = None,
|
||||
):
|
||||
"""Helper function that aggregates the parameters from all patches into a single dict."""
|
||||
# HACK(ryand): If the original parameters are in a quantized format whose weights can't be accessed, we replace
|
||||
# them with dummy tensors on the 'meta' device. This allows patch layers to access the shapes of the original
|
||||
# parameters. But, of course, any sub-layers that need to access the actual values of the parameters will fail.
|
||||
for param_name in orig_params.keys():
|
||||
param = orig_params[param_name]
|
||||
if type(param) is torch.nn.Parameter and type(param.data) is torch.Tensor:
|
||||
pass
|
||||
elif type(param) is GGMLTensor:
|
||||
# Move to device and dequantize here. Doing it in the patch layer can result in redundant casts /
|
||||
# dequantizations.
|
||||
orig_params[param_name] = param.to(device=device).get_dequantized_tensor()
|
||||
else:
|
||||
orig_params[param_name] = torch.empty(get_param_shape(param), device="meta")
|
||||
|
||||
params: dict[str, torch.Tensor] = {}
|
||||
|
||||
for patch, patch_weight in patches_and_weights:
|
||||
|
||||
@@ -80,19 +80,19 @@ class FluxVAELoader(ModelLoader):
|
||||
raise ValueError("Only VAECheckpointConfig models are currently supported here.")
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
with accelerate.init_empty_weights():
|
||||
model = AutoEncoder(ae_params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
# VAE is broken in float16, which mps defaults to
|
||||
if self._torch_dtype == torch.float16:
|
||||
try:
|
||||
vae_dtype = torch.tensor([1.0], dtype=torch.bfloat16, device=self._torch_device).dtype
|
||||
except TypeError:
|
||||
vae_dtype = torch.float32
|
||||
else:
|
||||
vae_dtype = self._torch_dtype
|
||||
model.to(vae_dtype)
|
||||
sd = load_file(model_path)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
# VAE is broken in float16, which mps defaults to
|
||||
if self._torch_dtype == torch.float16:
|
||||
try:
|
||||
vae_dtype = torch.tensor([1.0], dtype=torch.bfloat16, device=self._torch_device).dtype
|
||||
except TypeError:
|
||||
vae_dtype = torch.float32
|
||||
else:
|
||||
vae_dtype = self._torch_dtype
|
||||
model.to(vae_dtype)
|
||||
|
||||
return model
|
||||
|
||||
@@ -183,7 +183,9 @@ class T5EncoderCheckpointModel(ModelLoader):
|
||||
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
|
||||
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
|
||||
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2", torch_dtype="auto")
|
||||
return T5EncoderModel.from_pretrained(
|
||||
Path(config.path) / "text_encoder_2", torch_dtype="auto", low_cpu_mem_usage=True
|
||||
)
|
||||
|
||||
raise ValueError(
|
||||
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
@@ -217,17 +219,18 @@ class FluxCheckpointModel(ModelLoader):
|
||||
assert isinstance(config, MainCheckpointConfig)
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
new_sd_size = sum([ten.nelement() * torch.bfloat16.itemsize for ten in sd.values()])
|
||||
self._ram_cache.make_room(new_sd_size)
|
||||
for k in sd.keys():
|
||||
# We need to cast to bfloat16 due to it being the only currently supported dtype for inference
|
||||
sd[k] = sd[k].to(torch.bfloat16)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
new_sd_size = sum([ten.nelement() * torch.bfloat16.itemsize for ten in sd.values()])
|
||||
self._ram_cache.make_room(new_sd_size)
|
||||
for k in sd.keys():
|
||||
# We need to cast to bfloat16 due to it being the only currently supported dtype for inference
|
||||
sd[k] = sd[k].to(torch.bfloat16)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
|
||||
@@ -258,11 +261,11 @@ class FluxGGUFCheckpointModel(ModelLoader):
|
||||
assert isinstance(config, MainGGUFCheckpointConfig)
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params[config.config_path])
|
||||
|
||||
# HACK(ryand): We shouldn't be hard-coding the compute_dtype here.
|
||||
sd = gguf_sd_loader(model_path, compute_dtype=torch.bfloat16)
|
||||
# HACK(ryand): We shouldn't be hard-coding the compute_dtype here.
|
||||
sd = gguf_sd_loader(model_path, compute_dtype=torch.bfloat16)
|
||||
|
||||
# HACK(ryand): There are some broken GGUF models in circulation that have the wrong shape for img_in.weight.
|
||||
# We override the shape here to fix the issue.
|
||||
|
||||
@@ -31,6 +31,10 @@ from invokeai.backend.patches.lora_conversions.flux_kohya_lora_conversion_utils
|
||||
is_state_dict_likely_in_flux_kohya_format,
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_onetrainer_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_onetrainer_format,
|
||||
lora_model_from_flux_onetrainer_state_dict,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
|
||||
from invokeai.backend.patches.lora_conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
|
||||
@@ -84,8 +88,12 @@ class LoRALoader(ModelLoader):
|
||||
elif config.format == ModelFormat.LyCORIS:
|
||||
if is_state_dict_likely_in_flux_kohya_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_in_flux_onetrainer_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_onetrainer_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_flux_control(state_dict=state_dict):
|
||||
model = lora_model_from_flux_control_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
|
||||
@@ -46,6 +46,9 @@ from invokeai.backend.patches.lora_conversions.flux_diffusers_lora_conversion_ut
|
||||
from invokeai.backend.patches.lora_conversions.flux_kohya_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_kohya_format,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_onetrainer_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_onetrainer_format,
|
||||
)
|
||||
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
|
||||
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
@@ -283,7 +286,7 @@ class ModelProbe(object):
|
||||
return ModelType.Main
|
||||
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
|
||||
return ModelType.VAE
|
||||
elif key.startswith(("lora_te_", "lora_unet_")):
|
||||
elif key.startswith(("lora_te_", "lora_unet_", "lora_te1_", "lora_te2_", "lora_transformer_")):
|
||||
return ModelType.LoRA
|
||||
# "lora_A.weight" and "lora_B.weight" are associated with models in PEFT format. We don't support all PEFT
|
||||
# LoRA models, but as of the time of writing, we support Diffusers FLUX PEFT LoRA models.
|
||||
@@ -632,6 +635,7 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
if (
|
||||
is_state_dict_likely_in_flux_kohya_format(self.checkpoint)
|
||||
or is_state_dict_likely_in_flux_onetrainer_format(self.checkpoint)
|
||||
or is_state_dict_likely_in_flux_diffusers_format(self.checkpoint)
|
||||
or is_state_dict_likely_flux_control(self.checkpoint)
|
||||
):
|
||||
|
||||
@@ -1,55 +0,0 @@
|
||||
from typing import Optional, Sequence
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class ConcatenatedLoRALayer(LoRALayerBase):
|
||||
"""A LoRA layer that is composed of multiple LoRA layers concatenated along a specified axis.
|
||||
|
||||
This class was created to handle a special case with FLUX LoRA models. In the BFL FLUX model format, the attention
|
||||
Q, K, V matrices are concatenated along the first dimension. In the diffusers LoRA format, the Q, K, V matrices are
|
||||
stored as separate tensors. This class enables diffusers LoRA layers to be used in BFL FLUX models.
|
||||
"""
|
||||
|
||||
def __init__(self, lora_layers: Sequence[LoRALayer], concat_axis: int = 0):
|
||||
super().__init__(alpha=None, bias=None)
|
||||
|
||||
self.lora_layers = lora_layers
|
||||
self.concat_axis = concat_axis
|
||||
|
||||
def _rank(self) -> int | None:
|
||||
return None
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(ryand): Currently, we pass orig_weight=None to the sub-layers. If we want to support sub-layers that
|
||||
# require this value, we will need to implement chunking of the original weight tensor here.
|
||||
# Note that we must apply the sub-layer scales here.
|
||||
layer_weights = [lora_layer.get_weight(None) * lora_layer.scale() for lora_layer in self.lora_layers] # pyright: ignore[reportArgumentType]
|
||||
return torch.cat(layer_weights, dim=self.concat_axis)
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor | None) -> Optional[torch.Tensor]:
|
||||
# TODO(ryand): Currently, we pass orig_bias=None to the sub-layers. If we want to support sub-layers that
|
||||
# require this value, we will need to implement chunking of the original bias tensor here.
|
||||
# Note that we must apply the sub-layer scales here.
|
||||
layer_biases: list[torch.Tensor] = []
|
||||
for lora_layer in self.lora_layers:
|
||||
layer_bias = lora_layer.get_bias(None)
|
||||
if layer_bias is not None:
|
||||
layer_biases.append(layer_bias * lora_layer.scale())
|
||||
|
||||
if len(layer_biases) == 0:
|
||||
return None
|
||||
|
||||
assert len(layer_biases) == len(self.lora_layers)
|
||||
return torch.cat(layer_biases, dim=self.concat_axis)
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
for lora_layer in self.lora_layers:
|
||||
lora_layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + sum(lora_layer.calc_size() for lora_layer in self.lora_layers)
|
||||
115
invokeai/backend/patches/layers/dora_layer.py
Normal file
115
invokeai/backend/patches/layers/dora_layer.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.cast_to_device import cast_to_device
|
||||
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
|
||||
|
||||
|
||||
class DoRALayer(LoRALayerBase):
|
||||
"""A DoRA layer. As defined in https://arxiv.org/pdf/2402.09353."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
up: torch.Tensor,
|
||||
down: torch.Tensor,
|
||||
dora_scale: torch.Tensor,
|
||||
alpha: float | None,
|
||||
bias: Optional[torch.Tensor],
|
||||
):
|
||||
super().__init__(alpha, bias)
|
||||
self.up = up
|
||||
self.down = down
|
||||
self.dora_scale = dora_scale
|
||||
|
||||
@classmethod
|
||||
def from_state_dict_values(cls, values: Dict[str, torch.Tensor]):
|
||||
alpha = cls._parse_alpha(values.get("alpha", None))
|
||||
bias = cls._parse_bias(
|
||||
values.get("bias_indices", None), values.get("bias_values", None), values.get("bias_size", None)
|
||||
)
|
||||
|
||||
layer = cls(
|
||||
up=values["lora_up.weight"],
|
||||
down=values["lora_down.weight"],
|
||||
dora_scale=values["dora_scale"],
|
||||
alpha=alpha,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
cls.warn_on_unhandled_keys(
|
||||
values=values,
|
||||
handled_keys={
|
||||
# Default keys.
|
||||
"alpha",
|
||||
"bias_indices",
|
||||
"bias_values",
|
||||
"bias_size",
|
||||
# Layer-specific keys.
|
||||
"lora_up.weight",
|
||||
"lora_down.weight",
|
||||
"dora_scale",
|
||||
},
|
||||
)
|
||||
|
||||
return layer
|
||||
|
||||
def _rank(self) -> int:
|
||||
return self.down.shape[0]
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
orig_weight = cast_to_device(orig_weight, self.up.device)
|
||||
|
||||
# Note: Variable names (e.g. delta_v) are based on the paper.
|
||||
delta_v = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
delta_v = delta_v.reshape(orig_weight.shape)
|
||||
|
||||
delta_v = delta_v * self.scale()
|
||||
|
||||
# At this point, out_weight is the unnormalized direction matrix.
|
||||
out_weight = orig_weight + delta_v
|
||||
|
||||
# TODO(ryand): Simplify this logic.
|
||||
direction_norm = (
|
||||
out_weight.transpose(0, 1)
|
||||
.reshape(out_weight.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(out_weight.shape[1], *[1] * (out_weight.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
out_weight *= self.dora_scale / direction_norm
|
||||
|
||||
return out_weight - orig_weight
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
self.dora_scale = self.dora_scale.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + calc_tensors_size([self.up, self.down, self.dora_scale])
|
||||
|
||||
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
|
||||
if any(p.device.type == "meta" for p in orig_parameters.values()):
|
||||
# If any of the original parameters are on the 'meta' device, we assume this is because the base model is in
|
||||
# a quantization format that doesn't allow easy dequantization.
|
||||
raise RuntimeError(
|
||||
"The base model quantization format (likely bitsandbytes) is not compatible with DoRA patches."
|
||||
)
|
||||
|
||||
scale = self.scale()
|
||||
params = {"weight": self.get_weight(orig_parameters["weight"]) * weight}
|
||||
bias = self.get_bias(orig_parameters.get("bias", None))
|
||||
if bias is not None:
|
||||
params["bias"] = bias * (weight * scale)
|
||||
|
||||
# Reshape all params to match the original module's shape.
|
||||
for param_name, param_weight in params.items():
|
||||
orig_param = orig_parameters[param_name]
|
||||
if param_weight.shape != orig_param.shape:
|
||||
params[param_name] = param_weight.reshape(orig_param.shape)
|
||||
|
||||
return params
|
||||
@@ -4,6 +4,7 @@ import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.param_shape_utils import get_param_shape
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
|
||||
|
||||
|
||||
@@ -67,8 +68,8 @@ class LoRALayerBase(BaseLayerPatch):
|
||||
# Reshape all params to match the original module's shape.
|
||||
for param_name, param_weight in params.items():
|
||||
orig_param = orig_parameters[param_name]
|
||||
if param_weight.shape != orig_param.shape:
|
||||
params[param_name] = param_weight.reshape(orig_param.shape)
|
||||
if param_weight.shape != get_param_shape(orig_param):
|
||||
params[param_name] = param_weight.reshape(get_param_shape(orig_param))
|
||||
|
||||
return params
|
||||
|
||||
|
||||
65
invokeai/backend/patches/layers/merged_layer_patch.py
Normal file
65
invokeai/backend/patches/layers/merged_layer_patch.py
Normal file
@@ -0,0 +1,65 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Sequence
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.param_shape_utils import get_param_shape
|
||||
|
||||
|
||||
@dataclass
|
||||
class Range:
|
||||
start: int
|
||||
end: int
|
||||
|
||||
|
||||
class MergedLayerPatch(BaseLayerPatch):
|
||||
"""A patch layer that is composed of multiple sub-layers merged together.
|
||||
|
||||
This class was created to handle a special case with FLUX LoRA models. In the BFL FLUX model format, the attention
|
||||
Q, K, V matrices are concatenated along the first dimension. In the diffusers LoRA format, the Q, K, V matrices are
|
||||
stored as separate tensors. This class enables diffusers LoRA layers to be used in BFL FLUX models.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lora_layers: Sequence[BaseLayerPatch],
|
||||
ranges: Sequence[Range],
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.lora_layers = lora_layers
|
||||
# self.ranges[i] is the range for the i'th lora layer along the 0'th weight dimension.
|
||||
self.ranges = ranges
|
||||
assert len(self.ranges) == len(self.lora_layers)
|
||||
|
||||
def get_parameters(self, orig_parameters: dict[str, torch.Tensor], weight: float) -> dict[str, torch.Tensor]:
|
||||
out_parameters: dict[str, torch.Tensor] = {}
|
||||
|
||||
for lora_layer, range in zip(self.lora_layers, self.ranges, strict=True):
|
||||
sliced_parameters: dict[str, torch.Tensor] = {
|
||||
n: p[range.start : range.end] for n, p in orig_parameters.items()
|
||||
}
|
||||
|
||||
# Note that `weight` is applied in the sub-layers, no need to apply it in this function.
|
||||
layer_out_parameters = lora_layer.get_parameters(sliced_parameters, weight)
|
||||
|
||||
for out_param_name, out_param in layer_out_parameters.items():
|
||||
if out_param_name not in out_parameters:
|
||||
# If not already in the output dict, initialize an output tensor with the same shape as the full
|
||||
# original parameter.
|
||||
out_parameters[out_param_name] = torch.zeros(
|
||||
get_param_shape(orig_parameters[out_param_name]),
|
||||
dtype=out_param.dtype,
|
||||
device=out_param.device,
|
||||
)
|
||||
out_parameters[out_param_name][range.start : range.end] += out_param
|
||||
|
||||
return out_parameters
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
for lora_layer in self.lora_layers:
|
||||
lora_layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return sum(lora_layer.calc_size() for lora_layer in self.lora_layers)
|
||||
19
invokeai/backend/patches/layers/param_shape_utils.py
Normal file
19
invokeai/backend/patches/layers/param_shape_utils.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import torch
|
||||
|
||||
try:
|
||||
from bitsandbytes.nn.modules import Params4bit
|
||||
|
||||
bnb_available: bool = True
|
||||
except ImportError:
|
||||
bnb_available: bool = False
|
||||
|
||||
|
||||
def get_param_shape(param: torch.Tensor) -> torch.Size:
|
||||
"""A helper function to get the shape of a parameter that handles `bitsandbytes.nn.Params4Bit` correctly."""
|
||||
# Accessing the `.shape` attribute of `bitsandbytes.nn.Params4Bit` will return an incorrect result. Instead, we must
|
||||
# access the `.quant_state.shape` attribute.
|
||||
if bnb_available and type(param) is Params4bit: # type: ignore
|
||||
quant_state = param.quant_state
|
||||
if quant_state is not None:
|
||||
return quant_state.shape
|
||||
return param.shape
|
||||
@@ -3,6 +3,7 @@ from typing import Dict
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.dora_layer import DoRALayer
|
||||
from invokeai.backend.patches.layers.full_layer import FullLayer
|
||||
from invokeai.backend.patches.layers.ia3_layer import IA3Layer
|
||||
from invokeai.backend.patches.layers.loha_layer import LoHALayer
|
||||
@@ -14,8 +15,9 @@ from invokeai.backend.patches.layers.norm_layer import NormLayer
|
||||
def any_lora_layer_from_state_dict(state_dict: Dict[str, torch.Tensor]) -> BaseLayerPatch:
|
||||
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
||||
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
||||
|
||||
if "lora_up.weight" in state_dict:
|
||||
if "dora_scale" in state_dict:
|
||||
return DoRALayer.from_state_dict_values(state_dict)
|
||||
elif "lora_up.weight" in state_dict:
|
||||
# LoRA a.k.a LoCon
|
||||
return LoRALayer.from_state_dict_values(state_dict)
|
||||
elif "hada_w1_a" in state_dict:
|
||||
|
||||
@@ -3,8 +3,8 @@ from typing import Dict
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.patches.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.patches.layers.merged_layer_patch import MergedLayerPatch, Range
|
||||
from invokeai.backend.patches.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
|
||||
@@ -33,13 +33,21 @@ def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Te
|
||||
def lora_model_from_flux_diffusers_state_dict(
|
||||
state_dict: Dict[str, torch.Tensor], alpha: float | None
|
||||
) -> ModelPatchRaw:
|
||||
"""Loads a state dict in the Diffusers FLUX LoRA format into a LoRAModelRaw object.
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_by_layer(state_dict)
|
||||
layers = lora_layers_from_flux_diffusers_grouped_state_dict(grouped_state_dict, alpha)
|
||||
return ModelPatchRaw(layers=layers)
|
||||
|
||||
|
||||
def lora_layers_from_flux_diffusers_grouped_state_dict(
|
||||
grouped_state_dict: Dict[str, Dict[str, torch.Tensor]], alpha: float | None
|
||||
) -> dict[str, BaseLayerPatch]:
|
||||
"""Converts a grouped state dict with Diffusers FLUX LoRA keys to LoRA layers with BFL keys (i.e. the module key
|
||||
format used by Invoke).
|
||||
|
||||
This function is based on:
|
||||
https://github.com/huggingface/diffusers/blob/55ac421f7bb12fd00ccbef727be4dc2f3f920abb/scripts/convert_flux_to_diffusers.py
|
||||
"""
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_by_layer(state_dict)
|
||||
|
||||
# Remove the "transformer." prefix from all keys.
|
||||
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
|
||||
@@ -53,17 +61,26 @@ def lora_model_from_flux_diffusers_state_dict(
|
||||
|
||||
layers: dict[str, BaseLayerPatch] = {}
|
||||
|
||||
def add_lora_layer_if_present(src_key: str, dst_key: str) -> None:
|
||||
if src_key in grouped_state_dict:
|
||||
src_layer_dict = grouped_state_dict.pop(src_key)
|
||||
value = {
|
||||
def get_lora_layer_values(src_layer_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||
if "lora_A.weight" in src_layer_dict:
|
||||
# The LoRA keys are in PEFT format.
|
||||
values = {
|
||||
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
|
||||
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
|
||||
}
|
||||
if alpha is not None:
|
||||
value["alpha"] = torch.tensor(alpha)
|
||||
layers[dst_key] = LoRALayer.from_state_dict_values(values=value)
|
||||
values["alpha"] = torch.tensor(alpha)
|
||||
assert len(src_layer_dict) == 0
|
||||
return values
|
||||
else:
|
||||
# Assume that the LoRA keys are in Kohya format.
|
||||
return src_layer_dict
|
||||
|
||||
def add_lora_layer_if_present(src_key: str, dst_key: str) -> None:
|
||||
if src_key in grouped_state_dict:
|
||||
src_layer_dict = grouped_state_dict.pop(src_key)
|
||||
values = get_lora_layer_values(src_layer_dict)
|
||||
layers[dst_key] = any_lora_layer_from_state_dict(values)
|
||||
|
||||
def add_qkv_lora_layer_if_present(
|
||||
src_keys: list[str],
|
||||
@@ -79,29 +96,24 @@ def lora_model_from_flux_diffusers_state_dict(
|
||||
if not any(keys_present):
|
||||
return
|
||||
|
||||
sub_layers: list[LoRALayer] = []
|
||||
dim_0_offset = 0
|
||||
sub_layers: list[BaseLayerPatch] = []
|
||||
sub_layer_ranges: list[Range] = []
|
||||
for src_key, src_weight_shape in zip(src_keys, src_weight_shapes, strict=True):
|
||||
src_layer_dict = grouped_state_dict.pop(src_key, None)
|
||||
if src_layer_dict is not None:
|
||||
values = {
|
||||
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
|
||||
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
|
||||
}
|
||||
if alpha is not None:
|
||||
values["alpha"] = torch.tensor(alpha)
|
||||
assert values["lora_down.weight"].shape[1] == src_weight_shape[1]
|
||||
assert values["lora_up.weight"].shape[0] == src_weight_shape[0]
|
||||
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
|
||||
assert len(src_layer_dict) == 0
|
||||
values = get_lora_layer_values(src_layer_dict)
|
||||
# assert values["lora_down.weight"].shape[1] == src_weight_shape[1]
|
||||
# assert values["lora_up.weight"].shape[0] == src_weight_shape[0]
|
||||
sub_layers.append(any_lora_layer_from_state_dict(values))
|
||||
sub_layer_ranges.append(Range(dim_0_offset, dim_0_offset + src_weight_shape[0]))
|
||||
else:
|
||||
if not allow_missing_keys:
|
||||
raise ValueError(f"Missing LoRA layer: '{src_key}'.")
|
||||
values = {
|
||||
"lora_up.weight": torch.zeros((src_weight_shape[0], 1)),
|
||||
"lora_down.weight": torch.zeros((1, src_weight_shape[1])),
|
||||
}
|
||||
sub_layers.append(LoRALayer.from_state_dict_values(values=values))
|
||||
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers)
|
||||
|
||||
dim_0_offset += src_weight_shape[0]
|
||||
|
||||
layers[dst_qkv_key] = MergedLayerPatch(sub_layers, sub_layer_ranges)
|
||||
|
||||
# time_text_embed.timestep_embedder -> time_in.
|
||||
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_1", "time_in.in_layer")
|
||||
@@ -217,7 +229,7 @@ def lora_model_from_flux_diffusers_state_dict(
|
||||
|
||||
layers_with_prefix = {f"{FLUX_LORA_TRANSFORMER_PREFIX}{k}": v for k, v in layers.items()}
|
||||
|
||||
return ModelPatchRaw(layers=layers_with_prefix)
|
||||
return layers_with_prefix
|
||||
|
||||
|
||||
def _group_by_layer(state_dict: Dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
|
||||
|
||||
@@ -7,6 +7,7 @@ from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import (
|
||||
FLUX_LORA_CLIP_PREFIX,
|
||||
FLUX_LORA_T5_PREFIX,
|
||||
FLUX_LORA_TRANSFORMER_PREFIX,
|
||||
)
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
@@ -26,6 +27,14 @@ FLUX_KOHYA_TRANSFORMER_KEY_REGEX = (
|
||||
# lora_te1_text_model_encoder_layers_0_mlp_fc1.lora_up.weight
|
||||
FLUX_KOHYA_CLIP_KEY_REGEX = r"lora_te1_text_model_encoder_layers_(\d+)_(mlp|self_attn)_(\w+)\.?.*"
|
||||
|
||||
# A regex pattern that matches all of the T5 keys in the Kohya FLUX LoRA format.
|
||||
# Example keys:
|
||||
# lora_te2_encoder_block_0_layer_0_SelfAttention_k.alpha
|
||||
# lora_te2_encoder_block_0_layer_0_SelfAttention_k.dora_scale
|
||||
# lora_te2_encoder_block_0_layer_0_SelfAttention_k.lora_down.weight
|
||||
# lora_te2_encoder_block_0_layer_0_SelfAttention_k.lora_up.weight
|
||||
FLUX_KOHYA_T5_KEY_REGEX = r"lora_te2_encoder_block_(\d+)_layer_(\d+)_(DenseReluDense|SelfAttention)_(\w+)_?(\w+)?\.?.*"
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the Kohya FLUX LoRA format.
|
||||
@@ -34,7 +43,9 @@ def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> boo
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
return all(
|
||||
re.match(FLUX_KOHYA_TRANSFORMER_KEY_REGEX, k) or re.match(FLUX_KOHYA_CLIP_KEY_REGEX, k)
|
||||
re.match(FLUX_KOHYA_TRANSFORMER_KEY_REGEX, k)
|
||||
or re.match(FLUX_KOHYA_CLIP_KEY_REGEX, k)
|
||||
or re.match(FLUX_KOHYA_T5_KEY_REGEX, k)
|
||||
for k in state_dict.keys()
|
||||
)
|
||||
|
||||
@@ -48,27 +59,34 @@ def lora_model_from_flux_kohya_state_dict(state_dict: Dict[str, torch.Tensor]) -
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Split the grouped state dict into transformer and CLIP state dicts.
|
||||
# Split the grouped state dict into transformer, CLIP, and T5 state dicts.
|
||||
transformer_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
clip_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
t5_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for layer_name, layer_state_dict in grouped_state_dict.items():
|
||||
if layer_name.startswith("lora_unet"):
|
||||
transformer_grouped_sd[layer_name] = layer_state_dict
|
||||
elif layer_name.startswith("lora_te1"):
|
||||
clip_grouped_sd[layer_name] = layer_state_dict
|
||||
elif layer_name.startswith("lora_te2"):
|
||||
t5_grouped_sd[layer_name] = layer_state_dict
|
||||
else:
|
||||
raise ValueError(f"Layer '{layer_name}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
# Convert the state dicts to the InvokeAI format.
|
||||
transformer_grouped_sd = _convert_flux_transformer_kohya_state_dict_to_invoke_format(transformer_grouped_sd)
|
||||
clip_grouped_sd = _convert_flux_clip_kohya_state_dict_to_invoke_format(clip_grouped_sd)
|
||||
t5_grouped_sd = _convert_flux_t5_kohya_state_dict_to_invoke_format(t5_grouped_sd)
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, BaseLayerPatch] = {}
|
||||
for layer_key, layer_state_dict in transformer_grouped_sd.items():
|
||||
layers[FLUX_LORA_TRANSFORMER_PREFIX + layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
for layer_key, layer_state_dict in clip_grouped_sd.items():
|
||||
layers[FLUX_LORA_CLIP_PREFIX + layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
for model_prefix, grouped_sd in [
|
||||
(FLUX_LORA_TRANSFORMER_PREFIX, transformer_grouped_sd),
|
||||
(FLUX_LORA_CLIP_PREFIX, clip_grouped_sd),
|
||||
(FLUX_LORA_T5_PREFIX, t5_grouped_sd),
|
||||
]:
|
||||
for layer_key, layer_state_dict in grouped_sd.items():
|
||||
layers[model_prefix + layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
|
||||
# Create and return the LoRAModelRaw.
|
||||
return ModelPatchRaw(layers=layers)
|
||||
@@ -123,3 +141,31 @@ def _convert_flux_transformer_kohya_state_dict_to_invoke_format(state_dict: Dict
|
||||
raise ValueError(f"Key '{k}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
return converted_dict
|
||||
|
||||
|
||||
def _convert_flux_t5_kohya_state_dict_to_invoke_format(state_dict: Dict[str, T]) -> Dict[str, T]:
|
||||
"""Converts a T5 LoRA state dict from the Kohya FLUX LoRA format to LoRA weight format used internally by
|
||||
InvokeAI.
|
||||
|
||||
Example key conversions:
|
||||
|
||||
"lora_te2_encoder_block_0_layer_0_SelfAttention_k" -> "encoder.block.0.layer.0.SelfAttention.k"
|
||||
"lora_te2_encoder_block_0_layer_1_DenseReluDense_wi_0" -> "encoder.block.0.layer.1.DenseReluDense.wi.0"
|
||||
"""
|
||||
|
||||
def replace_func(match: re.Match[str]) -> str:
|
||||
s = f"encoder.block.{match.group(1)}.layer.{match.group(2)}.{match.group(3)}.{match.group(4)}"
|
||||
if match.group(5):
|
||||
s += f".{match.group(5)}"
|
||||
return s
|
||||
|
||||
converted_dict: dict[str, T] = {}
|
||||
for k, v in state_dict.items():
|
||||
match = re.match(FLUX_KOHYA_T5_KEY_REGEX, k)
|
||||
if match:
|
||||
new_key = re.sub(FLUX_KOHYA_T5_KEY_REGEX, replace_func, k)
|
||||
converted_dict[new_key] = v
|
||||
else:
|
||||
raise ValueError(f"Key '{k}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
return converted_dict
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
# Prefixes used to distinguish between transformer and CLIP text encoder keys in the FLUX InvokeAI LoRA format.
|
||||
FLUX_LORA_TRANSFORMER_PREFIX = "lora_transformer-"
|
||||
FLUX_LORA_CLIP_PREFIX = "lora_clip-"
|
||||
FLUX_LORA_T5_PREFIX = "lora_t5-"
|
||||
|
||||
@@ -0,0 +1,163 @@
|
||||
import re
|
||||
from typing import Any, Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.patches.lora_conversions.flux_diffusers_lora_conversion_utils import (
|
||||
lora_layers_from_flux_diffusers_grouped_state_dict,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_kohya_lora_conversion_utils import (
|
||||
FLUX_KOHYA_CLIP_KEY_REGEX,
|
||||
FLUX_KOHYA_T5_KEY_REGEX,
|
||||
_convert_flux_clip_kohya_state_dict_to_invoke_format,
|
||||
_convert_flux_t5_kohya_state_dict_to_invoke_format,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import (
|
||||
FLUX_LORA_CLIP_PREFIX,
|
||||
FLUX_LORA_T5_PREFIX,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.kohya_key_utils import (
|
||||
INDEX_PLACEHOLDER,
|
||||
ParsingTree,
|
||||
insert_periods_into_kohya_key,
|
||||
)
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
|
||||
# A regex pattern that matches all of the transformer keys in the OneTrainer FLUX LoRA format.
|
||||
# The OneTrainer format uses a mix of the Kohya and Diffusers formats:
|
||||
# - The base model keys are in Diffusers format.
|
||||
# - Periods are replaced with underscores, to match Kohya.
|
||||
# - The LoRA key suffixes (e.g. .alpha, .lora_down.weight, .lora_up.weight) match Kohya.
|
||||
# Example keys:
|
||||
# - "lora_transformer_single_transformer_blocks_0_attn_to_k.alpha"
|
||||
# - "lora_transformer_single_transformer_blocks_0_attn_to_k.dora_scale"
|
||||
# - "lora_transformer_single_transformer_blocks_0_attn_to_k.lora_down.weight"
|
||||
# - "lora_transformer_single_transformer_blocks_0_attn_to_k.lora_up.weight"
|
||||
FLUX_ONETRAINER_TRANSFORMER_KEY_REGEX = (
|
||||
r"lora_transformer_(single_transformer_blocks|transformer_blocks)_(\d+)_(\w+)\.(.*)"
|
||||
)
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_onetrainer_format(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the OneTrainer FLUX LoRA format.
|
||||
|
||||
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
|
||||
Note that OneTrainer matches the Kohya format for the CLIP and T5 models.
|
||||
"""
|
||||
return all(
|
||||
re.match(FLUX_ONETRAINER_TRANSFORMER_KEY_REGEX, k)
|
||||
or re.match(FLUX_KOHYA_CLIP_KEY_REGEX, k)
|
||||
or re.match(FLUX_KOHYA_T5_KEY_REGEX, k)
|
||||
for k in state_dict.keys()
|
||||
)
|
||||
|
||||
|
||||
def lora_model_from_flux_onetrainer_state_dict(state_dict: Dict[str, torch.Tensor]) -> ModelPatchRaw: # type: ignore
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key, value in state_dict.items():
|
||||
layer_name, param_name = key.split(".", 1)
|
||||
if layer_name not in grouped_state_dict:
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Split the grouped state dict into transformer, CLIP, and T5 state dicts.
|
||||
transformer_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
clip_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
t5_grouped_sd: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for layer_name, layer_state_dict in grouped_state_dict.items():
|
||||
if layer_name.startswith("lora_transformer"):
|
||||
transformer_grouped_sd[layer_name] = layer_state_dict
|
||||
elif layer_name.startswith("lora_te1"):
|
||||
clip_grouped_sd[layer_name] = layer_state_dict
|
||||
elif layer_name.startswith("lora_te2"):
|
||||
t5_grouped_sd[layer_name] = layer_state_dict
|
||||
else:
|
||||
raise ValueError(f"Layer '{layer_name}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
# Convert the state dicts to the InvokeAI format.
|
||||
clip_grouped_sd = _convert_flux_clip_kohya_state_dict_to_invoke_format(clip_grouped_sd)
|
||||
t5_grouped_sd = _convert_flux_t5_kohya_state_dict_to_invoke_format(t5_grouped_sd)
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, BaseLayerPatch] = {}
|
||||
for model_prefix, grouped_sd in [
|
||||
# (FLUX_LORA_TRANSFORMER_PREFIX, transformer_grouped_sd),
|
||||
(FLUX_LORA_CLIP_PREFIX, clip_grouped_sd),
|
||||
(FLUX_LORA_T5_PREFIX, t5_grouped_sd),
|
||||
]:
|
||||
for layer_key, layer_state_dict in grouped_sd.items():
|
||||
layers[model_prefix + layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
|
||||
# Handle the transformer.
|
||||
transformer_layers = _convert_flux_transformer_onetrainer_state_dict_to_invoke_format(transformer_grouped_sd)
|
||||
layers.update(transformer_layers)
|
||||
|
||||
# Create and return the LoRAModelRaw.
|
||||
return ModelPatchRaw(layers=layers)
|
||||
|
||||
|
||||
# This parsing tree was generated by calling `generate_kohya_parsing_tree_from_keys()` on the keys in
|
||||
# flux_lora_diffusers_format.py.
|
||||
flux_transformer_kohya_parsing_tree: ParsingTree = {
|
||||
"transformer": {
|
||||
"single_transformer_blocks": {
|
||||
INDEX_PLACEHOLDER: {
|
||||
"attn": {"to_k": {}, "to_q": {}, "to_v": {}},
|
||||
"norm": {"linear": {}},
|
||||
"proj_mlp": {},
|
||||
"proj_out": {},
|
||||
}
|
||||
},
|
||||
"transformer_blocks": {
|
||||
INDEX_PLACEHOLDER: {
|
||||
"attn": {
|
||||
"add_k_proj": {},
|
||||
"add_q_proj": {},
|
||||
"add_v_proj": {},
|
||||
"to_add_out": {},
|
||||
"to_k": {},
|
||||
"to_out": {INDEX_PLACEHOLDER: {}},
|
||||
"to_q": {},
|
||||
"to_v": {},
|
||||
},
|
||||
"ff": {"net": {INDEX_PLACEHOLDER: {"proj": {}}}},
|
||||
"ff_context": {"net": {INDEX_PLACEHOLDER: {"proj": {}}}},
|
||||
"norm1": {"linear": {}},
|
||||
"norm1_context": {"linear": {}},
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _convert_flux_transformer_onetrainer_state_dict_to_invoke_format(
|
||||
state_dict: Dict[str, Dict[str, torch.Tensor]],
|
||||
) -> dict[str, BaseLayerPatch]:
|
||||
"""Converts a FLUX transformer LoRA state dict from the OneTrainer FLUX LoRA format to the LoRA weight format used
|
||||
internally by InvokeAI.
|
||||
"""
|
||||
|
||||
# Step 1: Convert the Kohya-style keys with underscores to classic keys with periods.
|
||||
# Example:
|
||||
# "lora_transformer_single_transformer_blocks_0_attn_to_k.lora_down.weight" -> "transformer.single_transformer_blocks.0.attn.to_k.lora_down.weight"
|
||||
lora_prefix = "lora_"
|
||||
lora_prefix_length = len(lora_prefix)
|
||||
kohya_state_dict: dict[str, Dict[str, torch.Tensor]] = {}
|
||||
for key in state_dict.keys():
|
||||
# Remove the "lora_" prefix.
|
||||
assert key.startswith(lora_prefix)
|
||||
new_key = key[lora_prefix_length:]
|
||||
|
||||
# Add periods to the Kohya-style module keys.
|
||||
new_key = insert_periods_into_kohya_key(new_key, flux_transformer_kohya_parsing_tree)
|
||||
|
||||
# Replace the old key with the new key.
|
||||
kohya_state_dict[new_key] = state_dict[key]
|
||||
|
||||
# Step 2: Convert diffusers module names to the BFL module names.
|
||||
return lora_layers_from_flux_diffusers_grouped_state_dict(kohya_state_dict, alpha=None)
|
||||
102
invokeai/backend/patches/lora_conversions/kohya_key_utils.py
Normal file
102
invokeai/backend/patches/lora_conversions/kohya_key_utils.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from typing import Iterable
|
||||
|
||||
INDEX_PLACEHOLDER = "index_placeholder"
|
||||
|
||||
|
||||
# Type alias for a 'ParsingTree', which is a recursive dict with string keys.
|
||||
ParsingTree = dict[str, "ParsingTree"]
|
||||
|
||||
|
||||
def insert_periods_into_kohya_key(key: str, parsing_tree: ParsingTree) -> str:
|
||||
"""Insert periods into a Kohya key based on a parsing tree.
|
||||
|
||||
Kohya format keys are produced by replacing periods with underscores in the original key.
|
||||
|
||||
Example:
|
||||
```
|
||||
key = "module_a_module_b_0_attn_to_k"
|
||||
parsing_tree = {
|
||||
"module_a": {
|
||||
"module_b": {
|
||||
INDEX_PLACEHOLDER: {
|
||||
"attn": {},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
result = insert_periods_into_kohya_key(key, parsing_tree)
|
||||
> "module_a.module_b.0.attn.to_k"
|
||||
```
|
||||
"""
|
||||
# Split key into parts by underscore.
|
||||
parts = key.split("_")
|
||||
|
||||
# Build up result by walking through parsing tree and parts.
|
||||
result_parts: list[str] = []
|
||||
current_part = ""
|
||||
current_tree = parsing_tree
|
||||
|
||||
for part in parts:
|
||||
if len(current_part) > 0:
|
||||
current_part = current_part + "_"
|
||||
current_part += part
|
||||
|
||||
if current_part in current_tree:
|
||||
# Match found.
|
||||
current_tree = current_tree[current_part]
|
||||
result_parts.append(current_part)
|
||||
current_part = ""
|
||||
elif current_part.isnumeric() and INDEX_PLACEHOLDER in current_tree:
|
||||
# Match found with index placeholder.
|
||||
current_tree = current_tree[INDEX_PLACEHOLDER]
|
||||
result_parts.append(current_part)
|
||||
current_part = ""
|
||||
|
||||
if len(current_part) > 0:
|
||||
raise ValueError(f"Key {key} does not match parsing tree {parsing_tree}.")
|
||||
|
||||
return ".".join(result_parts)
|
||||
|
||||
|
||||
def generate_kohya_parsing_tree_from_keys(keys: Iterable[str]) -> ParsingTree:
|
||||
"""Generate a parsing tree from a list of keys.
|
||||
|
||||
Example:
|
||||
```
|
||||
keys = [
|
||||
"module_a.module_b.0.attn.to_k",
|
||||
"module_a.module_b.1.attn.to_k",
|
||||
"module_a.module_c.proj",
|
||||
]
|
||||
|
||||
tree = generate_kohya_parsing_tree_from_keys(keys)
|
||||
> {
|
||||
> "module_a": {
|
||||
> "module_b": {
|
||||
> INDEX_PLACEHOLDER: {
|
||||
> "attn": {
|
||||
> "to_k": {},
|
||||
> "to_q": {},
|
||||
> },
|
||||
> }
|
||||
> },
|
||||
> "module_c": {
|
||||
> "proj": {},
|
||||
> }
|
||||
> }
|
||||
> }
|
||||
```
|
||||
"""
|
||||
tree: ParsingTree = {}
|
||||
for key in keys:
|
||||
subtree: ParsingTree = tree
|
||||
for module_name in key.split("."):
|
||||
key = module_name
|
||||
if module_name.isnumeric():
|
||||
key = INDEX_PLACEHOLDER
|
||||
|
||||
if key not in subtree:
|
||||
subtree[key] = {}
|
||||
|
||||
subtree = subtree[key]
|
||||
return tree
|
||||
@@ -54,7 +54,9 @@ GGML_TENSOR_OP_TABLE = {
|
||||
torch.ops.aten.addmm.default: dequantize_and_run, # pyright: ignore
|
||||
torch.ops.aten.mul.Tensor: dequantize_and_run, # pyright: ignore
|
||||
torch.ops.aten.add.Tensor: dequantize_and_run, # pyright: ignore
|
||||
torch.ops.aten.sub.Tensor: dequantize_and_run, # pyright: ignore
|
||||
torch.ops.aten.allclose.default: dequantize_and_run, # pyright: ignore
|
||||
torch.ops.aten.slice.Tensor: dequantize_and_run, # pyright: ignore
|
||||
}
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
|
||||
@@ -23,6 +23,12 @@ module.exports = {
|
||||
property: 'randomUUID',
|
||||
message: 'Use of crypto.randomUUID is not allowed as it is not available in all browsers.',
|
||||
},
|
||||
{
|
||||
object: 'navigator',
|
||||
property: 'clipboard',
|
||||
message:
|
||||
'The Clipboard API is not available by default in Firefox. Use the `useClipboard` hook instead, which wraps clipboard access to prevent errors.',
|
||||
},
|
||||
],
|
||||
},
|
||||
overrides: [
|
||||
|
||||
@@ -76,6 +76,7 @@
|
||||
"konva": "^9.3.15",
|
||||
"lodash-es": "^4.17.21",
|
||||
"lru-cache": "^11.0.1",
|
||||
"mtwist": "^1.0.2",
|
||||
"nanoid": "^5.0.7",
|
||||
"nanostores": "^0.11.3",
|
||||
"new-github-issue-url": "^1.0.0",
|
||||
|
||||
7
invokeai/frontend/web/pnpm-lock.yaml
generated
7
invokeai/frontend/web/pnpm-lock.yaml
generated
@@ -77,6 +77,9 @@ dependencies:
|
||||
lru-cache:
|
||||
specifier: ^11.0.1
|
||||
version: 11.0.1
|
||||
mtwist:
|
||||
specifier: ^1.0.2
|
||||
version: 1.0.2
|
||||
nanoid:
|
||||
specifier: ^5.0.7
|
||||
version: 5.0.7
|
||||
@@ -7016,6 +7019,10 @@ packages:
|
||||
/ms@2.1.3:
|
||||
resolution: {integrity: sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==}
|
||||
|
||||
/mtwist@1.0.2:
|
||||
resolution: {integrity: sha512-eRsSga5jkLg7nNERPOV8vDNxgSwuEcj5upQfJcT0gXfJwXo3pMc7xOga0fu8rXHyrxzl7GFVWWDuaPQgpKDvgw==}
|
||||
dev: false
|
||||
|
||||
/muggle-string@0.3.1:
|
||||
resolution: {integrity: sha512-ckmWDJjphvd/FvZawgygcUeQCxzvohjFO5RxTjj4eq8kw359gFF3E1brjfI+viLMxss5JrHTDRHZvu2/tuy0Qg==}
|
||||
dev: true
|
||||
|
||||
@@ -99,7 +99,15 @@
|
||||
"clipboard": "Zwischenablage",
|
||||
"generating": "Generieren",
|
||||
"loadingModel": "Lade Modell",
|
||||
"warnings": "Warnungen"
|
||||
"warnings": "Warnungen",
|
||||
"start": "Starten",
|
||||
"count": "Anzahl",
|
||||
"step": "Schritt",
|
||||
"values": "Werte",
|
||||
"min": "Min",
|
||||
"max": "Max",
|
||||
"resetToDefaults": "Auf Standard zurücksetzen",
|
||||
"seed": "Seed"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Bildgröße",
|
||||
@@ -119,7 +127,6 @@
|
||||
"autoAssignBoardOnClick": "Board per Klick automatisch zuweisen",
|
||||
"noImageSelected": "Kein Bild ausgewählt",
|
||||
"starImage": "Bild markieren",
|
||||
"assets": "Ressourcen",
|
||||
"unstarImage": "Markierung entfernen",
|
||||
"image": "Bild",
|
||||
"deleteSelection": "Lösche Auswahl",
|
||||
@@ -1282,7 +1289,16 @@
|
||||
"unknownFieldType": "$t(nodes.unknownField) Typ: {{type}}",
|
||||
"unknownField": "Unbekanntes Feld",
|
||||
"unableToUpdateNodes_one": "{{count}} Knoten kann nicht aktualisiert werden",
|
||||
"unableToUpdateNodes_other": "{{count}} Knoten können nicht aktualisiert werden"
|
||||
"unableToUpdateNodes_other": "{{count}} Knoten können nicht aktualisiert werden",
|
||||
"uniformRandomDistribution": "Uniforme Zufallsverteilung",
|
||||
"linearDistribution": "Lineare Verteilung",
|
||||
"generatorNRandomValues_one": "{{count}} Zufallswert",
|
||||
"generatorNRandomValues_other": "{{count}} Zufallswerte",
|
||||
"arithmeticSequence": "Arithmetische Folge",
|
||||
"noBatchGroup": "keine Gruppe",
|
||||
"generatorNoValues": "leer",
|
||||
"generatorLoading": "wird geladen",
|
||||
"generatorLoadFromFile": "Aus Datei laden"
|
||||
},
|
||||
"hrf": {
|
||||
"enableHrf": "Korrektur für hohe Auflösungen",
|
||||
|
||||
@@ -177,7 +177,17 @@
|
||||
"none": "None",
|
||||
"new": "New",
|
||||
"generating": "Generating",
|
||||
"warnings": "Warnings"
|
||||
"warnings": "Warnings",
|
||||
"start": "Start",
|
||||
"count": "Count",
|
||||
"step": "Step",
|
||||
"end": "End",
|
||||
"min": "Min",
|
||||
"max": "Max",
|
||||
"values": "Values",
|
||||
"resetToDefaults": "Reset to Defaults",
|
||||
"seed": "Seed",
|
||||
"combinatorial": "Combinatorial"
|
||||
},
|
||||
"hrf": {
|
||||
"hrf": "High Resolution Fix",
|
||||
@@ -209,9 +219,13 @@
|
||||
"pauseSucceeded": "Processor Paused",
|
||||
"pauseFailed": "Problem Pausing Processor",
|
||||
"cancel": "Cancel",
|
||||
"cancelAllExceptCurrentQueueItemAlertDialog": "Canceling all queue items except the current one will stop pending items but allow the in-progress one to finish.",
|
||||
"cancelAllExceptCurrentQueueItemAlertDialog2": "Are you sure you want to cancel all pending queue items?",
|
||||
"cancelAllExceptCurrentTooltip": "Cancel All Except Current Item",
|
||||
"cancelTooltip": "Cancel Current Item",
|
||||
"cancelSucceeded": "Item Canceled",
|
||||
"cancelFailed": "Problem Canceling Item",
|
||||
"confirm": "Confirm",
|
||||
"prune": "Prune",
|
||||
"pruneTooltip": "Prune {{item_count}} Completed Items",
|
||||
"pruneSucceeded": "Pruned {{item_count}} Completed Items from Queue",
|
||||
@@ -284,10 +298,15 @@
|
||||
"disableFailed": "Problem Disabling Invocation Cache",
|
||||
"useCache": "Use Cache"
|
||||
},
|
||||
"modelCache": {
|
||||
"clear": "Clear Model Cache",
|
||||
"clearSucceeded": "Model Cache Cleared",
|
||||
"clearFailed": "Problem Clearing Model Cache"
|
||||
},
|
||||
"gallery": {
|
||||
"gallery": "Gallery",
|
||||
"alwaysShowImageSizeBadge": "Always Show Image Size Badge",
|
||||
"assets": "Assets",
|
||||
"alwaysShowImageSizeBadge": "Always Show Image Size Badge",
|
||||
"assetsTab": "Files you’ve uploaded for use in your projects.",
|
||||
"autoAssignBoardOnClick": "Auto-Assign Board on Click",
|
||||
"autoSwitchNewImages": "Auto-Switch to New Images",
|
||||
@@ -850,6 +869,19 @@
|
||||
"defaultVAE": "Default VAE"
|
||||
},
|
||||
"nodes": {
|
||||
"arithmeticSequence": "Arithmetic Sequence",
|
||||
"linearDistribution": "Linear Distribution",
|
||||
"uniformRandomDistribution": "Uniform Random Distribution",
|
||||
"parseString": "Parse String",
|
||||
"splitOn": "Split On",
|
||||
"noBatchGroup": "no group",
|
||||
"generatorNRandomValues_one": "{{count}} random value",
|
||||
"generatorNRandomValues_other": "{{count}} random values",
|
||||
"generatorNoValues": "empty",
|
||||
"generatorLoading": "loading",
|
||||
"generatorLoadFromFile": "Load from File",
|
||||
"dynamicPromptsRandom": "Dynamic Prompts (Random)",
|
||||
"dynamicPromptsCombinatorial": "Dynamic Prompts (Combinatorial)",
|
||||
"addNode": "Add Node",
|
||||
"addNodeToolTip": "Add Node (Shift+A, Space)",
|
||||
"addLinearView": "Add to Linear View",
|
||||
@@ -989,7 +1021,11 @@
|
||||
"imageAccessError": "Unable to find image {{image_name}}, resetting to default",
|
||||
"boardAccessError": "Unable to find board {{board_id}}, resetting to default",
|
||||
"modelAccessError": "Unable to find model {{key}}, resetting to default",
|
||||
"saveToGallery": "Save To Gallery"
|
||||
"saveToGallery": "Save To Gallery",
|
||||
"addItem": "Add Item",
|
||||
"generateValues": "Generate Values",
|
||||
"floatRangeGenerator": "Float Range Generator",
|
||||
"integerRangeGenerator": "Integer Range Generator"
|
||||
},
|
||||
"parameters": {
|
||||
"aspect": "Aspect",
|
||||
@@ -1024,11 +1060,22 @@
|
||||
"addingImagesTo": "Adding images to",
|
||||
"invoke": "Invoke",
|
||||
"missingFieldTemplate": "Missing field template",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: missing input",
|
||||
"missingInputForField": "missing input",
|
||||
"missingNodeTemplate": "Missing node template",
|
||||
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} empty collection",
|
||||
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: too few items, minimum {{minItems}}",
|
||||
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: too many items, maximum {{maxItems}}",
|
||||
"emptyBatches": "empty batches",
|
||||
"batchNodeNotConnected": "Batch node not connected: {{label}}",
|
||||
"batchNodeEmptyCollection": "Some batch nodes have empty collections",
|
||||
"invalidBatchConfigurationCannotCalculate": "Invalid batch configuration; cannot calculate",
|
||||
"collectionTooFewItems": "too few items, minimum {{minItems}}",
|
||||
"collectionTooManyItems": "too many items, maximum {{maxItems}}",
|
||||
"collectionStringTooLong": "too long, max {{maxLength}}",
|
||||
"collectionStringTooShort": "too short, min {{minLength}}",
|
||||
"collectionNumberGTMax": "{{value}} > {{maximum}} (inc max)",
|
||||
"collectionNumberLTMin": "{{value}} < {{minimum}} (inc min)",
|
||||
"collectionNumberGTExclusiveMax": "{{value}} >= {{exclusiveMaximum}} (exc max)",
|
||||
"collectionNumberLTExclusiveMin": "{{value}} <= {{exclusiveMinimum}} (exc min)",
|
||||
"collectionNumberNotMultipleOf": "{{value}} not multiple of {{multipleOf}}",
|
||||
"batchNodeCollectionSizeMismatch": "Collection size mismatch on Batch {{batchGroupId}}",
|
||||
"noModelSelected": "No model selected",
|
||||
"noT5EncoderModelSelected": "No T5 Encoder model selected for FLUX generation",
|
||||
"noFLUXVAEModelSelected": "No VAE model selected for FLUX generation",
|
||||
@@ -1100,7 +1147,8 @@
|
||||
"perPromptLabel": "Seed per Image",
|
||||
"perPromptDesc": "Use a different seed for each image"
|
||||
},
|
||||
"loading": "Generating Dynamic Prompts..."
|
||||
"loading": "Generating Dynamic Prompts...",
|
||||
"promptsToGenerate": "Prompts to Generate"
|
||||
},
|
||||
"sdxl": {
|
||||
"cfgScale": "CFG Scale",
|
||||
@@ -1200,6 +1248,8 @@
|
||||
"problemCopyingLayer": "Unable to Copy Layer",
|
||||
"problemSavingLayer": "Unable to Save Layer",
|
||||
"problemDownloadingImage": "Unable to Download Image",
|
||||
"pasteSuccess": "Pasted to {{destination}}",
|
||||
"pasteFailed": "Paste Failed",
|
||||
"prunedQueue": "Pruned Queue",
|
||||
"sentToCanvas": "Sent to Canvas",
|
||||
"sentToUpscale": "Sent to Upscale",
|
||||
@@ -1216,7 +1266,10 @@
|
||||
"workflowLoaded": "Workflow Loaded",
|
||||
"problemRetrievingWorkflow": "Problem Retrieving Workflow",
|
||||
"workflowDeleted": "Workflow Deleted",
|
||||
"problemDeletingWorkflow": "Problem Deleting Workflow"
|
||||
"problemDeletingWorkflow": "Problem Deleting Workflow",
|
||||
"unableToCopy": "Unable to Copy",
|
||||
"unableToCopyDesc": "Your browser does not support clipboard access. Firefox users may be able to fix this by following ",
|
||||
"unableToCopyDesc_theseSteps": "these steps"
|
||||
},
|
||||
"popovers": {
|
||||
"clipSkip": {
|
||||
@@ -1656,6 +1709,8 @@
|
||||
"cropLayerToBbox": "Crop Layer to Bbox",
|
||||
"savedToGalleryOk": "Saved to Gallery",
|
||||
"savedToGalleryError": "Error saving to gallery",
|
||||
"regionCopiedToClipboard": "{{region}} Copied to Clipboard",
|
||||
"copyRegionError": "Error copying {{region}}",
|
||||
"newGlobalReferenceImageOk": "Created Global Reference Image",
|
||||
"newGlobalReferenceImageError": "Problem Creating Global Reference Image",
|
||||
"newRegionalReferenceImageOk": "Created Regional Reference Image",
|
||||
@@ -1766,6 +1821,14 @@
|
||||
"newControlLayer": "New $t(controlLayers.controlLayer)",
|
||||
"newInpaintMask": "New $t(controlLayers.inpaintMask)",
|
||||
"newRegionalGuidance": "New $t(controlLayers.regionalGuidance)",
|
||||
"pasteTo": "Paste To",
|
||||
"pasteToAssets": "Assets",
|
||||
"pasteToAssetsDesc": "Paste to Assets",
|
||||
"pasteToBbox": "Bbox",
|
||||
"pasteToBboxDesc": "New Layer (in Bbox)",
|
||||
"pasteToCanvas": "Canvas",
|
||||
"pasteToCanvasDesc": "New Layer (in Canvas)",
|
||||
"pastedTo": "Pasted to {{destination}}",
|
||||
"transparency": "Transparency",
|
||||
"enableTransparencyEffect": "Enable Transparency Effect",
|
||||
"disableTransparencyEffect": "Disable Transparency Effect",
|
||||
@@ -1810,6 +1873,10 @@
|
||||
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
|
||||
"rgNoRegion": "no region drawn"
|
||||
},
|
||||
"errors": {
|
||||
"unableToFindImage": "Unable to find image",
|
||||
"unableToLoadImage": "Unable to Load Image"
|
||||
},
|
||||
"controlMode": {
|
||||
"controlMode": "Control Mode",
|
||||
"balanced": "Balanced (recommended)",
|
||||
@@ -1932,6 +1999,48 @@
|
||||
"description": "Generates an edge map from the selected layer using the PiDiNet edge detection model.",
|
||||
"scribble": "Scribble",
|
||||
"quantize_edges": "Quantize Edges"
|
||||
},
|
||||
"img_blur": {
|
||||
"label": "Blur Image",
|
||||
"description": "Blurs the selected layer.",
|
||||
"blur_type": "Blur Type",
|
||||
"blur_radius": "Radius",
|
||||
"gaussian_type": "Gaussian",
|
||||
"box_type": "Box"
|
||||
},
|
||||
"img_noise": {
|
||||
"label": "Noise Image",
|
||||
"description": "Adds noise to the selected layer.",
|
||||
"noise_type": "Noise Type",
|
||||
"noise_amount": "Amount",
|
||||
"gaussian_type": "Gaussian",
|
||||
"salt_and_pepper_type": "Salt and Pepper",
|
||||
"noise_color": "Colored Noise",
|
||||
"size": "Noise Size"
|
||||
},
|
||||
"adjust_image": {
|
||||
"label": "Adjust Image",
|
||||
"description": "Adjusts the selected channel of an image.",
|
||||
"channel": "Channel",
|
||||
"value_setting": "Value",
|
||||
"scale_values": "Scale Values",
|
||||
"red": "Red (RGBA)",
|
||||
"green": "Green (RGBA)",
|
||||
"blue": "Blue (RGBA)",
|
||||
"alpha": "Alpha (RGBA)",
|
||||
"cyan": "Cyan (CMYK)",
|
||||
"magenta": "Magenta (CMYK)",
|
||||
"yellow": "Yellow (CMYK)",
|
||||
"black": "Black (CMYK)",
|
||||
"hue": "Hue (HSV)",
|
||||
"saturation": "Saturation (HSV)",
|
||||
"value": "Value (HSV)",
|
||||
"luminosity": "Luminosity (LAB)",
|
||||
"a": "A (LAB)",
|
||||
"b": "B (LAB)",
|
||||
"y": "Y (YCbCr)",
|
||||
"cb": "Cb (YCbCr)",
|
||||
"cr": "Cr (YCbCr)"
|
||||
}
|
||||
},
|
||||
"transform": {
|
||||
@@ -2005,7 +2114,10 @@
|
||||
"newRasterLayer": "New Raster Layer",
|
||||
"newInpaintMask": "New Inpaint Mask",
|
||||
"newRegionalGuidance": "New Regional Guidance",
|
||||
"cropCanvasToBbox": "Crop Canvas to Bbox"
|
||||
"cropCanvasToBbox": "Crop Canvas to Bbox",
|
||||
"copyToClipboard": "Copy to Clipboard",
|
||||
"copyCanvasToClipboard": "Copy Canvas to Clipboard",
|
||||
"copyBboxToClipboard": "Copy Bbox to Clipboard"
|
||||
},
|
||||
"stagingArea": {
|
||||
"accept": "Accept",
|
||||
@@ -2139,7 +2251,14 @@
|
||||
},
|
||||
"whatsNew": {
|
||||
"whatsNewInInvoke": "What's New in Invoke",
|
||||
"items": ["Low-VRAM mode", "Dynamic memory management", "Faster model loading times", "Fewer memory errors"],
|
||||
"items": [
|
||||
"Improved VRAM setting defaults",
|
||||
"On-demand model cache clearing",
|
||||
"Expanded FLUX LoRA compatibility",
|
||||
"Canvas Adjust Image filter",
|
||||
"Cancel all but current queue item",
|
||||
"Copy from and paste to Canvas"
|
||||
],
|
||||
"readReleaseNotes": "Read Release Notes",
|
||||
"watchRecentReleaseVideos": "Watch Recent Release Videos",
|
||||
"watchUiUpdatesOverview": "Watch UI Updates Overview"
|
||||
|
||||
@@ -109,7 +109,6 @@
|
||||
"deleteImage_many": "Eliminar {{count}} Imágenes",
|
||||
"deleteImage_other": "Eliminar {{count}} Imágenes",
|
||||
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
|
||||
"assets": "Activos",
|
||||
"autoAssignBoardOnClick": "Asignar automática tableros al hacer clic",
|
||||
"gallery": "Galería",
|
||||
"noImageSelected": "Sin imágenes seleccionadas",
|
||||
@@ -901,9 +900,7 @@
|
||||
}
|
||||
},
|
||||
"newUserExperience": {
|
||||
"downloadStarterModels": "Descargar modelos de inicio",
|
||||
"toGetStarted": "Para empezar, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en <StrongComponent>Lienzo</StrongComponent>.",
|
||||
"importModels": "Importar modelos",
|
||||
"noModelsInstalled": "Parece que no tienes ningún modelo instalado",
|
||||
"gettingStartedSeries": "¿Desea más orientación? Consulte nuestra <LinkComponent>Serie de introducción</LinkComponent> para obtener consejos sobre cómo aprovechar todo el potencial de Invoke Studio.",
|
||||
"toGetStartedLocal": "Para empezar, asegúrate de descargar o importar los modelos necesarios para ejecutar Invoke. A continuación, introduzca un mensaje en el cuadro y haga clic en <StrongComponent>Invocar</StrongComponent> para generar su primera imagen. Seleccione una plantilla para mejorar los resultados. Puede elegir guardar sus imágenes directamente en <StrongComponent>Galería</StrongComponent> o editarlas en el <StrongComponent>Lienzo</StrongComponent>."
|
||||
|
||||
@@ -114,7 +114,6 @@
|
||||
"sortDirection": "Direction de tri",
|
||||
"sideBySide": "Côte-à-Côte",
|
||||
"hover": "Au passage de la souris",
|
||||
"assets": "Ressources",
|
||||
"alwaysShowImageSizeBadge": "Toujours montrer le badge de taille de l'Image",
|
||||
"gallery": "Galerie",
|
||||
"bulkDownloadRequestFailed": "Problème lors de la préparation du téléchargement",
|
||||
@@ -352,7 +351,6 @@
|
||||
"noT5EncoderModelSelected": "Aucun modèle T5 Encoder sélectionné pour la génération FLUX",
|
||||
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), la largeur de la bounding box mise à l'échelle est {{width}}",
|
||||
"canvasIsCompositing": "La toile est en train de composer",
|
||||
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} collection vide",
|
||||
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}} : trop peu d'éléments, minimum {{minItems}}",
|
||||
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}} : trop d'éléments, maximum {{maxItems}}",
|
||||
"canvasIsSelectingObject": "La toile est occupée (sélection d'objet)"
|
||||
@@ -2171,8 +2169,6 @@
|
||||
"toGetStarted": "Pour commencer, saisissez un prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement dans la <StrongComponent>Galerie</StrongComponent> ou de les modifier sur la <StrongComponent>Toile</StrongComponent>.",
|
||||
"gettingStartedSeries": "Vous souhaitez plus de conseils ? Consultez notre <LinkComponent>Série de démarrage</LinkComponent> pour des astuces sur l'exploitation du plein potentiel de l'Invoke Studio.",
|
||||
"noModelsInstalled": "Il semble qu'aucun modèle ne soit installé",
|
||||
"downloadStarterModels": "Télécharger les modèles de démarrage",
|
||||
"importModels": "Importer des Modèles",
|
||||
"toGetStartedLocal": "Pour commencer, assurez-vous de télécharger ou d'importer des modèles nécessaires pour exécuter Invoke. Ensuite, saisissez le prompt dans la boîte et cliquez sur <StrongComponent>Invoke</StrongComponent> pour générer votre première image. Sélectionnez un template de prompt pour améliorer les résultats. Vous pouvez choisir de sauvegarder vos images directement sur <StrongComponent>Galerie</StrongComponent> ou les modifier sur la <StrongComponent>Toile</StrongComponent>."
|
||||
},
|
||||
"upsell": {
|
||||
@@ -2230,6 +2226,10 @@
|
||||
"understandingImageToImageAndDenoising": {
|
||||
"title": "Comprendre l'Image-à-Image et le Débruitage",
|
||||
"description": "Aperçu des transformations d'image à image et du débruitage dans Invoke."
|
||||
},
|
||||
"howDoIOutpaint": {
|
||||
"title": "Comment effectuer un outpainting ?",
|
||||
"description": "Guide pour l'extension au-delà des bordures de l'image originale."
|
||||
}
|
||||
},
|
||||
"gettingStarted": "Commencer",
|
||||
|
||||
@@ -97,7 +97,15 @@
|
||||
"ok": "Ok",
|
||||
"generating": "Generazione",
|
||||
"loadingModel": "Caricamento del modello",
|
||||
"warnings": "Avvisi"
|
||||
"warnings": "Avvisi",
|
||||
"step": "Passo",
|
||||
"values": "Valori",
|
||||
"start": "Inizio",
|
||||
"end": "Fine",
|
||||
"resetToDefaults": "Ripristina le impostazioni predefinite",
|
||||
"seed": "Seme",
|
||||
"combinatorial": "Combinatorio",
|
||||
"count": "Quantità"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Dimensione dell'immagine",
|
||||
@@ -108,7 +116,6 @@
|
||||
"deleteImage_many": "Elimina {{count}} immagini",
|
||||
"deleteImage_other": "Elimina {{count}} immagini",
|
||||
"deleteImagePermanent": "Le immagini eliminate non possono essere ripristinate.",
|
||||
"assets": "Risorse",
|
||||
"autoAssignBoardOnClick": "Assegna automaticamente la bacheca al clic",
|
||||
"featuresWillReset": "Se elimini questa immagine, quelle funzionalità verranno immediatamente ripristinate.",
|
||||
"loading": "Caricamento in corso",
|
||||
@@ -668,7 +675,7 @@
|
||||
"addingImagesTo": "Aggiungi immagini a",
|
||||
"systemDisconnected": "Sistema disconnesso",
|
||||
"missingNodeTemplate": "Modello di nodo mancante",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: ingresso mancante",
|
||||
"missingInputForField": "ingresso mancante",
|
||||
"missingFieldTemplate": "Modello di campo mancante",
|
||||
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), altezza riquadro è {{height}}",
|
||||
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza riquadro è {{width}}",
|
||||
@@ -681,11 +688,22 @@
|
||||
"canvasIsRasterizing": "La tela è occupata (sta rasterizzando)",
|
||||
"canvasIsCompositing": "La tela è occupata (in composizione)",
|
||||
"canvasIsFiltering": "La tela è occupata (sta filtrando)",
|
||||
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi elementi, massimo {{maxItems}}",
|
||||
"collectionTooManyItems": "troppi elementi, massimo {{maxItems}}",
|
||||
"canvasIsSelectingObject": "La tela è occupata (selezione dell'oggetto)",
|
||||
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi pochi elementi, minimo {{minItems}}",
|
||||
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} raccolta vuota",
|
||||
"fluxModelMultipleControlLoRAs": "È possibile utilizzare solo 1 Controllo LoRA alla volta"
|
||||
"collectionTooFewItems": "troppi pochi elementi, minimo {{minItems}}",
|
||||
"fluxModelMultipleControlLoRAs": "È possibile utilizzare solo 1 Controllo LoRA alla volta",
|
||||
"collectionNumberGTMax": "{{value}} > {{maximum}} (incr max)",
|
||||
"collectionStringTooLong": "troppo lungo, massimo {{maxLength}}",
|
||||
"batchNodeNotConnected": "Nodo Lotto non connesso: {{label}}",
|
||||
"batchNodeEmptyCollection": "Alcuni nodi lotto hanno raccolte vuote",
|
||||
"emptyBatches": "lotti vuoti",
|
||||
"batchNodeCollectionSizeMismatch": "Le dimensioni della raccolta nel Lotto {{batchGroupId}} non corrispondono",
|
||||
"invalidBatchConfigurationCannotCalculate": "Configurazione lotto non valida; impossibile calcolare",
|
||||
"collectionStringTooShort": "troppo corto, minimo {{minLength}}",
|
||||
"collectionNumberNotMultipleOf": "{{value}} non è multiplo di {{multipleOf}}",
|
||||
"collectionNumberLTMin": "{{value}} < {{minimum}} (incr min)",
|
||||
"collectionNumberGTExclusiveMax": "{{value}} >= {{exclusiveMaximum}} (excl max)",
|
||||
"collectionNumberLTExclusiveMin": "{{value}} <= {{exclusiveMinimum}} (excl min)"
|
||||
},
|
||||
"useCpuNoise": "Usa la CPU per generare rumore",
|
||||
"iterations": "Iterazioni",
|
||||
@@ -813,7 +831,8 @@
|
||||
"imagesWillBeAddedTo": "Le immagini caricate verranno aggiunte alle risorse della bacheca {{boardName}}.",
|
||||
"uploadFailedInvalidUploadDesc_withCount_one": "Devi caricare al massimo 1 immagine PNG o JPEG.",
|
||||
"uploadFailedInvalidUploadDesc_withCount_many": "Devi caricare al massimo {{count}} immagini PNG o JPEG.",
|
||||
"uploadFailedInvalidUploadDesc_withCount_other": "Devi caricare al massimo {{count}} immagini PNG o JPEG."
|
||||
"uploadFailedInvalidUploadDesc_withCount_other": "Devi caricare al massimo {{count}} immagini PNG o JPEG.",
|
||||
"outOfMemoryErrorDescLocal": "Segui la nostra <LinkComponent>guida per bassa VRAM</LinkComponent> per ridurre gli OOM."
|
||||
},
|
||||
"accessibility": {
|
||||
"invokeProgressBar": "Barra di avanzamento generazione",
|
||||
@@ -972,7 +991,25 @@
|
||||
"noWorkflows": "Nessun flusso di lavoro",
|
||||
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>.",
|
||||
"specialDesc": "Questa invocazione comporta una gestione speciale nell'applicazione. Ad esempio, i nodi Lotto vengono utilizzati per mettere in coda più grafici da un singolo flusso di lavoro.",
|
||||
"internalDesc": "Questa invocazione è utilizzata internamente da Invoke. Potrebbe subire modifiche significative durante gli aggiornamenti dell'app e potrebbe essere rimossa in qualsiasi momento."
|
||||
"internalDesc": "Questa invocazione è utilizzata internamente da Invoke. Potrebbe subire modifiche significative durante gli aggiornamenti dell'app e potrebbe essere rimossa in qualsiasi momento.",
|
||||
"addItem": "Aggiungi elemento",
|
||||
"generateValues": "Genera valori",
|
||||
"generatorNoValues": "vuoto",
|
||||
"linearDistribution": "Distribuzione lineare",
|
||||
"parseString": "Analizza stringa",
|
||||
"splitOn": "Diviso su",
|
||||
"noBatchGroup": "nessun gruppo",
|
||||
"generatorLoading": "caricamento",
|
||||
"generatorLoadFromFile": "Carica da file",
|
||||
"dynamicPromptsRandom": "Prompt dinamici (casuali)",
|
||||
"dynamicPromptsCombinatorial": "Prompt dinamici (combinatori)",
|
||||
"floatRangeGenerator": "Generatore di intervalli di numeri in virgola mobile",
|
||||
"integerRangeGenerator": "Generatore di intervalli di numeri interi",
|
||||
"uniformRandomDistribution": "Distribuzione casuale uniforme",
|
||||
"generatorNRandomValues_one": "{{count}} valore casuale",
|
||||
"generatorNRandomValues_many": "{{count}} valori casuali",
|
||||
"generatorNRandomValues_other": "{{count}} valori casuali",
|
||||
"arithmeticSequence": "Sequenza aritmetica"
|
||||
},
|
||||
"boards": {
|
||||
"autoAddBoard": "Aggiungi automaticamente bacheca",
|
||||
@@ -1094,7 +1131,11 @@
|
||||
"generation": "Generazione",
|
||||
"other": "Altro",
|
||||
"gallery": "Galleria",
|
||||
"batchSize": "Dimensione del lotto"
|
||||
"batchSize": "Dimensione del lotto",
|
||||
"cancelAllExceptCurrentQueueItemAlertDialog2": "Vuoi davvero annullare tutti gli elementi in coda in sospeso?",
|
||||
"confirm": "Conferma",
|
||||
"cancelAllExceptCurrentQueueItemAlertDialog": "L'annullamento di tutti gli elementi della coda, eccetto quello corrente, interromperà gli elementi in sospeso ma consentirà il completamento di quello in corso.",
|
||||
"cancelAllExceptCurrentTooltip": "Annulla tutto tranne l'elemento corrente"
|
||||
},
|
||||
"models": {
|
||||
"noMatchingModels": "Nessun modello corrispondente",
|
||||
@@ -1138,7 +1179,8 @@
|
||||
"dynamicPrompts": "Prompt dinamici",
|
||||
"promptsPreview": "Anteprima dei prompt",
|
||||
"showDynamicPrompts": "Mostra prompt dinamici",
|
||||
"loading": "Generazione prompt dinamici..."
|
||||
"loading": "Generazione prompt dinamici...",
|
||||
"promptsToGenerate": "Prompt da generare"
|
||||
},
|
||||
"popovers": {
|
||||
"paramScheduler": {
|
||||
@@ -1907,7 +1949,43 @@
|
||||
},
|
||||
"forMoreControl": "Per un maggiore controllo, fare clic su Avanzate qui sotto.",
|
||||
"advanced": "Avanzate",
|
||||
"processingLayerWith": "Elaborazione del livello con il filtro {{type}}."
|
||||
"processingLayerWith": "Elaborazione del livello con il filtro {{type}}.",
|
||||
"img_blur": {
|
||||
"label": "Sfoca immagine",
|
||||
"description": "Sfoca il livello selezionato.",
|
||||
"blur_type": "Tipo di sfocatura",
|
||||
"blur_radius": "Raggio",
|
||||
"gaussian_type": "Gaussiana"
|
||||
},
|
||||
"img_noise": {
|
||||
"size": "Dimensione del rumore",
|
||||
"salt_and_pepper_type": "Sale e pepe",
|
||||
"gaussian_type": "Gaussiano",
|
||||
"noise_color": "Rumore colorato",
|
||||
"description": "Aggiunge rumore al livello selezionato.",
|
||||
"noise_type": "Tipo di rumore",
|
||||
"label": "Aggiungi rumore",
|
||||
"noise_amount": "Quantità"
|
||||
},
|
||||
"adjust_image": {
|
||||
"description": "Regola il canale selezionato di un'immagine.",
|
||||
"alpha": "Alfa (RGBA)",
|
||||
"label": "Regola l'immagine",
|
||||
"blue": "Blu (RGBA)",
|
||||
"luminosity": "Luminosità (LAB)",
|
||||
"channel": "Canale",
|
||||
"value_setting": "Valore",
|
||||
"scale_values": "Scala i valori",
|
||||
"red": "Rosso (RGBA)",
|
||||
"green": "Verde (RGBA)",
|
||||
"cyan": "Ciano (CMYK)",
|
||||
"magenta": "Magenta (CMYK)",
|
||||
"yellow": "Giallo (CMYK)",
|
||||
"black": "Nero (CMYK)",
|
||||
"hue": "Tonalità (HSV)",
|
||||
"saturation": "Saturazione (HSV)",
|
||||
"value": "Valore (HSV)"
|
||||
}
|
||||
},
|
||||
"controlLayers_withCount_hidden": "Livelli di controllo ({{count}} nascosti)",
|
||||
"regionalGuidance_withCount_hidden": "Guida regionale ({{count}} nascosti)",
|
||||
@@ -2166,10 +2244,9 @@
|
||||
"newUserExperience": {
|
||||
"gettingStartedSeries": "Desideri maggiori informazioni? Consulta la nostra <LinkComponent>Getting Started Series</LinkComponent> per suggerimenti su come sfruttare appieno il potenziale di Invoke Studio.",
|
||||
"toGetStarted": "Per iniziare, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>.",
|
||||
"importModels": "Importa modelli",
|
||||
"downloadStarterModels": "Scarica i modelli per iniziare",
|
||||
"noModelsInstalled": "Sembra che tu non abbia installato alcun modello",
|
||||
"toGetStartedLocal": "Per iniziare, assicurati di scaricare o importare i modelli necessari per eseguire Invoke. Quindi, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>."
|
||||
"noModelsInstalled": "Sembra che non hai installato alcun modello! Puoi <DownloadStarterModelsButton>scaricare un pacchetto di modelli di avvio</DownloadStarterModelsButton> o <ImportModelsButton>importare modelli</ImportModelsButton>.",
|
||||
"toGetStartedLocal": "Per iniziare, assicurati di scaricare o importare i modelli necessari per eseguire Invoke. Quindi, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>.",
|
||||
"lowVRAMMode": "Per prestazioni ottimali, segui la nostra <LinkComponent>guida per bassa VRAM</LinkComponent>."
|
||||
},
|
||||
"whatsNew": {
|
||||
"whatsNewInInvoke": "Novità in Invoke",
|
||||
@@ -2177,7 +2254,11 @@
|
||||
"watchRecentReleaseVideos": "Guarda i video su questa versione",
|
||||
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
|
||||
"items": [
|
||||
"<StrongComponent>Livelli di controllo Flux</StrongComponent>: nuovi modelli di controllo per il rilevamento dei bordi e la mappatura della profondità sono ora supportati per i modelli di Flux dev."
|
||||
"Modalità Bassa-VRAM",
|
||||
"Gestione dinamica della memoria",
|
||||
"Tempi di caricamento del modello più rapidi",
|
||||
"Meno errori di memoria",
|
||||
"Funzionalità lotto del flusso di lavoro ampliate"
|
||||
]
|
||||
},
|
||||
"system": {
|
||||
@@ -2267,5 +2348,10 @@
|
||||
"watch": "Guarda",
|
||||
"studioSessionsDesc1": "Dai un'occhiata a <StudioSessionsPlaylistLink /> per approfondimenti su Invoke.",
|
||||
"studioSessionsDesc2": "Unisciti al nostro <DiscordLink /> per partecipare alle sessioni live e fare domande. Le sessioni vengono caricate sulla playlist la settimana successiva."
|
||||
},
|
||||
"modelCache": {
|
||||
"clear": "Cancella la cache del modello",
|
||||
"clearSucceeded": "Cache del modello cancellata",
|
||||
"clearFailed": "Problema durante la cancellazione della cache del modello"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -106,7 +106,6 @@
|
||||
"featuresWillReset": "この画像を削除すると、これらの機能は即座にリセットされます。",
|
||||
"unstarImage": "スターを外す",
|
||||
"loading": "ロード中",
|
||||
"assets": "アセット",
|
||||
"currentlyInUse": "この画像は現在下記の機能を使用しています:",
|
||||
"drop": "ドロップ",
|
||||
"dropOrUpload": "$t(gallery.drop) またはアップロード",
|
||||
|
||||
@@ -68,7 +68,6 @@
|
||||
"gallerySettings": "갤러리 설정",
|
||||
"deleteSelection": "선택 항목 삭제",
|
||||
"featuresWillReset": "이 이미지를 삭제하면 해당 기능이 즉시 재설정됩니다.",
|
||||
"assets": "자산",
|
||||
"noImagesInGallery": "보여줄 이미지가 없음",
|
||||
"autoSwitchNewImages": "새로운 이미지로 자동 전환",
|
||||
"loading": "불러오는 중",
|
||||
|
||||
@@ -90,7 +90,6 @@
|
||||
"deleteImage_one": "Verwijder afbeelding",
|
||||
"deleteImage_other": "",
|
||||
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
|
||||
"assets": "Eigen onderdelen",
|
||||
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken",
|
||||
"featuresWillReset": "Als je deze afbeelding verwijdert, dan worden deze functies onmiddellijk teruggezet.",
|
||||
"loading": "Bezig met laden",
|
||||
|
||||
@@ -105,7 +105,6 @@
|
||||
"assetsTab": "Pliki, które wrzuciłeś do użytku w twoich projektach.",
|
||||
"currentlyInUse": "Ten obraz jest obecnie w użyciu przez następujące funkcje:",
|
||||
"boardsSettings": "Ustawienia tablic",
|
||||
"assets": "Aktywy",
|
||||
"autoAssignBoardOnClick": "Automatycznie przypisz tablicę po kliknięciu",
|
||||
"copy": "Kopiuj"
|
||||
},
|
||||
|
||||
@@ -106,7 +106,6 @@
|
||||
"deleteImage_one": "Удалить изображение",
|
||||
"deleteImage_few": "Удалить {{count}} изображения",
|
||||
"deleteImage_many": "Удалить {{count}} изображений",
|
||||
"assets": "Ресурсы",
|
||||
"autoAssignBoardOnClick": "Авто-назначение доски по клику",
|
||||
"deleteSelection": "Удалить выделенное",
|
||||
"featuresWillReset": "Если вы удалите это изображение, эти функции будут немедленно сброшены.",
|
||||
|
||||
@@ -195,7 +195,6 @@
|
||||
},
|
||||
"gallery": {
|
||||
"deleteImagePermanent": "Silinen görseller geri getirilemez.",
|
||||
"assets": "Özkaynaklar",
|
||||
"autoAssignBoardOnClick": "Tıklanan Panoya Otomatik Atama",
|
||||
"loading": "Yükleniyor",
|
||||
"starImage": "Yıldız Koy",
|
||||
|
||||
@@ -86,7 +86,6 @@
|
||||
"bulkDownloadRequestedDesc": "Yêu cầu tải xuống đang được chuẩn bị. Vui lòng chờ trong giây lát.",
|
||||
"starImage": "Gắn Sao Cho Ảnh",
|
||||
"openViewer": "Mở Trình Xem",
|
||||
"assets": "Tài Nguyên",
|
||||
"viewerImage": "Trình Xem Ảnh",
|
||||
"sideBySide": "Cạnh Nhau",
|
||||
"alwaysShowImageSizeBadge": "Luôn Hiển Thị Kích Thước Ảnh",
|
||||
@@ -220,7 +219,17 @@
|
||||
"tab": "Tab",
|
||||
"loadingModel": "Đang Tải Model",
|
||||
"generating": "Đang Tạo Sinh",
|
||||
"warnings": "Cảnh Báo"
|
||||
"warnings": "Cảnh Báo",
|
||||
"count": "Đếm",
|
||||
"step": "Bước",
|
||||
"values": "Giá Trị",
|
||||
"start": "Bắt Đầu",
|
||||
"end": "Kết Thúc",
|
||||
"min": "Tối Thiểu",
|
||||
"max": "Tối Đa",
|
||||
"resetToDefaults": "Đặt Lại Về Mặc Định",
|
||||
"seed": "Hạt Giống",
|
||||
"combinatorial": "Tổ Hợp"
|
||||
},
|
||||
"prompt": {
|
||||
"addPromptTrigger": "Thêm Prompt Trigger",
|
||||
@@ -965,7 +974,23 @@
|
||||
"outputFieldTypeParseError": "Không thể phân tích loại dữ liệu đầu ra của {{node}}.{{field}} ({{message}})",
|
||||
"modelAccessError": "Không thể tìm thấy model {{key}}, chuyển về mặc định",
|
||||
"internalDesc": "Trình kích hoạt này được dùng bên trong bởi Invoke. Nó có thể phá hỏng thay đổi trong khi cập nhật ứng dụng và có thể bị xoá bất cứ lúc nào.",
|
||||
"specialDesc": "Trình kích hoạt này có một số xử lý đặc biệt trong ứng dụng. Ví dụ, Node Hàng Loạt được dùng để xếp vào nhiều đồ thị từ một workflow."
|
||||
"specialDesc": "Trình kích hoạt này có một số xử lý đặc biệt trong ứng dụng. Ví dụ, Node Hàng Loạt được dùng để xếp vào nhiều đồ thị từ một workflow.",
|
||||
"addItem": "Thêm Mục",
|
||||
"generateValues": "Cho Ra Giá Trị",
|
||||
"floatRangeGenerator": "Phạm Vị Tạo Ra Số Thực",
|
||||
"integerRangeGenerator": "Phạm Vị Tạo Ra Số Nguyên",
|
||||
"linearDistribution": "Phân Bố Tuyến Tính",
|
||||
"uniformRandomDistribution": "Phân Bố Ngẫu Nhiên Đồng Nhất",
|
||||
"parseString": "Phân Tích Chuỗi",
|
||||
"noBatchGroup": "không có nhóm",
|
||||
"generatorNoValues": "trống",
|
||||
"splitOn": "Tách Ở",
|
||||
"arithmeticSequence": "Cấp Số Cộng",
|
||||
"generatorNRandomValues_other": "{{count}} giá trị ngẫu nhiên",
|
||||
"generatorLoading": "đang tải",
|
||||
"generatorLoadFromFile": "Tải Từ Tệp",
|
||||
"dynamicPromptsRandom": "Dynamic Prompts (Ngẫu Nhiên)",
|
||||
"dynamicPromptsCombinatorial": "Dynamic Prompts (Tổ Hợp)"
|
||||
},
|
||||
"popovers": {
|
||||
"paramCFGRescaleMultiplier": {
|
||||
@@ -1433,13 +1458,24 @@
|
||||
"missingNodeTemplate": "Thiếu mẫu trình bày node",
|
||||
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), chiều dài hộp giới hạn là {{height}}",
|
||||
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), tỉ lệ chiều rộng hộp giới hạn là {{width}}",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: thiếu đầu vào",
|
||||
"missingInputForField": "thiếu đầu vào",
|
||||
"missingFieldTemplate": "Thiếu vùng mẫu trình bày",
|
||||
"collectionEmpty": "{{nodeLabel}} -> {{fieldLabel}} tài nguyên trống",
|
||||
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: quá ít mục, tối thiểu {{minItems}}",
|
||||
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: quá nhiều mục, tối đa {{maxItems}}",
|
||||
"collectionTooFewItems": "quá ít mục, tối thiểu là {{minItems}}",
|
||||
"collectionTooManyItems": "quá nhiều mục, tối đa là {{maxItems}}",
|
||||
"canvasIsSelectingObject": "Canvas đang bận (đang chọn đồ vật)",
|
||||
"fluxModelMultipleControlLoRAs": "Chỉ có thể dùng 1 LoRA Điều Khiển Được"
|
||||
"fluxModelMultipleControlLoRAs": "Chỉ có thể dùng 1 LoRA Điều Khiển Được",
|
||||
"collectionStringTooLong": "quá dài, tối đa là {{maxLength}}",
|
||||
"collectionStringTooShort": "quá ngắn, tối thiểu là {{minLength}}",
|
||||
"collectionNumberGTMax": "{{value}} > {{maximum}} (giá trị tối đa)",
|
||||
"collectionNumberLTMin": "{{value}} < {{minimum}} (giá trị tối thiểu)",
|
||||
"collectionNumberNotMultipleOf": "{{value}} không phải bội của {{multipleOf}}",
|
||||
"collectionNumberLTExclusiveMin": "{{value}} <= {{exclusiveMinimum}} (giá trị chọn lọc tối thiểu)",
|
||||
"collectionNumberGTExclusiveMax": "{{value}} >= {{exclusiveMaximum}} (giá trị chọn lọc tối đa)",
|
||||
"batchNodeCollectionSizeMismatch": "Kích cỡ tài nguyên không phù hợp với Lô {{batchGroupId}}",
|
||||
"emptyBatches": "lô trống",
|
||||
"batchNodeNotConnected": "Node Hàng Loạt chưa được kết nối: {{label}}",
|
||||
"batchNodeEmptyCollection": "Một vài node hàng loạt có tài nguyên rỗng",
|
||||
"invalidBatchConfigurationCannotCalculate": "Thiết lập lô không hợp lệ; không thể tính toán"
|
||||
},
|
||||
"cfgScale": "Thang CFG",
|
||||
"useSeed": "Dùng Hạt Giống",
|
||||
@@ -1458,8 +1494,8 @@
|
||||
"recallMetadata": "Gợi Lại Metadata",
|
||||
"clipSkip": "CLIP Skip",
|
||||
"general": "Cài Đặt Chung",
|
||||
"boxBlur": "Box Blur",
|
||||
"gaussianBlur": "Gaussian Blur",
|
||||
"boxBlur": "Làm Mờ Dạng Box",
|
||||
"gaussianBlur": "Làm Mờ Dạng Gaussian",
|
||||
"staged": "Staged (Tăng khử nhiễu có hệ thống)",
|
||||
"scaledHeight": "Tỉ Lệ Dài",
|
||||
"cancel": {
|
||||
@@ -1512,11 +1548,12 @@
|
||||
"perPromptLabel": "Một Hạt Giống Mỗi Ảnh",
|
||||
"perIterationLabel": "Hạt Giống Mỗi Lần Lặp Lại"
|
||||
},
|
||||
"loading": "Tạo Sinh Dùng Dynamic Prompt...",
|
||||
"loading": "Tạo Sinh Bằng Dynamic Prompt...",
|
||||
"showDynamicPrompts": "HIện Dynamic Prompt",
|
||||
"maxPrompts": "Số Lệnh Tối Đa",
|
||||
"promptsPreview": "Xem Trước Lệnh",
|
||||
"dynamicPrompts": "Dynamic Prompt"
|
||||
"dynamicPrompts": "Dynamic Prompt",
|
||||
"promptsToGenerate": "Lệnh Để Tạo Sinh"
|
||||
},
|
||||
"settings": {
|
||||
"beta": "Beta",
|
||||
@@ -1859,7 +1896,25 @@
|
||||
},
|
||||
"advanced": "Nâng Cao",
|
||||
"processingLayerWith": "Đang xử lý layer với bộ lọc {{type}}.",
|
||||
"forMoreControl": "Để kiểm soát tốt hơn, bấm vào mục Nâng Cao bên dưới."
|
||||
"forMoreControl": "Để kiểm soát tốt hơn, bấm vào mục Nâng Cao bên dưới.",
|
||||
"img_blur": {
|
||||
"description": "Làm mờ layer được chọn.",
|
||||
"blur_type": "Dạng Làm Mờ",
|
||||
"blur_radius": "Radius",
|
||||
"gaussian_type": "Gaussian",
|
||||
"label": "Làm Mờ Ảnh",
|
||||
"box_type": "Box"
|
||||
},
|
||||
"img_noise": {
|
||||
"salt_and_pepper_type": "Salt and Pepper",
|
||||
"noise_amount": "Lượng Nhiễu",
|
||||
"label": "Độ Nhiễu Ảnh",
|
||||
"description": "Tăng độ nhiễu vào layer được chọn.",
|
||||
"noise_type": "Dạng Nhiễu",
|
||||
"gaussian_type": "Gaussian",
|
||||
"noise_color": "Màu Nhiễu",
|
||||
"size": "Cỡ Nhiễu"
|
||||
}
|
||||
},
|
||||
"transform": {
|
||||
"fitModeCover": "Che Phủ",
|
||||
@@ -2067,7 +2122,8 @@
|
||||
"problemCopyingImage": "Không Thể Sao Chép Ảnh",
|
||||
"problemDownloadingImage": "Không Thể Tải Xuống Ảnh",
|
||||
"problemCopyingLayer": "Không Thể Sao Chép Layer",
|
||||
"problemSavingLayer": "Không Thể Lưu Layer"
|
||||
"problemSavingLayer": "Không Thể Lưu Layer",
|
||||
"outOfMemoryErrorDescLocal": "Làm theo <LinkComponent>hướng dẫn VRAM Thấp</LinkComponent> của chúng tôi để hạn chế OOM (Tràn bộ nhớ)."
|
||||
},
|
||||
"ui": {
|
||||
"tabs": {
|
||||
@@ -2153,9 +2209,8 @@
|
||||
"toGetStartedLocal": "Để bắt đầu, hãy chắc chắn đã tải xuống hoặc thêm vào model cần để chạy Invoke. Sau đó, nhập lệnh vào hộp và nhấp chuột vào <StrongComponent>Kích Hoạt</StrongComponent> để tạo ra bức ảnh đầu tiên. Chọn một mẫu trình bày cho lệnh để cải thiện kết quả. Bạn có thể chọn để lưu ảnh trực tiếp vào <StrongComponent>Thư Viện</StrongComponent> hoặc chỉnh sửa chúng ở <StrongComponent>Canvas</StrongComponent>.",
|
||||
"gettingStartedSeries": "Cần thêm hướng dẫn? Xem thử <LinkComponent>Bắt Đầu Làm Quen</LinkComponent> để biết thêm mẹo khai thác toàn bộ tiềm năng của Invoke Studio.",
|
||||
"toGetStarted": "Để bắt đầu, hãy nhập lệnh vào hộp và nhấp chuột vào <StrongComponent>Kích Hoạt</StrongComponent> để tạo ra bức ảnh đầu tiên. Chọn một mẫu trình bày cho lệnh để cải thiện kết quả. Bạn có thể chọn để lưu ảnh trực tiếp vào <StrongComponent>Thư Viện</StrongComponent> hoặc chỉnh sửa chúng ở <StrongComponent>Canvas</StrongComponent>.",
|
||||
"downloadStarterModels": "Tải Xuống Model Khởi Đầu",
|
||||
"importModels": "Nhập Vào Model",
|
||||
"noModelsInstalled": "Hình như bạn không có model nào được tải cả"
|
||||
"noModelsInstalled": "Dường như bạn chưa tải model nào cả! Bạn có thể <DownloadStarterModelsButton>tải xuống các model khởi đầu</DownloadStarterModelsButton> hoặc <ImportModelsButton>nhập vào thêm model</ImportModelsButton>.",
|
||||
"lowVRAMMode": "Cho hiệu suất tốt nhất, hãy làm theo <LinkComponent>hướng dẫn VRAM Thấp</LinkComponent> của chúng tôi."
|
||||
},
|
||||
"whatsNew": {
|
||||
"whatsNewInInvoke": "Có Gì Mới Ở Invoke",
|
||||
@@ -2163,7 +2218,11 @@
|
||||
"watchRecentReleaseVideos": "Xem Video Phát Hành Mới Nhất",
|
||||
"watchUiUpdatesOverview": "Xem Tổng Quan Về Những Cập Nhật Cho Giao Diện Người Dùng",
|
||||
"items": [
|
||||
"<StrongComponent>Hướng Dẫn Khu Vực FLUX (beta)</StrongComponent>: Bản beta của Hướng Dẫn Khu Vực FLUX của chúng ta đã có mắt tại bảng điều khiển lệnh khu vực."
|
||||
"Chế độ VRAM thấp",
|
||||
"Trình quản lý bộ nhớ động",
|
||||
"Tải model nhanh hơn",
|
||||
"Ít lỗi bộ nhớ hơn",
|
||||
"Mở rộng khả năng xử lý hàng loạt workflow"
|
||||
]
|
||||
},
|
||||
"upsell": {
|
||||
@@ -2233,5 +2292,10 @@
|
||||
},
|
||||
"controlCanvas": "Điều Khiển Canvas",
|
||||
"watch": "Xem"
|
||||
},
|
||||
"modelCache": {
|
||||
"clearSucceeded": "Cache Model Đã Được Dọn",
|
||||
"clearFailed": "Có Vấn Đề Khi Dọn Cache Model",
|
||||
"clear": "Dọn Cache Model"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -107,7 +107,6 @@
|
||||
"noImagesInGallery": "无图像可用于显示",
|
||||
"deleteImage_other": "删除{{count}}张图片",
|
||||
"deleteImagePermanent": "删除的图片无法被恢复。",
|
||||
"assets": "素材",
|
||||
"autoAssignBoardOnClick": "点击后自动分配面板",
|
||||
"featuresWillReset": "如果您删除该图像,这些功能会立即被重置。",
|
||||
"loading": "加载中",
|
||||
|
||||
@@ -12,10 +12,12 @@ import { useFocusRegionWatcher } from 'common/hooks/focus';
|
||||
import { useClearStorage } from 'common/hooks/useClearStorage';
|
||||
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal';
|
||||
import { CanvasPasteModal } from 'features/controlLayers/components/CanvasPasteModal';
|
||||
import {
|
||||
NewCanvasSessionDialog,
|
||||
NewGallerySessionDialog,
|
||||
} from 'features/controlLayers/components/NewSessionConfirmationAlertDialog';
|
||||
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
|
||||
import { FullscreenDropzone } from 'features/dnd/FullscreenDropzone';
|
||||
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
|
||||
@@ -23,6 +25,7 @@ import DeleteBoardModal from 'features/gallery/components/Boards/DeleteBoardModa
|
||||
import { ImageContextMenu } from 'features/gallery/components/ImageContextMenu/ImageContextMenu';
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { ShareWorkflowModal } from 'features/nodes/components/sidePanel/WorkflowListMenu/ShareWorkflowModal';
|
||||
import { CancelAllExceptCurrentQueueItemConfirmationAlertDialog } from 'features/queue/components/CancelAllExceptCurrentQueueItemConfirmationAlertDialog';
|
||||
import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
|
||||
import { DeleteStylePresetDialog } from 'features/stylePresets/components/DeleteStylePresetDialog';
|
||||
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
|
||||
@@ -97,6 +100,7 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
|
||||
<ChangeBoardModal />
|
||||
<DynamicPromptsModal />
|
||||
<StylePresetModal />
|
||||
<CancelAllExceptCurrentQueueItemConfirmationAlertDialog />
|
||||
<ClearQueueConfirmationsAlertDialog />
|
||||
<NewWorkflowConfirmationAlertDialog />
|
||||
<DeleteStylePresetDialog />
|
||||
@@ -110,6 +114,9 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
|
||||
<ImageContextMenu />
|
||||
<FullscreenDropzone />
|
||||
<VideosModal />
|
||||
<CanvasManagerProviderGate>
|
||||
<CanvasPasteModal />
|
||||
</CanvasManagerProviderGate>
|
||||
</ErrorBoundary>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import { Button, Flex, Heading, Image, Link, Text } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useClipboard } from 'common/hooks/useClipboard';
|
||||
import { selectConfigSlice } from 'features/system/store/configSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import newGithubIssueUrl from 'new-github-issue-url';
|
||||
@@ -20,15 +21,17 @@ const selectIsLocal = createSelector(selectConfigSlice, (config) => config.isLoc
|
||||
const AppErrorBoundaryFallback = ({ error, resetErrorBoundary }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const isLocal = useAppSelector(selectIsLocal);
|
||||
const clipboard = useClipboard();
|
||||
|
||||
const handleCopy = useCallback(() => {
|
||||
const text = JSON.stringify(serializeError(error), null, 2);
|
||||
navigator.clipboard.writeText(`\`\`\`\n${text}\n\`\`\``);
|
||||
toast({
|
||||
id: 'ERROR_COPIED',
|
||||
title: t('toast.errorCopied'),
|
||||
clipboard.writeText(`\`\`\`\n${text}\n\`\`\``, () => {
|
||||
toast({
|
||||
id: 'ERROR_COPIED',
|
||||
title: t('toast.errorCopied'),
|
||||
});
|
||||
});
|
||||
}, [error, t]);
|
||||
}, [clipboard, error, t]);
|
||||
|
||||
const url = useMemo(() => {
|
||||
if (isLocal) {
|
||||
|
||||
@@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { truncate, upperFirst } from 'lodash-es';
|
||||
import { truncate } from 'lodash-es';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { JsonObject } from 'type-fest';
|
||||
@@ -52,15 +52,12 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
|
||||
const result = zPydanticValidationError.safeParse(response);
|
||||
if (result.success) {
|
||||
result.data.data.detail.map((e) => {
|
||||
const description = truncate(e.msg.replace(/^(Value|Index|Key) error, /i, ''), { length: 256 });
|
||||
toast({
|
||||
id: 'QUEUE_BATCH_FAILED',
|
||||
title: truncate(upperFirst(e.msg), { length: 128 }),
|
||||
title: t('queue.batchFailedToQueue'),
|
||||
status: 'error',
|
||||
description: truncate(
|
||||
`Path:
|
||||
${e.loc.join('.')}`,
|
||||
{ length: 128 }
|
||||
),
|
||||
description,
|
||||
});
|
||||
});
|
||||
} else if (response.status !== 403) {
|
||||
|
||||
@@ -1,16 +1,14 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
import { isImageFieldCollectionInputInstance } from 'features/nodes/types/field';
|
||||
import { isInvocationNode } from 'features/nodes/types/invocation';
|
||||
import { isBatchNode, isInvocationNode } from 'features/nodes/types/invocation';
|
||||
import { buildNodesGraph } from 'features/nodes/util/graph/buildNodesGraph';
|
||||
import { buildWorkflowWithValidation } from 'features/nodes/util/workflow/buildWorkflow';
|
||||
import { resolveBatchValue } from 'features/queue/store/readiness';
|
||||
import { groupBy } from 'lodash-es';
|
||||
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
|
||||
import type { Batch, BatchConfig } from 'services/api/types';
|
||||
|
||||
const log = logger('workflows');
|
||||
|
||||
export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
|
||||
@@ -33,28 +31,54 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
|
||||
|
||||
const data: Batch['data'] = [];
|
||||
|
||||
// Skip edges from batch nodes - these should not be in the graph, they exist only in the UI
|
||||
const imageBatchNodes = nodes.nodes.filter(isInvocationNode).filter((node) => node.data.type === 'image_batch');
|
||||
for (const node of imageBatchNodes) {
|
||||
const images = node.data.inputs['images'];
|
||||
if (!isImageFieldCollectionInputInstance(images)) {
|
||||
log.warn({ nodeId: node.id }, 'Image batch images field is not an image collection');
|
||||
break;
|
||||
}
|
||||
const edgesFromImageBatch = nodes.edges.filter((e) => e.source === node.id && e.sourceHandle === 'image');
|
||||
const batchDataCollectionItem: NonNullable<Batch['data']>[number] = [];
|
||||
for (const edge of edgesFromImageBatch) {
|
||||
if (!edge.targetHandle) {
|
||||
break;
|
||||
const invocationNodes = nodes.nodes.filter(isInvocationNode);
|
||||
const batchNodes = invocationNodes.filter(isBatchNode);
|
||||
|
||||
// Handle zipping batch nodes. First group the batch nodes by their batch_group_id
|
||||
const groupedBatchNodes = groupBy(batchNodes, (node) => node.data.inputs['batch_group_id']?.value);
|
||||
|
||||
// Then, we will create a batch data collection item for each group
|
||||
for (const [batchGroupId, batchNodes] of Object.entries(groupedBatchNodes)) {
|
||||
const zippedBatchDataCollectionItems: NonNullable<Batch['data']>[number] = [];
|
||||
|
||||
for (const node of batchNodes) {
|
||||
const value = resolveBatchValue(node, invocationNodes, nodes.edges);
|
||||
const sourceHandle = node.data.type === 'image_batch' ? 'image' : 'value';
|
||||
const edgesFromBatch = nodes.edges.filter((e) => e.source === node.id && e.sourceHandle === sourceHandle);
|
||||
if (batchGroupId !== 'None') {
|
||||
// If this batch node has a batch_group_id, we will zip the data collection items
|
||||
for (const edge of edgesFromBatch) {
|
||||
if (!edge.targetHandle) {
|
||||
break;
|
||||
}
|
||||
zippedBatchDataCollectionItems.push({
|
||||
node_path: edge.target,
|
||||
field_name: edge.targetHandle,
|
||||
items: value,
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// Otherwise add the data collection items to root of the batch so they are not zipped
|
||||
const productBatchDataCollectionItems: NonNullable<Batch['data']>[number] = [];
|
||||
for (const edge of edgesFromBatch) {
|
||||
if (!edge.targetHandle) {
|
||||
break;
|
||||
}
|
||||
productBatchDataCollectionItems.push({
|
||||
node_path: edge.target,
|
||||
field_name: edge.targetHandle,
|
||||
items: value,
|
||||
});
|
||||
}
|
||||
if (productBatchDataCollectionItems.length > 0) {
|
||||
data.push(productBatchDataCollectionItems);
|
||||
}
|
||||
}
|
||||
batchDataCollectionItem.push({
|
||||
node_path: edge.target,
|
||||
field_name: edge.targetHandle,
|
||||
items: images.value,
|
||||
});
|
||||
}
|
||||
if (batchDataCollectionItem.length > 0) {
|
||||
data.push(batchDataCollectionItem);
|
||||
|
||||
// Finally, if this batch data collection item has any items, add it to the data array
|
||||
if (batchGroupId !== 'None' && zippedBatchDataCollectionItems.length > 0) {
|
||||
data.push(zippedBatchDataCollectionItems);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -23,6 +23,7 @@ export type AppFeature =
|
||||
| 'pauseQueue'
|
||||
| 'resumeQueue'
|
||||
| 'invocationCache'
|
||||
| 'modelCache'
|
||||
| 'bulkDownload'
|
||||
| 'starterModels'
|
||||
| 'hfToken';
|
||||
|
||||
81
invokeai/frontend/web/src/common/hooks/useClipboard.tsx
Normal file
81
invokeai/frontend/web/src/common/hooks/useClipboard.tsx
Normal file
@@ -0,0 +1,81 @@
|
||||
/* eslint-disable no-restricted-properties */
|
||||
|
||||
import { ExternalLink, Text } from '@invoke-ai/ui-library';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import type { Param0 } from 'tsafe';
|
||||
|
||||
const CLIPBOARD_FAQ_URL = 'https://invoke-ai.github.io/InvokeAI/faq/#unable-to-copy-on-firefox';
|
||||
|
||||
export const useClipboard = () => {
|
||||
const { t } = useTranslation();
|
||||
const alertClipboardNotAvailable = useCallback(() => {
|
||||
toast({
|
||||
id: 'CLIPBOARD_UNAVAILABLE',
|
||||
title: t('toast.unableToCopy'),
|
||||
description: (
|
||||
<>
|
||||
<Text fontSize="md">
|
||||
{t('toast.unableToCopyDesc')}
|
||||
<ExternalLink
|
||||
display="inline"
|
||||
fontWeight="semibold"
|
||||
href={CLIPBOARD_FAQ_URL}
|
||||
label={t('toast.unableToCopyDesc_theseSteps')}
|
||||
/>
|
||||
.
|
||||
</Text>
|
||||
</>
|
||||
),
|
||||
status: 'error',
|
||||
});
|
||||
}, [t]);
|
||||
|
||||
const isAvailable = useMemo(() => {
|
||||
if (!navigator.clipboard || !window.ClipboardItem) {
|
||||
return false;
|
||||
}
|
||||
// TODO(psyche): Should we query the permissions API?
|
||||
return true;
|
||||
}, []);
|
||||
|
||||
const writeText = useCallback(
|
||||
(data: Param0<Clipboard['writeText']>, onCopy?: () => void) => {
|
||||
if (!isAvailable) {
|
||||
alertClipboardNotAvailable();
|
||||
return;
|
||||
}
|
||||
navigator.clipboard.writeText(data);
|
||||
onCopy?.();
|
||||
},
|
||||
[alertClipboardNotAvailable, isAvailable]
|
||||
);
|
||||
|
||||
const write = useCallback(
|
||||
(data: Param0<Clipboard['write']>, onCopy?: () => void) => {
|
||||
if (!isAvailable) {
|
||||
alertClipboardNotAvailable();
|
||||
return;
|
||||
}
|
||||
navigator.clipboard.write(data);
|
||||
onCopy?.();
|
||||
},
|
||||
[alertClipboardNotAvailable, isAvailable]
|
||||
);
|
||||
|
||||
const writeImage = useCallback(
|
||||
(blob: Blob, onCopy?: () => void) => {
|
||||
if (!isAvailable) {
|
||||
alertClipboardNotAvailable();
|
||||
return;
|
||||
}
|
||||
const data = [new ClipboardItem({ ['image/png']: blob })];
|
||||
navigator.clipboard.write(data);
|
||||
onCopy?.();
|
||||
},
|
||||
[alertClipboardNotAvailable, isAvailable]
|
||||
);
|
||||
|
||||
return { isAvailable, writeText, write, writeImage };
|
||||
};
|
||||
@@ -1,26 +1,15 @@
|
||||
import { useClipboard } from 'common/hooks/useClipboard';
|
||||
import { convertImageUrlToBlob } from 'common/util/convertImageUrlToBlob';
|
||||
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export const useCopyImageToClipboard = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const isClipboardAPIAvailable = useMemo(() => {
|
||||
return Boolean(navigator.clipboard) && Boolean(window.ClipboardItem);
|
||||
}, []);
|
||||
const clipboard = useClipboard();
|
||||
|
||||
const copyImageToClipboard = useCallback(
|
||||
async (image_url: string) => {
|
||||
if (!isClipboardAPIAvailable) {
|
||||
toast({
|
||||
id: 'PROBLEM_COPYING_IMAGE',
|
||||
title: t('toast.problemCopyingImage'),
|
||||
description: "Your browser doesn't support the Clipboard API.",
|
||||
status: 'error',
|
||||
});
|
||||
}
|
||||
try {
|
||||
const blob = await convertImageUrlToBlob(image_url);
|
||||
|
||||
@@ -28,12 +17,12 @@ export const useCopyImageToClipboard = () => {
|
||||
throw new Error('Unable to create Blob');
|
||||
}
|
||||
|
||||
copyBlobToClipboard(blob);
|
||||
|
||||
toast({
|
||||
id: 'IMAGE_COPIED',
|
||||
title: t('toast.imageCopied'),
|
||||
status: 'success',
|
||||
clipboard.writeImage(blob, () => {
|
||||
toast({
|
||||
id: 'IMAGE_COPIED',
|
||||
title: t('toast.imageCopied'),
|
||||
status: 'success',
|
||||
});
|
||||
});
|
||||
} catch (err) {
|
||||
toast({
|
||||
@@ -44,8 +33,8 @@ export const useCopyImageToClipboard = () => {
|
||||
});
|
||||
}
|
||||
},
|
||||
[isClipboardAPIAvailable, t]
|
||||
[clipboard, t]
|
||||
);
|
||||
|
||||
return { isClipboardAPIAvailable, copyImageToClipboard };
|
||||
return copyImageToClipboard;
|
||||
};
|
||||
|
||||
@@ -2,6 +2,7 @@ import { Menu, MenuButton, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-l
|
||||
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
|
||||
import { CanvasContextMenuItemsCropCanvasToBbox } from 'features/controlLayers/components/CanvasContextMenu/CanvasContextMenuItemsCropCanvasToBbox';
|
||||
import { NewLayerIcon } from 'features/controlLayers/components/common/icons';
|
||||
import { useCopyCanvasToClipboard } from 'features/controlLayers/hooks/copyHooks';
|
||||
import {
|
||||
useNewControlLayerFromBbox,
|
||||
useNewGlobalReferenceImageFromBbox,
|
||||
@@ -13,12 +14,13 @@ import {
|
||||
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiFloppyDiskBold } from 'react-icons/pi';
|
||||
import { PiCopyBold, PiFloppyDiskBold } from 'react-icons/pi';
|
||||
|
||||
export const CanvasContextMenuGlobalMenuItems = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const saveSubMenu = useSubMenu();
|
||||
const newSubMenu = useSubMenu();
|
||||
const copySubMenu = useSubMenu();
|
||||
const isBusy = useCanvasIsBusy();
|
||||
const saveCanvasToGallery = useSaveCanvasToGallery();
|
||||
const saveBboxToGallery = useSaveBboxToGallery();
|
||||
@@ -26,6 +28,8 @@ export const CanvasContextMenuGlobalMenuItems = memo(() => {
|
||||
const newGlobalReferenceImageFromBbox = useNewGlobalReferenceImageFromBbox();
|
||||
const newRasterLayerFromBbox = useNewRasterLayerFromBbox();
|
||||
const newControlLayerFromBbox = useNewControlLayerFromBbox();
|
||||
const copyCanvasToClipboard = useCopyCanvasToClipboard('canvas');
|
||||
const copyBboxToClipboard = useCopyCanvasToClipboard('bbox');
|
||||
|
||||
return (
|
||||
<>
|
||||
@@ -67,6 +71,21 @@ export const CanvasContextMenuGlobalMenuItems = memo(() => {
|
||||
</MenuList>
|
||||
</Menu>
|
||||
</MenuItem>
|
||||
<MenuItem {...copySubMenu.parentMenuItemProps} icon={<PiCopyBold />}>
|
||||
<Menu {...copySubMenu.menuProps}>
|
||||
<MenuButton {...copySubMenu.menuButtonProps}>
|
||||
<SubMenuButtonContent label={t('controlLayers.canvasContextMenu.copyToClipboard')} />
|
||||
</MenuButton>
|
||||
<MenuList {...copySubMenu.menuListProps}>
|
||||
<MenuItem icon={<PiCopyBold />} isDisabled={isBusy} onClick={copyCanvasToClipboard}>
|
||||
{t('controlLayers.canvasContextMenu.copyCanvasToClipboard')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiCopyBold />} isDisabled={isBusy} onClick={copyBboxToClipboard}>
|
||||
{t('controlLayers.canvasContextMenu.copyBboxToClipboard')}
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
</MenuItem>
|
||||
</MenuGroup>
|
||||
</>
|
||||
);
|
||||
|
||||
@@ -0,0 +1,150 @@
|
||||
import {
|
||||
Button,
|
||||
Flex,
|
||||
Modal,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
ModalContent,
|
||||
ModalFooter,
|
||||
ModalHeader,
|
||||
ModalOverlay,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { useAppStore } from 'app/store/nanostores/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
|
||||
import { createNewCanvasEntityFromImage } from 'features/imageActions/actions';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { atom } from 'nanostores';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiBoundingBoxBold, PiImageBold } from 'react-icons/pi';
|
||||
import { useUploadImageMutation } from 'services/api/endpoints/images';
|
||||
|
||||
const $imageFile = atom<File | null>(null);
|
||||
export const setFileToPaste = (file: File) => $imageFile.set(file);
|
||||
const clearFileToPaste = () => $imageFile.set(null);
|
||||
|
||||
export const CanvasPasteModal = memo(() => {
|
||||
useAssertSingleton('CanvasPasteModal');
|
||||
const { dispatch, getState } = useAppStore();
|
||||
const { t } = useTranslation();
|
||||
const imageToPaste = useStore($imageFile);
|
||||
const canvasManager = useCanvasManager();
|
||||
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
|
||||
const [uploadImage, { isLoading }] = useUploadImageMutation({ fixedCacheKey: 'canvasPasteModal' });
|
||||
|
||||
const getPosition = useCallback(
|
||||
(destination: 'canvas' | 'bbox') => {
|
||||
const { x, y } = canvasManager.stateApi.getBbox().rect;
|
||||
if (destination === 'bbox') {
|
||||
return { x, y };
|
||||
}
|
||||
const rasterLayerAdapters = canvasManager.compositor.getVisibleAdaptersOfType('raster_layer');
|
||||
if (rasterLayerAdapters.length === 0) {
|
||||
return { x, y };
|
||||
}
|
||||
{
|
||||
const { x, y } = canvasManager.compositor.getRectOfAdapters(rasterLayerAdapters);
|
||||
return { x, y };
|
||||
}
|
||||
},
|
||||
[canvasManager.compositor, canvasManager.stateApi]
|
||||
);
|
||||
|
||||
const handlePaste = useCallback(
|
||||
async (file: File, destination: 'assets' | 'canvas' | 'bbox') => {
|
||||
try {
|
||||
const is_intermediate = destination !== 'assets';
|
||||
const imageDTO = await uploadImage({
|
||||
file,
|
||||
is_intermediate,
|
||||
image_category: 'user',
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
}).unwrap();
|
||||
|
||||
if (destination !== 'assets') {
|
||||
createNewCanvasEntityFromImage({
|
||||
type: 'raster_layer',
|
||||
imageDTO,
|
||||
dispatch,
|
||||
getState,
|
||||
overrides: { position: getPosition(destination) },
|
||||
});
|
||||
}
|
||||
} catch {
|
||||
toast({
|
||||
title: t('toast.pasteFailed'),
|
||||
status: 'error',
|
||||
});
|
||||
} finally {
|
||||
clearFileToPaste();
|
||||
toast({
|
||||
title: t('toast.pasteSuccess', {
|
||||
destination:
|
||||
destination === 'assets'
|
||||
? t('controlLayers.pasteToAssets')
|
||||
: destination === 'bbox'
|
||||
? t('controlLayers.pasteToBbox')
|
||||
: t('controlLayers.pasteToCanvas'),
|
||||
}),
|
||||
status: 'success',
|
||||
});
|
||||
}
|
||||
},
|
||||
[autoAddBoardId, dispatch, getPosition, getState, t, uploadImage]
|
||||
);
|
||||
|
||||
const pasteToAssets = useCallback(() => {
|
||||
if (!imageToPaste) {
|
||||
return;
|
||||
}
|
||||
handlePaste(imageToPaste, 'assets');
|
||||
}, [handlePaste, imageToPaste]);
|
||||
|
||||
const pasteToCanvas = useCallback(() => {
|
||||
if (!imageToPaste) {
|
||||
return;
|
||||
}
|
||||
handlePaste(imageToPaste, 'canvas');
|
||||
}, [handlePaste, imageToPaste]);
|
||||
|
||||
const pasteToBbox = useCallback(() => {
|
||||
if (!imageToPaste) {
|
||||
return;
|
||||
}
|
||||
handlePaste(imageToPaste, 'bbox');
|
||||
}, [handlePaste, imageToPaste]);
|
||||
|
||||
return (
|
||||
<Modal isOpen={imageToPaste !== null} onClose={clearFileToPaste} useInert={false} isCentered size="2xl">
|
||||
<ModalOverlay />
|
||||
<ModalContent>
|
||||
<ModalHeader>{t('controlLayers.pasteTo')}</ModalHeader>
|
||||
<ModalCloseButton />
|
||||
<ModalBody display="flex" justifyContent="center">
|
||||
<Flex flexDir="column" gap={4} w="min-content">
|
||||
<Button size="lg" onClick={pasteToCanvas} isDisabled={isLoading} leftIcon={<PiImageBold />}>
|
||||
{t('controlLayers.pasteToCanvasDesc')}
|
||||
</Button>
|
||||
<Button size="lg" onClick={pasteToBbox} isDisabled={isLoading} leftIcon={<PiBoundingBoxBold />}>
|
||||
{t('controlLayers.pasteToBboxDesc')}
|
||||
</Button>
|
||||
<Button size="lg" onClick={pasteToAssets} isDisabled={isLoading} variant="ghost">
|
||||
{t('controlLayers.pasteToAssetsDesc')}
|
||||
</Button>
|
||||
</Flex>
|
||||
</ModalBody>
|
||||
<ModalFooter>
|
||||
<Button onClick={clearFileToPaste} variant="ghost" isLoading={isLoading}>
|
||||
{t('common.cancel')}
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
</ModalContent>
|
||||
</Modal>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasPasteModal.displayName = 'CanvasPasteModal';
|
||||
@@ -0,0 +1,99 @@
|
||||
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
|
||||
import { Combobox, CompositeNumberInput, CompositeSlider, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import type { AdjustImageFilterConfig, AjustImageChannels } from 'features/controlLayers/store/filters';
|
||||
import { IMAGE_FILTERS, isAjustImageChannels } from 'features/controlLayers/store/filters';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import type { FilterComponentProps } from './types';
|
||||
|
||||
type Props = FilterComponentProps<AdjustImageFilterConfig>;
|
||||
const DEFAULTS = IMAGE_FILTERS.adjust_image.buildDefaults();
|
||||
|
||||
export const FilterAdjustImage = memo(({ onChange, config }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const handleChannelChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!isAjustImageChannels(v?.value)) {
|
||||
return;
|
||||
}
|
||||
onChange({ ...config, channel: v.value });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleValueChange = useCallback(
|
||||
(v: number) => {
|
||||
onChange({ ...config, value: v });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleScaleChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
onChange({ ...config, scale_values: e.target.checked });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const options: { label: string; value: AjustImageChannels }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlLayers.filter.adjust_image.red'), value: 'Red (RGBA)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.green'), value: 'Green (RGBA)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.blue'), value: 'Blue (RGBA)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.alpha'), value: 'Alpha (RGBA)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.cyan'), value: 'Cyan (CMYK)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.magenta'), value: 'Magenta (CMYK)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.yellow'), value: 'Yellow (CMYK)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.black'), value: 'Black (CMYK)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.hue'), value: 'Hue (HSV)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.saturation'), value: 'Saturation (HSV)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.value'), value: 'Value (HSV)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.luminosity'), value: 'Luminosity (LAB)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.a'), value: 'A (LAB)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.b'), value: 'B (LAB)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.y'), value: 'Y (YCbCr)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.cb'), value: 'Cb (YCbCr)' },
|
||||
{ label: t('controlLayers.filter.adjust_image.cr'), value: 'Cr (YCbCr)' },
|
||||
],
|
||||
[t]
|
||||
);
|
||||
|
||||
const value = useMemo(() => options.filter((o) => o.value === config.channel)[0], [options, config.channel]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.adjust_image.channel')}</FormLabel>
|
||||
<Combobox value={value} options={options} onChange={handleChannelChange} isSearchable={false} />
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.adjust_image.value_setting')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={config.value}
|
||||
defaultValue={DEFAULTS.value}
|
||||
onChange={handleValueChange}
|
||||
min={0}
|
||||
max={2}
|
||||
step={0.0025}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={config.value}
|
||||
defaultValue={DEFAULTS.value}
|
||||
onChange={handleValueChange}
|
||||
min={0}
|
||||
max={255}
|
||||
step={0.0025}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl w="max-content">
|
||||
<FormLabel m={0}>{t('controlLayers.filter.adjust_image.scale_values')}</FormLabel>
|
||||
<Switch defaultChecked={DEFAULTS.scale_values} isChecked={config.scale_values} onChange={handleScaleChange} />
|
||||
</FormControl>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
FilterAdjustImage.displayName = 'FilterAdjustImage';
|
||||
@@ -0,0 +1,72 @@
|
||||
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
|
||||
import { Combobox, CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import type { BlurFilterConfig, BlurTypes } from 'features/controlLayers/store/filters';
|
||||
import { IMAGE_FILTERS, isBlurTypes } from 'features/controlLayers/store/filters';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import type { FilterComponentProps } from './types';
|
||||
|
||||
type Props = FilterComponentProps<BlurFilterConfig>;
|
||||
const DEFAULTS = IMAGE_FILTERS.img_blur.buildDefaults();
|
||||
|
||||
export const FilterBlur = memo(({ onChange, config }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const handleBlurTypeChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!isBlurTypes(v?.value)) {
|
||||
return;
|
||||
}
|
||||
onChange({ ...config, blur_type: v.value });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleRadiusChange = useCallback(
|
||||
(v: number) => {
|
||||
onChange({ ...config, radius: v });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const options: { label: string; value: BlurTypes }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlLayers.filter.img_blur.gaussian_type'), value: 'gaussian' },
|
||||
{ label: t('controlLayers.filter.img_blur.box_type'), value: 'box' },
|
||||
],
|
||||
[t]
|
||||
);
|
||||
|
||||
const value = useMemo(() => options.filter((o) => o.value === config.blur_type)[0], [options, config.blur_type]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_blur.blur_type')}</FormLabel>
|
||||
<Combobox value={value} options={options} onChange={handleBlurTypeChange} isSearchable={false} />
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_blur.blur_radius')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={config.radius}
|
||||
defaultValue={DEFAULTS.radius}
|
||||
onChange={handleRadiusChange}
|
||||
min={1}
|
||||
max={64}
|
||||
step={0.1}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={config.radius}
|
||||
defaultValue={DEFAULTS.radius}
|
||||
onChange={handleRadiusChange}
|
||||
min={1}
|
||||
max={4096}
|
||||
step={0.1}
|
||||
/>
|
||||
</FormControl>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
FilterBlur.displayName = 'FilterBlur';
|
||||
@@ -0,0 +1,111 @@
|
||||
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
|
||||
import { Combobox, CompositeNumberInput, CompositeSlider, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import type { NoiseFilterConfig, NoiseTypes } from 'features/controlLayers/store/filters';
|
||||
import { IMAGE_FILTERS, isNoiseTypes } from 'features/controlLayers/store/filters';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import type { FilterComponentProps } from './types';
|
||||
|
||||
type Props = FilterComponentProps<NoiseFilterConfig>;
|
||||
const DEFAULTS = IMAGE_FILTERS.img_noise.buildDefaults();
|
||||
|
||||
export const FilterNoise = memo(({ onChange, config }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const handleNoiseTypeChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!isNoiseTypes(v?.value)) {
|
||||
return;
|
||||
}
|
||||
onChange({ ...config, noise_type: v.value });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleAmountChange = useCallback(
|
||||
(v: number) => {
|
||||
onChange({ ...config, amount: v });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleColorChange = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
onChange({ ...config, noise_color: e.target.checked });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const handleSizeChange = useCallback(
|
||||
(v: number) => {
|
||||
onChange({ ...config, size: v });
|
||||
},
|
||||
[config, onChange]
|
||||
);
|
||||
|
||||
const options: { label: string; value: NoiseTypes }[] = useMemo(
|
||||
() => [
|
||||
{ label: t('controlLayers.filter.img_noise.gaussian_type'), value: 'gaussian' },
|
||||
{ label: t('controlLayers.filter.img_noise.salt_and_pepper_type'), value: 'salt_and_pepper' },
|
||||
],
|
||||
[t]
|
||||
);
|
||||
|
||||
const value = useMemo(() => options.filter((o) => o.value === config.noise_type)[0], [options, config.noise_type]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_noise.noise_type')}</FormLabel>
|
||||
<Combobox value={value} options={options} onChange={handleNoiseTypeChange} isSearchable={false} />
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_noise.noise_amount')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={config.amount}
|
||||
defaultValue={DEFAULTS.amount}
|
||||
onChange={handleAmountChange}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={config.amount}
|
||||
defaultValue={DEFAULTS.amount}
|
||||
onChange={handleAmountChange}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_noise.size')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={config.size}
|
||||
defaultValue={DEFAULTS.size}
|
||||
onChange={handleSizeChange}
|
||||
min={1}
|
||||
max={16}
|
||||
step={1}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={config.size}
|
||||
defaultValue={DEFAULTS.size}
|
||||
onChange={handleSizeChange}
|
||||
min={1}
|
||||
max={256}
|
||||
step={1}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl w="max-content">
|
||||
<FormLabel m={0}>{t('controlLayers.filter.img_noise.noise_color')}</FormLabel>
|
||||
<Switch defaultChecked={DEFAULTS.noise_color} isChecked={config.noise_color} onChange={handleColorChange} />
|
||||
</FormControl>
|
||||
</>
|
||||
);
|
||||
});
|
||||
|
||||
FilterNoise.displayName = 'Filternoise';
|
||||
@@ -1,4 +1,6 @@
|
||||
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
|
||||
import { FilterAdjustImage } from 'features/controlLayers/components/Filters/FilterAdjustImage';
|
||||
import { FilterBlur } from 'features/controlLayers/components/Filters/FilterBlur';
|
||||
import { FilterCannyEdgeDetection } from 'features/controlLayers/components/Filters/FilterCannyEdgeDetection';
|
||||
import { FilterColorMap } from 'features/controlLayers/components/Filters/FilterColorMap';
|
||||
import { FilterContentShuffle } from 'features/controlLayers/components/Filters/FilterContentShuffle';
|
||||
@@ -8,6 +10,7 @@ import { FilterHEDEdgeDetection } from 'features/controlLayers/components/Filter
|
||||
import { FilterLineartEdgeDetection } from 'features/controlLayers/components/Filters/FilterLineartEdgeDetection';
|
||||
import { FilterMediaPipeFaceDetection } from 'features/controlLayers/components/Filters/FilterMediaPipeFaceDetection';
|
||||
import { FilterMLSDDetection } from 'features/controlLayers/components/Filters/FilterMLSDDetection';
|
||||
import { FilterNoise } from 'features/controlLayers/components/Filters/FilterNoise';
|
||||
import { FilterPiDiNetEdgeDetection } from 'features/controlLayers/components/Filters/FilterPiDiNetEdgeDetection';
|
||||
import { FilterSpandrel } from 'features/controlLayers/components/Filters/FilterSpandrel';
|
||||
import type { FilterConfig } from 'features/controlLayers/store/filters';
|
||||
@@ -19,6 +22,10 @@ type Props = { filterConfig: FilterConfig; onChange: (filterConfig: FilterConfig
|
||||
export const FilterSettings = memo(({ filterConfig, onChange }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
if (filterConfig.type === 'adjust_image') {
|
||||
return <FilterAdjustImage config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
|
||||
if (filterConfig.type === 'canny_edge_detection') {
|
||||
return <FilterCannyEdgeDetection config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
@@ -59,6 +66,14 @@ export const FilterSettings = memo(({ filterConfig, onChange }: Props) => {
|
||||
return <FilterPiDiNetEdgeDetection config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
|
||||
if (filterConfig.type === 'img_blur') {
|
||||
return <FilterBlur config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
|
||||
if (filterConfig.type === 'img_noise') {
|
||||
return <FilterNoise config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
|
||||
if (filterConfig.type === 'spandrel_filter') {
|
||||
return <FilterSpandrel config={filterConfig} onChange={onChange} />;
|
||||
}
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useEntityAdapterSafe } from 'features/controlLayers/contexts/EntityAdapterContext';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { useCopyLayerToClipboard } from 'features/controlLayers/hooks/copyHooks';
|
||||
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
|
||||
import { useCopyLayerToClipboard } from 'features/controlLayers/hooks/useCopyLayerToClipboard';
|
||||
import { useEntityIsEmpty } from 'features/controlLayers/hooks/useEntityIsEmpty';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@@ -0,0 +1,91 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { useClipboard } from 'common/hooks/useClipboard';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
|
||||
import type { CanvasEntityAdapterInpaintMask } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterInpaintMask';
|
||||
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
|
||||
import type { CanvasEntityAdapterRegionalGuidance } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRegionalGuidance';
|
||||
import { canvasToBlob } from 'features/controlLayers/konva/util';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { startCase } from 'lodash-es';
|
||||
import { useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { serializeError } from 'serialize-error';
|
||||
|
||||
const log = logger('canvas');
|
||||
|
||||
export const useCopyLayerToClipboard = () => {
|
||||
const { t } = useTranslation();
|
||||
const clipboard = useClipboard();
|
||||
const copyLayerToCipboard = useCallback(
|
||||
async (
|
||||
adapter:
|
||||
| CanvasEntityAdapterRasterLayer
|
||||
| CanvasEntityAdapterControlLayer
|
||||
| CanvasEntityAdapterInpaintMask
|
||||
| CanvasEntityAdapterRegionalGuidance
|
||||
| null
|
||||
) => {
|
||||
if (!adapter) {
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
const canvas = adapter.getCanvas();
|
||||
const blob = await canvasToBlob(canvas);
|
||||
clipboard.writeImage(blob, () => {
|
||||
log.trace('Layer copied to clipboard');
|
||||
toast({
|
||||
status: 'info',
|
||||
title: t('toast.layerCopiedToClipboard'),
|
||||
});
|
||||
});
|
||||
} catch (error) {
|
||||
log.error({ error: serializeError(error) }, 'Problem copying layer to clipboard');
|
||||
toast({
|
||||
status: 'error',
|
||||
title: t('toast.problemCopyingLayer'),
|
||||
});
|
||||
}
|
||||
},
|
||||
[clipboard, t]
|
||||
);
|
||||
|
||||
return copyLayerToCipboard;
|
||||
};
|
||||
|
||||
export const useCopyCanvasToClipboard = (region: 'canvas' | 'bbox') => {
|
||||
const { t } = useTranslation();
|
||||
const clipboard = useClipboard();
|
||||
const canvasManager = useCanvasManager();
|
||||
const copyCanvasToClipboard = useCallback(async () => {
|
||||
const rect =
|
||||
region === 'bbox'
|
||||
? canvasManager.stateApi.getBbox().rect
|
||||
: canvasManager.compositor.getVisibleRectOfType('raster_layer');
|
||||
|
||||
if (rect.width === 0 || rect.height === 0) {
|
||||
toast({
|
||||
title: t('controlLayers.copyRegionError', { region: startCase(region) }),
|
||||
description: t('controlLayers.regionIsEmpty'),
|
||||
status: 'warning',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
const rasterAdapters = canvasManager.compositor.getVisibleAdaptersOfType('raster_layer');
|
||||
const canvasElement = canvasManager.compositor.getCompositeCanvas(rasterAdapters, rect);
|
||||
const blob = await canvasToBlob(canvasElement);
|
||||
clipboard.writeImage(blob, () => {
|
||||
log.trace('Region copied to clipboard');
|
||||
toast({ title: t('controlLayers.regionCopiedToClipboard', { region: startCase(region) }) });
|
||||
});
|
||||
} catch (error) {
|
||||
log.error({ error: serializeError(error) }, 'Failed to save canvas to gallery');
|
||||
toast({ title: t('controlLayers.copyRegionError', { region: startCase(region) }), status: 'error' });
|
||||
}
|
||||
}, [canvasManager.compositor, canvasManager.stateApi, clipboard, region, t]);
|
||||
|
||||
return copyCanvasToClipboard;
|
||||
};
|
||||
@@ -1,50 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
|
||||
import type { CanvasEntityAdapterInpaintMask } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterInpaintMask';
|
||||
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
|
||||
import type { CanvasEntityAdapterRegionalGuidance } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRegionalGuidance';
|
||||
import { canvasToBlob } from 'features/controlLayers/konva/util';
|
||||
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { serializeError } from 'serialize-error';
|
||||
|
||||
const log = logger('canvas');
|
||||
|
||||
export const useCopyLayerToClipboard = () => {
|
||||
const { t } = useTranslation();
|
||||
const copyLayerToCipboard = useCallback(
|
||||
async (
|
||||
adapter:
|
||||
| CanvasEntityAdapterRasterLayer
|
||||
| CanvasEntityAdapterControlLayer
|
||||
| CanvasEntityAdapterInpaintMask
|
||||
| CanvasEntityAdapterRegionalGuidance
|
||||
| null
|
||||
) => {
|
||||
if (!adapter) {
|
||||
return;
|
||||
}
|
||||
try {
|
||||
const canvas = adapter.getCanvas();
|
||||
const blob = await canvasToBlob(canvas);
|
||||
copyBlobToClipboard(blob);
|
||||
log.trace('Layer copied to clipboard');
|
||||
toast({
|
||||
status: 'info',
|
||||
title: t('toast.layerCopiedToClipboard'),
|
||||
});
|
||||
} catch (error) {
|
||||
log.error({ error: serializeError(error) }, 'Problem copying layer to clipboard');
|
||||
toast({
|
||||
status: 'error',
|
||||
title: t('toast.problemCopyingLayer'),
|
||||
});
|
||||
}
|
||||
},
|
||||
[t]
|
||||
);
|
||||
|
||||
return copyLayerToCipboard;
|
||||
};
|
||||
@@ -68,7 +68,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
|
||||
/**
|
||||
* The config for the filter.
|
||||
*/
|
||||
$filterConfig = atom<FilterConfig>(IMAGE_FILTERS.canny_edge_detection.buildDefaults());
|
||||
$filterConfig = atom<FilterConfig>(IMAGE_FILTERS.adjust_image.buildDefaults());
|
||||
|
||||
/**
|
||||
* The initial filter config, used to reset the filter config.
|
||||
@@ -212,7 +212,7 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
|
||||
return filter.buildDefaults();
|
||||
} else {
|
||||
// Otherwise, used the default filter
|
||||
return IMAGE_FILTERS.canny_edge_detection.buildDefaults();
|
||||
return IMAGE_FILTERS.adjust_image.buildDefaults();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -297,10 +297,9 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
|
||||
const imageState = imageDTOToImageObject(filterResult.value);
|
||||
this.$imageState.set(imageState);
|
||||
|
||||
// Destroy any existing masked image and create a new one
|
||||
if (this.imageModule) {
|
||||
this.imageModule.destroy();
|
||||
}
|
||||
// Stash the existing image module - we will destroy it after the new image is rendered to prevent a flash
|
||||
// of an empty layer
|
||||
const oldImageModule = this.imageModule;
|
||||
|
||||
this.imageModule = new CanvasObjectImage(imageState, this);
|
||||
|
||||
@@ -309,6 +308,16 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
|
||||
|
||||
this.konva.group.add(this.imageModule.konva.group);
|
||||
|
||||
// The filtered image have some transparency, so we need to hide the objects of the parent entity to prevent the
|
||||
// two images from blending. We will show the objects again in the teardown method, which is always called after
|
||||
// the filter finishes (applied or canceled).
|
||||
this.parent.renderer.hideObjects();
|
||||
|
||||
if (oldImageModule) {
|
||||
// Destroy the old image module now that the new one is rendered
|
||||
oldImageModule.destroy();
|
||||
}
|
||||
|
||||
// The porcessing is complete, set can set the last processed hash and isProcessing to false
|
||||
this.$lastProcessedHash.set(hash);
|
||||
|
||||
@@ -424,6 +433,8 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
|
||||
|
||||
teardown = () => {
|
||||
this.unsubscribe();
|
||||
// Re-enable the objects of the parent entity
|
||||
this.parent.renderer.showObjects();
|
||||
this.konva.group.remove();
|
||||
// The reset must be done _after_ unsubscribing from listeners, in case the listeners would otherwise react to
|
||||
// the reset. For example, if auto-processing is enabled and we reset the state, it may trigger processing.
|
||||
|
||||
@@ -185,6 +185,14 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
|
||||
return didRender;
|
||||
};
|
||||
|
||||
hideObjects = () => {
|
||||
this.konva.objectGroup.hide();
|
||||
};
|
||||
|
||||
showObjects = () => {
|
||||
this.konva.objectGroup.show();
|
||||
};
|
||||
|
||||
adoptObjectRenderer = (renderer: AnyObjectRenderer) => {
|
||||
this.renderers.set(renderer.id, renderer);
|
||||
renderer.konva.group.moveTo(this.konva.objectGroup);
|
||||
|
||||
@@ -10,6 +10,7 @@ import {
|
||||
getKonvaNodeDebugAttrs,
|
||||
getPrefixedId,
|
||||
offsetCoord,
|
||||
roundRect,
|
||||
} from 'features/controlLayers/konva/util';
|
||||
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
|
||||
import type { Coordinate, Rect, RectWithRotation } from 'features/controlLayers/store/types';
|
||||
@@ -773,7 +774,7 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
|
||||
const rect = this.getRelativeRect();
|
||||
const rasterizeResult = await withResultAsync(() =>
|
||||
this.parent.renderer.rasterize({
|
||||
rect,
|
||||
rect: roundRect(rect),
|
||||
replaceObjects: true,
|
||||
ignoreCache: true,
|
||||
attrs: { opacity: 1, filters: [] },
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { Mutex } from 'async-mutex';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { withResultAsync } from 'common/util/result';
|
||||
import type { CanvasEntityBufferObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityBufferObjectRenderer';
|
||||
import type { CanvasEntityFilterer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityFilterer';
|
||||
import type { CanvasEntityObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityObjectRenderer';
|
||||
@@ -7,7 +8,7 @@ import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
|
||||
import type { CanvasSegmentAnythingModule } from 'features/controlLayers/konva/CanvasSegmentAnythingModule';
|
||||
import type { CanvasStagingAreaModule } from 'features/controlLayers/konva/CanvasStagingAreaModule';
|
||||
import { loadImage } from 'features/controlLayers/konva/util';
|
||||
import { getKonvaNodeDebugAttrs, loadImage } from 'features/controlLayers/konva/util';
|
||||
import type { CanvasImageState } from 'features/controlLayers/store/types';
|
||||
import { t } from 'i18next';
|
||||
import Konva from 'konva';
|
||||
@@ -94,36 +95,41 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
}
|
||||
|
||||
updateImageSource = async (imageName: string) => {
|
||||
try {
|
||||
this.log.trace({ imageName }, 'Updating image source');
|
||||
this.log.trace({ imageName }, 'Updating image source');
|
||||
|
||||
this.isLoading = true;
|
||||
this.konva.group.visible(true);
|
||||
this.isLoading = true;
|
||||
this.konva.group.visible(true);
|
||||
|
||||
if (!this.konva.image) {
|
||||
this.konva.placeholder.group.visible(false);
|
||||
this.konva.placeholder.text.text(t('common.loadingImage', 'Loading Image'));
|
||||
}
|
||||
|
||||
const imageDTO = await getImageDTOSafe(imageName);
|
||||
if (imageDTO === null) {
|
||||
this.onFailedToLoadImage();
|
||||
return;
|
||||
}
|
||||
|
||||
this.imageElement = await loadImage(imageDTO.image_url);
|
||||
await this.updateImageElement();
|
||||
} catch {
|
||||
this.onFailedToLoadImage();
|
||||
if (!this.konva.image) {
|
||||
this.konva.placeholder.group.visible(false);
|
||||
this.konva.placeholder.text.text(t('common.loadingImage', 'Loading Image'));
|
||||
}
|
||||
|
||||
const imageDTO = await getImageDTOSafe(imageName);
|
||||
if (imageDTO === null) {
|
||||
// ImageDTO not found (or network error)
|
||||
this.onFailedToLoadImage(t('controlLayers.unableToFindImage', 'Unable to find image'));
|
||||
return;
|
||||
}
|
||||
|
||||
const imageElementResult = await withResultAsync(() => loadImage(imageDTO.image_url));
|
||||
if (imageElementResult.isErr()) {
|
||||
// Image loading failed (e.g. the URL to the "physical" image is invalid)
|
||||
this.onFailedToLoadImage(t('controlLayers.unableToLoadImage', 'Unable to load image'));
|
||||
return;
|
||||
}
|
||||
|
||||
this.imageElement = imageElementResult.value;
|
||||
|
||||
await this.updateImageElement();
|
||||
};
|
||||
|
||||
onFailedToLoadImage = () => {
|
||||
this.log({ image: this.state.image }, 'Failed to load image');
|
||||
onFailedToLoadImage = (message: string) => {
|
||||
this.log({ image: this.state.image }, message);
|
||||
this.konva.image?.visible(false);
|
||||
this.isLoading = false;
|
||||
this.isError = true;
|
||||
this.konva.placeholder.text.text(t('common.imageFailedToLoad', 'Image Failed to Load'));
|
||||
this.konva.placeholder.text.text(message);
|
||||
this.konva.placeholder.group.visible(true);
|
||||
};
|
||||
|
||||
@@ -140,6 +146,7 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
image: this.imageElement,
|
||||
width,
|
||||
height,
|
||||
visible: true,
|
||||
});
|
||||
} else {
|
||||
this.log.trace('Creating new Konva image');
|
||||
@@ -202,6 +209,10 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
isLoading: this.isLoading,
|
||||
isError: this.isError,
|
||||
state: deepClone(this.state),
|
||||
konva: {
|
||||
group: getKonvaNodeDebugAttrs(this.konva.group),
|
||||
image: this.konva.image ? getKonvaNodeDebugAttrs(this.konva.image) : null,
|
||||
},
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
@@ -75,7 +75,7 @@ export class CanvasStagingAreaModule extends CanvasModuleBase {
|
||||
this.log.trace('Rendering staging area');
|
||||
const stagingArea = this.manager.stateApi.runSelector(selectCanvasStagingAreaSlice);
|
||||
|
||||
const { x, y, width, height } = this.manager.stateApi.getBbox().rect;
|
||||
const { x, y } = this.manager.stateApi.getBbox().rect;
|
||||
const shouldShowStagedImage = this.$shouldShowStagedImage.get();
|
||||
|
||||
this.selectedImage = stagingArea.stagedImages[stagingArea.selectedStagedImageIndex] ?? null;
|
||||
@@ -83,27 +83,51 @@ export class CanvasStagingAreaModule extends CanvasModuleBase {
|
||||
|
||||
if (this.selectedImage) {
|
||||
const { imageDTO } = this.selectedImage;
|
||||
const image = imageDTOToImageWithDims(imageDTO);
|
||||
|
||||
/**
|
||||
* When the final output image of a generation is received, we should clear that generation's last progress image.
|
||||
*
|
||||
* It's possible that we have already rendered the progress image from the next generation before the output image
|
||||
* from the previous is fully loaded/rendered. This race condition results in a flicker:
|
||||
* - LAST GENERATION: Render the final progress image
|
||||
* - LAST GENERATION: Start loading the final output image...
|
||||
* - NEXT GENERATION: Render the first progress image
|
||||
* - LAST GENERATION: ...Finish loading the final output image & render it, clearing the progress image <-- Flicker!
|
||||
* - NEXT GENERATION: Render the next progress image
|
||||
*
|
||||
* We can detect the race condition by stashing the session ID of the last progress image when we begin loading
|
||||
* that session's output image. After we render it, if the progress image's session ID is the same as the one we
|
||||
* stashed, we know that we have not yet gotten that next generation's first progress image. We can clear the
|
||||
* progress image without causing a flicker.
|
||||
*/
|
||||
const lastProgressEventSessionId = this.manager.progressImage.$lastProgressEvent.get()?.session_id;
|
||||
const hideProgressIfSameSession = () => {
|
||||
const currentProgressEventSessionId = this.manager.progressImage.$lastProgressEvent.get()?.session_id;
|
||||
if (lastProgressEventSessionId === currentProgressEventSessionId) {
|
||||
this.manager.progressImage.$lastProgressEvent.set(null);
|
||||
}
|
||||
};
|
||||
|
||||
if (!this.image) {
|
||||
const { image_name } = imageDTO;
|
||||
this.image = new CanvasObjectImage(
|
||||
{
|
||||
id: 'staging-area-image',
|
||||
type: 'image',
|
||||
image: {
|
||||
image_name: image_name,
|
||||
width,
|
||||
height,
|
||||
},
|
||||
image,
|
||||
},
|
||||
this
|
||||
);
|
||||
await this.image.update(this.image.state, true);
|
||||
this.konva.group.add(this.image.konva.group);
|
||||
}
|
||||
|
||||
if (!this.image.isLoading && !this.image.isError) {
|
||||
await this.image.update({ ...this.image.state, image: imageDTOToImageWithDims(imageDTO) }, true);
|
||||
this.manager.progressImage.$lastProgressEvent.set(null);
|
||||
hideProgressIfSameSession();
|
||||
} else if (this.image.isLoading) {
|
||||
// noop - just wait for the image to load
|
||||
} else if (this.image.state.image.image_name !== image.image_name) {
|
||||
await this.image.update({ ...this.image.state, image }, true);
|
||||
hideProgressIfSameSession();
|
||||
} else if (this.image.isError) {
|
||||
hideProgressIfSameSession();
|
||||
}
|
||||
this.image.konva.group.visible(shouldShowStagedImage);
|
||||
} else {
|
||||
@@ -136,6 +160,7 @@ export class CanvasStagingAreaModule extends CanvasModuleBase {
|
||||
selectedImage: this.selectedImage,
|
||||
$shouldShowStagedImage: this.$shouldShowStagedImage.get(),
|
||||
$isStaging: this.$isStaging.get(),
|
||||
image: this.image?.repr() ?? null,
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
@@ -740,3 +740,12 @@ export const getColorAtCoordinate = (stage: Konva.Stage, coord: Coordinate): Rgb
|
||||
|
||||
return { r, g, b };
|
||||
};
|
||||
|
||||
export const roundRect = (rect: Rect): Rect => {
|
||||
return {
|
||||
x: Math.round(rect.x),
|
||||
y: Math.round(rect.y),
|
||||
width: Math.round(rect.width),
|
||||
height: Math.round(rect.height),
|
||||
};
|
||||
};
|
||||
|
||||
@@ -6,6 +6,35 @@ import type { ControlLoRAModelConfig, ControlNetModelConfig, T2IAdapterModelConf
|
||||
import { assert } from 'tsafe';
|
||||
import { z } from 'zod';
|
||||
|
||||
const zAjustImageChannels = z.enum([
|
||||
'Red (RGBA)',
|
||||
'Green (RGBA)',
|
||||
'Blue (RGBA)',
|
||||
'Alpha (RGBA)',
|
||||
'Cyan (CMYK)',
|
||||
'Magenta (CMYK)',
|
||||
'Yellow (CMYK)',
|
||||
'Black (CMYK)',
|
||||
'Hue (HSV)',
|
||||
'Saturation (HSV)',
|
||||
'Value (HSV)',
|
||||
'Luminosity (LAB)',
|
||||
'A (LAB)',
|
||||
'B (LAB)',
|
||||
'Y (YCbCr)',
|
||||
'Cb (YCbCr)',
|
||||
'Cr (YCbCr)',
|
||||
]);
|
||||
export type AjustImageChannels = z.infer<typeof zAjustImageChannels>;
|
||||
export const isAjustImageChannels = (v: unknown): v is AjustImageChannels => zAjustImageChannels.safeParse(v).success;
|
||||
const zAdjustImageFilterConfig = z.object({
|
||||
type: z.literal('adjust_image'),
|
||||
channel: zAjustImageChannels,
|
||||
value: z.number(),
|
||||
scale_values: z.boolean().optional(),
|
||||
});
|
||||
export type AdjustImageFilterConfig = z.infer<typeof zAdjustImageFilterConfig>;
|
||||
|
||||
const zCannyEdgeDetectionFilterConfig = z.object({
|
||||
type: z.literal('canny_edge_detection'),
|
||||
low_threshold: z.number().int().gte(0).lte(255),
|
||||
@@ -95,7 +124,30 @@ const zSpandrelFilterConfig = z.object({
|
||||
});
|
||||
export type SpandrelFilterConfig = z.infer<typeof zSpandrelFilterConfig>;
|
||||
|
||||
const zBlurTypes = z.enum(['gaussian', 'box']);
|
||||
export type BlurTypes = z.infer<typeof zBlurTypes>;
|
||||
export const isBlurTypes = (v: unknown): v is BlurTypes => zBlurTypes.safeParse(v).success;
|
||||
const zBlurFilterConfig = z.object({
|
||||
type: z.literal('img_blur'),
|
||||
blur_type: zBlurTypes,
|
||||
radius: z.number().gte(0),
|
||||
});
|
||||
export type BlurFilterConfig = z.infer<typeof zBlurFilterConfig>;
|
||||
|
||||
const zNoiseTypes = z.enum(['gaussian', 'salt_and_pepper']);
|
||||
export type NoiseTypes = z.infer<typeof zNoiseTypes>;
|
||||
export const isNoiseTypes = (v: unknown): v is NoiseTypes => zNoiseTypes.safeParse(v).success;
|
||||
const zNoiseFilterConfig = z.object({
|
||||
type: z.literal('img_noise'),
|
||||
noise_type: zNoiseTypes,
|
||||
amount: z.number().gte(0).lte(1),
|
||||
noise_color: z.boolean(),
|
||||
size: z.number().int().gte(1),
|
||||
});
|
||||
export type NoiseFilterConfig = z.infer<typeof zNoiseFilterConfig>;
|
||||
|
||||
const zFilterConfig = z.discriminatedUnion('type', [
|
||||
zAdjustImageFilterConfig,
|
||||
zCannyEdgeDetectionFilterConfig,
|
||||
zColorMapFilterConfig,
|
||||
zContentShuffleFilterConfig,
|
||||
@@ -109,10 +161,13 @@ const zFilterConfig = z.discriminatedUnion('type', [
|
||||
zPiDiNetEdgeDetectionFilterConfig,
|
||||
zDWOpenposeDetectionFilterConfig,
|
||||
zSpandrelFilterConfig,
|
||||
zBlurFilterConfig,
|
||||
zNoiseFilterConfig,
|
||||
]);
|
||||
export type FilterConfig = z.infer<typeof zFilterConfig>;
|
||||
|
||||
const zFilterType = z.enum([
|
||||
'adjust_image',
|
||||
'canny_edge_detection',
|
||||
'color_map',
|
||||
'content_shuffle',
|
||||
@@ -126,6 +181,8 @@ const zFilterType = z.enum([
|
||||
'pidi_edge_detection',
|
||||
'dw_openpose_detection',
|
||||
'spandrel_filter',
|
||||
'img_blur',
|
||||
'img_noise',
|
||||
]);
|
||||
export type FilterType = z.infer<typeof zFilterType>;
|
||||
export const isFilterType = (v: unknown): v is FilterType => zFilterType.safeParse(v).success;
|
||||
@@ -141,6 +198,42 @@ type ImageFilterData<T extends FilterConfig['type']> = {
|
||||
};
|
||||
|
||||
export const IMAGE_FILTERS: { [key in FilterConfig['type']]: ImageFilterData<key> } = {
|
||||
adjust_image: {
|
||||
type: 'adjust_image',
|
||||
buildDefaults: () => ({
|
||||
type: 'adjust_image',
|
||||
channel: 'Luminosity (LAB)',
|
||||
value: 1,
|
||||
scale_values: false,
|
||||
}),
|
||||
buildGraph: ({ image_name }, { channel, value, scale_values }) => {
|
||||
const graph = new Graph(getPrefixedId('adjust_image_filter'));
|
||||
let node;
|
||||
if (scale_values) {
|
||||
node = graph.addNode({
|
||||
id: getPrefixedId('img_channel_multiply'),
|
||||
type: 'img_channel_multiply',
|
||||
image: { image_name },
|
||||
channel,
|
||||
scale: value,
|
||||
invert_channel: false,
|
||||
});
|
||||
} else {
|
||||
value = Math.min(value, 2); // Limit value to a maximum of 2
|
||||
node = graph.addNode({
|
||||
id: getPrefixedId('img_channel_offset'),
|
||||
type: 'img_channel_offset',
|
||||
image: { image_name },
|
||||
channel,
|
||||
offset: Math.round(255 * (value - 1)), // value is in range [0, 2], offset is in range [-255, 255]
|
||||
});
|
||||
}
|
||||
return {
|
||||
graph,
|
||||
outputNodeId: node.id,
|
||||
};
|
||||
},
|
||||
},
|
||||
canny_edge_detection: {
|
||||
type: 'canny_edge_detection',
|
||||
buildDefaults: () => ({
|
||||
@@ -429,6 +522,62 @@ export const IMAGE_FILTERS: { [key in FilterConfig['type']]: ImageFilterData<key
|
||||
return true;
|
||||
},
|
||||
},
|
||||
img_blur: {
|
||||
type: 'img_blur',
|
||||
buildDefaults: () => ({
|
||||
type: 'img_blur',
|
||||
blur_type: 'gaussian',
|
||||
radius: 8,
|
||||
}),
|
||||
buildGraph: ({ image_name }, { blur_type, radius }) => {
|
||||
const graph = new Graph(getPrefixedId('img_blur'));
|
||||
const node = graph.addNode({
|
||||
id: getPrefixedId('img_blur'),
|
||||
type: 'img_blur',
|
||||
image: { image_name },
|
||||
blur_type: blur_type,
|
||||
radius: radius,
|
||||
});
|
||||
return {
|
||||
graph,
|
||||
outputNodeId: node.id,
|
||||
};
|
||||
},
|
||||
},
|
||||
img_noise: {
|
||||
type: 'img_noise',
|
||||
buildDefaults: () => ({
|
||||
type: 'img_noise',
|
||||
noise_type: 'gaussian',
|
||||
amount: 0.3,
|
||||
noise_color: true,
|
||||
size: 1,
|
||||
}),
|
||||
buildGraph: ({ image_name }, { noise_type, amount, noise_color, size }) => {
|
||||
const graph = new Graph(getPrefixedId('img_noise'));
|
||||
const node = graph.addNode({
|
||||
id: getPrefixedId('img_noise'),
|
||||
type: 'img_noise',
|
||||
image: { image_name },
|
||||
noise_type: noise_type,
|
||||
amount: amount,
|
||||
noise_color: noise_color,
|
||||
size: size,
|
||||
});
|
||||
const rand = graph.addNode({
|
||||
id: getPrefixedId('rand_int'),
|
||||
use_cache: false,
|
||||
type: 'rand_int',
|
||||
low: 0,
|
||||
high: 2147483647,
|
||||
});
|
||||
graph.addEdge(rand, 'value', node, 'seed');
|
||||
return {
|
||||
graph,
|
||||
outputNodeId: node.id,
|
||||
};
|
||||
},
|
||||
},
|
||||
} as const;
|
||||
|
||||
/**
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import type {
|
||||
BlurFilterConfig,
|
||||
CannyEdgeDetectionFilterConfig,
|
||||
ColorMapFilterConfig,
|
||||
ContentShuffleFilterConfig,
|
||||
@@ -12,6 +13,7 @@ import type {
|
||||
LineartEdgeDetectionFilterConfig,
|
||||
MediaPipeFaceDetectionFilterConfig,
|
||||
MLSDDetectionFilterConfig,
|
||||
NoiseFilterConfig,
|
||||
NormalMapFilterConfig,
|
||||
PiDiNetEdgeDetectionFilterConfig,
|
||||
} from 'features/controlLayers/store/filters';
|
||||
@@ -54,6 +56,7 @@ describe('Control Adapter Types', () => {
|
||||
});
|
||||
test('Processor Configs', () => {
|
||||
// Types derived from OpenAPI
|
||||
type _BlurFilterConfig = Required<Pick<Invocation<'img_blur'>, 'type' | 'radius' | 'blur_type'>>;
|
||||
type _CannyEdgeDetectionFilterConfig = Required<
|
||||
Pick<Invocation<'canny_edge_detection'>, 'type' | 'low_threshold' | 'high_threshold'>
|
||||
>;
|
||||
@@ -71,6 +74,9 @@ describe('Control Adapter Types', () => {
|
||||
type _MLSDDetectionFilterConfig = Required<
|
||||
Pick<Invocation<'mlsd_detection'>, 'type' | 'score_threshold' | 'distance_threshold'>
|
||||
>;
|
||||
type _NoiseFilterConfig = Required<
|
||||
Pick<Invocation<'img_noise'>, 'type' | 'noise_type' | 'amount' | 'noise_color' | 'size'>
|
||||
>;
|
||||
type _NormalMapFilterConfig = Required<Pick<Invocation<'normal_map'>, 'type'>>;
|
||||
type _DWOpenposeDetectionFilterConfig = Required<
|
||||
Pick<Invocation<'dw_openpose_detection'>, 'type' | 'draw_body' | 'draw_face' | 'draw_hands'>
|
||||
@@ -81,6 +87,7 @@ describe('Control Adapter Types', () => {
|
||||
|
||||
// The processor configs are manually modeled zod schemas. This test ensures that the inferred types are correct.
|
||||
// The types prefixed with `_` are types generated from OpenAPI, while the types without the prefix are manually modeled.
|
||||
assert<Equals<_BlurFilterConfig, BlurFilterConfig>>();
|
||||
assert<Equals<_CannyEdgeDetectionFilterConfig, CannyEdgeDetectionFilterConfig>>();
|
||||
assert<Equals<_ColorMapFilterConfig, ColorMapFilterConfig>>();
|
||||
assert<Equals<_ContentShuffleFilterConfig, ContentShuffleFilterConfig>>();
|
||||
@@ -90,6 +97,7 @@ describe('Control Adapter Types', () => {
|
||||
assert<Equals<_LineartEdgeDetectionFilterConfig, LineartEdgeDetectionFilterConfig>>();
|
||||
assert<Equals<_MediaPipeFaceDetectionFilterConfig, MediaPipeFaceDetectionFilterConfig>>();
|
||||
assert<Equals<_MLSDDetectionFilterConfig, MLSDDetectionFilterConfig>>();
|
||||
assert<Equals<_NoiseFilterConfig, NoiseFilterConfig>>();
|
||||
assert<Equals<_NormalMapFilterConfig, NormalMapFilterConfig>>();
|
||||
assert<Equals<_DWOpenposeDetectionFilterConfig, DWOpenposeDetectionFilterConfig>>();
|
||||
assert<Equals<_PiDiNetEdgeDetectionFilterConfig, PiDiNetEdgeDetectionFilterConfig>>();
|
||||
|
||||
@@ -4,14 +4,18 @@ import { containsFiles, getFiles } from '@atlaskit/pragmatic-drag-and-drop/exter
|
||||
import { preventUnhandled } from '@atlaskit/pragmatic-drag-and-drop/prevent-unhandled';
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Box, Flex, Heading } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { getStore } from 'app/store/nanostores/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { setFileToPaste } from 'features/controlLayers/components/CanvasPasteModal';
|
||||
import { DndDropOverlay } from 'features/dnd/DndDropOverlay';
|
||||
import type { DndTargetState } from 'features/dnd/types';
|
||||
import { $imageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
|
||||
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
|
||||
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { memo, useCallback, useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useCallback, useEffect, useRef, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { uploadImages } from 'services/api/endpoints/images';
|
||||
import { useBoardName } from 'services/api/hooks/useBoardName';
|
||||
@@ -71,12 +75,13 @@ export const FullscreenDropzone = memo(() => {
|
||||
const ref = useRef<HTMLDivElement>(null);
|
||||
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
|
||||
const [dndState, setDndState] = useState<DndTargetState>('idle');
|
||||
|
||||
const uploadFilesSchema = useMemo(() => getFilesSchema(maxImageUploadCount), [maxImageUploadCount]);
|
||||
const activeTab = useAppSelector(selectActiveTab);
|
||||
const isImageViewerOpen = useStore($imageViewer);
|
||||
|
||||
const validateAndUploadFiles = useCallback(
|
||||
(files: File[]) => {
|
||||
const { getState } = getStore();
|
||||
const uploadFilesSchema = getFilesSchema(maxImageUploadCount);
|
||||
const parseResult = uploadFilesSchema.safeParse(files);
|
||||
|
||||
if (!parseResult.success) {
|
||||
@@ -93,6 +98,15 @@ export const FullscreenDropzone = memo(() => {
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
// While on the canvas tab and when pasting a single image, canvas may want to create a new layer. Let it handle
|
||||
// the paste event.
|
||||
const [firstImageFile] = files;
|
||||
if (!isImageViewerOpen && activeTab === 'canvas' && files.length === 1 && firstImageFile) {
|
||||
setFileToPaste(firstImageFile);
|
||||
return;
|
||||
}
|
||||
|
||||
const autoAddBoardId = selectAutoAddBoardId(getState());
|
||||
|
||||
const uploadArgs: UploadImageArg[] = files.map((file, i) => ({
|
||||
@@ -105,7 +119,18 @@ export const FullscreenDropzone = memo(() => {
|
||||
|
||||
uploadImages(uploadArgs);
|
||||
},
|
||||
[maxImageUploadCount, t, uploadFilesSchema]
|
||||
[activeTab, isImageViewerOpen, maxImageUploadCount, t]
|
||||
);
|
||||
|
||||
const onPaste = useCallback(
|
||||
(e: ClipboardEvent) => {
|
||||
if (!e.clipboardData?.files) {
|
||||
return;
|
||||
}
|
||||
const files = Array.from(e.clipboardData.files);
|
||||
validateAndUploadFiles(files);
|
||||
},
|
||||
[validateAndUploadFiles]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
@@ -144,24 +169,12 @@ export const FullscreenDropzone = memo(() => {
|
||||
}, [validateAndUploadFiles]);
|
||||
|
||||
useEffect(() => {
|
||||
const controller = new AbortController();
|
||||
|
||||
document.addEventListener(
|
||||
'paste',
|
||||
(e) => {
|
||||
if (!e.clipboardData?.files) {
|
||||
return;
|
||||
}
|
||||
const files = Array.from(e.clipboardData.files);
|
||||
validateAndUploadFiles(files);
|
||||
},
|
||||
{ signal: controller.signal }
|
||||
);
|
||||
window.addEventListener('paste', onPaste);
|
||||
|
||||
return () => {
|
||||
controller.abort();
|
||||
window.removeEventListener('paste', onPaste);
|
||||
};
|
||||
}, [validateAndUploadFiles]);
|
||||
}, [onPaste]);
|
||||
|
||||
return (
|
||||
<Box ref={ref} data-dnd-state={dndState} sx={sx}>
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
import { getPrefixedId } from 'features/controlLayers/konva/util';
|
||||
import type {
|
||||
@@ -9,7 +10,6 @@ import { selectComparisonImages } from 'features/gallery/components/ImageViewer/
|
||||
import type { BoardId } from 'features/gallery/store/types';
|
||||
import {
|
||||
addImagesToBoard,
|
||||
addImagesToNodeImageFieldCollectionAction,
|
||||
createNewCanvasEntityFromImage,
|
||||
removeImagesFromBoard,
|
||||
replaceCanvasEntityObjectsWithImage,
|
||||
@@ -19,10 +19,14 @@ import {
|
||||
setRegionalGuidanceReferenceImage,
|
||||
setUpscaleInitialImage,
|
||||
} from 'features/imageActions/actions';
|
||||
import type { FieldIdentifier } from 'features/nodes/types/field';
|
||||
import { fieldImageCollectionValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectFieldInputInstance, selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
import { type FieldIdentifier, isImageFieldCollectionInputInstance } from 'features/nodes/types/field';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
import type { JsonObject } from 'type-fest';
|
||||
|
||||
const log = logger('dnd');
|
||||
|
||||
type RecordUnknown = Record<string | symbol, unknown>;
|
||||
|
||||
type DndData<
|
||||
@@ -268,15 +272,27 @@ export const addImagesToNodeImageFieldCollectionDndTarget: DndTarget<
|
||||
}
|
||||
|
||||
const { fieldIdentifier } = targetData.payload;
|
||||
const imageDTOs: ImageDTO[] = [];
|
||||
|
||||
if (singleImageDndSource.typeGuard(sourceData)) {
|
||||
imageDTOs.push(sourceData.payload.imageDTO);
|
||||
} else {
|
||||
imageDTOs.push(...sourceData.payload.imageDTOs);
|
||||
const fieldInputInstance = selectFieldInputInstance(
|
||||
selectNodesSlice(getState()),
|
||||
fieldIdentifier.nodeId,
|
||||
fieldIdentifier.fieldName
|
||||
);
|
||||
|
||||
if (!isImageFieldCollectionInputInstance(fieldInputInstance)) {
|
||||
log.warn({ fieldIdentifier }, 'Attempted to add images to a non-image field collection');
|
||||
return;
|
||||
}
|
||||
|
||||
addImagesToNodeImageFieldCollectionAction({ fieldIdentifier, imageDTOs, dispatch, getState });
|
||||
const newValue = fieldInputInstance.value ? [...fieldInputInstance.value] : [];
|
||||
|
||||
if (singleImageDndSource.typeGuard(sourceData)) {
|
||||
newValue.push({ image_name: sourceData.payload.imageDTO.image_name });
|
||||
} else {
|
||||
newValue.push(...sourceData.payload.imageDTOs.map(({ image_name }) => ({ image_name })));
|
||||
}
|
||||
|
||||
dispatch(fieldImageCollectionValueChanged({ ...fieldIdentifier, value: newValue }));
|
||||
},
|
||||
};
|
||||
//#endregion
|
||||
|
||||
@@ -8,16 +8,12 @@ import { PiCopyBold } from 'react-icons/pi';
|
||||
export const ImageMenuItemCopy = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const imageDTO = useImageDTOContext();
|
||||
const { isClipboardAPIAvailable, copyImageToClipboard } = useCopyImageToClipboard();
|
||||
const copyImageToClipboard = useCopyImageToClipboard();
|
||||
|
||||
const onClick = useCallback(() => {
|
||||
copyImageToClipboard(imageDTO.image_url);
|
||||
}, [copyImageToClipboard, imageDTO.image_url]);
|
||||
|
||||
if (!isClipboardAPIAvailable) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IconMenuItem
|
||||
icon={<PiCopyBold />}
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { Box, Flex, IconButton, Tooltip, useShiftModifier } from '@invoke-ai/ui-library';
|
||||
import { getOverlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
|
||||
import { useClipboard } from 'common/hooks/useClipboard';
|
||||
import { Formatter } from 'fracturedjsonjs';
|
||||
import { isString } from 'lodash-es';
|
||||
import { OverlayScrollbarsComponent } from 'overlayscrollbars-react';
|
||||
@@ -25,9 +26,10 @@ const DataViewer = (props: Props) => {
|
||||
const { label, data, fileName, withDownload = true, withCopy = true, extraCopyActions } = props;
|
||||
const dataString = useMemo(() => (isString(data) ? data : formatter.Serialize(data)) ?? '', [data]);
|
||||
const shift = useShiftModifier();
|
||||
const clipboard = useClipboard();
|
||||
const handleCopy = useCallback(() => {
|
||||
navigator.clipboard.writeText(dataString);
|
||||
}, [dataString]);
|
||||
clipboard.writeText(dataString);
|
||||
}, [clipboard, dataString]);
|
||||
|
||||
const handleDownload = useCallback(() => {
|
||||
const blob = new Blob([dataString]);
|
||||
@@ -94,9 +96,10 @@ type ExtraCopyActionProps = {
|
||||
};
|
||||
const ExtraCopyAction = ({ label, data, getData }: ExtraCopyActionProps) => {
|
||||
const { t } = useTranslation();
|
||||
const clipboard = useClipboard();
|
||||
const handleCopy = useCallback(() => {
|
||||
navigator.clipboard.writeText(JSON.stringify(getData(data), null, 2));
|
||||
}, [data, getData]);
|
||||
clipboard.writeText(JSON.stringify(getData(data), null, 2));
|
||||
}, [clipboard, data, getData]);
|
||||
|
||||
return (
|
||||
<Tooltip label={`${t('gallery.copy')} ${label} JSON`}>
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { selectDefaultIPAdapter } from 'features/controlLayers/hooks/addLayerHooks';
|
||||
@@ -20,30 +19,26 @@ import { selectBboxModelBase, selectBboxRect } from 'features/controlLayers/stor
|
||||
import type {
|
||||
CanvasControlLayerState,
|
||||
CanvasEntityIdentifier,
|
||||
CanvasEntityState,
|
||||
CanvasEntityType,
|
||||
CanvasInpaintMaskState,
|
||||
CanvasRasterLayerState,
|
||||
CanvasRegionalGuidanceState,
|
||||
CanvasRenderableEntityIdentifier,
|
||||
CanvasRenderableEntityState,
|
||||
} from 'features/controlLayers/store/types';
|
||||
import { imageDTOToImageObject, imageDTOToImageWithDims, initialControlNet } from 'features/controlLayers/store/util';
|
||||
import { calculateNewSize } from 'features/controlLayers/util/getScaledBoundingBoxDimensions';
|
||||
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import type { BoardId } from 'features/gallery/store/types';
|
||||
import { fieldImageCollectionValueChanged, fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectFieldInputInstance, selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
import { type FieldIdentifier, isImageFieldCollectionInputInstance } from 'features/nodes/types/field';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type { FieldIdentifier } from 'features/nodes/types/field';
|
||||
import { upscaleInitialImageChanged } from 'features/parameters/store/upscaleSlice';
|
||||
import { getOptimalDimension } from 'features/parameters/util/optimalDimension';
|
||||
import { uniqBy } from 'lodash-es';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
import type { Equals } from 'tsafe';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const log = logger('system');
|
||||
|
||||
export const setGlobalReferenceImage = (arg: {
|
||||
imageDTO: ImageDTO;
|
||||
entityIdentifier: CanvasEntityIdentifier<'reference_image'>;
|
||||
@@ -77,54 +72,6 @@ export const setNodeImageFieldImage = (arg: {
|
||||
dispatch(fieldImageValueChanged({ ...fieldIdentifier, value: imageDTO }));
|
||||
};
|
||||
|
||||
export const addImagesToNodeImageFieldCollectionAction = (arg: {
|
||||
imageDTOs: ImageDTO[];
|
||||
fieldIdentifier: FieldIdentifier;
|
||||
dispatch: AppDispatch;
|
||||
getState: () => RootState;
|
||||
}) => {
|
||||
const { imageDTOs, fieldIdentifier, dispatch, getState } = arg;
|
||||
const fieldInputInstance = selectFieldInputInstance(
|
||||
selectNodesSlice(getState()),
|
||||
fieldIdentifier.nodeId,
|
||||
fieldIdentifier.fieldName
|
||||
);
|
||||
|
||||
if (!isImageFieldCollectionInputInstance(fieldInputInstance)) {
|
||||
log.warn({ fieldIdentifier }, 'Attempted to add images to a non-image field collection');
|
||||
return;
|
||||
}
|
||||
|
||||
const images = fieldInputInstance.value ? [...fieldInputInstance.value] : [];
|
||||
images.push(...imageDTOs.map(({ image_name }) => ({ image_name })));
|
||||
const uniqueImages = uniqBy(images, 'image_name');
|
||||
dispatch(fieldImageCollectionValueChanged({ ...fieldIdentifier, value: uniqueImages }));
|
||||
};
|
||||
|
||||
export const removeImageFromNodeImageFieldCollectionAction = (arg: {
|
||||
imageName: string;
|
||||
fieldIdentifier: FieldIdentifier;
|
||||
dispatch: AppDispatch;
|
||||
getState: () => RootState;
|
||||
}) => {
|
||||
const { imageName, fieldIdentifier, dispatch, getState } = arg;
|
||||
const fieldInputInstance = selectFieldInputInstance(
|
||||
selectNodesSlice(getState()),
|
||||
fieldIdentifier.nodeId,
|
||||
fieldIdentifier.fieldName
|
||||
);
|
||||
|
||||
if (!isImageFieldCollectionInputInstance(fieldInputInstance)) {
|
||||
log.warn({ fieldIdentifier }, 'Attempted to remove image from a non-image field collection');
|
||||
return;
|
||||
}
|
||||
|
||||
const images = fieldInputInstance.value ? [...fieldInputInstance.value] : [];
|
||||
const imagesWithoutTheImageToRemove = images.filter((image) => image.image_name !== imageName);
|
||||
const uniqueImages = uniqBy(imagesWithoutTheImageToRemove, 'image_name');
|
||||
dispatch(fieldImageCollectionValueChanged({ ...fieldIdentifier, value: uniqueImages }));
|
||||
};
|
||||
|
||||
export const setComparisonImage = (arg: { imageDTO: ImageDTO; dispatch: AppDispatch }) => {
|
||||
const { imageDTO, dispatch } = arg;
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
@@ -135,7 +82,7 @@ export const createNewCanvasEntityFromImage = (arg: {
|
||||
type: CanvasEntityType | 'regional_guidance_with_reference_image';
|
||||
dispatch: AppDispatch;
|
||||
getState: () => RootState;
|
||||
overrides?: Partial<Pick<CanvasEntityState, 'isEnabled' | 'isLocked' | 'name'>>;
|
||||
overrides?: Partial<Pick<CanvasRenderableEntityState, 'isEnabled' | 'isLocked' | 'name' | 'position'>>;
|
||||
}) => {
|
||||
const { type, imageDTO, dispatch, getState, overrides: _overrides } = arg;
|
||||
const state = getState();
|
||||
|
||||
@@ -36,10 +36,15 @@ const FieldHandle = (props: FieldHandleProps) => {
|
||||
borderWidth: !isSingle(type) ? 4 : 0,
|
||||
borderStyle: 'solid',
|
||||
borderColor: color,
|
||||
borderRadius: isModelType ? 4 : '100%',
|
||||
borderRadius: isModelType || type.batch ? 4 : '100%',
|
||||
zIndex: 1,
|
||||
transformOrigin: 'center',
|
||||
};
|
||||
|
||||
if (type.batch) {
|
||||
s.transform = 'rotate(45deg) translateX(-0.3rem) translateY(-0.3rem)';
|
||||
}
|
||||
|
||||
if (handleType === 'target') {
|
||||
s.insetInlineStart = '-1rem';
|
||||
} else {
|
||||
|
||||
@@ -1,5 +1,10 @@
|
||||
import { FloatGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/FloatGeneratorFieldComponent';
|
||||
import { ImageFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ImageFieldCollectionInputComponent';
|
||||
import { IntegerGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/IntegerGeneratorFieldComponent';
|
||||
import ModelIdentifierFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelIdentifierFieldInputComponent';
|
||||
import { NumberFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/NumberFieldCollectionInputComponent';
|
||||
import { StringFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/StringFieldCollectionInputComponent';
|
||||
import { StringGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/StringGeneratorFieldComponent';
|
||||
import { useFieldInputInstance } from 'features/nodes/hooks/useFieldInputInstance';
|
||||
import { useFieldInputTemplate } from 'features/nodes/hooks/useFieldInputTemplate';
|
||||
import {
|
||||
@@ -21,8 +26,12 @@ import {
|
||||
isControlNetModelFieldInputTemplate,
|
||||
isEnumFieldInputInstance,
|
||||
isEnumFieldInputTemplate,
|
||||
isFloatFieldCollectionInputInstance,
|
||||
isFloatFieldCollectionInputTemplate,
|
||||
isFloatFieldInputInstance,
|
||||
isFloatFieldInputTemplate,
|
||||
isFloatGeneratorFieldInputInstance,
|
||||
isFloatGeneratorFieldInputTemplate,
|
||||
isFluxMainModelFieldInputInstance,
|
||||
isFluxMainModelFieldInputTemplate,
|
||||
isFluxVAEModelFieldInputInstance,
|
||||
@@ -31,8 +40,12 @@ import {
|
||||
isImageFieldCollectionInputTemplate,
|
||||
isImageFieldInputInstance,
|
||||
isImageFieldInputTemplate,
|
||||
isIntegerFieldCollectionInputInstance,
|
||||
isIntegerFieldCollectionInputTemplate,
|
||||
isIntegerFieldInputInstance,
|
||||
isIntegerFieldInputTemplate,
|
||||
isIntegerGeneratorFieldInputInstance,
|
||||
isIntegerGeneratorFieldInputTemplate,
|
||||
isIPAdapterModelFieldInputInstance,
|
||||
isIPAdapterModelFieldInputTemplate,
|
||||
isLoRAModelFieldInputInstance,
|
||||
@@ -51,8 +64,12 @@ import {
|
||||
isSDXLRefinerModelFieldInputTemplate,
|
||||
isSpandrelImageToImageModelFieldInputInstance,
|
||||
isSpandrelImageToImageModelFieldInputTemplate,
|
||||
isStringFieldCollectionInputInstance,
|
||||
isStringFieldCollectionInputTemplate,
|
||||
isStringFieldInputInstance,
|
||||
isStringFieldInputTemplate,
|
||||
isStringGeneratorFieldInputInstance,
|
||||
isStringGeneratorFieldInputTemplate,
|
||||
isT2IAdapterModelFieldInputInstance,
|
||||
isT2IAdapterModelFieldInputTemplate,
|
||||
isT5EncoderModelFieldInputInstance,
|
||||
@@ -97,6 +114,10 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
const fieldInstance = useFieldInputInstance(nodeId, fieldName);
|
||||
const fieldTemplate = useFieldInputTemplate(nodeId, fieldName);
|
||||
|
||||
if (isStringFieldCollectionInputInstance(fieldInstance) && isStringFieldCollectionInputTemplate(fieldTemplate)) {
|
||||
return <StringFieldCollectionInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isStringFieldInputInstance(fieldInstance) && isStringFieldInputTemplate(fieldTemplate)) {
|
||||
return <StringFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
@@ -105,13 +126,22 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
return <BooleanFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (
|
||||
(isIntegerFieldInputInstance(fieldInstance) && isIntegerFieldInputTemplate(fieldTemplate)) ||
|
||||
(isFloatFieldInputInstance(fieldInstance) && isFloatFieldInputTemplate(fieldTemplate))
|
||||
) {
|
||||
if (isIntegerFieldInputInstance(fieldInstance) && isIntegerFieldInputTemplate(fieldTemplate)) {
|
||||
return <NumberFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isFloatFieldInputInstance(fieldInstance) && isFloatFieldInputTemplate(fieldTemplate)) {
|
||||
return <NumberFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isIntegerFieldCollectionInputInstance(fieldInstance) && isIntegerFieldCollectionInputTemplate(fieldTemplate)) {
|
||||
return <NumberFieldCollectionInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isFloatFieldCollectionInputInstance(fieldInstance) && isFloatFieldCollectionInputTemplate(fieldTemplate)) {
|
||||
return <NumberFieldCollectionInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isEnumFieldInputInstance(fieldInstance) && isEnumFieldInputTemplate(fieldTemplate)) {
|
||||
return <EnumFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
@@ -216,6 +246,18 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
return <SchedulerFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isFloatGeneratorFieldInputInstance(fieldInstance) && isFloatGeneratorFieldInputTemplate(fieldTemplate)) {
|
||||
return <FloatGeneratorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isIntegerGeneratorFieldInputInstance(fieldInstance) && isIntegerGeneratorFieldInputTemplate(fieldTemplate)) {
|
||||
return <IntegerGeneratorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isStringGeneratorFieldInputInstance(fieldInstance) && isStringGeneratorFieldInputTemplate(fieldTemplate)) {
|
||||
return <StringGeneratorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (fieldTemplate) {
|
||||
// Fallback for when there is no component for the type
|
||||
return null;
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { Flex, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { selectInvocationNode, selectNodesSlice } from 'features/nodes/store/selectors';
|
||||
@@ -18,7 +18,7 @@ export const InvocationInputFieldCheck = memo(({ nodeId, fieldName, children }:
|
||||
const templates = useStore($templates);
|
||||
const selector = useMemo(
|
||||
() =>
|
||||
createSelector(selectNodesSlice, (nodesSlice) => {
|
||||
createMemoizedSelector(selectNodesSlice, (nodesSlice) => {
|
||||
const node = selectInvocationNode(nodesSlice, nodeId);
|
||||
const instance = node.data.inputs[fieldName];
|
||||
const template = templates[node.data.type];
|
||||
|
||||
@@ -26,7 +26,7 @@ const EnumFieldInputComponent = (props: FieldComponentProps<EnumFieldInputInstan
|
||||
);
|
||||
|
||||
return (
|
||||
<Select className="nowheel nodrag" onChange={handleValueChanged} value={field.value}>
|
||||
<Select className="nowheel nodrag" onChange={handleValueChanged} value={field.value} size="sm">
|
||||
{fieldTemplate.options.map((option) => (
|
||||
<option key={option} value={option}>
|
||||
{fieldTemplate.ui_choice_labels ? fieldTemplate.ui_choice_labels[option] : option}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user