Compare commits

...

484 Commits

Author SHA1 Message Date
psychedelicious
d3a40d85b9 Update invokeai_version.py 2025-02-11 11:36:15 +11:00
psychedelicious
b224cc8158 fix(ui): canvas image error placeholder never disappears 2025-02-11 11:10:14 +11:00
psychedelicious
b75d08a2d0 fix(ui): ensure CanvasObjectImage's visibility is set correctly when updating it 2025-02-11 11:10:14 +11:00
psychedelicious
5f1a30ea82 fix(ui): flicker when transitioning from an output image to next generation's progress image 2025-02-11 11:10:14 +11:00
psychedelicious
d09e600802 feat(ui): add more to CanvasStagingAreaModule repr 2025-02-11 11:10:14 +11:00
psychedelicious
f4ee59b92a feat(ui): add more to CanvasObjectImage repr 2025-02-11 11:10:14 +11:00
psychedelicious
ad0b40b669 feat(ui): differentiate between failure modes for canvas image rendering 2025-02-11 11:10:14 +11:00
Mary Hipp
f3fbcf0014 fix [object object] OOM error 2025-02-11 07:04:11 +11:00
Mary Hipp
588e8a0195 fix oom toast title 2025-02-11 07:04:11 +11:00
psychedelicious
c194281f4d docs: install troubleshooting 2025-02-08 10:40:04 +11:00
psychedelicious
7daff465d3 docs: remove outdated info & update other items in FAQ 2025-02-07 12:14:23 +11:00
psychedelicious
0747a5f464 docs: add link to low vram in requirements 2025-02-07 12:14:23 +11:00
psychedelicious
e7aafdfdbf feat(ui): migrate all clipboard stuff to useClipboard 2025-02-07 11:08:03 +11:00
psychedelicious
ecb38c2bae feat(ui): disallow direct access to clipboard via eslint 2025-02-07 11:08:03 +11:00
psychedelicious
d3ef94cb3e feat(ui): add useClipboard hook to safely wrap clipboard access 2025-02-07 11:08:03 +11:00
psychedelicious
eb27b437ee docs: add firefox clipboard fix 2025-02-07 11:08:03 +11:00
Mary Hipp
25bb96ed66 restore missing translation 2025-02-06 14:10:28 -05:00
psychedelicious
a9568e00a7 chore(ui): updates whats new copy 2025-02-06 13:49:57 +11:00
psychedelicious
c8a5d3bbf9 chore: bump version to v5.6.1rc1 2025-02-06 13:49:57 +11:00
psychedelicious
ed2b2868ce chore(ui): update whats new copy 2025-02-06 13:49:57 +11:00
Hosted Weblate
35de49aa01 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-02-06 13:25:57 +11:00
Riccardo Giovanetti
8bac8d3d3a translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1716 of 1734 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-02-06 13:25:57 +11:00
psychedelicious
e63bd26b19 feat(ui): tweak paste buttons 2025-02-06 12:56:21 +11:00
psychedelicious
91ded4bd15 feat(ui): tweak styling of canvas paste modal 2025-02-06 12:56:21 +11:00
psychedelicious
1656d3dd21 feat(ui): better canvas paste modal copy 2025-02-06 12:56:21 +11:00
psychedelicious
fe67dfefab fix(ui): fall back to pasting to bbox when no raster layers 2025-02-06 12:56:21 +11:00
psychedelicious
6420882a5b feat(ui): add helper text to paste modal 2025-02-06 12:56:21 +11:00
psychedelicious
568e3bd714 chore(ui): lint 2025-02-06 12:56:21 +11:00
psychedelicious
d9c2115396 feat(ui): support pasting directly to canvas 2025-02-06 12:56:21 +11:00
psychedelicious
3e13249983 test(ui): remove test for collect -> iterate validation 2025-02-06 07:57:26 +11:00
psychedelicious
2c2ee7fe20 feat(ui): allow collect -> iterate connections 2025-02-06 07:57:26 +11:00
psychedelicious
50cb27cd0b feat(nodes): support collect -> iterate node connections w/ validation 2025-02-06 07:57:26 +11:00
psychedelicious
d66cd4e81b tests(nodes): add test for collect -> iterate type validation 2025-02-06 07:57:26 +11:00
psychedelicious
8556a2558e chore(nodes): better naming for graph validation utils 2025-02-06 07:57:26 +11:00
psychedelicious
2fb35d25dd feat(nodes): field type Any accepts collections 2025-02-06 07:57:26 +11:00
psychedelicious
a8eb47769a feat(ui): improved enqueue error messages 2025-02-06 07:57:26 +11:00
psychedelicious
592e45a078 feat(nodes): improved graph validation error messages 2025-02-06 07:57:26 +11:00
psychedelicious
c5e5641f0e feat(ui): add menu items to copy canvas/bbox to clipboard 2025-02-04 23:21:20 -05:00
skunkworxdark
dfb9e300d4 typegen + Suggested changes (fix typo + remove asserts) 2025-02-04 21:37:04 +11:00
skunkworxdark
d7f80fc299 Update invokeai/app/invocations/flux_lora_loader.py
good catch

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-02-04 21:37:04 +11:00
skunkworxdark
c9b1eb2d83 update to include T5EncoderField lora changes 2025-02-04 21:37:04 +11:00
skunkworxdark
13d505a621 Fix github test errors
Fix errors with typegen and py3.10 macos-default github tests
2025-02-04 21:37:04 +11:00
skunkworxdark
6674d95dae fix typegen error
fix typegen error
2025-02-04 21:37:04 +11:00
skunkworxdark
c1f5383e63 Fix typegen error
Fix typegen error
2025-02-04 21:37:04 +11:00
skunkworxdark
71690715db fix typegen
fix typegen
2025-02-04 21:37:04 +11:00
skunkworxdark
641489c2f8 fix typegen error
fix typegen
2025-02-04 21:37:04 +11:00
skunkworxdark
5f0bd2e1db Fix typegen issue
Fix typegen issue
2025-02-04 21:37:04 +11:00
skunkworxdark
98b8ab0147 LoRA Loader optional LoRA Collection
Update the LoRA Loaders to make the Lora Collection Optional
2025-02-04 21:37:04 +11:00
Thomas Bolteau
50bf5b7f44 translationBot(ui): update translation (French)
Currently translated at 93.1% (1588 of 1705 strings)

Co-authored-by: Thomas Bolteau <thomas.bolteau50@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2025-02-04 16:45:12 +11:00
Riku
0184cb27c4 translationBot(ui): update translation (German)
Currently translated at 70.2% (1197 of 1705 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-02-04 16:45:12 +11:00
Linos
c374ab24cb translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1708 of 1708 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1705 of 1705 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-02-04 16:45:12 +11:00
Riccardo Giovanetti
6313ab6a40 translationBot(ui): update translation (Italian)
Currently translated at 99.2% (1695 of 1708 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.2% (1692 of 1705 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.2% (1691 of 1704 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-02-04 16:45:12 +11:00
Riku
a4d58aab09 feat(ui): add cancel all except current queue item functionality 2025-02-04 12:23:23 +11:00
Riku
b74fb40cbc chore(ui): update typegen schema 2025-02-04 12:23:23 +11:00
Riku
47dc954385 feat(app): add cancel all except current queue item functionality 2025-02-04 12:23:23 +11:00
psychedelicious
8fc5d3dd20 chore(nodes): bump versions of changed nodes 2025-02-04 12:06:17 +11:00
dunkeroni
6f1a198af4 better granularity on image adjust slider 2025-02-04 12:06:17 +11:00
dunkeroni
9c7bac693b fix image adjust hue handling 2025-02-04 12:06:17 +11:00
dunkeroni
8c9fc45341 add labels 2025-02-04 12:06:17 +11:00
dunkeroni
f93571f7ef update default filter 2025-02-04 12:06:17 +11:00
dunkeroni
cc27730cb4 fix: image channel invocations respect alpha 2025-02-04 12:06:17 +11:00
dunkeroni
fdf9740f3c fix: offets to integers 2025-02-04 12:06:17 +11:00
dunkeroni
58255ab7ba add adjust image filter to canvas 2025-02-04 12:06:17 +11:00
Mary Hipp
64475b8f21 feat(ui): add button to clear model cache 2025-01-30 09:18:28 -05:00
Ryan Dick
cc9d215a9b Add endpoint for emptying the model cache. Also, adds a threading lock to the ModelCache to make it thread-safe. 2025-01-30 09:18:28 -05:00
Ryan Dick
f7315f0432 Make the default max RAM cache size more conservative. 2025-01-30 08:46:59 -05:00
Ryan Dick
285313b282 Fix T5EncoderField initialization in SD3 model loader. 2025-01-29 09:27:52 -05:00
Ryan Dick
debcbd6e2c Support FLUX OneTrainer LoRA formats (incl. DoRA) (#7590)
## Summary

This PR adds support for the FLUX LoRA model format produced by
OneTrainer.

Specifically, this PR adds:
- Support for DoRA patches
- Support for patch models that modify the FLUX T5 encoder
- Probing / loading support for OneTrainer models

## Known limitations

- DoRA patches cannot currently be applied to base weights that are
quantized with `bitsandbytes`. The DoRA algorithm requires accessing the
original model weight in order to compute the patch diff, and the
bitsandbytes quantization layers make this difficult. DoRA patches can
be applied to non-quantized and GGUF-quantized layers without issue.
- This PR results in a slight speed regression for a very particular
inference combination: quantized base model + LoRA with diffusers keys
(i.e. uses the `MergedLayerPatch`). Now that more LoRA formats are using
the `MergedLayerPatch`, it was becoming too much work to maintain this
optimization. Regression from ~1.7 it/s to ~1.4 it/s.

## Future Notes

- We may want to consider dropping support for bitsandbytes
quantization. It is very difficult to maintain compatibility for across
features like partial-loading and LoRA patching.
- At a future time, we should refactor the LoRA parsing logic to be more
generalized rather than handling each format independently.
- There are some redundant device casts and dequantizations in
`autocast_linear_forward_sidecar_patches(...)` (and its sub-calls).
Optimizing this is left for future work.

## Related Issues / Discussions

- This PR should address a handful of the LoRAs reported in
https://github.com/invoke-ai/InvokeAI/issues/7131 (specifically, most of
the `envy*` LoRAs).
- This PR should address the example in
https://github.com/invoke-ai/InvokeAI/issues/6912 (though the intended
effect of that LoRA is not totally clear, so its hard to verify with
full confidence).

## QA Instructions


OneTrainer test models:
-
https://civitai.com/models/844821/envy-flux-dark-watercolor-01?modelVersionId=945159
(DoRA, transformer only)
-
https://civitai.com/models/836757/envy-flux-digital-brush-01?modelVersionId=936167
(hada, transformer only)
- ball_flux from https://github.com/invoke-ai/InvokeAI/issues/6912
(DoRA, transformer/clip/t5)

The following tests were repeated with each of the OneTrainer test
models:

- [x] Test with non-quantized base model
- [x] Test with GGUF-quantized base model
- [x] Test with BnB-quantized base model
- [x] Test with non-quantized base model that is partially-loaded onto
the GPU

Other regression test:

- [x] Test some SD1 LoRAs
- [x] Test some SDXL LoRAs
- [x] Test a variety of existing FLUX LoRA formats
- [x] Test a FLUX Control LoRA on all base model quantization formats. 

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-28 12:50:52 -05:00
Ryan Dick
229834a5e8 Performance optimizations for LoRAs applied on top of GGML-quantized tensors. 2025-01-28 14:51:35 +00:00
Ryan Dick
6c919e1bca Handle DoRA layer device casting when model is partially-loaded. 2025-01-28 14:51:35 +00:00
Ryan Dick
5357d6e08e Rename ConcatenatedLoRALayer to MergedLayerPatch. And other minor cleanup. 2025-01-28 14:51:35 +00:00
Ryan Dick
7fef569e38 Update frontend graph building logic to support FLUX LoRAs that modify the T5 encoder weights. 2025-01-28 14:51:35 +00:00
Ryan Dick
e7fb435cc5 Update DoRALayer with a custom get_parameters() override that 1) applies alpha scaling to delta_v, and 2) warns if the base model is incompatible. 2025-01-28 14:51:35 +00:00
Ryan Dick
5d472ac1b8 Move quantized weight handling for patch layers up from ConcatenatedLoRALayer to CustomModuleMixin. 2025-01-28 14:51:35 +00:00
Ryan Dick
28514ba59a Update ConcatenatedLoRALayer to work with all sub-layer types. 2025-01-28 14:51:35 +00:00
Ryan Dick
5ea7953537 Update GGMLTensor with ops necessary to work with ConcatenatedLoRALayer. 2025-01-28 14:51:35 +00:00
Ryan Dick
0db6639b4b Add FLUX OneTrainer model probing. 2025-01-28 14:51:35 +00:00
Ryan Dick
b8eed2bdcb Relax lora_layers_from_flux_diffusers_grouped_state_dict(...) so that it can work with more LoRA variants (e.g. hada) 2025-01-28 14:51:35 +00:00
Ryan Dick
1054283f5c Fix bug in FLUX T5 Koyha-style LoRA key parsing. 2025-01-28 14:51:35 +00:00
Ryan Dick
f4a0b78a8d Update FLUX invocations to support LoRAs that modify the T5 text encoder. 2025-01-28 14:51:35 +00:00
Ryan Dick
409b69ee5d Fix typo in DoRALayer. 2025-01-28 14:51:35 +00:00
Ryan Dick
206f261e45 Add utils for loading FLUX OneTrainer DoRA models. 2025-01-28 14:51:35 +00:00
Ryan Dick
7eee4da896 Further updates to lora_model_from_flux_diffusers_state_dict() so that it can be re-used for OneTrainer LoRAs. 2025-01-28 14:51:35 +00:00
Ryan Dick
908976ac08 Add support for LyCoris-style LoRA keys in lora_model_from_flux_diffusers_state_dict(). Previously, it only supported PEFT-style LoRA keys. 2025-01-28 14:51:35 +00:00
Ryan Dick
dfa253e75b Add utils for working with Kohya LoRA keys. 2025-01-28 14:51:35 +00:00
Ryan Dick
4f369e3dfb First draft of DoRALayer. Not tested yet. 2025-01-28 14:51:35 +00:00
Ryan Dick
faa4fa02c0 Expand unit tests to test for confusion between FLUX LoRA formats. 2025-01-28 14:51:35 +00:00
Ryan Dick
5bd6428fdd Add is_state_dict_likely_in_flux_onetrainer_format() util function. 2025-01-28 14:51:35 +00:00
Ryan Dick
8b4f411f7b Add a test state dict for the OneTrainer DoRA format. 2025-01-28 14:51:35 +00:00
Ryan Dick
9d2f8b4ac8 Improve MaskOutput dimension consistency (#7591)
## Summary

This PR fixes an issue with mask dimension consistency. Prior to this
change, the following workflow would fail with `tuple out of range`
error:

<img width="1072" alt="image"
src="https://github.com/user-attachments/assets/d0a9e658-1d64-4db4-adee-973bbdaca745"
/>

### Before this PR

Dimension compatibility for invocations that take a mask input:
- `ApplyMaskTensorToImageInvocation`: 2 or 3
- `MaskTensorToImageInvocation`: 2 or 3
- `InvertTensorMaskInvocation`: 3

Mask dimension for invocations that produce a MaskOutput:
- `RectangleMaskInvocation`: 3
- `AlphaMaskToTensorInvocation`: 3
- `InvertTensorMaskInvocation`: 3
- `ImageMaskToTensorInvocation`: 3
- `SegmentAnythingInvocation`: 2

### After this PR (changes in bold)

Dimension compatibility for invocations that take a mask input:
- `ApplyMaskTensorToImageInvocation`: 2 or 3
- `MaskTensorToImageInvocation`: 2 or 3
- `InvertTensorMaskInvocation`: **2 or 3** <----------------

Mask dimension for invocations that produce a MaskOutput:
- `RectangleMaskInvocation`: 3
- `AlphaMaskToTensorInvocation`: 3
- `InvertTensorMaskInvocation`: 3
- `ImageMaskToTensorInvocation`: 3
- `SegmentAnythingInvocation`: **3** <-------------------


## QA Instructions

I tested the workflow in the PR description and this workflow:
<img width="872" alt="image"
src="https://github.com/user-attachments/assets/20496860-ce81-47c0-a46a-a611b73faa22"
/>


## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-28 09:42:39 -05:00
Ryan Dick
80c3d8bc5c pnpm typegen 2025-01-28 14:30:15 +00:00
Ryan Dick
b681132da4 Update InvertTensorMaskInvocation to handle mask tensors with dim 2 or 3. 2025-01-24 22:04:46 +00:00
Ryan Dick
f60a5a5015 Update SegmentAnythingInvocation invocations to return masks with a channel dimension of size 1. This is the convention used by other nodes that produce a MaskOutput. 2025-01-24 22:04:10 +00:00
psychedelicious
6efd108481 docs: typo in manual docs install command
Thanks to ShaneDK on discord for catching this.
2025-01-23 14:57:22 +11:00
Ryan Dick
f88c1ba0c3 Fix bug with some LoRA variants when applied to a BnB NF4 quantized model. Note the previous commit which added a unit test to trigger this bug. 2025-01-22 09:20:40 +11:00
Ryan Dick
e2f05d0800 Add unit tests for LoKR patch layers. The new tests trigger a bug when LoKR layers are applied to BnB-quantized layers (also impacts several other LoRA variant types). 2025-01-22 09:20:40 +11:00
psychedelicious
83e33a4810 chore: bump version to v5.6.0 2025-01-21 17:58:47 +11:00
psychedelicious
e635028477 chore(ui): update whats new copy 2025-01-21 17:58:47 +11:00
psychedelicious
b7b8f8a9e5 fix(nodes): remove WithMetadata from non-image-outputting node 2025-01-21 17:58:47 +11:00
psychedelicious
e926d2f24b fix(nodes): add beta classification to new inpainting support nodes 2025-01-21 17:58:47 +11:00
psychedelicious
ad8885c456 chore(ui): typegen 2025-01-21 17:45:32 +11:00
psychedelicious
cf4c79fe2e feat(nodes): add PasteImageIntoBoundingBoxInvocation 2025-01-21 17:45:32 +11:00
psychedelicious
e0edfe6c40 feat(nodes): add CropImageToBoundingBoxInvocation 2025-01-21 17:45:32 +11:00
psychedelicious
8a0a37191a feat(nodes): add GetMaskBoundingBoxInvocation 2025-01-21 17:45:32 +11:00
psychedelicious
7dbd5f150a feat(nodes): add BoundingBoxField.tuple() to get bbox as PIL tuple 2025-01-21 17:45:32 +11:00
psychedelicious
1ad65ffd53 feat(nodes): re-title "Mask from ID" -> "Mask from Segmented Image" 2025-01-21 17:45:32 +11:00
psychedelicious
14b5c871dc feat(nodes): simplify MaskFromIDInvocation 2025-01-21 17:45:32 +11:00
psychedelicious
8d2b4e2bf5 feat(nodes): support FLUX, SD3 in ideal_size 2025-01-21 17:45:32 +11:00
psychedelicious
aba70eacab fix(ui): field handle positioning for non-batch fields
Accidentally overwrote some reactflow styles which caused field handles to be positioned differently for non-batch fields. Just a minor visual issue.
2025-01-21 11:49:49 +11:00
Riccardo Giovanetti
4b67175b1b translationBot(ui): update translation (Italian)
Currently translated at 99.1% (1690 of 1704 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Hosted Weblate
e3423d1ba8 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Linos
87fb00ff5d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1697 of 1697 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.2% (1684 of 1697 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.7% (1676 of 1681 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.3% (1670 of 1681 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.5% (1658 of 1666 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1652 of 1652 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Riccardo Giovanetti
d99a9ffb72 translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1642 of 1652 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Hosted Weblate
7964f438dc translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Linos
b130a3a9ee translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1652 of 1652 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
Riccardo Giovanetti
a6b32160b2 translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1642 of 1652 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.3% (1641 of 1652 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-21 09:12:45 +11:00
psychedelicious
7d110cc9d3 fix(ui): disable dynamic prompts generators pending resolution of infinite recursion issue
Dynamic prompts string generators can cause an infinite feedback loop when added to the linear view.

The root cause is how these generators handle "resolving" their collections. They hit the dynamic prompts HTTP API within the view component to get the prompts, then set the batch node's internal state with those values.

When the same generator is rendered in both the node editor view and linear view and the timing is just right, that state update causes an infinite feedback loop between the two components as they respond to the state updates from the other component.

The other generators never store the generated values in the batch node's internal state. The values are "resolved" just-in-time as they are needed.

To fix this, the batch value "resolver" utilities could be made async and hit the API. But there's a problem - the resolver utilities are used within the "are we ready to invoke? are there any problems with the current settings?" redux selectors, which are strictly synchronous. To fix that, we can refactor that "are we ready to invoke?" logic to not use redux selectors, so the whole thing could be async.

It's not a big change but I'm not going to spend time on it at the moment.

So, until I address this, the dynamic prompts generators are disabled.
2025-01-21 09:00:40 +11:00
psychedelicious
82122645e8 refactor(ui): organize special handling for batch field types 2025-01-21 07:17:29 +11:00
psychedelicious
f5c5b73383 fix(ui): string batch nodes' inputs get batch type 2025-01-21 07:17:29 +11:00
psychedelicious
2b2ec67cd6 fix(nodes): allow connection input on string batch nodes 2025-01-21 07:17:29 +11:00
Ryan Dick
66bc225bd3 Add a troubleshooting instructions for the Windows page file issue to the Low-VRAM docs. 2025-01-20 08:58:41 +11:00
psychedelicious
7535d2e188 feat(ui): use translation for load from file buttons 2025-01-20 08:57:42 +11:00
psychedelicious
3dff87aeee feat(ui): better layout for generator load from file buttons 2025-01-20 08:57:42 +11:00
psychedelicious
b14bf1e0f4 chore(ui): lint 2025-01-20 08:57:42 +11:00
psychedelicious
4fdc6eec9d feat(ui): support loading from file for string input generators 2025-01-20 08:57:42 +11:00
psychedelicious
180a67d11b feat(ui): small fontsize on generator textareas 2025-01-20 08:57:42 +11:00
psychedelicious
ec816d3c04 feat(ui): improved dynamicprompts generator
- Split into two (random and combinatorial) - lots of fiddly logic to do both in one generator.
- Update to support seeds for random.
2025-01-20 08:57:42 +11:00
psychedelicious
7dcc2dafbc chore(ui): typegen 2025-01-20 08:57:42 +11:00
psychedelicious
81da5210f0 feat(api): add seed field to dynamicprompts 2025-01-20 08:57:42 +11:00
psychedelicious
eb976a2ab0 feat(ui): add dynamic prompts string generator (WIP) 2025-01-20 08:57:42 +11:00
psychedelicious
724028d974 feat(ui): port improved string parsing logic from string generator to float & int 2025-01-20 08:57:42 +11:00
psychedelicious
43c98fd99e feat(ui): add string generator 2025-01-20 08:57:42 +11:00
psychedelicious
526d64a5e2 feat(nodes): add string generator 2025-01-20 08:57:42 +11:00
psychedelicious
58c6c6db53 feat(ui): make string collection component same as number collection
Same UI & better perf thanks to a different structure.
2025-01-20 08:57:42 +11:00
psychedelicious
8a41e09de3 feat(ui): seeded random generators
- Add JS Mersenne Twister implementation dependency to use as seeded PRNG. This is not a cryptographically secure algorithm.
- Add nullish seed field to float and integer random generators.
- Add UI to control the seed.
- When seed is not set, behaviour is unchanged - the values are randomized when you Invoke. When seed is set, the random distribution is deterministic depending on the seed. In this case, we can display the values to the user.
2025-01-18 08:45:56 +11:00
psychedelicious
c24eae1968 chore: bump version to v5.6.0rc4 2025-01-17 16:29:20 +11:00
psychedelicious
a6b207a0d9 fix(ui): string field textarea accidentally readonly 2025-01-17 16:17:13 +11:00
psychedelicious
eea5ecdd69 Update invokeai_version.py 2025-01-17 13:15:20 +11:00
psychedelicious
50de54dcfd chore(ui): lint 2025-01-17 12:48:58 +11:00
psychedelicious
04b893f982 chore(ui): typegen 2025-01-17 12:48:58 +11:00
psychedelicious
4c655eeb48 chore(ui): lint 2025-01-17 12:48:58 +11:00
psychedelicious
298abab883 feat(ui): improved generator text area styling 2025-01-17 12:48:58 +11:00
psychedelicious
bd477ded2e feat(ui): better preview for generators 2025-01-17 12:48:58 +11:00
psychedelicious
0b64d21980 tidy(ui): remove extraneous reset button on generators 2025-01-17 12:48:58 +11:00
psychedelicious
91d5f8537d feat(ui): add integer & float parse string generators 2025-01-17 12:48:58 +11:00
psychedelicious
e498e1f07c feat(ui): reworked float/int generators (arithmetic sequence, linear dist, uniform rand dist) 2025-01-17 12:48:58 +11:00
psychedelicious
73a3f195dc fix(ui): remove nonfunctional button 2025-01-17 12:48:58 +11:00
psychedelicious
8cc790a030 fix(ui): batch size calculations 2025-01-17 12:48:58 +11:00
psychedelicious
57265c8869 feat(ui): rip out generator modal functionality 2025-01-17 12:48:58 +11:00
psychedelicious
66d08eaa1c fix(ui): translation for generators 2025-01-17 12:48:58 +11:00
psychedelicious
d69e90ca5e feat(ui): support integer generators 2025-01-17 12:48:58 +11:00
psychedelicious
f345fde512 fix(ui): use utils to get default float generator values 2025-01-17 12:48:58 +11:00
psychedelicious
508c702289 feat(nodes): remove default values for generator; let UI handle it 2025-01-17 12:48:58 +11:00
psychedelicious
8fbd2f9a97 feat(nodes): add integer generator nodes 2025-01-17 12:48:58 +11:00
psychedelicious
bfb26af36a chore(ui): lint 2025-01-17 12:48:58 +11:00
psychedelicious
4400bc69f2 feat(ui): don't show generator preview for random generators 2025-01-17 12:48:58 +11:00
psychedelicious
10f2c0dc9a feat(ui): support generator nodes (wip)
- Add `batch` property to field type object to differentiate between executable nodes and batch/generator nodes.
- Support for float generators
2025-01-17 12:48:58 +11:00
psychedelicious
5b0326fc49 chore(ui): typegen 2025-01-17 12:48:58 +11:00
psychedelicious
2f9a0a250d feat(nodes): generators as nodes 2025-01-17 12:48:58 +11:00
psychedelicious
5d03328dc6 tidy(nodes): code dedupe for batch node init errors 2025-01-17 12:48:58 +11:00
psychedelicious
1fb32aec28 tidy(nodes): move batch nodes to own file 2025-01-17 12:48:58 +11:00
psychedelicious
2bbcd42036 chore(ui): knip 2025-01-17 12:34:54 +11:00
psychedelicious
2f40f7bafd tweak(ui): error verbiage for collection size mismatch 2025-01-17 12:34:54 +11:00
psychedelicious
65dd01bf3a fix(ui): invoke tooltip for invalid/empty batches 2025-01-17 12:34:54 +11:00
psychedelicious
81fc525f8a chore(ui): lint 2025-01-17 12:34:54 +11:00
psychedelicious
d2dd5ee408 fix(ui): unclosed JSX tag 2025-01-17 12:34:54 +11:00
psychedelicious
b4b1daeb26 feat(ui): validate all batch nodes have connection 2025-01-17 12:34:54 +11:00
psychedelicious
90c4c10e14 feat(ui): show batch group in node title 2025-01-17 12:34:54 +11:00
psychedelicious
30e33d30d5 fix(ui): handle batch group ids of "None" correctly 2025-01-17 12:34:54 +11:00
psychedelicious
3df3be6c34 tweak(ui): enum field selects have size="sm" 2025-01-17 12:34:54 +11:00
psychedelicious
4e917bf2b2 chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
26e6e28a13 feat(nodes): add title for batch_group_id field 2025-01-17 12:34:54 +11:00
psychedelicious
f9cee42a06 tweak(ui): node editor layout padding 2025-01-17 12:34:54 +11:00
psychedelicious
1b8da023b8 chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
05f1026812 feat(nodes): batch_group_id is a literal of options 2025-01-17 12:34:54 +11:00
psychedelicious
ca1bd254ea feat(ui): rename "link_id" -> "batch_group_id" 2025-01-17 12:34:54 +11:00
psychedelicious
29645326b9 chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
c23a2abc82 feat(nodes): rename "link_id" -> "batch_group_id" 2025-01-17 12:34:54 +11:00
psychedelicious
803ec8e904 feat(ui): add zipped batch collection size validation 2025-01-17 12:34:54 +11:00
psychedelicious
0abc0be931 fix(ui): allow batch nodes without link id (i.e. product batch nodes) to have mismatched collection sizes 2025-01-17 12:34:54 +11:00
psychedelicious
edff16124f feat(ui): support zipped batch nodes 2025-01-17 12:34:54 +11:00
psychedelicious
2e4110a29a chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
7ee51f3e14 feat(nodes): add link_id field to batch nodes
This is used to link batch nodes into zipped batch data collections.
2025-01-17 12:34:54 +11:00
psychedelicious
8ae75dbc35 chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
9265716b07 chore(ui): lint 2025-01-17 12:19:04 +11:00
psychedelicious
27b9c07711 chore(ui): typegen 2025-01-17 12:19:04 +11:00
psychedelicious
9dcbe3cc8f tweak(ui): number collection styling 2025-01-17 12:19:04 +11:00
psychedelicious
30165f66c3 feat(ui): string collection batch items are input not textarea 2025-01-17 12:19:04 +11:00
psychedelicious
deb70edc75 fix(ui): translation key 2025-01-17 12:19:04 +11:00
psychedelicious
d82d990b23 feat(ui): add number range generators 2025-01-17 12:19:04 +11:00
psychedelicious
2c64b60d32 Revert "feat(ui): rough out number generators for number collection fields"
This reverts commit 41cc6f1f96bca2a51727f21bd727ca48eab669bc.
2025-01-17 12:19:04 +11:00
psychedelicious
4e8c6d931d Revert "feat(ui): number collection generator supports floats"
This reverts commit 9da3339b513de9575ffbf6ce880b3097217b199d.
2025-01-17 12:19:04 +11:00
psychedelicious
9049e6e0f3 Revert "feat(ui): more batch generator stuff"
This reverts commit 111a29c7b4fc6b5062a0a37ce704a6508ff58dd8.
2025-01-17 12:19:04 +11:00
psychedelicious
3cb5f8536b feat(ui): more batch generator stuff 2025-01-17 12:19:04 +11:00
psychedelicious
38e50cc7aa tidy(ui): abstract out batch detection logic 2025-01-17 12:19:04 +11:00
psychedelicious
5bff6123b9 feat(nodes): add default value for batch nodes 2025-01-17 12:19:04 +11:00
psychedelicious
d63ff560d6 feat(ui): number collection generator supports floats 2025-01-17 12:19:04 +11:00
psychedelicious
acceac8304 fix(ui): do not set number collection field to undefined when removing last item 2025-01-17 12:19:04 +11:00
psychedelicious
96671d12bd fix(ui): filter out batch nodes when checking readiness on workflows tab 2025-01-17 12:19:04 +11:00
psychedelicious
584601d03f perf(ui): memoize selector in workflows 2025-01-17 12:19:04 +11:00
psychedelicious
b1c4ec0888 feat(ui): rough out number generators for number collection fields 2025-01-17 12:19:04 +11:00
psychedelicious
db5f016826 fix(nodes): allow batch datum items to mix ints and floats
Unfortunately we cannot do strict floats or ints.

The batch data models don't specify the value types, it instead relies on pydantic parsing. JSON doesn't differentiate between float and int, so a float `1.0` gets parsed as `1` in python.

As a result, we _must_ accept mixed floats and ints for BatchDatum.items.

Tests and validation updated to handle this.

Maybe we should update the BatchDatum model to have a `type` field? Then we could parse as float or int, depending on the inputs...
2025-01-17 12:19:04 +11:00
psychedelicious
c1fd28472d fix(ui): float batch data creation 2025-01-17 12:19:04 +11:00
psychedelicious
0c5958675a chore(ui): lint 2025-01-17 12:19:04 +11:00
psychedelicious
912e07f2c8 tidy(ui): use zod typeguard builder util for fields 2025-01-17 12:19:04 +11:00
psychedelicious
f853b24868 chore(ui): typegen 2025-01-17 12:19:04 +11:00
psychedelicious
4f900b22dc feat(ui): validate number item multipleOf 2025-01-17 12:19:04 +11:00
psychedelicious
5823532941 feat(ui): validate string item lengths 2025-01-17 12:19:04 +11:00
psychedelicious
bfe6d98cba feat(ui): support float batches 2025-01-17 12:19:04 +11:00
psychedelicious
c26b3cd54f refactor(ui): abstract out helper to add batch data 2025-01-17 12:19:04 +11:00
psychedelicious
c012d832d2 fix(ui): typo 2025-01-17 12:19:04 +11:00
psychedelicious
9d11d2aabd refactor(ui): abstract out field validators 2025-01-17 12:19:04 +11:00
psychedelicious
a5f1587ce7 feat(ui): add template validation for integer collection items 2025-01-17 12:19:04 +11:00
psychedelicious
0b26bb1ca3 feat(ui): add template validation for string collection items 2025-01-17 12:19:04 +11:00
psychedelicious
0f1e632117 feat(nodes): add float batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b212332b3e feat(ui): support integer batches 2025-01-17 12:19:04 +11:00
psychedelicious
90a91ff438 feat(nodes): add integer batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b52b271dc4 feat(ui): support string batches 2025-01-17 12:19:04 +11:00
psychedelicious
e077fe8046 refactor(ui): streamline image field collection input logic, support multiple images w/ same name in collection 2025-01-17 12:19:04 +11:00
psychedelicious
368957b208 tweak(ui): image field collection input component styling 2025-01-17 12:19:04 +11:00
psychedelicious
27277e1fd6 docs(ui): improved comments for image batch node special handling 2025-01-17 12:19:04 +11:00
psychedelicious
236c0d89e7 feat(nodes): add string batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b807170701 fix(ui): typo in error message for image collection fields 2025-01-17 12:19:04 +11:00
Ryan Dick
c5d2de3169 Revise the default logic for the model cache RAM limit (#7566)
## Summary

This PR revises the logic for calculating the model cache RAM limit. See
the code for thorough documentation of the change.

The updated logic is more conservative in the amount of RAM that it will
use. This will likely be a better default for more users. Of course,
users can still choose to set a more aggressive limit by overriding the
logic with `max_cache_ram_gb`.

## Related Issues / Discussions

- Should help with https://github.com/invoke-ai/InvokeAI/issues/7563

## QA Instructions

Exercise all heuristics:
- [x] Heuristic 1
- [x] Heuristic 2
- [x] Heuristic 3
- [x] Heuristic 4

## Merge Plan

- [x] Merge https://github.com/invoke-ai/InvokeAI/pull/7565 first and
update the target branch

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 19:59:14 -05:00
Ryan Dick
f7511bfd94 Add keep_ram_copy_of_weights config option (#7565)
## Summary

This PR adds a `keep_ram_copy_of_weights` config option the default (and
legacy) behavior is `true`. The tradeoffs for this setting are as
follows:
- `keep_ram_copy_of_weights: true`: Faster model switching and LoRA
patching.
- `keep_ram_copy_of_weights: false`: Lower average RAM load (may not
help significantly with peak RAM).

## Related Issues / Discussions

- Helps with https://github.com/invoke-ai/InvokeAI/issues/7563
- The Low-VRAM docs are updated to include this feature in
https://github.com/invoke-ai/InvokeAI/pull/7566

## QA Instructions

- Test with `enable_partial_load: false` and `keep_ram_copy_of_weights:
false`.
  - [x] RAM usage when model is loaded is reduced.
  - [x] Model loading / unloading works as expected.
  - [x] LoRA patching still works.
- Test with `enable_partial_load: false` and `keep_ram_copy_of_weights:
true`.
  - [x] Behavior should be unchanged.
- Test with `enable_partial_load: true` and `keep_ram_copy_of_weights:
false`.
  - [x] RAM usage when model is loaded is reduced.
  - [x] Model loading / unloading works as expected.
  - [x] LoRA patching still works.
- Test with `enable_partial_load: true` and `keep_ram_copy_of_weights:
true`.
  - [x] Behavior should be unchanged.

- [x] Smoke test CPU-only and MPS with default configs.

## Merge Plan

- [x] Merge https://github.com/invoke-ai/InvokeAI/pull/7564 first and
change target branch.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 19:57:02 -05:00
Ryan Dick
0abb5ea114 Reduce peak memory during FLUX model load (#7564)
## Summary

Prior to this change, there were several cases where we initialized the
weights of a FLUX model before loading its state dict (and, to make
things worse, in some cases the weights were in float32). This PR fixes
a handful of these cases. (I think I found all instances for the FLUX
family of models.)

## Related Issues / Discussions

- Helps with https://github.com/invoke-ai/InvokeAI/issues/7563

## QA Instructions

I tested that that model loading still works and that there is no
virtual memory reservation on model initialization for the following
models:
- [x] FLUX VAE
- [x] Full T5 Encoder
- [x] Full FLUX checkpoint
- [x] GGUF FLUX checkpoint

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 18:47:17 -05:00
Ryan Dick
ce57c4ed2e Update the Low-VRAM docs. 2025-01-16 23:46:07 +00:00
Ryan Dick
0cf51cefe8 Revise the logic for calculating the RAM model cache limit. 2025-01-16 23:46:07 +00:00
Ryan Dick
e5e848d239 Update config docstring. 2025-01-16 22:34:23 +00:00
Ryan Dick
da589b3f1f Memory optimization to load state dicts one module at a time in CachedModelWithPartialLoad when we are not storing a CPU copy of the state dict (i.e. when keep_ram_copy_of_weights=False). 2025-01-16 17:00:33 +00:00
Ryan Dick
36a3869af0 Add keep_ram_copy_of_weights config option. 2025-01-16 15:35:25 +00:00
Ryan Dick
c76d08d1fd Add keep_ram_copy option to CachedModelOnlyFullLoad. 2025-01-16 15:08:23 +00:00
Ryan Dick
04087c38ce Add keep_ram_copy option to CachedModelWithPartialLoad. 2025-01-16 14:51:44 +00:00
Ryan Dick
b2bb359d47 Update the model loading logic for several of the large FLUX-related models to ensure that the model is initialized on the meta device prior to loading the state dict into it. This helps to keep peak memory down. 2025-01-16 02:30:28 +00:00
Mary Hipp
b57aa06d9e take out AbortController logic and simplify dependencies 2025-01-16 09:39:32 +11:00
Mary Hipp
f856246c36 try removing abortcontroller 2025-01-16 09:39:32 +11:00
Mary Hipp
195df2ebe6 remove logic changes, keep logging 2025-01-16 09:39:32 +11:00
Mary Hipp
7b5cef6bd7 lint fix 2025-01-16 09:39:32 +11:00
Mary Hipp
69e7ffaaf5 add logging, remove deps 2025-01-16 09:39:32 +11:00
psychedelicious
993401ad6c fix(ui): hide layer when previewing filter
Previously, when previewing a filter on a layer with some transparency or a filter that changes the alpha, the preview was rendered on top of the layer. The preview blended with the layer, which isn't right.

In this change, the layer is hidden during the preview, and when the filter finishes (having been applied or canceled - the two possible paths), the layer is shown.

Technically, we are hiding and showing the layer's object renderer's konva group, which contains the layer's "real" data.

Another small change was made to prevent a flash of empty layer, by waiting to destroy a previous filter preview image until the new preview image is ready to display.
2025-01-16 09:27:36 +11:00
psychedelicious
8d570dcffc chore(ui): typegen 2025-01-16 09:27:36 +11:00
psychedelicious
3f70e947fd chore: ruff 2025-01-16 09:27:36 +11:00
dunkeroni
157290bef4 add: size option for image noise node and filter 2025-01-16 09:27:36 +11:00
dunkeroni
b7389da89b add: Noise filter on Canvas 2025-01-16 09:27:36 +11:00
dunkeroni
254b89b1f5 add: Blur filter option on canvas 2025-01-16 09:27:36 +11:00
dunkeroni
2b122d7882 add: image noise invocation 2025-01-16 09:27:36 +11:00
dunkeroni
ded9213eb4 trim blur splitting logic 2025-01-16 09:27:36 +11:00
dunkeroni
9d51eb49cd fix: ImageBlurInvocation handles transparency now 2025-01-16 09:27:36 +11:00
dunkeroni
0a6e22bc9e fix: ImagePasteInvocation respects transparency 2025-01-16 09:27:36 +11:00
Ryan Dick
b301785dc8 Normalize the T5 model identifiers so that a FLUX T5 or an SD3 T5 model can be used interchangeably. 2025-01-16 08:33:58 +11:00
psychedelicious
edcdff4f78 fix(ui): round rects when applying transform
Due to the limited floating point precision, and konva's `scale` properties, it is possible for the relative rect of an object to have non-integer coordinates and dimensions.

When we go to rasterize and otherwise export images, the HTML canvas API truncates these numbers.

So, we can end up with situations where the relative width and height of a layer are very close to the "real" value, but slightly off.

For example, width and height might be 512px, but the relative rect is calculated to be something like 512.000000003 or 511.9999999997.

In the first case, the truncation results in 512x512 for the dimensions - which is correct. But in the second case, it results in 511x511!

One place where this causes issues is the image action `New Canvas from image -> As Raster Layer (resize)`. For certain input image sizes, this results in an incorrectly resized image. For example, a 1496x1946 input image is resized to 511x511 pixels when the bbox is 512x512.

To fix this, we can round both coords and dimensions of rects when rasterizing.

I've thought through the implications and done some testing. I believe this change will not cause any regressions and only fix edge cases. But, it's possible that something was inadvertently relying on the old behavior.
2025-01-16 01:17:30 +11:00
psychedelicious
66e04ea7ab fix(ui): sticky preset image tooltip
There's a bug where preset image tooltips get stuck open in the list.

After much fiddling, debugging, and review of upstream dependencies, I have determined that this is bug in Chakra-UI v2.

Specifically, it appears to be a race condition related to the Tooltip component's internal use of the `useDisclosure` hook to manage tooltip open state, and the react render cycle.

Unfortunately, Chakra v2 is no longer being updated, and it's a pain in the butt to vendor and fix that component given its dependencies. Not 100% sure I could easily fix it, anyways.

Fortunately, there is a workaround - reduce the tooltip openDelay to 0ms. I prefer the current 500ms delay but I think it's preferable to have too-quick tooltips than too-sticky tooltips...
2025-01-15 09:12:46 -05:00
Ryan Dick
497bc916cc Add unet_config to get_scheduler(...) call in TiledMultiDiffusionDenoiseLatents. 2025-01-15 08:44:08 -05:00
dunkeroni
ebe1873712 fix: only add prediction type if it exists 2025-01-15 08:44:08 -05:00
dunkeroni
59926c320c support v-prediction in denoise_latents.py 2025-01-15 08:44:08 -05:00
Mary Hipp
2d3e2f1907 use window instead of document 2025-01-14 20:01:08 -05:00
psychedelicious
d88b59c5c4 Revert "feat(ui): rearrange canvas paste back nodes to save an image step"
This reverts commit 7cdda00a54.
2025-01-10 15:59:29 +11:00
Simon Fuhrmann
1c7adb5c70 Update communityNodes.md - Fix broken image
The image under https://invoke-ai.github.io/InvokeAI/nodes/communityNodes/#stereogram-nodes is broken. Changing img src to fix.
2025-01-09 07:29:02 -05:00
psychedelicious
8da9d3bc19 chore: bump version to v5.6.0rc2 2025-01-09 14:12:46 +11:00
psychedelicious
d9c099bd3a docs: fix incorrect macOS launcher fix command 2025-01-09 11:26:59 +11:00
psychedelicious
a329588e5a feat: add link to low vram guide to OOM toast (local only)
Needed to do a bit of refactoring to support this. Overall, the error toast components are easier to understand now.
2025-01-09 11:20:05 +11:00
psychedelicious
e09cf64779 feat: more updates to first run view 2025-01-09 11:20:05 +11:00
psychedelicious
fc8cf224ca docs: typo 2025-01-09 11:20:05 +11:00
psychedelicious
3e1ed18a1f Update docs/features/low-vram.md
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2025-01-09 11:20:05 +11:00
psychedelicious
9a84c85486 docs: add section about disabling the sysmem fallback 2025-01-09 11:20:05 +11:00
psychedelicious
e6deaa2d2f feat(ui): minor layout tweaks for first run screen 2025-01-09 11:20:05 +11:00
psychedelicious
5246b31347 feat(ui): add low vram link to first run page 2025-01-09 11:20:05 +11:00
psychedelicious
b15dd00840 docs: add docs for low vram mode 2025-01-09 11:20:05 +11:00
psychedelicious
8808c36028 docs: update example yaml file 2025-01-09 11:20:05 +11:00
psychedelicious
89b576f10d fix(ui): prevent canvas & main panel content from scrolling
Hopefully fixes issues where, when run via the launcher, the main panel kinda just scrolls out of bounds.
2025-01-09 09:14:22 +11:00
psychedelicious
d7893a52c3 tweak(ui): whats new copy 2025-01-08 15:26:26 +11:00
Mary Hipp
b9c45c3232 Whats new update 2025-01-08 15:26:26 +11:00
David Burnett
afc9d3b98f more ruff formating 2025-01-07 20:18:19 -05:00
David Burnett
7ddc757bdb ruff format changes 2025-01-07 20:18:19 -05:00
David Burnett
d8da9b45cc Fix for DEIS / DPM clash 2025-01-07 20:18:19 -05:00
Ryan Dick
607d19f4dd We should not trust the value of since the model could be partially-loaded. 2025-01-07 19:22:31 -05:00
psychedelicious
32286f321c docs: note that version is not req for editable install 2025-01-07 17:17:40 -05:00
psychedelicious
03f7bdc9f9 docs: fix manual install rocm pypi indices 2025-01-07 17:17:40 -05:00
Ryan Dick
4df3d0861b Deprecate ram/vram configs for smoother migration path to dynamic limits (#7526)
## Summary

Changes:
- Deprecate `ram` and `vram` configs. If these are set in invokeai.yaml,
they will be ignored.
- Create new `max_cache_ram_gb` and `max_cache_vram_gb` configs with the
same definitions as the old configs.

The main motivation of this change is to make the migration path
smoother for users who had previously added `ram` /`vram` to their
config files. Now, these users will be automatically migrated into the
new dynamic limit behavior (which is better in most cases). These users
will have to manually re-add `max_cache_ram_gb` and `max_cache_vram_gb`
to their configs if they wish to go back to specifying manual limits.

## Related Issues / Discussions

See the release notes for RC v5.6.0rc1 for the old migration behavior
that we are trying to improve:
https://github.com/invoke-ai/InvokeAI/releases/tag/v5.6.0rc1

## QA Instructions

- [x] Test that if `ram` or `vram` are present in a user's
`invokeai.yaml`, these values are ignored.
- [x] Test that `max_cache_ram_gb` and `max_cache_vram_gb` are applied,
if set.

## Merge Plan

- Don't forget to update the RC release notes accordingly.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 17:03:11 -05:00
Ryan Dick
974b4671b1 Deprecate the ram and vram configs to make the migration to dynamic
memory limits smoother for users who had previously overriden these
values.
2025-01-07 16:45:29 +00:00
Ryan Dick
6b18f270dd Bugfix: Offload of GGML-quantized model in torch.inference_mode() cm (#7525)
## Summary

This PR contains a bugfix for an edge case with model unloading (from
VRAM to RAM). Thanks to @JPPhoto for finding it.

The bug was triggered under the following conditions:
- A GGML-quantized model is loaded in VRAM
- We run a Spandrel image-to-image invocation (which is wrapped in a
`torch.inference_mode()` context manager.
- The model cache attempts to unload the GGML-quantized model from VRAM
to RAM.
- Doing this inside of the `torch.inference_mode()` cm results in the
following error:
```
 [2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Error while invoking session 98a07259-0c03-4111-a8d8-107041cb86f9, invocation d8daa90b-7e4c-4fc4-807c-50ba9be1a4ed (spandrel_image_to_image): Cannot set version_counter for inference tensor
[2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Traceback (most recent call last):
  File "/home/ryan/src/InvokeAI/invokeai/app/services/session_processor/session_processor_default.py", line 129, in run_node
    output = invocation.invoke_internal(context=context, services=self._services)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/baseinvocation.py", line 300, in invoke_internal
    output = self.invoke(context)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/spandrel_image_to_image.py", line 167, in invoke
    with context.models.load(self.image_to_image_model) as spandrel_model:
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/load_base.py", line 60, in __enter__
    self._cache.lock(self._cache_record, None)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 224, in lock
    self._load_locked_model(cache_entry, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 272, in _load_locked_model
    vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 458, in _offload_unlocked_models
    cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 330, in _move_model_to_ram
    return cache_entry.cached_model.partial_unload_from_vram(
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/cached_model/cached_model_with_partial_load.py", line 182, in partial_unload_from_vram
    cur_state_dict = self._model.state_dict()
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1939, in state_dict
    module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1936, in state_dict
    self._save_to_state_dict(destination, prefix, keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1843, in _save_to_state_dict
    destination[prefix + name] = param if keep_vars else param.detach()
RuntimeError: Cannot set version_counter for inference tensor
```

### Explanation

From the `torch.inference_mode()` docs:
> Code run under this mode gets better performance by disabling view
tracking and version counter bumps.

Disabling version counter bumps results in the aforementioned error when
saving `GGMLTensor`s to a state_dict.

This incompatibility between `GGMLTensors` and `torch.inference_mode()`
is likely caused by the custom tensor type implementation. There may
very well be a way to get these to cooperate, but for now it is much
simpler to remove the `torch.inference_mode()` contexts.

Note that there are several other uses of `torch.inference_mode()` in
the Invoke codebase, but they are all tight wrappers around the
inference forward pass and do not contain the model load/unload process.

## Related Issues / Discussions

Original discussion:
https://discord.com/channels/1020123559063990373/1149506274971631688/1326180753159094303

## QA Instructions

Find a sequence of operations that triggers the condition. For me, this
was:
- Reserve VRAM in a separate process so that there was ~12GB left.
- Fresh start of Invoke
- Run FLUX inference with a GGML 8K model
- Run Spandrel upscaling

Tests:
- [x] Confirmed that I can reproduce the error and that it is no longer
hit after the change
- [x] Confirm that there is no speed regression from switching from
`torch.inference_mode()` to `torch.no_grad()`.
    - Before: `50.354s`, After: `51.536s`


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 11:31:20 -05:00
Ryan Dick
85eb4f0312 Fix an edge case with model offloading from VRAM to RAM. If a GGML-quantized model is offloaded from VRAM inside of a torch.inference_mode() context manager, this will cause the following error: 'RuntimeError: Cannot set version_counter for inference tensor'. 2025-01-07 15:59:50 +00:00
psychedelicious
67e948b50d chore: bump version to v5.6.0rc1 2025-01-07 19:41:56 +11:00
Riccardo Giovanetti
d9a20f319f translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1639 of 1649 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Riku
38d4863e09 translationBot(ui): update translation (German)
Currently translated at 71.7% (1181 of 1645 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Nik Nikovsky
cd7ba14adc translationBot(ui): update translation (Polish)
Currently translated at 16.5% (273 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 15.4% (254 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 10.8% (178 of 1645 strings)

Co-authored-by: Nik Nikovsky <zejdzztegomaila@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Linos
e5b6beb24d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1649 of 1649 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Ryan Dick
0258b6a04f Partial Loading PR5: Dynamic cache ram/vram limits (#7509)
## Summary

This PR enables RAM/VRAM cache size limits to be determined dynamically
based on availability.

**Config Changes**

This PR modifies the app configs in the following ways:
- A new `device_working_mem_gb` config was added. This is the amount of
non-model working memory to keep available on the execution device (i.e.
GPU) when using dynamic cache limits. It default to 3GB.
- The `ram` and `vram` configs now default to `None`. If these configs
are set, they will take precedence over the dynamic limits. **Note: Some
users may have previously overriden the `ram` and `vram` values in their
`invokeai.yaml`. They will need to remove these configs to enable the
new dynamic limit feature.**

**Working Memory**

In addition to the new `device_working_mem_gb` config described above,
memory-intensive operations can estimate the amount of working memory
that they will need and request it from the model cache. This is
currently applied to the VAE decoding step for all models. In the
future, we may apply this to other operations as we work out which ops
tend to exceed the default working memory reservation.

**Mitigations for https://github.com/invoke-ai/InvokeAI/issues/7513**

This PR includes some mitigations for the issue described in
https://github.com/invoke-ai/InvokeAI/issues/7513. Without these
mitigations, it would occur with higher frequency when dynamic RAM
limits are used and the RAM is close to maxed-out.

## Limitations / Future Work

- Only _models_ can be offloaded to RAM to conserve VRAM. I.e. if VAE
decoding requires more working VRAM than available, the best we can do
is keep the full model on the CPU, but we will still hit an OOM error.
In the future, we could detect this ahead of time and switch to running
inference on the CPU for those ops.
- There is often a non-negligible amount of VRAM 'reserved' by the torch
CUDA allocator, but not used by any allocated tensors. We may be able to
tune the torch CUDA allocator to work better for our use case.
Reference:
https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf
- There may be some ops that require high working memory that haven't
been updated to request extra memory yet. We will update these as we
uncover them.
- If a model is 'locked' in VRAM, it won't be partially unloaded if a
later model load requests extra working memory. This should be uncommon,
but I can think of cases where it would matter.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500 
- #7505 

## QA Instructions

Run a variety of models near the cache limits to ensure that model
switching works properly for the following configurations:
- [x] CUDA, `enable_partial_loading=true`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=true`, CPU and CUDA memory reserved
in another process so there is limited RAM/VRAM remaining, all other
configs default (i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=false`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, ram/vram limits set (these should take precedence over the
dynamic limits)
- [x] MPS, all other default (i.e. dynamic memory limits)
- [x] CPU, all other default (i.e. dynamic memory limits) 

## Merge Plan

- [x] Merge #7505 first and change target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 00:35:39 -05:00
Ryan Dick
87fdcb7f6f Partial Loading PR4: Enable partial loading (behind config flag) (#7505)
## Summary

This PR adds support for partial loading of models onto the GPU. This
enables models to run with much lower peak VRAM requirements (e.g. full
FLUX dev with 8GB of VRAM).

The partial loading feature is enabled behind a new config flag:
`enable_partial_loading=True`. This flag defaults to `False`.

**Note about performance:**
The `ram` and `vram` config limits are still applied when
`enable_partial_loading=True` is set. This can result in significant
slowdowns compared to the 'old' behaviour. Consider the case where the
VRAM limit is set to `vram=0.75` (GB) and we are trying to run an 8GB
model. When `enable_partial_loading=False`, we attempt to load the
entire model into VRAM, and if it fits (no OOM error) then it will run
at full speed. When `enable_partial_loading=True`, since we have the
option to partially load the model we will only load 0.75 GB into VRAM
and leave the remaining 7.25 GB in RAM. This will cause inference to be
much slower than before. To workaround this, it is important that your
`ram` and `vram` configs are carefully tuned. In a future PR, we will
add the ability to dynamically set the RAM/VRAM limits based on the
available memory / VRAM.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500

## QA Instructions

Tests with `enable_partial_loading=True`, `vram=2`, on CUDA device:
For all tests, we expect model memory to stay below 2 GB. Peak working
memory will be higher.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=True`, and hack to force all models
to load 10%, on CUDA device:
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=False`, `vram=30`:
We expect no change in behaviour when  `enable_partial_loading=False`.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Other platforms:
- [x] No change in behavior on MPS, even if
`enable_partial_loading=True`.
- [x] No change in behavior on CPU-only systems, even if
`enable_partial_loading=True`.

## Merge Plan

- [x] Merge #7500 first, and change the target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-06 23:18:31 -05:00
Ryan Dick
d7ab464176 Offload the current model when locking if it is already partially loaded and we have insufficient VRAM. 2025-01-07 02:53:44 +00:00
Ryan Dick
5eafe1ec7a Fix ModelCache execution device selection in unit tests. 2025-01-07 01:20:15 +00:00
Ryan Dick
548b3eddb8 pnpm typegen 2025-01-07 01:20:15 +00:00
Ryan Dick
5b42b7bd45 Add a utility to help with determining the working memory required for expensive operations. 2025-01-07 01:20:15 +00:00
Ryan Dick
71b97ce7be Reduce the likelihood of encountering https://github.com/invoke-ai/InvokeAI/issues/7513 by elminating places where the door was left open for this to happen. 2025-01-07 01:20:15 +00:00
Ryan Dick
b343f81644 Use torch.cuda.memory_allocated() rather than torch.cuda.memory_reserved() to be more conservative in setting dynamic VRAM cache limits. 2025-01-07 01:20:15 +00:00
Ryan Dick
4abfb35321 Tune SD3 VAE decode working memory estimate. 2025-01-07 01:20:15 +00:00
Ryan Dick
cba6528ea7 Add a 20% buffer to all VAE decode working memory estimates. 2025-01-07 01:20:15 +00:00
Ryan Dick
6a5cee61be Tune the working memory estimate for FLUX VAE decoding. 2025-01-07 01:20:15 +00:00
Ryan Dick
bd8017ecd5 Update working memory estimate for VAE decoding when tiling is being applied. 2025-01-07 01:20:15 +00:00
Ryan Dick
299eb94a05 Estimate the working memory required for VAE decoding, since this operations tends to be memory intensive. 2025-01-07 01:20:15 +00:00
Ryan Dick
fc4a22fe78 Allow expensive operations to request more working memory. 2025-01-07 01:20:13 +00:00
Ryan Dick
a167632f09 Calculate model cache size limits dynamically based on the available RAM / VRAM. 2025-01-07 01:14:20 +00:00
Ryan Dick
1321fac8f2 Remove get_cache_size() and set_cache_size() endpoints. These were unused by the frontend and refer to cache fields that are no longer accessible. 2025-01-07 01:06:20 +00:00
Ryan Dick
6a9de1fcf3 Change definition of VRAM in use for the ModelCache from sum of model weights to the total torch.cuda.memory_allocated(). 2025-01-07 00:31:53 +00:00
Ryan Dick
e5180c4e6b Add get_effective_device(...) utility to aid in determining the effective device of models that are partially loaded. 2025-01-07 00:31:00 +00:00
Ryan Dick
2619ef53ca Handle device casting in ia2_layer.py. 2025-01-07 00:31:00 +00:00
Ryan Dick
bcd29c5d74 Remove all cases where we check the 'model.device'. This is no longer trustworthy now that partial loading is permitted. 2025-01-07 00:31:00 +00:00
Ryan Dick
1b7bb70bde Improve handling of cases when application code modifies the size of a model after registering it with the model cache. 2025-01-07 00:31:00 +00:00
Ryan Dick
402dd840a1 Add seed to flaky unit test. 2025-01-07 00:31:00 +00:00
Ryan Dick
7127040c3a Remove unused function set_nested_attr(...). 2025-01-07 00:31:00 +00:00
Ryan Dick
ceb2498a67 Add log prefix to model cache logs. 2025-01-07 00:31:00 +00:00
Ryan Dick
d0bfa019be Add 'enable_partial_loading' config flag. 2025-01-07 00:31:00 +00:00
Ryan Dick
535e45cedf First pass at adding partial loading support to the ModelCache. 2025-01-07 00:30:58 +00:00
Ryan Dick
782ee7a0ec Partial Loading PR 3.5: Fix pre-mature model drops from the RAM cache (#7522)
## Summary

This is an unplanned fix between PR3 and PR4 in the sequence of partial
loading (i.e. low-VRAM) PRs. This PR restores the 'Current Workaround'
documented in https://github.com/invoke-ai/InvokeAI/issues/7513. In
other words, to work around a flaw in the model cache API, this fix
allows models to be loaded into VRAM _even if_ they have been dropped
from the RAM cache.

This PR also adds an info log each time that this workaround is hit. In
a future PR (#7509), we will eliminate the places in the application
code that are capable of triggering this condition.

## Related Issues / Discussions

- #7492 
- #7494
- #7500 
- https://github.com/invoke-ai/InvokeAI/issues/7513

## QA Instructions

- Set RAM cache limit to a small value. E.g. `ram: 4`
- Run FLUX text-to-image with the full T5 encoder, which exceeds 4GB.
This will trigger the error condition.
- Before the fix, this test configuration would cause a `KeyError`.
After the fix, we should see an info-level log explaining that the
condition was hit, but that generation should continue successfully.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-06 19:05:48 -05:00
Ryan Dick
c579a218ef Allow models to be locked in VRAM, even if they have been dropped from the RAM cache (related: https://github.com/invoke-ai/InvokeAI/issues/7513). 2025-01-06 23:02:52 +00:00
Riku
f4f7415a3b fix(app): remove obsolete DEFAULT_PRECISION variable 2025-01-06 11:14:58 +11:00
Mary Hipp
7d6c443d6f fix(api): limit board_name length to 300 characters 2025-01-06 10:49:49 +11:00
psychedelicious
868e06eb8b tests: fix test_model_install.py 2025-01-03 11:21:23 -05:00
psychedelicious
40e4dbe1fb docs: add blurb about setting a HF token when downloading HF models by URL and not repo id 2025-01-03 11:21:23 -05:00
psychedelicious
4815b4ea80 feat(ui): tweak verbiage for model install errors 2025-01-03 11:21:23 -05:00
psychedelicious
d77a6ccd76 fix(ui): model install error toasts not updating correctly 2025-01-03 11:21:23 -05:00
psychedelicious
3e860c8338 feat(ui): starter models filter works with model base
For example, "flux" now matches any starter model with a model base of "FLUX".
2025-01-03 11:21:23 -05:00
psychedelicious
4f2ef7ce76 refactor(ui): handle hf vs civitai/other url model install errors separately
Previously, we didn't differentiate between model install errors for different types of model install sources, resulting in a buggy UX:
- If a HF model install failed, but it was a HF URL install and not a repo id install, the link to the HF model page was incorrect.
- If a non-HF URL install (e.g. civitai) failed, we treated it as a HF URL install. In this case, if the user's HF token was invalid or unset, we directed the user to set it. If the HF token was valid, we displayed an empty red toast. If it's not a HF URL install, then of course neither of these are correct.

Also, the logic for handling the toasts was a bit complicated.

This change does a few things:
- Consolidate the model install error toasts into one place - the socket.io event handler for the model install error event. There is no more global state for the toasts and there are no hooks managing them.
- Handling the different cases for errors, including all combinations of HF/non-HF and unauthorized/forbidden/unknown.
2025-01-03 11:21:23 -05:00
psychedelicious
d7e9ad52f9 chore(ui): typegen 2025-01-03 11:21:23 -05:00
psychedelicious
b6d7a44004 refactor(events): include full model source in model install events
This is required to fix an issue with the MM UI's error handling.

Previously, we only included the model source as a string. That could be an arbitrary URL, file path or HF repo id, but the frontend has no parsing logic to differentiate between these different model sources.

Without access to the type of model source, it is difficult to determine how the user should proceed. For example, if it's HF URL with an HTTP unauthorized error, we should direct the user to log in to HF. But if it's a civitai URL with the same error, we should not direct the user to HF.

There are a variety of related edge cases.

With this change, the full `ModelSource` object is included in each model install event, including error events.

I had to fix some circular import issues, hence the import changes to files other than `events_common.py`.
2025-01-03 11:21:23 -05:00
psychedelicious
e18100ae7e refactor(ui): move model install error event handling to own file
No logic change.
2025-01-03 11:21:23 -05:00
psychedelicious
ad0aa0e6b2 feat(ui): reset canvas layers only resets the layers 2025-01-03 11:02:04 -05:00
psychedelicious
157b92e0fd docs: no need to specify version for dev env setup 2025-01-03 10:59:39 -05:00
psychedelicious
fd838ad9d4 docs: update dev env docs to mirror the launcher's install method 2025-01-03 14:27:45 +11:00
psychedelicious
5e9227c052 docs: update manual install docs to mirror the launcher's install method 2025-01-03 14:27:45 +11:00
Kent Keirsey
94785231ce Update href to correct link 2025-01-02 09:39:41 +11:00
Ryan Dick
b46d7abfb0 Partial Loading PR3: Integrate 1) partial loading, 2) quantized models, 3) model patching (#7500)
## Summary

This PR is the third in a sequence of PRs working towards support for
partial loading of models onto the compute device (for low-VRAM
operation). This PR updates the LoRA patching code so that the following
features can cooperate fully:
- Partial loading of weights onto the GPU
- Quantized layers / weights
- Model patches (e.g. LoRA)

Note that this PR does not yet enable partial loading. It adds support
in the model patching code so that partial loading can be enabled in a
future PR.

## Technical Design Decisions

The layer patching logic has been integrated into the custom layers (via
`CustomModuleMixin`) rather than keeping it in a separate set of wrapper
layers, as before. This has the following advantages:
- It makes it easier to calculate the modified weights on the fly and
then reuse the normal forward() logic.
- In the future, it makes it possible to pass original parameters that
have been cast to the device down to the LoRA calculation without having
to re-cast (but the current implementation hasn't fully taken advantage
of this yet).

## Know Limitations

1. I haven't fully solved device management for patch types that require
the original layer value to calculate the patch. These aren't very
common, and are not compatible with some quantized layers, so leaving
this for future if there's demand.
2. There is a small speed regression for models that have CPU
bottlenecks. This seems to be caused by slightly slower method
resolution on the custom layers sub-classes. The regression does not
show up on larger models, like FLUX, that are almost entirely
GPU-limited. I think this small regression is tolerable, but if we
decide that it's not, then the slowdown can easily be reclaimed by
optimizing other CPU operations (e.g. if we only sent every 2nd progress
image, we'd see a much more significant speedup).

## Related Issues / Discussions

- https://github.com/invoke-ai/InvokeAI/pull/7492
- https://github.com/invoke-ai/InvokeAI/pull/7494

## QA Instructions

Speed tests:
- Vanilla SD1 speed regression
    - Before: 3.156s (8.78 it/s)
    - After: 3.54s (8.35 it/s)
- Vanilla SDXL speed regression
    - Before: 6.23s (4.46 it/s)
    - After: 6.45s (4.31 it/s)
- Vanilla FLUX speed regression
    - Before: 12.02s (2.27 it/s)
    - After: 11.91s (2.29 it/s)

LoRA tests with default configuration:
- [x] SD1: A handful of LoRA variants
- [x] SDXL: A handful of LoRA variants
- [x] flux non-quantized: multiple lora variants
- [x] flux bnb-quantized: multiple lora variants
- [x] flux ggml-quantized: muliple lora variants
- [x] flux non-quantized: FLUX control LoRA
- [x] flux bnb-quantized: FLUX control LoRA
- [x] flux ggml-quantized: FLUX control LoRA

LoRA tests with sidecar patching forced:
- [x] SD1: A handful of LoRA variants
- [x] SDXL: A handful of LoRA variants
- [x] flux non-quantized: multiple lora variants
- [x] flux bnb-quantized: multiple lora variants
- [x] flux ggml-quantized: muliple lora variants
- [x] flux non-quantized: FLUX control LoRA
- [x] flux bnb-quantized: FLUX control LoRA
- [x] flux ggml-quantized: FLUX control LoRA

Other:
- [x] Smoke testing of IP-Adapter, ControlNet

All tests repeated on:
- [x] cuda
- [x] cpu (only test SD1, because larger models are prohibitively slow)
- [x] mps (skipped FLUX tests, because my Mac doesn't have enough memory
to run them in a reasonable amount of time)

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-31 13:58:13 -05:00
Ryan Dick
9a0a226ce1 Fix bitsandbytes imports in unit tests on MacOS. 2024-12-30 10:41:48 -05:00
Ryan Dick
477d87ec31 Fix layer patch dtype selection for CLIP text encoder models. 2024-12-29 21:48:51 +00:00
Ryan Dick
8b4b0ff0cf Fix bug in CustomConv1d and CustomConv2d patch calculations. 2024-12-29 19:10:19 +00:00
Ryan Dick
6fd9b0a274 Delete old sidecar wrapper implementation. This functionality has moved into the custom layers. 2024-12-29 17:33:08 +00:00
Ryan Dick
52fc5a64d4 Add a unit test for a LoRA patch applied to a quantized linear layer with weights streamed from CPU to GPU. 2024-12-29 17:14:55 +00:00
Ryan Dick
a8bef59699 First pass at making custom layer patches work with weights streamed from the CPU to the GPU. 2024-12-29 17:01:37 +00:00
Ryan Dick
6d49ee839c Switch the LayerPatcher to use 'custom modules' to manage layer patching. 2024-12-29 01:18:30 +00:00
Ryan Dick
0525f967c2 Fix the _autocast_forward_with_patches() function for CustomConv1d and CustomConv2d. 2024-12-29 00:22:37 +00:00
Ryan Dick
2855bb6b41 Update BaseLayerPatch.get_parameters(...) to accept a dict of orig_parameters rather than orig_module. This will enable compatibility between patching and cpu->gpu streaming. 2024-12-28 21:12:53 +00:00
Ryan Dick
20acfc9a00 Raise in CustomEmbedding and CustomGroupNorm if a patch is applied. 2024-12-28 20:49:17 +00:00
Ryan Dick
918f541af8 Add unit test for a SetParameterLayer patch applied to a CustomFluxRMSNorm layer. 2024-12-28 20:44:48 +00:00
Ryan Dick
93e76b61d6 Add CustomFluxRMSNorm layer. 2024-12-28 20:33:38 +00:00
Ryan Dick
f692e217ea Add patch support to CustomConv1d and CustomConv2d (no unit tests yet). 2024-12-27 22:23:17 +00:00
Ryan Dick
f2981979f9 Get custom layer patches working with all quantized linear layer types. 2024-12-27 22:00:22 +00:00
Ryan Dick
ef970a1cdc Add support for FluxControlLoRALayer in CustomLinear layers and add a unit test for it. 2024-12-27 21:00:47 +00:00
Ryan Dick
5ee7405f97 Add more unit tests for custom module LoRA patching: multiple LoRAs and ConcatenatedLoRALayers. 2024-12-27 19:47:21 +00:00
Ryan Dick
e24e386a27 Add support for patches to CustomModuleMixin and add a single unit test (more to come). 2024-12-27 18:57:13 +00:00
Ryan Dick
b06d61e3c0 Improve custom layer wrap/unwrap logic. 2024-12-27 16:29:48 +00:00
Ryan Dick
6bf5b747ce Partial Loading PR2: Add utils to support partial loading of models from CPU to GPU (#7494)
## Summary

This PR adds utilities to support partial loading of models from CPU to
GPU. The new utilities are not yet being used by the ModelCache, so
there should be no functional behavior changes in this PR.

Detailed changes:

- Add autocast modules that are designed to wrap common
`torch.nn.Module`s and enable them to run with automatic device casting.
E.g. a linear layer on the CPU can be executed with an input tensor on
the GPU by streaming the weights to the GPU at runtime.
- Add unit tests for the aforementioned autocast modules to verify that
they work for all supported quantization formats (GGUF, BnB NF4, BnB
LLM.int8()).
- Add `CachedModelWithPartialLoad` and `CachedModelOnlyFullLoad` classes
to manage partial loading at the model level.

## Alternative Implementations

Several options were explored for supporting inference on
partially-loaded models. The pros/cons of the explored options are
summarized here for reference. In the end, wrapper modules were selected
as the best overall solution for our use case.

Option 1: Re-implement the .forward() methods of modules to add support
for device conversions
- This is the option implemented in this PR.
- This approach is the most manual of the three, but as a result offers
the broadest compatibility with unusual model types. It is manual in
that we have to explicitly add support for all module types that we wish
to support. Fortunately, the list of foundational module types is
relatively small (e.g. the current set of implemented layers covers all
but 0.04 MB of the full FLUX model.).

Option 2: Implement a custom Tensor type that casts tensors to a
`target_device` each time the tensor is used
- This approach has the nice property that it is injected at the tensor
level, and the model does not need to be modified in any way.
- One challenge with this approach is handling interactions with other
custom tensor types (e.g. GGMLTensor). This problem is solvable, but
definitely introduces a layer of complexity. (There are likely to also
be some similar issues with interactions with the BnB quantization, but
I didn't get as far as testing BnB.)

Option 3: Override the `__torch_function__` dispatch calls globally and
cast all params to the execution device.
- This approach is nice and simple: just apply a global context manager
and all operations will happen on the compute device regardless of the
device of the participating tensors.
- Challenges:
- Overriding the `__torch_function__` dispatch calls introduces some
overhead even if the tensors are already on the correct device.
- It is difficult to manage the autocasting context manager. E.g. it is
tempting to apply it to the model's `.forward(...)` method, but we use
some models with non-standard entrypoints. And we don't want to end up
with nested autocasting context managers.
- BnB applies quantization side effects when a param is moved to the GPU
- this interacts in unexpected ways with a global context manager.


## QA Instructions

Most of the changes in this PR should not impact active code, and thus
should not cause any changes to behavior. The main risks come from
bumping the bitsandbytes dependency and some minor modifications to the
bitsandbytes quantization code.

- [x] Regression test bitsandbytes NF4 quantization
- [x] Regression test bitsandbytes LLM.int8() quantization
- [x] Regression test on MacOS (to ensure that there are no lingering
bitsandbytes import errors)

I also tested the new utilities for inference on full models in another
branch to validate that there were not major issues. This functionality
will be tested more thoroughly in a future PR.

## Merge Plan

- [x] #7492 should be merged first so that the target branch can be
updated to main.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-27 09:20:24 -05:00
Ryan Dick
7d6ab0ceb2 Add a CustomModuleMixin class with a flag for enabling/disabling autocasting (since it incurs some runtime speed overhead.) 2024-12-26 20:08:30 +00:00
Ryan Dick
9692a36dd6 Use a fixture to parameterize tests in test_all_custom_modules.py so that a fresh instance of the layer under test is initialized for each test. 2024-12-26 19:41:25 +00:00
Ryan Dick
b0b699a01f Add unit test to test that isinstance(...) behaves as expected with custom module types. 2024-12-26 18:45:56 +00:00
Ryan Dick
a8b2c4c3d2 Add inference tests for all custom module types (i.e. to test autocasting from cpu to device). 2024-12-26 18:33:46 +00:00
Ryan Dick
03944191db Split test_autocast_modules.py into separate test files to mirror the source file structure. 2024-12-24 22:29:11 +00:00
Ryan Dick
987c9ae076 Move custom autocast modules to separate files in a custom_modules/ directory. 2024-12-24 22:21:31 +00:00
Ryan Dick
6d7314ac0a Consolidate the LayerPatching patching modes into a single implementation. 2024-12-24 15:57:54 +00:00
Ryan Dick
80db9537ff Rename model_patcher.py -> layer_patcher.py. 2024-12-24 15:57:54 +00:00
Ryan Dick
6f926f05b0 Update apply_smart_model_patches() so that layer restore matches the behavior of non-smart mode. 2024-12-24 15:57:54 +00:00
Ryan Dick
61253b91f1 Enable LoRAPatcher.apply_smart_lora_patches(...) throughout the stack. 2024-12-24 15:57:54 +00:00
Ryan Dick
0148512038 (minor) Rename num_layers -> num_loras in unit tests. 2024-12-24 15:57:54 +00:00
Ryan Dick
d0f35fceed Add test_apply_smart_lora_patches_to_partially_loaded_model(...). 2024-12-24 15:57:54 +00:00
Ryan Dick
cefcb340d9 Add LoRAPatcher.smart_apply_lora_patches() 2024-12-24 15:57:54 +00:00
Ryan Dick
0fc538734b Skip flaky test when running on Github Actions, and further reduce peak unit test memory. 2024-12-24 14:32:11 +00:00
Ryan Dick
7214d4969b Workaround a weird quirk of QuantState.to() and add a unit test to exercise it. 2024-12-24 14:32:11 +00:00
Ryan Dick
a83a999b79 Reduce peak memory used for unit tests. 2024-12-24 14:32:11 +00:00
Ryan Dick
f8a6accf8a Fix bitsandbytes imports to avoid ImportErrors on MacOS. 2024-12-24 14:32:11 +00:00
Ryan Dick
f8ab414f99 Add CachedModelOnlyFullLoad to mirror the CachedModelWithPartialLoad for models that cannot or should not be partially loaded. 2024-12-24 14:32:11 +00:00
Ryan Dick
c6795a1b47 Make CachedModelWithPartialLoad work with models that have non-persistent buffers. 2024-12-24 14:32:11 +00:00
Ryan Dick
0a8fc74ae9 Add CachedModelWithPartialLoad to manage partially-loaded models using the new autocast modules. 2024-12-24 14:32:11 +00:00
Ryan Dick
dc54e8763b Add CustomInvokeLinearNF4 to enable CPU -> GPU streaming for InvokeLinearNF4 layers. 2024-12-24 14:32:11 +00:00
Ryan Dick
1b56020876 Add CustomInvokeLinear8bitLt layer for device streaming with InvokeLinear8bitLt layers. 2024-12-24 14:32:11 +00:00
Ryan Dick
3f990393a1 Simplify the state management in InvokeLinear8bitLt and add unit tests. This is in preparation for wrapping it to support streaming of weights from cpu to gpu. 2024-12-24 14:32:11 +00:00
Ryan Dick
97d56f7dc9 Add torch module autocast unit test for GGUF-quantized models. 2024-12-24 14:32:11 +00:00
Ryan Dick
fe0ef2c27c Add torch module autocast utilities. 2024-12-24 14:32:11 +00:00
Ryan Dick
65fcbf5f60 Bump bitsandbytes. The new verson contains improvements to state_dict loading/saving for LLM.int8 and promises improved speed on some HW. 2024-12-24 14:32:11 +00:00
Ryan Dick
d3916dbdb6 Partial Loading PR1: Tidy ModelCache (#7492)
## Summary

This PR tidies up the model cache code in preparation for further
refactoring to support partial loading of models onto the GPU. **These
code changes should not change the functional behavior in any way.**

Changes:
- Remove the `ModelCacheBase` class. `ModelCache` is the only
implementation, so there is no benefit to the separate abstract class.
- Split `CacheRecord` and `CacheStats` out into their own files.
- Remove the `ModelLocker` class. This extra layer of indirection was
not providing any benefit. Locking is now done directly with the
`ModelCache`.
- Tidy up relative imports that were contributing to circular import
issues.
- Pull the 'submodel' concern out of the `ModelCache`. The `ModelCache`
should not need to be aware of the model manager submodel system.
- Delete unused properties from the `ModelCache` (e.g.
`.lazy_offloading`, `.storage_device`, etc.)

## QA Instructions

I ran smoke tests with a variety of SD1, SDXL and FLUX models. No change
to behavior is expected.

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-24 09:30:44 -05:00
Ryan Dick
55b13c1da3 (minor) Add TODO comment regarding the location of get_model_cache_key(). 2024-12-24 14:23:19 +00:00
Ryan Dick
7dc3e0fdbe Get rid of ModelLocker. It was an unnecessary layer of indirection. 2024-12-24 14:23:18 +00:00
Ryan Dick
a39bcf7e85 Move lock(...) and unlock(...) logic from ModelLocker to the ModelCache and make a bunch of ModelCache properties/methods private. 2024-12-24 14:23:18 +00:00
Ryan Dick
a7c72992a6 Pull get_model_cache_key(...) out of ModelCache. The ModelCache should not be concerned with implementation details like the submodel_type. 2024-12-24 14:23:18 +00:00
Ryan Dick
d30a9ced38 Rename model_cache_default.py -> model_cache.py. 2024-12-24 14:23:18 +00:00
Ryan Dick
e0bfa6157b Remove ModelCacheBase. 2024-12-24 14:23:18 +00:00
Ryan Dick
83ea6420e2 Move CacheStats to its own file. 2024-12-24 14:23:18 +00:00
Ryan Dick
ce11a1952e Move CacheRecord out to its own file. 2024-12-24 14:23:18 +00:00
Ryan Dick
e48dee4c4a Rip out ModelLockerBase. 2024-12-24 14:23:18 +00:00
Simon Fuhrmann
712674b6dd Add Stereogram Nodes to communityNodes.md 2024-12-23 13:51:53 -05:00
psychedelicious
de0043f443 docs: update download links for launcher 2024-12-23 13:23:14 +11:00
Riku
d21506da6f feat(ci): add typegen check workflow 2024-12-22 06:05:17 +11:00
psychedelicious
a49894901a docs: fix installation docs home again 2024-12-20 17:35:50 +11:00
psychedelicious
e7e26c8a93 docs: fix installation docs home 2024-12-20 17:12:44 +11:00
psychedelicious
9adcd2cc31 docs: update install-related docs 2024-12-20 17:01:34 +11:00
Kent Keirsey
f9edd009f5 Update README.md 2024-12-20 17:01:34 +11:00
Kent Keirsey
91a4160e36 Update Installation Docs 2024-12-20 17:01:34 +11:00
Kent Keirsey
9c9cec1b43 Update README.md 2024-12-20 17:01:34 +11:00
psychedelicious
948ecf9333 chore: bump version to v5.5.0 2024-12-20 16:17:23 +11:00
psychedelicious
1038f7bcab Update invokeai_version.py 2024-12-20 10:17:09 +11:00
Riccardo Giovanetti
c7d9e2d62a translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1635 of 1645 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.3% (1634 of 1645 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-20 10:07:15 +11:00
Riku
11c3a2e15d translationBot(ui): update translation (German)
Currently translated at 70.8% (1165 of 1645 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-12-20 10:07:15 +11:00
psychedelicious
9e3ca383ec fix(ui): add missing model config to AnyModelConfig union type 2024-12-20 09:45:04 +11:00
Riku
bda83c2634 chore(ui): update typegen schema 2024-12-20 09:45:04 +11:00
Riku
525cb38c71 fix(app): fixed InputField default values 2024-12-20 09:30:56 +11:00
psychedelicious
a9a6720bad feat(app): change queue item execution log from debug to info
This provides useful context for subsequent logs during queue item execution.
2024-12-20 09:19:04 +11:00
psychedelicious
858bf9cf8c feat(api): less verbose uvicorn logs
Uvicorn's logging is rather verbose. This change adds a `log_level_network` config setting to independently control uvicorn's log outputs. The setting defaults to warning.

The change hides the helpful startup message that says the host and port we are running on.

For example: `Uvicorn running on http://0.0.0.0:9090 (Press CTRL+C to quit`

The ASGI lifespan handler is updated to log an equivalent message on startup, regardless of log level settings.

Besides being helpful, the launcher relies on a message like this to launch the app. So, previously, if the user set their log level to anything above info (e.g. warning or error), the launcher would fail to open the app. This change prevents that edge case.
2024-12-20 09:19:04 +11:00
David Hauptman
74a29c3735 re-format to fix ruff error 2024-12-19 22:33:17 +11:00
David Hauptman
6fc6be3aa0 Fix error message when adding a local path with quotes around the string 2024-12-19 22:33:17 +11:00
Mary Hipp
174ea021a6 lint 2024-12-18 12:48:15 -05:00
Mary Hipp
50b804e087 remove space 2024-12-18 12:48:15 -05:00
Mary Hipp
23270d7dfe update copy again 2024-12-18 12:48:15 -05:00
Mary Hipp
39e6f6d53f update whats new copy for control LOras 2024-12-18 12:48:15 -05:00
Mary Hipp
c154d833b9 raise error if control lora used with schnell 2024-12-18 10:19:28 -05:00
Mary Hipp
899a00af62 fix double filter on slow networks 2024-12-18 08:40:50 -05:00
Hosted Weblate
7c9ecdb362 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-12-18 18:05:42 +11:00
Riccardo Giovanetti
4a5255611b translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1634 of 1644 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-12-18 18:05:42 +11:00
Thomas Bolteau
b5b39db304 translationBot(ui): update translation (French)
Currently translated at 97.0% (1595 of 1643 strings)

Co-authored-by: Thomas Bolteau <thomas.bolteau50@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2024-12-18 18:05:42 +11:00
Linos
2cb5743cc5 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1644 of 1644 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1643 of 1643 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1643 of 1643 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2024-12-18 18:05:42 +11:00
Riku
64ee8d491e translationBot(ui): update translation (German)
Currently translated at 70.3% (1156 of 1643 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-12-18 18:05:42 +11:00
psychedelicious
d70d48de45 chore(ui): update whats new 2024-12-18 17:52:39 +11:00
psychedelicious
3f8636330f chore: bump version to v5.4.4rc1 2024-12-18 17:52:39 +11:00
Mary Hipp
0c2f96daf1 add probe for ControlLoRA x diffusers 2024-12-17 14:01:41 -05:00
Brandon Rising
c9b2cce627 Add diffusers config object for control loras 2024-12-17 14:01:41 -05:00
Mary Hipp
401fb392b8 add FLUX control loras to starter models 2024-12-17 09:29:21 -05:00
Ryan Dick
594511cf4a Add FLUX Control LoRA weight param (#7452)
## Summary

Add the ability to control the weight of a FLUX Control LoRA.

## Example

Original image:
<div style="display: flex; gap: 10px;">
<img
src="https://github.com/user-attachments/assets/4a2d9f4a-b58b-4df6-af90-67b018763a38"
alt="Image 1" width="300"/>
</div>

Prompt: `a scarecrow playing tennis`
Weights: 0.4, 0.6, 0.8, 1.0
<div style="display: flex; gap: 10px;">
<img
src="https://github.com/user-attachments/assets/62b83fd6-46ce-460a-8d51-9c2cda9b05c9"
alt="Image 1" width="300"/>
<img
src="https://github.com/user-attachments/assets/75442207-1538-46bc-9d6b-08ac5c235c93"
alt="Image 2" width="300"/>
</div>
<div style="display: flex; gap: 10px;">
<img
src="https://github.com/user-attachments/assets/4a9dc9ea-9757-4965-837e-197fc9243007"
alt="Image 1" width="300"/>
<img
src="https://github.com/user-attachments/assets/846f6918-ca82-4482-8c19-19172752fa8c"
alt="Image 2" width="300"/>
</div>

## QA Instructions

- [x] weight control changes strength of control image
- [x] Test that results match across both quantized and non-quantized.

## Merge Plan

**_Do not merge this PR yet._**

1. Merge #7450 
2. Merge #7446 
3. Change target branch to main
4. Merge this branch.

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-17 08:46:31 -05:00
psychedelicious
d764aa4a2a fix(ui): ensure only the expected properties are used when converting between control layer adapter settings 2024-12-17 13:36:11 +00:00
psychedelicious
ea34726329 chore(ui): lint 2024-12-17 13:36:11 +00:00
Ryan Dick
9b615e0de7 Fix bugs when switching control layer type. This logic still feels very hacky. 2024-12-17 13:36:11 +00:00
Ryan Dick
a463e97269 Bump FluxControlLoRALoaderInvocation version. 2024-12-17 13:36:10 +00:00
Ryan Dick
b272d46056 Enable ability to control the weight of FLUX Control LoRAs. 2024-12-17 13:36:10 +00:00
Ryan Dick
4d5f74c05b LoRA refactor to enable FLUX control LoRAs w/ quantized tranformers (#7446)
## Summary

This PR refactors the LoRA handling code to enable the use of FLUX
control LoRAs on top of quantized transformers.

Changes:
- Renamed a bunch of the model patching utilities to reflect that they
are not LoRA-specific
- Improved the unit test coverage.
- Refactored the handling of 'sidecar' patch layers to make them work
with more layer patch types. (This was necessary to get FLUX control
LoRAs working on top of quantized models.)
- Removed `ONNXModelPatcher`. It is out-of-date and hasn't been used in
a while.


## QA Instructions

I completed the following tests.

**These should be repeated after changing the target branch to main.**

**Due to the large surface area of this PR, reviewers should do
regression tests on a range of LoRA formats. There is a risk of
regression on a specific format that was missed during the
refactoring.**

- [x] FLUX Control LoRA + full FLUX transformer
- [x] FLUX Control LoRA + BnB NF4 quantized transformer
- [x] FLUX Control LoRA + GGUF quantized transformer
- [x] FLUX Control LoRA + non-control LoRA + full FLUX transformer
- [x] FLUX Contro LoRA + non-control LoRA + BnB quantized transformer
- [x] FLUX Control LoRA + non-control LoRA + GGUF quantized transformer
- Test the following cases for regression:
    - [x] Misc SD1/SDXL LoRA variants (LoRA, LoKr, IA3)
    - [x] FLUX, non-quantized, variety of LoRA formats
    - [x] FLUX, quantized, variety of LoRA formats

## Merge Plan

**_Don't merge this PR yet._**

Merge plan:
1. First merge brandon/flux-tools-loras into main
2. Change the target branch of this PR to main
3. Review / test / merge this PR

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-12-17 08:30:50 -05:00
Ryan Dick
dd09509dbd Rename ModelPatcher -> LayerPatcher to avoid conflicts with another ModelPatcher definition. 2024-12-17 13:20:19 +00:00
Ryan Dick
7fad4c9491 Rename LoRAModelRaw to ModelPatchRaw. 2024-12-17 13:20:19 +00:00
Ryan Dick
b820862eab Rename ModelPatcher methods to reflect that they are general model patching methods and are not LoRA-specific. 2024-12-17 13:20:19 +00:00
Ryan Dick
c604a0956e Rename LoRAPatcher -> ModelPatcher. 2024-12-17 13:20:19 +00:00
Ryan Dick
9369b39a12 Add GGMLTensor op. 2024-12-17 13:20:19 +00:00
Ryan Dick
80f64abd1e Use a FluxControlLoRALayer when loading FLUX control LoRAs. 2024-12-17 13:20:19 +00:00
Ryan Dick
37e3089457 Push LoRA layer reshaping down into the patch layers and add a new FluxControlLoRALayer type. 2024-12-17 13:20:19 +00:00
Ryan Dick
fe09f2d27a Move handling of LoRA scale and patch weight down into the layer patch classes. 2024-12-17 13:20:19 +00:00
Ryan Dick
e7e3f7e144 Ensure that patches are on the correct device when used in sidecar wrappers. 2024-12-17 13:20:19 +00:00
Ryan Dick
606d58d7db Add sidecar wrapper for FLUX RMSNorm layers to support SetParameterLayers used by FLUX structural control LoRAs. 2024-12-17 13:20:19 +00:00
Ryan Dick
c76a448846 Delete old sidecar_layers/ dir. 2024-12-17 13:20:19 +00:00
Ryan Dick
46133b5656 Switch LoRAPatcher to use the new sidecar_wrappers/ rather than sidecar_layers/. 2024-12-17 13:20:19 +00:00
Ryan Dick
ac28370fd2 Break up functions in LoRAPatcher in preparation for more refactoring. 2024-12-17 13:20:19 +00:00
Ryan Dick
1e0552c813 Add optimized implementations for the LinearSidecarWrapper when using LoRALayer or ConcatenatedLoRALayer patch types (since these are the most common). 2024-12-17 13:20:19 +00:00
Ryan Dick
e2451ef5ca A unit tests for LinearSidecarWrapper (and fix a bug). 2024-12-17 13:20:19 +00:00
Ryan Dick
443d838fd0 Add initial basic implementation of sidecar wrappers. 2024-12-17 13:20:19 +00:00
Ryan Dick
3a8a5442ea Add basic unit tests for SetParameterLayer. 2024-12-17 13:20:19 +00:00
Ryan Dick
808e3770d3 Remove AnyLoRALayer type definition in favor of using BaseLayerPatch base class. 2024-12-17 13:20:19 +00:00
Ryan Dick
2b441d6a2d Add BaseLayerPatch ABC to clarify the intended patch interface. 2024-12-17 13:20:19 +00:00
Ryan Dick
58de93a89e Delete empty file. 2024-12-17 13:20:19 +00:00
Ryan Dick
1eede4315e Delete ONNXModelPatcher. It is outdated and hasn't been used for a long time. 2024-12-17 13:20:19 +00:00
Ryan Dick
8ea697d733 Mark LoRALayerBase.rank(...) as a private method. 2024-12-17 13:20:19 +00:00
Ryan Dick
693d42661c Add basic unit tests for LoRALayer. 2024-12-17 13:20:19 +00:00
Ryan Dick
41664f88db Rename backend/patches/conversions/ to backend/patches/lora_conversions/ 2024-12-17 13:20:19 +00:00
Ryan Dick
42f8d6aa11 Rename backend/lora/ to backend/patches 2024-12-17 13:20:19 +00:00
psychedelicious
5f41a69665 feat(ui): prevent invoking when >1 control lora enabled 2024-12-17 07:28:45 -05:00
Ryan Dick
7da90a9b6b Ensure that model probe does not crash with integer state dict keys. 2024-12-17 07:28:45 -05:00
Ryan Dick
440185cc40 Simplify FLUX control LoRA probing. 2024-12-17 07:28:45 -05:00
Ryan Dick
26edc71268 ruff format 2024-12-17 07:28:45 -05:00
Ryan Dick
a4bed7aee3 Minor tidy of FLUX control LoRA implementation. (mostly documentation) 2024-12-17 07:28:45 -05:00
Ryan Dick
5fcd76a712 Fix frontend FLUX graph construction for FLUX control LoRAs. 2024-12-17 07:28:45 -05:00
Mary Hipp
516ffa641c add logic to change type to control_lora properly 2024-12-17 07:28:45 -05:00
Ryan Dick
d84adfd39f Clean up FLUX control LoRA pre-processing logic. 2024-12-17 07:28:45 -05:00
Ryan Dick
ac82f73dbe Make FluxControlLoRALoaderOutput.control_lora non-optional. 2024-12-17 07:28:45 -05:00
Brandon Rising
70811d0bd0 Remove unexpected artifacts in output images 2024-12-17 07:28:45 -05:00
Mary Hipp
e0344a302c feat(ui): update FLUX graph building to include control layers with control loras 2024-12-17 07:28:45 -05:00
Mary Hipp
92b0d89b70 (ui): replace logic for controlnet/t2i to include control_loras and display default settings in model manager 2024-12-17 07:28:45 -05:00
Mary Hipp
da213e4638 feat(ui): add control loras to control adapter model options, add default settings for preprocessor in probe 2024-12-17 07:28:45 -05:00
Brandon Rising
246b59f148 Run pnpm fix, regenerate schema 2024-12-17 07:28:45 -05:00
Brandon Rising
046d19446c Rename Structural Lora to Control Lora 2024-12-17 07:28:45 -05:00
Ryan Dick
040551d4fb Fixes to get FLUX Control LoRA working. 2024-12-17 07:28:45 -05:00
Brandon Rising
f53da60b84 Lots of updates centered around using the lora patcher rather than changing the modules in the transformer model 2024-12-17 07:28:45 -05:00
Brandon Rising
5a035dd19f Support bnb quantized nf4 flux models, Use controlnet vae, only support 1 structural lora per transformer. various other refractors and bugfixes 2024-12-17 07:28:45 -05:00
Brandon Rising
f3b253987f Initial setup for flux tools control loras 2024-12-17 07:28:45 -05:00
psychedelicious
25ff7918e8 chore(ui): knip 2024-12-16 18:57:43 -08:00
psychedelicious
09fc60acb0 feat(ui): show toasts when filter, transform, select or crop fails 2024-12-16 18:57:43 -08:00
psychedelicious
6f55f2c723 refactor(ui): simpler handling for graph building in enqueuerequested listener 2024-12-16 18:57:43 -08:00
psychedelicious
03b815c884 feat(uI): improved error handling for generation mode calcuation
Wrap logic that might throw in a result and handle log it if it errors before throwing.
2024-12-16 18:57:43 -08:00
psychedelicious
9cecdd17eb feat(uI): improved error handling when getting composite canvas images
Wrap logic that might throw in a result and handle log it if it errors before throwing.
2024-12-16 18:57:43 -08:00
psychedelicious
6b0f7ab57c feat(uI): improved error handling during rasterization
- Ensure the currently-rasterizing adapter is reset to `null` on success or failure of a rasterization operation. In case of failure, this prevents the UI from getting stuck with a disabled Invoke button and tooltip message "Canvas is busy (rasterizing)".
- Log the error if there is one.
2024-12-16 18:57:43 -08:00
psychedelicious
c805e38da2 fix(ui): remove duplicate log on socket connect 2024-12-16 18:57:43 -08:00
psychedelicious
2c1de0f07d fix(ui): missing translation string 2024-12-12 22:44:43 -08:00
psychedelicious
261d5ab488 docs: add redirect for patchmatch docs
The patchmatch lib links directly to our docs: https://invoke-ai.github.io/InvokeAI/installation/060_INSTALL_PATCHMATCH/

That URL doesn't exist any more. Added a redirect to the new URL.
2024-12-12 22:41:05 -08:00
Mary Hipp
ca571cd7a9 swap global and regional 2024-12-12 15:53:18 -05:00
342 changed files with 17680 additions and 4310 deletions

85
.github/workflows/typegen-checks.yml vendored Normal file
View File

@@ -0,0 +1,85 @@
# Runs typegen schema quality checks.
# Frontend types should match the server.
#
# Checks for changes to files before running the checks.
# If always_run is true, always runs the checks.
name: 'typegen checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
typegen-checks:
runs-on: ubuntu-22.04
timeout-minutes: 15 # expected run time: <5 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install python dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: pip3 install --use-pep517 --editable="."
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: copy schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cp invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts
shell: bash
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: make frontend-typegen
shell: bash
- name: compare files
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: |
if ! diff invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts; then
echo "Files are different!";
exit 1;
fi
shell: bash

1
.nvmrc Normal file
View File

@@ -0,0 +1 @@
v22.12.0

View File

@@ -30,51 +30,12 @@ Invoke is available in two editions:
|----------------------------------------------------------------------------------------------------------------------------|
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
</div>
# Installation
## Quick Start
To get started with Invoke, [Download the Installer](https://www.invoke.com/downloads).
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
For detailed step by step instructions, or for instructions on manual/docker installations, visit our documentation on [Installation and Updates][installation docs]
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Docker Container
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
> [!IMPORTANT]
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
### Generate!
Run the container, modifying the command as necessary:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
### Persist your data
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
### DIY
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
## Troubleshooting, FAQ and Support

View File

@@ -39,7 +39,7 @@ It has two sections - one for internal use and one for user settings:
```yaml
# Internal metadata - do not edit:
schema_version: 4
schema_version: 4.0.2
# Put user settings here - see https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/:
host: 0.0.0.0 # serve the app on your local network
@@ -83,6 +83,10 @@ A subset of settings may be specified using CLI args:
- `--root`: specify the root directory
- `--config`: override the default `invokeai.yaml` file location
### Low-VRAM Mode
See the [Low-VRAM mode docs][low-vram] for details on enabling this feature.
### All Settings
Following the table are additional explanations for certain settings.
@@ -114,6 +118,10 @@ remote_api_tokens:
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
!!! tip "HuggingFace Models"
If you get an error when installing a HF model using a URL instead of repo id, you may need to [set up a HF API token](https://huggingface.co/settings/tokens) and add an entry for it under `remote_api_tokens`. Use `huggingface.co` for `url_regex`.
#### Model Hashing
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
@@ -181,3 +189,4 @@ The `log_format` option provides several alternative formats:
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys
[low-vram]: ./features/low-vram.md

View File

@@ -1364,7 +1364,6 @@ the in-memory loaded model:
|----------------|-----------------|------------------|
| `config` | AnyModelConfig | A copy of the model's configuration record for retrieving base type, etc. |
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
### get_model_by_key(key, [submodel]) -> LoadedModel

View File

@@ -1,12 +1,10 @@
# Dev Environment
To make changes to Invoke's backend, frontend, or documentation, you'll need to set up a dev environment.
To make changes to Invoke's backend, frontend or documentation, you'll need to set up a dev environment.
If you just want to use Invoke, you should use the [installer][installer link].
If you only want to make changes to the docs site, you can skip the frontend dev environment setup as described in the below guide.
!!! info "Why do I need the frontend toolchain?"
The repo doesn't contain a build of the frontend. You'll be responsible for rebuilding it every time you pull in new changes, or run it in dev mode (which incurs a substantial performance penalty).
If you just want to use Invoke, you should use the [launcher][launcher link].
!!! warning
@@ -17,84 +15,66 @@ If you just want to use Invoke, you should use the [installer][installer link].
## Setup
1. Run through the [requirements][requirements link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Create a python virtual environment inside the directory you just created:
4. Follow the [manual install][manual install link] guide, with some modifications to the install command:
- Use `.` instead of `invokeai` to install from the current directory. You don't need to specify the version.
- Add `-e` after the `install` operation to make this an [editable install][editable install link]. That means your changes to the python code will be reflected when you restart the Invoke server.
- When installing the `invokeai` package, add the `dev`, `test` and `docs` package options to the package specifier. You may or may not need the `xformers` option - follow the manual install guide to figure that out. So, your package specifier will be either `".[dev,test,docs]"` or `".[dev,test,docs,xformers]"`. Note the quotes!
With the modifications made, the install command should look something like this:
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
```
5. Activate the venv (you'll need to do this every time you want to run the app):
5. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
This is because the UI build is not distributed with the source code. You need to build it manually. End the running server instance.
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
6. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
7. Do a production build of the frontend:
```sh
source .venv/bin/activate
```
6. Install the repo as an [editable install][editable install link]:
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
7. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
8. Do a production build of the frontend:
```sh
cd PATH_TO_INVOKEAI_REPO/invokeai/frontend/web
cd <PATH_TO_INVOKEAI_REPO>/invokeai/frontend/web
pnpm i
pnpm build
```
9. Start the application:
```sh
cd PATH_TO_INVOKEAI_REPO
python scripts/invokeai-web.py
```
10. Access the UI at `localhost:9090`.
8. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
## Updating the UI
You'll need to run `pnpm build` every time you pull in new changes. Another option is to skip the build and instead run the app in dev mode:
You'll need to run `pnpm build` every time you pull in new changes.
Another option is to skip the build and instead run the UI in dev mode:
```sh
pnpm dev
```
This starts a dev server at `localhost:5173`, which you will use instead of `localhost:9090`.
This starts a vite dev server for the UI at `127.0.0.1:5173`, which you will use instead of `127.0.0.1:9090`.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out.
The dev mode is substantially slower than the production build but may be more convenient if you just need to test things out. It will hot-reload the UI as you make changes to the frontend code. Sometimes the hot-reload doesn't work, and you need to manually refresh the browser tab.
## Documentation
The documentation is built with `mkdocs`. To preview it locally, you need a additional set of packages installed.
The documentation is built with `mkdocs`. It provides a hot-reload dev server for the docs. Start it with `mkdocs serve`.
```sh
# after activating the venv
pip install -e ".[docs]"
```
Then, you can start a live docs dev server, which will auto-refresh when you edit the docs:
```sh
mkdocs serve
```
On macOS and Linux, there is a `make` target for this:
```sh
make docs
```
[installer link]: ../installation/installer.md
[launcher link]: ../installation/quick_start.md
[forking link]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[requirements link]: ../installation/requirements.md
[repo link]: https://github.com/invoke-ai/InvokeAI

View File

@@ -1,26 +1,18 @@
# FAQ
!!! info "How to Reinstall"
Many issues can be resolved by re-installing the application. You won't lose any data by re-installing. We suggest downloading the [latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) and using it to re-install the application. Consult the [installer guide](./installation/installer.md) for more information.
When you run the installer, you'll have an option to select the version to install. If you aren't ready to upgrade, you choose the current version to fix a broken install.
If the troubleshooting steps on this page don't get you up and running, please either [create an issue] or hop on [discord] for help.
## How to Install
You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases).
Note that any releases marked as _pre-release_ are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the [latest release].
Follow the [Quick Start guide](./installation/quick_start.md) to install Invoke.
## Downloading models and using existing models
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
## Missing models after updating to v4
## Missing models after updating from v3
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
If you find some models are missing after updating from v3, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
@@ -37,115 +29,27 @@ Follow the same steps to scan and import the missing models.
## Slow generation
- Check the [system requirements] to ensure that your system is capable of generating images.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)
Ensure that you checked **Add python.exe to PATH** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, you can re-run the python installer, choose the Modify option and check the box.
- Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
- Check that your generations are happening on your GPU (if you have one). Invoke will log what is being used for generation upon startup. If your GPU isn't used, re-install to and ensure you select the appropriate GPU option.
- If you are on Windows with an Nvidia GPU, you may have exceeded your GPU's VRAM capacity and are triggering Nvidia's "sysmem fallback". There's a guide to opt out of this behaviour in the [Low-VRAM mode guide](./features/low-vram.md).
## Triton error on startup
This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
This can be safely ignored. Invoke doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
## Updated to 3.4.0 and xformers cant load C++/CUDA
## Unable to Copy on Firefox
An issue occurred with your PyTorch update. Follow these steps to fix :
Firefox does not allow Invoke to directly access the clipboard by default. As a result, you may be unable to use certain copy functions. You can fix this by configuring Firefox to allow access to write to the clipboard:
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
Note that v3.4.0 is an old, unsupported version. Please upgrade to the [latest release].
## Install failed and says `pip` is out of date
An out of date `pip` typically won't cause an installation to fail. The cause of the error can likely be found above the message that says `pip` is out of date.
If you saw that warning but the install went well, don't worry about it (but you can update `pip` afterwards if you'd like).
- Go to `about:config` and click the Accept button
- Search for `dom.events.asyncClipboard.clipboardItem`
- Set it to `true` by clicking the toggle button
- Restart Firefox
## Replicate image found online
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
## OSErrors on Windows while installing dependencies
During a zip file installation or an update, installation stops with an error like this:
![broken-dependency-screenshot](./assets/troubleshooting/broken-dependency.png){:width="800px"}
To resolve this, re-install the application as described above.
## HuggingFace install failed due to invalid access token
Some HuggingFace models require you to authenticate using an [access token].
Invoke doesn't manage this token for you, but it's easy to set it up:
- Follow the instructions in the link above to create an access token. Copy it.
- Run the launcher script.
- Select option 2 (developer console).
- Paste the following command:
```sh
python -c "import huggingface_hub; huggingface_hub.login()"
```
- Paste your access token when prompted and press Enter. You won't see anything when you paste it.
- Type `n` if prompted about git credentials.
If you get an error, try the command again - maybe the token didn't paste correctly.
Once your token is set, start Invoke and try downloading the model again. The installer will automatically use the access token.
If the install still fails, you may not have access to the model.
## Stable Diffusion XL generation fails after trying to load UNet
InvokeAI is working in other respects, but when trying to generate
images with Stable Diffusion XL you get a "Server Error". The text log
in the launch window contains this log line above several more lines of
error messages:
`INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet`
This failure mode occurs when there is a network glitch during
downloading the very large SDXL model.
To address this, first go to the Model Manager and delete the
Stable-Diffusion-XL-base-1.X model. Then, click the HuggingFace tab,
paste the Repo ID stabilityai/stable-diffusion-xl-base-1.0 and install
the model.
## Package dependency conflicts during installation or update
If you have previously installed InvokeAI or another Stable Diffusion
package, the installer may occasionally pick up outdated libraries and
either the installer or `invoke` will fail with complaints about
library conflicts.
To resolve this, re-install the application as described above.
## Invalid configuration file
Everything seems to install ok, you get a `ValidationError` when starting up the app.
@@ -154,64 +58,9 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
Check the [configuration docs] for more detail about the settings and how to specify them.
## `ModuleNotFoundError: No module named 'controlnet_aux'`
## Out of Memory Errors
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
- Run the Invoke launcher
- Choose the developer console option
- Run this command: `pip cache remove controlnet_aux`
- Close the terminal window
- Download and run the [installer][latest release], selecting your current install location
## Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself
faced with Out of Memory errors when generating images. Here are some
tips to reduce the problem:
!!! info "Optimizing for GPU VRAM"
=== "4GB VRAM GPU"
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
and derived models, provided that you do not use the NSFW checker. It won't be loaded unless you go into the UI settings and turn it on.
If you are on a CUDA-enabled GPU, we will automatically use xformers or torch-sdp to reduce VRAM requirements, though you can explicitly configure this. See the [configuration docs].
=== "6GB VRAM GPU"
This is a border case. Using the SD 1.5 series you should be able to
generate images up to 640x640 with the NSFW checker enabled, and up to
1024x1024 with it disabled.
If you run into persistent memory issues there are a series of
environment variables that you can set before launching InvokeAI that
alter how the PyTorch machine learning library manages memory. See
<https://pytorch.org/docs/stable/notes/cuda.html#memory-management> for
a list of these tweaks.
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Checkpoint Models Load Slowly or Use Too Much RAM
The difference between diffusers models (a folder containing multiple
subfolders) and checkpoint models (a file ending with .safetensors or
.ckpt) is that InvokeAI is able to load diffusers models into memory
incrementally, while checkpoint models must be loaded all at
once. With very large models, or systems with limited RAM, you may
experience slowdowns and other memory-related issues when loading
checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will convert the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.
The models are large, VRAM is expensive, and you may find yourself faced with Out of Memory errors when generating images. Follow our [Low-VRAM mode guide](./features/low-vram.md) to configure Invoke to prevent these.
## Memory Leak (Linux)
@@ -253,8 +102,6 @@ Note the differences between memory allocated as chunks in an arena vs. memory a
[model install docs]: ./installation/models.md
[system requirements]: ./installation/requirements.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy
[configuration docs]: ./configuration.md
[access token]: https://huggingface.co/docs/hub/security-tokens#how-to-manage-user-access-tokens

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

163
docs/features/low-vram.md Normal file
View File

@@ -0,0 +1,163 @@
---
title: Low-VRAM mode
---
As of v5.6.0, Invoke has a low-VRAM mode. It works on systems with dedicated GPUs (Nvidia GPUs on Windows/Linux and AMD GPUs on Linux).
This allows you to generate even if your GPU doesn't have enough VRAM to hold full models. Most users should be able to run even the beefiest models - like the ~24GB unquantised FLUX dev model.
## Enabling Low-VRAM mode
To enable Low-VRAM mode, add this line to your `invokeai.yaml` configuration file, then restart Invoke:
```yaml
enable_partial_loading: true
```
**Windows users should also [disable the Nvidia sysmem fallback](#disabling-nvidia-sysmem-fallback-windows-only)**.
It is possible to fine-tune the settings for best performance or if you still get out-of-memory errors (OOMs).
!!! tip "How to find `invokeai.yaml`"
The `invokeai.yaml` configuration file lives in your install directory. To access it, run the **Invoke Community Edition** launcher and click the install location. This will open your install directory in a file explorer window.
You'll see `invokeai.yaml` there and can edit it with any text editor. After making changes, restart Invoke.
If you don't see `invokeai.yaml`, launch Invoke once. It will create the file on its first startup.
## Details and fine-tuning
Low-VRAM mode involves 4 features, each of which can be configured or fine-tuned:
- Partial model loading (`enable_partial_loading`)
- Dynamic RAM and VRAM cache sizes (`max_cache_ram_gb`, `max_cache_vram_gb`)
- Working memory (`device_working_mem_gb`)
- Keeping a RAM weight copy (`keep_ram_copy_of_weights`)
Read on to learn about these features and understand how to fine-tune them for your system and use-cases.
### Partial model loading
Invoke's partial model loading works by streaming model "layers" between RAM and VRAM as they are needed.
When an operation needs layers that are not in VRAM, but there isn't enough room to load them, inactive layers are offloaded to RAM to make room.
#### Enabling partial model loading
As described above, you can enable partial model loading by adding this line to `invokeai.yaml`:
```yaml
enable_partial_loading: true
```
### Dynamic RAM and VRAM cache sizes
Loading models from disk is slow and can be a major bottleneck for performance. Invoke uses two model caches - RAM and VRAM - to reduce loading from disk to a minimum.
By default, Invoke manages these caches' sizes dynamically for best performance.
#### Fine-tuning cache sizes
Prior to v5.6.0, the cache sizes were static, and for best performance, many users needed to manually fine-tune the `ram` and `vram` settings in `invokeai.yaml`.
As of v5.6.0, the caches are dynamically sized. The `ram` and `vram` settings are no longer used, and new settings are added to configure the cache.
**Most users will not need to fine-tune the cache sizes.**
But, if your GPU has enough VRAM to hold models fully, you might get a perf boost by manually setting the cache sizes in `invokeai.yaml`:
```yaml
# The default max cache RAM size is logged on InvokeAI startup. It is determined based on your system RAM / VRAM.
# You can override the default value by setting `max_cache_ram_gb`.
# Increasing `max_cache_ram_gb` will increase the amount of RAM used to cache inactive models, resulting in faster model
# reloads for the cached models.
# As an example, if your system has 32GB of RAM and no other heavy processes, setting the `max_cache_ram_gb` to 28GB
# might be a good value to achieve aggressive model caching.
max_cache_ram_gb: 28
# The default max cache VRAM size is adjusted dynamically based on the amount of available VRAM (taking into
# consideration the VRAM used by other processes).
# You can override the default value by setting `max_cache_vram_gb`. Note that this value takes precedence over the
# `device_working_mem_gb`.
# It is recommended to set the VRAM cache size to be as large as possible while leaving enough room for the working
# memory of the tasks you will be doing. For example, on a 24GB GPU that will be running unquantized FLUX without any
# auxiliary models, 18GB might be a good value.
max_cache_vram_gb: 18
```
!!! tip "Max safe value for `max_cache_vram_gb`"
To determine the max safe value for `max_cache_vram_gb`, subtract `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
For example, if you have a 12GB GPU, the max safe value for `max_cache_vram_gb` is `12GB - 3GB = 9GB`.
If you had increased `device_working_mem_gb` to 4GB, then the max safe value for `max_cache_vram_gb` is `12GB - 4GB = 8GB`.
### Working memory
Invoke cannot use _all_ of your VRAM for model caching and loading. It requires some VRAM to use as working memory for various operations.
Invoke reserves 3GB VRAM as working memory by default, which is enough for most use-cases. However, it is possible to fine-tune this setting if you still get OOMs.
#### Fine-tuning working memory
You can increase the working memory size in `invokeai.yaml` to prevent OOMs:
```yaml
# The default is 3GB - bump it up to 4GB to prevent OOMs.
device_working_mem_gb: 4
```
!!! tip "Operations may request more working memory"
For some operations, we can determine VRAM requirements in advance and allocate additional working memory to prevent OOMs.
VAE decoding is one such operation. This operation converts the generation process's output into an image. For large image outputs, this might use more than the default working memory size of 3GB.
During this decoding step, Invoke calculates how much VRAM will be required to decode and requests that much VRAM from the model manager. If the amount exceeds the working memory size, the model manager will offload cached model layers from VRAM until there's enough VRAM to decode.
Once decoding completes, the model manager "reclaims" the extra VRAM allocated as working memory for future model loading operations.
### Keeping a RAM weight copy
Invoke has the option of keeping a RAM copy of all model weights, even when they are loaded onto the GPU. This optimization is _on_ by default, and enables faster model switching and LoRA patching. Disabling this feature will reduce the average RAM load while running Invoke (peak RAM likely won't change), at the cost of slower model switching and LoRA patching. If you have limited RAM, you can disable this optimization:
```yaml
# Set to false to reduce the average RAM usage at the cost of slower model switching and LoRA patching.
keep_ram_copy_of_weights: false
```
### Disabling Nvidia sysmem fallback (Windows only)
On Windows, Nvidia GPUs are able to use system RAM when their VRAM fills up via **sysmem fallback**. While it sounds like a good idea on the surface, in practice it causes massive slowdowns during generation.
It is strongly suggested to disable this feature:
- Open the **NVIDIA Control Panel** app.
- Expand **3D Settings** on the left panel.
- Click **Manage 3D Settings** in the left panel.
- Find **CUDA - Sysmem Fallback Policy** in the right panel and set it to **Prefer No Sysmem Fallback**.
![cuda-sysmem-fallback](./cuda-sysmem-fallback.png)
!!! tip "Invoke does the same thing, but better"
If the sysmem fallback feature sounds familiar, that's because Invoke's partial model loading strategy is conceptually very similar - use VRAM when there's room, else fall back to RAM.
Unfortunately, the Nvidia implementation is not optimized for applications like Invoke and does more harm than good.
## Troubleshooting
### Windows page file
Invoke has high virtual memory (a.k.a. 'committed memory') requirements. This can cause issues on Windows if the page file size limits are hit. (See this issue for the technical details on why this happens: https://github.com/invoke-ai/InvokeAI/issues/7563).
If you run out of page file space, InvokeAI may crash. Often, these crashes will happen with one of the following errors:
- InvokeAI exits with Windows error code `3221225477`
- InvokeAI crashes without an error, but `eventvwr.msc` reveals an error with code `0xc0000005` (the hex equivalent of `3221225477`)
If you are running out of page file space, try the following solutions:
- Make sure that you have sufficient disk space for the page file to grow. Watch your disk usage as Invoke runs. If it climbs near 100% leading up to the crash, then this is very likely the source of the issue. Clear out some disk space to resolve the issue.
- Make sure that your page file is set to "System managed size" (this is the default) rather than a custom size. Under the "System managed size" policy, the page file will grow dynamically as needed.

View File

@@ -50,11 +50,9 @@ title: Invoke
## Installation
The [installer script](installation/installer.md) is the easiest way to install and update the application.
The [Invoke Launcher](installation/quick_start.md) is the easiest way to install, update and run Invoke on Windows, macOS and Linux.
You can also install Invoke as python package [via PyPI](installation/manual.md) or [docker](installation/docker.md).
See the [installation section](./installation/index.md) for more information.
You can also install Invoke as [python package](installation/manual.md) or with [docker](installation/docker.md).
## Help

View File

@@ -4,7 +4,7 @@ title: Docker
!!! warning "macOS users"
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [installer](./installer.md) instead.
Docker can not access the GPU on macOS, so your generation speeds will be slow. Use the [launcher](./quick_start.md) instead.
!!! tip "Linux and Windows Users"

View File

@@ -1,36 +0,0 @@
# Installation and Updating Overview
Before installing, review the [installation requirements](./requirements.md) to ensure your system is set up properly.
See the [FAQ](../faq.md) for frequently-encountered installation issues.
If you need more help, join our [discord](https://discord.gg/ZmtBAhwWhy) or [create a GitHub issue](https://github.com/invoke-ai/InvokeAI/issues).
## Automated Installer & Updates
✅ The automated [installer](./installer.md) is the best way to install Invoke.
⬆️ The same installer is also the best way to update Invoke - simply rerun it for the same folder you installed to.
The installation process simply manages installation for the core libraries & application dependencies that run Invoke.
Models, images, or other assets in the Invoke root folder won't be affected by the installation process.
## Manual Install
If you are familiar with python and want more control over the packages that are installed, you can [install Invoke manually via PyPI](./manual.md).
Updates are managed by reinstalling the latest version through PyPi.
## Developer Install
If you want to contribute to InvokeAI, you'll need to set up a [dev environment](../contributing/dev-environment.md).
## Docker
Invoke publishes docker images. See the [docker installation guide](./docker.md) for details.
## Other Installation Guides
- [PyPatchMatch](./patchmatch.md)
- [Installing Models](./models.md)

View File

@@ -1,4 +1,10 @@
# Automatic Install & Updates
# Legacy Scripts
!!! warning "Legacy Scripts"
We recommend using the Invoke Launcher to install and update Invoke. It's a desktop application for Windows, macOS and Linux. It takes care of a lot of nitty gritty details for you.
Follow the [quick start guide](./quick_start.md) to get started.
!!! tip "Use the installer to update"

View File

@@ -4,11 +4,11 @@
**Python experience is mandatory.**
If you want to use Invoke locally, you should probably use the [installer](./installer.md).
If you want to use Invoke locally, you should probably use the [launcher](./quick_start.md).
If you want to contribute to Invoke, instead follow the [dev environment](../contributing/dev-environment.md) guide.
If you want to contribute to Invoke or run the app on the latest dev branch, instead follow the [dev environment](../contributing/dev-environment.md) guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the launcher that you'll need to manage manually, described in this guide.
## Requirements
@@ -16,43 +16,39 @@ Before you start, go through the [installation requirements](./requirements.md).
## Walkthrough
1. Create a directory to contain your InvokeAI library, configuration files, and models. This is known as the "runtime" or "root" directory, and typically lives in your home directory under the name `invokeai`.
We'll use [`uv`](https://github.com/astral-sh/uv) to install python and create a virtual environment, then install the `invokeai` package. `uv` is a modern, very fast alternative to `pip`.
The following commands vary depending on the version of Invoke being installed and the system onto which it is being installed.
1. Install `uv` as described in its [docs](https://docs.astral.sh/uv/getting-started/installation/#standalone-installer). We suggest using the standalone installer method.
Run `uv --version` to confirm that `uv` is installed and working. After installation, you may need to restart your terminal to get access to `uv`.
2. Create a directory for your installation, typically in your home directory (e.g. `~/invokeai` or `$Home/invokeai`):
=== "Linux/macOS"
```bash
mkdir ~/invokeai
cd ~/invokeai
```
=== "Windows (PowerShell)"
```bash
mkdir $Home/invokeai
```
1. Enter the root directory and create a virtual Python environment within it named `.venv`.
!!! warning "Virtual Environment Location"
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
=== "Linux/macOS"
```bash
cd ~/invokeai
python3 -m venv .venv --prompt InvokeAI
```
=== "Windows (PowerShell)"
```bash
cd $Home/invokeai
python3 -m venv .venv --prompt InvokeAI
```
1. Activate the new environment:
3. Create a virtual environment in that directory:
```sh
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
```
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
4. Activate the virtual environment:
=== "Linux/macOS"
@@ -60,41 +56,48 @@ Before you start, go through the [installation requirements](./requirements.md).
source .venv/bin/activate
```
=== "Windows"
=== "Windows (PowerShell)"
```ps
.venv\Scripts\activate
```
!!! info "Permissions Error (Windows)"
5. Choose a version to install. Review the [GitHub releases page](https://github.com/invoke-ai/InvokeAI/releases).
If you get a permissions error at this point, run this command and try again.
6. Determine the package package specifier to use when installing. This is a performance optimization.
`Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser`
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
The command-line prompt should change to to show `(InvokeAI)`, indicating the venv is active.
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
1. Make sure that pip is installed in your virtual environment and up to date:
=== "Invoke v5 or later"
```bash
python3 -m pip install --upgrade pip
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.1`.
- **In all other cases, do not use an index.**
=== "Invoke v4"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm5.2`.
- **In all other cases, do not use an index.**
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
```
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
- You may need to provide an [extra index URL](https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url). Select your platform configuration using [this tool on the PyTorch website](https://pytorch.org/get-started/locally/). Copy the `--extra-index-url` string from this and append it to your install command.
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
```
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
- If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not strictly necessary. PyTorch includes an implementation of the SDP attention algorithm with similar performance for most GPUs.
```bash
pip install "InvokeAI[xformers]" --use-pep517
```
1. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:
=== "Linux/macOS"
@@ -102,17 +105,31 @@ Before you start, go through the [installation requirements](./requirements.md).
deactivate && source .venv/bin/activate
```
=== "Windows"
=== "Windows (PowerShell)"
```ps
deactivate
.venv\Scripts\activate
```
1. Run the application:
10. Run the application, specifying the directory you created earlier as the root directory:
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
=== "Linux/macOS"
!!! warning
```bash
invokeai-web --root ~/invokeai
```
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.
=== "Windows (PowerShell)"
```bash
invokeai-web --root $Home/invokeai
```
## Headless Install and Launch Scripts
If you run Invoke on a headless server, you might want to install and run Invoke on the command line.
We do not plan to maintain scripts to do this moving forward, instead focusing our dev resources on the GUI [launcher](../installation/quick_start.md).
You can create your own scripts for this by copying the handful of commands in this guide. `uv`'s [`pip` interface docs](https://docs.astral.sh/uv/reference/cli/#uv-pip-install) may be useful.

View File

@@ -0,0 +1,128 @@
# Invoke Community Edition Quick Start
Welcome to Invoke! Follow these steps to install, update, and get started creating.
## Step 1: System Requirements
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
Hardware requirements vary significantly depending on model and image output size. The requirements below are rough guidelines.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
!!! info "Hardware Requirements (Windows/Linux)"
=== "SD1.5 - 512×512"
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
=== "SDXL - 1024×1024"
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
=== "FLUX - 1024×1024"
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
Download the most launcher for your operating system:
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
## Step 3: Install or Update
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
!!! warning "Problem running the launcher on macOS"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can either use the [legacy scripts](./legacy_scripts.md) to install, or manually flag the launcher as safe:
- Open the **Invoke-Installer-mac-arm64.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
You should now be able to run the launcher.
## Step 4: Launch
Once installed, click **Finish**, then **Launch** to start Invoke.
The very first run after an installation or update will take a few extra moments to get ready.
!!! tip "Server Mode"
The launcher runs Invoke as a desktop application. You can enable **Server Mode** in the launcher's settings to disable this and instead access the UI through your web browser.
## Step 5: Install Models
With Invoke started up, you'll need to install some models.
The quickest way to get started is to install a **Starter Model** bundle. If you already have a model collection, Invoke can use it.
!!! info "Install Models"
=== "Install a Starter Model bundle"
1. Go to the **Models** tab.
2. Click **Starter Models** on the right.
3. Click one of the bundles to install its models. Refer to the [system requirements](#step-1-confirm-system-requirements) if you're unsure which model architecture will work for your system.
=== "Use my model collection"
4. Go to the **Models** tab.
5. Click **Scan Folder** on the right.
6. Paste the path to your models collection and click **Scan Folder**.
7. With **In-place install** enabled, Invoke will leave the model files where they are. If you disable this, **Invoke will move the models into its own folders**.
Youre now ready to start creating!
## Step 6: Learn the Basics
We recommend watching our [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO). It covers essential features and workflows, including:
- Generating your first image.
- Using control layers and reference guides.
- Refining images with advanced workflows.
## Troubleshooting
If installation fails, retrying the install in Repair Mode may fix it. There's a checkbox to enable this on the Review step of the install flow.
If that doesn't fix it, [clearing the `uv` cache](https://docs.astral.sh/uv/reference/cli/#uv-cache-clean) might do the trick:
- Open and start the dev console (button at the bottom-left of the launcher).
- Run `uv cache clean`.
- Retry the installation. Enable Repair Mode for good measure.
If you are still unable to install, try installing to a different location and see if that works.
If you still have problems, ask for help on the Invoke [discord](https://discord.gg/ZmtBAhwWhy).
## Other Installation Methods
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
- You can run Invoke with docker. See our [docker install](./docker.md) docs.
- You can still use our legacy scripts to install and run Invoke. See the [legacy scripts](./legacy_scripts.md) docs.
## Need Help?
- Visit our [Support Portal](https://support.invoke.ai).
- Watch the [Getting Started Playlist](https://www.youtube.com/playlist?list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO).
- Join the conversation on [Discord][discord link].
[discord link]: https://discord.gg/ZmtBAhwWhy

View File

@@ -1,90 +1,35 @@
# Requirements
## GPU
Invoke runs on Windows 10+, macOS 14+ and Linux (Ubuntu 20.04+ is well-tested).
!!! warning "Problematic Nvidia GPUs"
## Hardware
We do not recommend these GPUs. They cannot operate with half precision, but have insufficient VRAM to generate 512x512 images at full precision.
Hardware requirements vary significantly depending on model and image output size.
- NVIDIA 10xx series cards such as the 1080 TI
- GTX 1650 series cards
- GTX 1660 series cards
The requirements below are rough guidelines for best performance. GPUs with less VRAM typically still work, if a bit slower. Follow the [Low-VRAM mode guide](./features/low-vram.md) to optimize performance.
Invoke runs best with a dedicated GPU, but will fall back to running on CPU, albeit much slower. You'll need a beefier GPU for SDXL.
- All Apple Silicon (M1, M2, etc) Macs work, but 16GB+ memory is recommended.
- AMD GPUs are supported on Linux only. The VRAM requirements are the same as Nvidia GPUs.
!!! example "Stable Diffusion 1.5"
!!! info "Hardware Requirements (Windows/Linux)"
=== "Nvidia"
=== "SD1.5 - 512×512"
```
Any GPU with at least 4GB VRAM.
```
- GPU: Nvidia 10xx series or later, 4GB+ VRAM.
- Memory: At least 8GB RAM.
- Disk: 10GB for base installation plus 30GB for models.
=== "AMD"
=== "SDXL - 1024×1024"
```
Any GPU with at least 4GB VRAM. Linux only.
```
- GPU: Nvidia 20xx series or later, 8GB+ VRAM.
- Memory: At least 16GB RAM.
- Disk: 10GB for base installation plus 100GB for models.
=== "Mac"
=== "FLUX - 1024×1024"
```
Any Apple Silicon Mac with at least 8GB memory.
```
!!! example "Stable Diffusion XL"
=== "Nvidia"
```
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"
```
Any Apple Silicon Mac with at least 16GB memory.
```
## RAM
At least 12GB of RAM.
## Disk
SSDs will, of course, offer the best performance.
The base application disk usage depends on the torch backend.
!!! example "Disk"
=== "Nvidia (CUDA)"
```
~6.5GB
```
=== "AMD (ROCm)"
```
~12GB
```
=== "Mac (MPS)"
```
~3.5GB
```
You'll need to set aside some space for images, depending on how much you generate. A couple GB is enough to get started.
You'll need a good chunk of space for models. Even if you only install the most popular models and the usual support models (ControlNet, IP Adapter ,etc), you will quickly hit 50GB of models.
- GPU: Nvidia 20xx series or later, 10GB+ VRAM.
- Memory: At least 32GB RAM.
- Disk: 10GB for base installation plus 200GB for models.
!!! info "`tmpfs` on Linux"
@@ -92,26 +37,32 @@ You'll need a good chunk of space for models. Even if you only install the most
## Python
!!! tip "The launcher installs python for you"
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
<h3>Installing Python (Windows)</h3>
!!! info "Installing Python"
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
=== "Windows"
<h3>Installing Python (macOS)</h3>
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
=== "macOS"
<h3>Installing Python (Linux)</h3>
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
- Follow the [linux install instructions], being sure to install python 3.11.
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
=== "Linux"
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers
@@ -175,7 +126,4 @@ An alternative to installing ROCm locally is to use a [ROCm docker container] to
[ROCm Documentation]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
[cuDNN support matrix]: https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
[Nvidia Container Runtime]: https://developer.nvidia.com/container-runtime
[linux install instructions]: https://docs.python-guide.org/starting/install3/linux/
[Microsoft Visual C++ Redistributable]: https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
[an official installer]: https://www.python.org/downloads/
[CUDA Toolkit Downloads]: https://developer.nvidia.com/cuda-downloads

View File

@@ -49,6 +49,7 @@ To use a community workflow, download the `.json` node graph file and load it in
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Stereogram](#stereogram-nodes)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
@@ -526,6 +527,16 @@ View:
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Stereogram Nodes
**Description:** A set of custom nodes for InvokeAI to create cross-view or parallel-view stereograms. Stereograms are 2D images that, when viewed properly, reveal a 3D scene. Check out [r/crossview](https://www.reddit.com/r/CrossView/) for tutorials.
**Node Link:** https://github.com/simonfuhrmann/invokeai-stereo
**Example Workflow and Output**
</br><img src="https://raw.githubusercontent.com/simonfuhrmann/invokeai-stereo/refs/heads/main/docs/example_promo_03.jpg" width="600" />
--------------------------------
### Simple Skin Detection

View File

@@ -31,7 +31,7 @@ class DeleteBoardResult(BaseModel):
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
board_name: str = Query(description="The name of the board to create", max_length=300),
is_private: bool = Query(default=False, description="Whether the board is private"),
) -> BoardDTO:
"""Creates a board"""

View File

@@ -4,7 +4,6 @@
import contextlib
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from enum import Enum
@@ -21,7 +20,6 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.config import get_config
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -37,7 +35,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
@@ -848,74 +846,6 @@ async def get_starter_models() -> StarterModelResponse:
return StarterModelResponse(starter_models=starter_models, starter_bundles=starter_bundles)
@model_manager_router.get(
"/model_cache",
operation_id="get_cache_size",
response_model=float,
summary="Get maximum size of model manager RAM or VRAM cache.",
)
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
"""Return the current RAM or VRAM cache size setting (in GB)."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
value = 0.0
if cache_type == CacheType.RAM:
value = cache.max_cache_size
elif cache_type == CacheType.VRAM:
value = cache.max_vram_cache_size
return value
@model_manager_router.put(
"/model_cache",
operation_id="set_cache_size",
response_model=float,
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
)
async def set_cache_size(
value: float = Query(description="The new value for the maximum cache size"),
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
) -> float:
"""Set the current RAM or VRAM cache size setting (in GB). ."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
app_config = get_config()
# Record initial state.
vram_old = app_config.vram
ram_old = app_config.ram
# Prepare target state.
vram_new = vram_old
ram_new = ram_old
if cache_type == CacheType.RAM:
ram_new = value
elif cache_type == CacheType.VRAM:
vram_new = value
else:
raise ValueError(f"Unexpected {cache_type=}.")
config_path = app_config.config_file_path
new_config_path = config_path.with_suffix(".yaml.new")
try:
# Try to apply the target state.
cache.max_vram_cache_size = vram_new
cache.max_cache_size = ram_new
app_config.ram = ram_new
app_config.vram = vram_new
if persist:
app_config.write_file(new_config_path)
shutil.move(new_config_path, config_path)
except Exception as e:
# If there was a failure, restore the initial state.
cache.max_cache_size = ram_old
cache.max_vram_cache_size = vram_old
app_config.ram = ram_old
app_config.vram = vram_old
raise RuntimeError("Failed to update cache size") from e
return value
@model_manager_router.get(
"/stats",
operation_id="get_stats",
@@ -928,6 +858,18 @@ async def get_stats() -> Optional[CacheStats]:
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
@model_manager_router.post(
"/empty_model_cache",
operation_id="empty_model_cache",
status_code=200,
)
async def empty_model_cache() -> None:
"""Drop all models from the model cache to free RAM/VRAM. 'Locked' models that are in active use will not be dropped."""
# Request 1000GB of room in order to force the cache to drop all models.
ApiDependencies.invoker.services.logger.info("Emptying model cache.")
ApiDependencies.invoker.services.model_manager.load.ram_cache.make_room(1000 * 2**30)
class HFTokenStatus(str, Enum):
VALID = "valid"
INVALID = "invalid"

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
ClearResult,
@@ -94,6 +95,18 @@ async def Pause(
return ApiDependencies.invoker.services.session_processor.pause()
@session_queue_router.put(
"/{queue_id}/cancel_all_except_current",
operation_id="cancel_all_except_current",
responses={200: {"model": CancelAllExceptCurrentResult}},
)
async def cancel_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> CancelAllExceptCurrentResult:
"""Immediately cancels all queue items except in-processing items"""
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
@session_queue_router.put(
"/{queue_id}/cancel_by_batch_ids",
operation_id="cancel_by_batch_ids",

View File

@@ -25,6 +25,7 @@ async def parse_dynamicprompts(
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
seed: int | None = Body(None, description="The seed to use for random generation. Only used if not combinatorial"),
) -> DynamicPromptsResponse:
"""Creates a batch process"""
max_prompts = min(max_prompts, 10000)
@@ -35,7 +36,7 @@ async def parse_dynamicprompts(
generator = CombinatorialPromptGenerator()
prompts = generator.generate(prompt, max_prompts=max_prompts)
else:
generator = RandomPromptGenerator()
generator = RandomPromptGenerator(seed=seed)
prompts = generator.generate(prompt, num_images=max_prompts)
except ParseException as e:
prompts = [prompt]

View File

@@ -59,11 +59,32 @@ logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
# We may change the port if the default is in use, this global variable is used to store the port so that we can log
# the correct port when the server starts in the lifespan handler.
port = app_config.port
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
# Log the server address when it starts - in case the network log level is not high enough to see the startup log
proto = "https" if app_config.ssl_certfile else "http"
msg = f"Invoke running on {proto}://{app_config.host}:{port} (Press CTRL+C to quit)"
# Logging this way ignores the logger's log level and _always_ logs the message
record = logger.makeRecord(
name=logger.name,
level=logging.INFO,
fn="",
lno=0,
msg=msg,
args=(),
exc_info=None,
)
logger.handle(record)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -206,6 +227,7 @@ def invoke_api() -> None:
else:
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
global port
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
@@ -217,18 +239,17 @@ def invoke_api() -> None:
host=app_config.host,
port=port,
loop="asyncio",
log_level=app_config.log_level,
log_level=app_config.log_level_network,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
for logname in ["uvicorn.access", "uvicorn"]:
log = InvokeAILogger.get_logger(logname)
log.handlers.clear()
for ch in logger.handlers:
log.addHandler(ch)
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
loop.run_until_complete(server.serve())

View File

@@ -0,0 +1,237 @@
from typing import Literal
from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
ImageField,
Input,
InputField,
OutputField,
)
from invokeai.app.invocations.primitives import (
FloatOutput,
ImageOutput,
IntegerOutput,
StringOutput,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
BATCH_GROUP_IDS = Literal[
"None",
"Group 1",
"Group 2",
"Group 3",
"Group 4",
"Group 5",
]
class NotExecutableNodeError(Exception):
def __init__(self, message: str = "This class should never be executed or instantiated directly."):
super().__init__(message)
pass
class BaseBatchInvocation(BaseInvocation):
batch_group_id: BATCH_GROUP_IDS = InputField(
default="None",
description="The ID of this batch node's group. If provided, all batch nodes in with the same ID will be 'zipped' before execution, and all nodes' collections must be of the same size.",
input=Input.Direct,
title="Batch Group",
)
def __init__(self):
raise NotExecutableNodeError()
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(
default=[], min_length=1, description="The images to batch over", input=Input.Direct
)
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotExecutableNodeError()
@invocation(
"string_batch",
title="String Batch",
tags=["primitives", "string", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class StringBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each string in the batch."""
strings: list[str] = InputField(
default=[],
min_length=1,
description="The strings to batch over",
)
def invoke(self, context: InvocationContext) -> StringOutput:
raise NotExecutableNodeError()
@invocation_output("string_generator_output")
class StringGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of strings"""
strings: list[str] = OutputField(description="The generated strings")
class StringGeneratorField(BaseModel):
pass
@invocation(
"string_generator",
title="String Generator",
tags=["primitives", "string", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class StringGenerator(BaseInvocation):
"""Generated a range of strings for use in a batched generation"""
generator: StringGeneratorField = InputField(
description="The string generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> StringGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"integer_batch",
title="Integer Batch",
tags=["primitives", "integer", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class IntegerBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each integer in the batch."""
integers: list[int] = InputField(
default=[],
min_length=1,
description="The integers to batch over",
)
def invoke(self, context: InvocationContext) -> IntegerOutput:
raise NotExecutableNodeError()
@invocation_output("integer_generator_output")
class IntegerGeneratorOutput(BaseInvocationOutput):
integers: list[int] = OutputField(description="The generated integers")
class IntegerGeneratorField(BaseModel):
pass
@invocation(
"integer_generator",
title="Integer Generator",
tags=["primitives", "int", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class IntegerGenerator(BaseInvocation):
"""Generated a range of integers for use in a batched generation"""
generator: IntegerGeneratorField = InputField(
description="The integer generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> IntegerGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"float_batch",
title="Float Batch",
tags=["primitives", "float", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class FloatBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each float in the batch."""
floats: list[float] = InputField(
default=[],
min_length=1,
description="The floats to batch over",
)
def invoke(self, context: InvocationContext) -> FloatOutput:
raise NotExecutableNodeError()
@invocation_output("float_generator_output")
class FloatGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of floats"""
floats: list[float] = OutputField(description="The generated floats")
class FloatGeneratorField(BaseModel):
pass
@invocation(
"float_generator",
title="Float Generator",
tags=["primitives", "float", "number", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class FloatGenerator(BaseInvocation):
"""Generated a range of floats for use in a batched generation"""
generator: FloatGeneratorField = InputField(
description="The float generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> FloatGeneratorOutput:
raise NotExecutableNodeError()

View File

@@ -19,9 +19,9 @@ from invokeai.app.invocations.model import CLIPField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
@@ -63,29 +63,28 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(self.clip.tokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
text_encoder_info = context.models.load(self.clip.text_encoder)
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
LoRAPatcher.apply_lora_patches(
context.models.load(self.clip.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
model=text_encoder,
patches=_lora_loader(),
prefix="lora_te_",
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -104,6 +103,7 @@ class CompelInvocation(BaseInvocation):
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(self.prompt)
@@ -138,9 +138,7 @@ class SDXLPromptInvocationBase:
lora_prefix: str,
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.model
@@ -162,11 +160,11 @@ class SDXLPromptInvocationBase:
c_pooled = None
return c, c_pooled
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in clip_field.loras:
lora_info = context.models.load(lora.lora)
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
assert isinstance(lora_model, ModelPatchRaw)
yield (lora_model, lora.weight)
del lora_info
return
@@ -178,11 +176,12 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
LoRAPatcher.apply_lora_patches(
text_encoder,
context.models.load(clip_field.tokenizer) as tokenizer,
LayerPatcher.apply_smart_model_patches(
model=text_encoder,
patches=_lora_loader(),
prefix=lora_prefix,
dtype=text_encoder.dtype,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -205,6 +204,7 @@ class SDXLPromptInvocationBase:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(prompt)
@@ -222,7 +222,6 @@ class SDXLPromptInvocationBase:
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
c = c.detach().to("cpu")

View File

@@ -1,7 +1,5 @@
from typing import Literal
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8
"""
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
@@ -12,5 +10,3 @@ The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@@ -6,7 +6,6 @@ from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import VAEField
@@ -29,11 +28,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=4,
)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32, ui_order=4)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":

View File

@@ -7,7 +7,6 @@ from PIL import Image, ImageFilter
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
@@ -76,11 +75,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=9,
)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32, ui_order=9)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:

View File

@@ -10,7 +10,9 @@ import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.adapter import T2IAdapter
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
@@ -37,10 +39,11 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
@@ -83,12 +86,14 @@ def get_scheduler(
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
unet_config: AnyModelConfig,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@@ -100,10 +105,17 @@ def get_scheduler(
"_backup": scheduler_config,
}
if hasattr(unet_config, "prediction_type"):
scheduler_config["prediction_type"] = unet_config.prediction_type
# make dpmpp_sde reproducable(seed can be passed only in initializer)
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
if scheduler_class is DPMSolverMultistepScheduler or scheduler_class is DPMSolverSinglestepScheduler:
if scheduler_config["_class_name"] == "DEISMultistepScheduler" and scheduler_config["algorithm_type"] == "deis":
scheduler_config["algorithm_type"] = "dpmsolver++"
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
@@ -411,6 +423,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
device: torch.device,
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> list[ControlNetData] | None:
@@ -452,7 +465,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
device=device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
@@ -547,7 +560,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
@@ -556,7 +568,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images = [
context.images.get_pil(image.image_name, mode="RGB") for image in single_ipa_image_fields
]
with image_encoder_model_info as image_encoder_model:
with context.models.load(single_ip_adapter.image_encoder_model) as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
@@ -606,6 +618,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
device: torch.device,
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
@@ -621,7 +634,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name, mode="RGB")
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
@@ -637,7 +649,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model:
with context.models.load(t2i_adapter_field.t2i_adapter_model) as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
@@ -657,7 +669,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
width=control_width_resize,
height=control_height_resize,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
device=device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
@@ -822,6 +834,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
@@ -841,6 +856,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
@@ -852,9 +868,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
### preview
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
@@ -926,10 +939,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (cached_weights, unet),
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
@@ -950,6 +961,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
device = TorchDevice.choose_torch_device()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
@@ -964,6 +976,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context,
self.t2i_adapter,
latents.shape,
device=device,
do_classifier_free_guidance=True,
)
@@ -987,43 +1000,43 @@ class DenoiseLatentsInvocation(BaseInvocation):
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (cached_weights, unet),
context.models.load(self.unet.unet).model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
LoRAPatcher.apply_lora_patches(
LayerPatcher.apply_smart_model_patches(
model=unet,
patches=_lora_loader(),
prefix="lora_unet_",
dtype=unet.dtype,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = latents.to(device=device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
noise = noise.to(device=device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
mask = mask.to(device=device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
masked_latents = masked_latents.to(device=device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
pipeline = self.create_pipeline(unet, scheduler)
@@ -1033,7 +1046,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=unet.device,
device=device,
dtype=unet.dtype,
latent_height=latent_height,
latent_width=latent_width,
@@ -1046,6 +1059,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=latents.shape,
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -1063,7 +1077,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
device=device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -56,6 +56,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
# endregion
# region Misc Field Types
@@ -143,6 +144,7 @@ class FieldDescriptions:
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
control_lora_model = "Control LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
@@ -298,6 +300,13 @@ class BoundingBoxField(BaseModel):
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
def tuple(self) -> Tuple[int, int, int, int]:
"""
Returns the bounding box as a tuple suitable for use with PIL's `Image.crop()` method.
This method returns a tuple of the form (left, upper, right, lower) == (x_min, y_min, x_max, y_max).
"""
return (self.x_min, self.y_min, self.x_max, self.y_max)
class MetadataField(RootModel[dict[str, Any]]):
"""

View File

@@ -0,0 +1,49 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.model import ControlLoRAField, ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_control_lora_loader_output")
class FluxControlLoRALoaderOutput(BaseInvocationOutput):
"""Flux Control LoRA Loader Output"""
control_lora: ControlLoRAField = OutputField(
title="Flux Control LoRA", description="Control LoRAs to apply on model loading", default=None
)
@invocation(
"flux_control_lora_loader",
title="Flux Control LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.1.0",
classification=Classification.Prototype,
)
class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.control_lora_model, title="Control LoRA", ui_type=UIType.ControlLoRAModel
)
image: ImageField = InputField(description="The image to encode.")
weight: float = InputField(description="The weight of the LoRA.", default=1.0)
def invoke(self, context: InvocationContext) -> FluxControlLoRALoaderOutput:
if not context.models.exists(self.lora.key):
raise ValueError(f"Unknown lora: {self.lora.key}!")
return FluxControlLoRALoaderOutput(
control_lora=ControlLoRAField(
lora=self.lora,
img=self.image,
weight=self.weight,
)
)

View File

@@ -1,10 +1,12 @@
from contextlib import ExitStack
from typing import Callable, Iterator, Optional, Tuple
from typing import Callable, Iterator, Optional, Tuple, Union
import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as tv_transforms
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
@@ -21,8 +23,9 @@ from invokeai.app.invocations.fields import (
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.model import ControlLoRAField, LoRAField, TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
@@ -44,10 +47,10 @@ from invokeai.backend.flux.sampling_utils import (
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -89,6 +92,9 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
title="Transformer",
)
control_lora: Optional[ControlLoRAField] = InputField(
description=FieldDescriptions.control_lora_model, input=Input.Connection, title="Control LoRA", default=None
)
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
@@ -193,8 +199,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
transformer_config = context.models.get_config(self.transformer.transformer)
is_schnell = "schnell" in getattr(transformer_config, "config_path", "")
# Calculate the timestep schedule.
timesteps = get_schedule(
@@ -234,6 +240,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
if len(timesteps) <= 1:
return x
if is_schnell and self.control_lora:
raise ValueError("Control LoRAs cannot be used with FLUX Schnell")
# Prepare the extra image conditioning tensor if a FLUX structural control image is provided.
img_cond = self._prep_structural_control_img_cond(context)
inpaint_mask = self._prep_inpaint_mask(context, x)
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
@@ -241,6 +253,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
img_cond = pack(img_cond) if img_cond is not None else None
noise = pack(noise)
x = pack(x)
@@ -263,7 +276,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# TODO(ryand): We should really do this in a separate invocation to benefit from caching.
ip_adapter_fields = self._normalize_ip_adapter_fields()
pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds = self._prep_ip_adapter_image_prompt_clip_embeds(
ip_adapter_fields, context
ip_adapter_fields, context, device=x.device
)
cfg_scale = self.prep_cfg_scale(
@@ -286,41 +299,40 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Load the transformer model.
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
(cached_weights, transformer) = exit_stack.enter_context(
context.models.load(self.transformer.transformer).model_on_device()
)
assert isinstance(transformer, Flux)
config = transformer_info.config
config = transformer_config
assert config is not None
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
if config.format in [ModelFormat.Checkpoint]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
cached_weights=cached_weights,
)
)
model_is_quantized = False
elif config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
# The model is quantized, so apply the LoRA weights as sidecar layers. This results in slower inference,
# than directly patching the weights, but is agnostic to the quantization format.
exit_stack.enter_context(
LoRAPatcher.apply_lora_sidecar_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
)
)
model_is_quantized = True
else:
raise ValueError(f"Unsupported model format: {config.format}")
# Apply LoRA models to the transformer.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
dtype=inference_dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
# Prepare IP-Adapter extensions.
pos_ip_adapter_extensions, neg_ip_adapter_extensions = self._prep_ip_adapter_extensions(
pos_image_prompt_clip_embeds=pos_image_prompt_clip_embeds,
@@ -345,6 +357,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
controlnet_extensions=controlnet_extensions,
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
)
x = unpack(x.float(), self.height, self.width)
@@ -501,15 +514,18 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# before loading the models. Then make sure that all VAE encoding is done before loading the ControlNets to
# minimize peak memory.
# First, load the ControlNet models so that we can determine the ControlNet types.
controlnet_models = [context.models.load(controlnet.control_model) for controlnet in controlnets]
# Calculate the controlnet conditioning tensors.
# We do this before loading the ControlNet models because it may require running the VAE, and we are trying to
# keep peak memory down.
controlnet_conds: list[torch.Tensor] = []
for controlnet, controlnet_model in zip(controlnets, controlnet_models, strict=True):
for controlnet in controlnets:
image = context.images.get_pil(controlnet.image.image_name)
# HACK(ryand): We have to load the ControlNet model to determine whether the VAE needs to be run. We really
# shouldn't have to load the model here. There's a risk that the model will be dropped from the model cache
# before we load it into VRAM and thus we'll have to load it again (context:
# https://github.com/invoke-ai/InvokeAI/issues/7513).
controlnet_model = context.models.load(controlnet.control_model)
if isinstance(controlnet_model.model, InstantXControlNetFlux):
if self.controlnet_vae is None:
raise ValueError("A ControlNet VAE is required when using an InstantX FLUX ControlNet.")
@@ -539,10 +555,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Finally, load the ControlNet models and initialize the ControlNet extensions.
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension] = []
for controlnet, controlnet_cond, controlnet_model in zip(
controlnets, controlnet_conds, controlnet_models, strict=True
):
model = exit_stack.enter_context(controlnet_model)
for controlnet, controlnet_cond in zip(controlnets, controlnet_conds, strict=True):
model = exit_stack.enter_context(context.models.load(controlnet.control_model))
if isinstance(model, XLabsControlNetFlux):
controlnet_extensions.append(
@@ -575,6 +589,29 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return controlnet_extensions
def _prep_structural_control_img_cond(self, context: InvocationContext) -> torch.Tensor | None:
if self.control_lora is None:
return None
if not self.controlnet_vae:
raise ValueError("controlnet_vae must be set when using a FLUX Control LoRA.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.control_lora.img.image_name)
cond_img = cond_img.convert("RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
# Normalize the conditioning image to the range [-1, 1].
# This normalization is based on the original implementations here:
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L34
# https://github.com/black-forest-labs/flux/blob/805da8571a0b49b6d4043950bd266a65328c243b/src/flux/modules/image_embedders.py#L60
img_cond = torch.from_numpy(cond_img).float() / 127.5 - 1.0
img_cond = einops.rearrange(img_cond, "h w c -> 1 c h w")
vae_info = context.models.load(self.controlnet_vae.vae)
return FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:
return []
@@ -589,6 +626,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
self,
ip_adapter_fields: list[IPAdapterField],
context: InvocationContext,
device: torch.device,
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
clip_image_processor = CLIPImageProcessor()
@@ -628,11 +666,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
clip_image: torch.Tensor = clip_image_processor(images=pos_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
pos_clip_image_embeds = image_encoder_model(clip_image).image_embeds
clip_image = clip_image_processor(images=neg_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
clip_image = clip_image.to(device=device, dtype=image_encoder_model.dtype)
neg_clip_image_embeds = image_encoder_model(clip_image).image_embeds
pos_image_prompt_clip_embeds.append(pos_clip_image_embeds)
@@ -681,10 +719,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.transformer.loras:
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
loras: list[Union[LoRAField, ControlLoRAField]] = [*self.transformer.loras]
if self.control_lora:
# Note: Since FLUX structural control LoRAs modify the shape of some weights, it is important that they are
# applied last.
loras.append(self.control_lora)
for lora in loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -8,7 +8,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, TransformerField
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
@@ -21,6 +21,9 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
)
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
t5_encoder: Optional[T5EncoderField] = OutputField(
default=None, description=FieldDescriptions.t5_encoder, title="T5 Encoder"
)
@invocation(
@@ -28,7 +31,7 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
title="FLUX LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.1.0",
version="1.2.0",
classification=Classification.Prototype,
)
class FluxLoRALoaderInvocation(BaseInvocation):
@@ -50,6 +53,12 @@ class FluxLoRALoaderInvocation(BaseInvocation):
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField | None = InputField(
default=None,
title="T5 Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
lora_key = self.lora.key
@@ -62,6 +71,8 @@ class FluxLoRALoaderInvocation(BaseInvocation):
raise ValueError(f'LoRA "{lora_key}" already applied to transformer.')
if self.clip and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise ValueError(f'LoRA "{lora_key}" already applied to CLIP encoder.')
if self.t5_encoder and any(lora.lora.key == lora_key for lora in self.t5_encoder.loras):
raise ValueError(f'LoRA "{lora_key}" already applied to T5 encoder.')
output = FluxLoRALoaderOutput()
@@ -82,6 +93,14 @@ class FluxLoRALoaderInvocation(BaseInvocation):
weight=self.weight,
)
)
if self.t5_encoder is not None:
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
output.t5_encoder.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
return output
@@ -91,14 +110,14 @@ class FluxLoRALoaderInvocation(BaseInvocation):
title="FLUX LoRA Collection Loader",
tags=["lora", "model", "flux"],
category="model",
version="1.1.0",
version="1.3.0",
classification=Classification.Prototype,
)
class FLUXLoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to a FLUX transformer."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
transformer: Optional[TransformerField] = InputField(
@@ -113,13 +132,30 @@ class FLUXLoRACollectionLoader(BaseInvocation):
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField | None = InputField(
default=None,
title="T5 Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
output = FluxLoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.transformer is not None:
output.transformer = self.transformer.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
if self.t5_encoder is not None:
output.t5_encoder = self.t5_encoder.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -130,14 +166,13 @@ class FLUXLoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.transformer is not None:
if output.transformer is None:
output.transformer = self.transformer.model_copy(deep=True)
if self.transformer is not None and output.transformer is not None:
output.transformer.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
if self.clip is not None and output.clip is not None:
output.clip.loras.append(lora)
if self.t5_encoder is not None and output.t5_encoder is not None:
output.t5_encoder.loras.append(lora)
return output

View File

@@ -10,6 +10,10 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
@@ -36,7 +40,7 @@ class FluxModelLoaderOutput(BaseInvocationOutput):
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
version="1.0.5",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
@@ -74,8 +78,8 @@ class FluxModelLoaderInvocation(BaseInvocation):
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
tokenizer2 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model)
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model)
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
@@ -83,7 +87,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder, loras=[]),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)

View File

@@ -2,7 +2,7 @@ from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
@@ -17,10 +17,10 @@ from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX, FLUX_LORA_T5_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@@ -69,17 +69,46 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
t5_encoder_info = context.models.load(self.t5_encoder.text_encoder)
t5_encoder_config = t5_encoder_info.config
assert t5_encoder_config is not None
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
t5_encoder_info.model_on_device() as (cached_weights, t5_text_encoder),
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
assert isinstance(t5_tokenizer, (T5Tokenizer, T5TokenizerFast))
# Determine if the model is quantized.
# If the model is quantized, then we need to apply the LoRA weights as sidecar layers. This results in
# slower inference than direct patching, but is agnostic to the quantization format.
if t5_encoder_config.format in [ModelFormat.T5Encoder, ModelFormat.Diffusers]:
model_is_quantized = False
elif t5_encoder_config.format in [
ModelFormat.BnbQuantizedLlmInt8b,
ModelFormat.BnbQuantizednf4b,
ModelFormat.GGUFQuantized,
]:
model_is_quantized = True
else:
raise ValueError(f"Unsupported model format: {t5_encoder_config.format}")
# Apply LoRA models to the T5 encoder.
# Note: We apply the LoRA after the encoder has been moved to its target device for faster patching.
exit_stack.enter_context(
LayerPatcher.apply_smart_model_patches(
model=t5_text_encoder,
patches=self._t5_lora_iterator(context),
prefix=FLUX_LORA_T5_PREFIX,
dtype=t5_text_encoder.dtype,
cached_weights=cached_weights,
force_sidecar_patching=model_is_quantized,
)
)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
@@ -90,31 +119,30 @@ class FluxTextEncoderInvocation(BaseInvocation):
return prompt_embeds
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
prompt = [self.prompt]
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
context.models.load(self.clip.tokenizer) as clip_tokenizer,
ExitStack() as exit_stack,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_text_encoder_config = clip_text_encoder_info.config
assert clip_text_encoder_config is not None
# Apply LoRA models to the CLIP encoder.
# Note: We apply the LoRA after the transformer has been moved to its target device for faster patching.
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
LayerPatcher.apply_smart_model_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)
@@ -130,9 +158,16 @@ class FluxTextEncoderInvocation(BaseInvocation):
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return pooled_prompt_embeds
def _clip_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
def _clip_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.clip.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _t5_lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.t5_encoder.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -3,6 +3,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -24,7 +25,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -38,8 +39,23 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1090 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)

View File

@@ -21,7 +21,7 @@ class IdealSizeOutput(BaseInvocationOutput):
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.3",
version="1.0.4",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
@@ -41,11 +41,16 @@ class IdealSizeInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
if unet_config.base == BaseModelType.StableDiffusion1:
dimension = 512
elif unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif unet_config.base == BaseModelType.StableDiffusionXL:
elif unet_config.base in (BaseModelType.StableDiffusionXL, BaseModelType.Flux, BaseModelType.StableDiffusion3):
dimension = 1024
else:
raise ValueError(f"Unsupported model type: {unet_config.base}")
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images

View File

@@ -13,6 +13,7 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
FieldDescriptions,
ImageField,
@@ -23,6 +24,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
@@ -161,12 +163,12 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
crop: bool = InputField(default=False, description="Crop to base image dimensions")
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.images.get_pil(self.base_image.image_name)
image = context.images.get_pil(self.image.image_name)
base_image = context.images.get_pil(self.base_image.image_name, mode="RGBA")
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = None
if self.mask is not None:
mask = context.images.get_pil(self.mask.image_name)
mask = ImageOps.invert(mask.convert("L"))
mask = context.images.get_pil(self.mask.image_name, mode="L")
mask = ImageOps.invert(mask)
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
@@ -176,7 +178,11 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata, WithBoard):
new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0))
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
# Create a temporary image to paste the image with transparency
temp_image = Image.new("RGBA", new_image.size)
temp_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
new_image = Image.alpha_composite(new_image, temp_image)
if self.crop:
base_w, base_h = base_image.size
@@ -301,14 +307,44 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
image = context.images.get_pil(self.image.image_name, mode="RGBA")
# Split the image into RGBA channels
r, g, b, a = image.split()
# Premultiply RGB channels by alpha
premultiplied_image = ImageChops.multiply(image, a.convert("RGBA"))
premultiplied_image.putalpha(a)
# Apply the blur
blur = (
ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
blurred_image = premultiplied_image.filter(blur)
image_dto = context.images.save(image=blur_image)
# Split the blurred image into RGBA channels
r, g, b, a_orig = blurred_image.split()
# Convert to float using NumPy. float 32/64 division are much faster than float 16
r = numpy.array(r, dtype=numpy.float32)
g = numpy.array(g, dtype=numpy.float32)
b = numpy.array(b, dtype=numpy.float32)
a = numpy.array(a_orig, dtype=numpy.float32) / 255.0 # Normalize alpha to [0, 1]
# Unpremultiply RGB channels by alpha
r /= a + 1e-6 # Add a small epsilon to avoid division by zero
g /= a + 1e-6
b /= a + 1e-6
# Convert back to PIL images
r = Image.fromarray(numpy.uint8(numpy.clip(r, 0, 255)))
g = Image.fromarray(numpy.uint8(numpy.clip(g, 0, 255)))
b = Image.fromarray(numpy.uint8(numpy.clip(b, 0, 255)))
# Merge back into a single image
result_image = Image.merge("RGBA", (r, g, b, a_orig))
image_dto = context.images.save(image=result_image)
return ImageOutput.build(image_dto)
@@ -807,7 +843,7 @@ CHANNEL_FORMATS = {
"value",
],
category="image",
version="1.2.2",
version="1.2.3",
)
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add or subtract a value from a specific color channel of an image."""
@@ -817,18 +853,22 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
offset: int = InputField(default=0, ge=-255, le=255, description="The amount to adjust the channel by")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.images.get_pil(self.image.image_name)
image = context.images.get_pil(self.image.image_name, "RGBA")
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(pil_image.convert(mode)).astype(int)
converted_image = numpy.array(image.convert(mode)).astype(int)
image_channel = converted_image[:, :, channel_number]
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
if self.channel == "Hue (HSV)":
# loop around the values because hue is special
image_channel = (image_channel + self.offset) % 256
else:
# Adjust the value, clipping to 0..255
image_channel = numpy.clip(image_channel + self.offset, 0, 255)
# Put the channel back into the image
converted_image[:, :, channel_number] = image_channel
@@ -836,6 +876,10 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
# restore the alpha channel
if self.channel != "Alpha (RGBA)":
pil_image.putalpha(image.getchannel("A"))
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@@ -863,7 +907,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata, WithBoard):
"value",
],
category="image",
version="1.2.2",
version="1.2.3",
)
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Scale a specific color channel of an image."""
@@ -874,14 +918,14 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
invert_channel: bool = InputField(default=False, description="Invert the channel after scaling")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.images.get_pil(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
# extract the channel and mode from the input and reference tuple
mode = CHANNEL_FORMATS[self.channel][0]
channel_number = CHANNEL_FORMATS[self.channel][1]
# Convert PIL image to new format
converted_image = numpy.array(pil_image.convert(mode)).astype(float)
converted_image = numpy.array(image.convert(mode)).astype(float)
image_channel = converted_image[:, :, channel_number]
# Adjust the value, clipping to 0..255
@@ -897,6 +941,10 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata, WithBoard):
# Convert back to RGBA format and output
pil_image = Image.fromarray(converted_image.astype(numpy.uint8), mode=mode).convert("RGBA")
# restore the alpha channel
if self.channel != "Alpha (RGBA)":
pil_image.putalpha(image.getchannel("A"))
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@@ -962,10 +1010,10 @@ class CanvasPasteBackInvocation(BaseInvocation, WithMetadata, WithBoard):
@invocation(
"mask_from_id",
title="Mask from ID",
title="Mask from Segmented Image",
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
version="1.0.1",
)
class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generate a mask for a particular color in an ID Map"""
@@ -975,40 +1023,24 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
threshold: int = InputField(default=100, description="Threshold for color detection")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
def rgba_to_hex(self, rgba_color: tuple[int, int, int, int]):
r, g, b, a = rgba_color
hex_code = "#{:02X}{:02X}{:02X}{:02X}".format(r, g, b, int(a * 255))
return hex_code
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
def id_to_mask(self, id_mask: Image.Image, color: tuple[int, int, int, int], threshold: int = 100):
if id_mask.mode != "RGB":
id_mask = id_mask.convert("RGB")
# Can directly just use the tuple but I'll leave this rgba_to_hex here
# incase anyone prefers using hex codes directly instead of the color picker
hex_color_str = self.rgba_to_hex(color)
rgb_color = numpy.array([int(hex_color_str[i : i + 2], 16) for i in (1, 3, 5)])
np_color = numpy.array(self.color.tuple())
# Maybe there's a faster way to calculate this distance but I can't think of any right now.
color_distance = numpy.linalg.norm(id_mask - rgb_color, axis=-1)
color_distance = numpy.linalg.norm(image - np_color, axis=-1)
# Create a mask based on the threshold and the distance calculated above
binary_mask = (color_distance < threshold).astype(numpy.uint8) * 255
binary_mask = (color_distance < self.threshold).astype(numpy.uint8) * 255
# Convert the mask back to PIL
binary_mask_pil = Image.fromarray(binary_mask)
return binary_mask_pil
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
mask = self.id_to_mask(image, self.color.tuple(), self.threshold)
if self.invert:
mask = ImageOps.invert(mask)
binary_mask_pil = ImageOps.invert(binary_mask_pil)
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
image_dto = context.images.save(image=binary_mask_pil, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@@ -1055,3 +1087,123 @@ class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=generated_image)
return ImageOutput.build(image_dto)
@invocation(
"img_noise",
title="Add Image Noise",
tags=["image", "noise"],
category="image",
version="1.0.1",
)
class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add noise to an image"""
image: ImageField = InputField(description="The image to add noise to")
seed: int = InputField(
default=0,
ge=0,
le=SEED_MAX,
description=FieldDescriptions.seed,
)
noise_type: Literal["gaussian", "salt_and_pepper"] = InputField(
default="gaussian",
description="The type of noise to add",
)
amount: float = InputField(default=0.1, ge=0, le=1, description="The amount of noise to add")
noise_color: bool = InputField(default=True, description="Whether to add colored noise")
size: int = InputField(default=1, ge=1, description="The size of the noise points")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
# Save out the alpha channel
alpha = image.getchannel("A")
# Set the seed for numpy random
rs = numpy.random.RandomState(numpy.random.MT19937(numpy.random.SeedSequence(self.seed)))
if self.noise_type == "gaussian":
if self.noise_color:
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size, 3)) * 255
else:
noise = rs.normal(0, 1, (image.height // self.size, image.width // self.size)) * 255
noise = numpy.stack([noise] * 3, axis=-1)
elif self.noise_type == "salt_and_pepper":
if self.noise_color:
noise = rs.choice(
[0, 255], (image.height // self.size, image.width // self.size, 3), p=[1 - self.amount, self.amount]
)
else:
noise = rs.choice(
[0, 255], (image.height // self.size, image.width // self.size), p=[1 - self.amount, self.amount]
)
noise = numpy.stack([noise] * 3, axis=-1)
noise = Image.fromarray(noise.astype(numpy.uint8), mode="RGB").resize(
(image.width, image.height), Image.Resampling.NEAREST
)
noisy_image = Image.blend(image.convert("RGB"), noise, self.amount).convert("RGBA")
# Paste back the alpha channel
noisy_image.putalpha(alpha)
image_dto = context.images.save(image=noisy_image)
return ImageOutput.build(image_dto)
@invocation(
"crop_image_to_bounding_box",
title="Crop Image to Bounding Box",
category="image",
version="1.0.0",
tags=["image", "crop"],
classification=Classification.Beta,
)
class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Crop an image to the given bounding box. If the bounding box is omitted, the image is cropped to the non-transparent pixels."""
image: ImageField = InputField(description="The image to crop")
bounding_box: BoundingBoxField | None = InputField(
default=None, description="The bounding box to crop the image to"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
bounding_box = self.bounding_box.tuple() if self.bounding_box is not None else image.getbbox()
cropped_image = image.crop(bounding_box)
image_dto = context.images.save(image=cropped_image)
return ImageOutput.build(image_dto)
@invocation(
"paste_image_into_bounding_box",
title="Paste Image into Bounding Box",
category="image",
version="1.0.0",
tags=["image", "crop"],
classification=Classification.Beta,
)
class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Paste the source image into the target image at the given bounding box.
The source image must be the same size as the bounding box, and the bounding box must fit within the target image."""
source_image: ImageField = InputField(description="The image to paste")
target_image: ImageField = InputField(description="The image to paste into")
bounding_box: BoundingBoxField = InputField(description="The bounding box to paste the image into")
def invoke(self, context: InvocationContext) -> ImageOutput:
source_image = context.images.get_pil(self.source_image.image_name, mode="RGBA")
target_image = context.images.get_pil(self.target_image.image_name, mode="RGBA")
bounding_box = self.bounding_box.tuple()
target_image.paste(source_image, bounding_box, source_image)
image_dto = context.images.save(image=target_image)
return ImageOutput.build(image_dto)

View File

@@ -13,7 +13,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -26,6 +26,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@invocation(
@@ -49,7 +50,7 @@ class ImageToLatentsInvocation(BaseInvocation):
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(
@@ -98,7 +99,7 @@ class ImageToLatentsInvocation(BaseInvocation):
)
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode(), tiling_context:
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)

View File

@@ -12,7 +12,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -34,7 +34,7 @@ from invokeai.backend.util.devices import TorchDevice
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.0",
version="1.3.1",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -51,18 +51,60 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 960 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
# We add 20% to the working memory estimate to be safe.
working_memory = int(working_memory * 1.2)
return working_memory
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
use_tiling = self.tiled or context.config.get().force_tiled_decode
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE decoder")
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
latents = latents.to(TorchDevice.choose_torch_device())
if self.fp32:
vae.to(dtype=torch.float32)
@@ -88,7 +130,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.config.get().force_tiled_decode:
if use_tiling:
vae.enable_tiling()
else:
vae.disable_tiling()

View File

@@ -2,9 +2,22 @@ import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
Classification,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ImageField,
InputField,
TensorField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.primitives import BoundingBoxOutput, ImageOutput, MaskOutput
from invokeai.backend.image_util.util import pil_to_np
@@ -73,7 +86,7 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
title="Invert Tensor Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
version="1.1.0",
classification=Classification.Beta,
)
class InvertTensorMaskInvocation(BaseInvocation):
@@ -83,6 +96,15 @@ class InvertTensorMaskInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Verify dtype and shape.
assert mask.dtype == torch.bool
assert mask.dim() in [2, 3]
# Unsqueeze the channel dimension if it is missing. The MaskOutput type expects a single channel.
if mask.dim() == 2:
mask = mask.unsqueeze(0)
inverted = ~mask
return MaskOutput(
@@ -201,3 +223,48 @@ class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=masked_image)
return ImageOutput.build(image_dto)
WHITE = ColorField(r=255, g=255, b=255, a=255)
@invocation(
"get_image_mask_bounding_box",
title="Get Image Mask Bounding Box",
tags=["mask"],
category="mask",
version="1.0.0",
classification=Classification.Beta,
)
class GetMaskBoundingBoxInvocation(BaseInvocation):
"""Gets the bounding box of the given mask image."""
mask: ImageField = InputField(description="The mask to crop.")
margin: int = InputField(default=0, description="Margin to add to the bounding box.")
mask_color: ColorField = InputField(default=WHITE, description="Color of the mask in the image.")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
mask = context.images.get_pil(self.mask.image_name, mode="RGBA")
mask_np = np.array(mask)
# Convert mask_color to RGBA tuple
mask_color_rgb = self.mask_color.tuple()
# Find the bounding box of the mask color
y, x = np.where(np.all(mask_np == mask_color_rgb, axis=-1))
if len(x) == 0 or len(y) == 0:
# No pixels found with the given color
return BoundingBoxOutput(bounding_box=BoundingBoxField(x_min=0, y_min=0, x_max=0, y_max=0))
left, upper, right, lower = x.min(), y.min(), x.max(), y.max()
# Add the margin
left = max(0, left - self.margin)
upper = max(0, upper - self.margin)
right = min(mask_np.shape[1], right + self.margin)
lower = min(mask_np.shape[0], lower + self.margin)
bounding_box = BoundingBoxField(x_min=left, y_min=upper, x_max=right, y_max=lower)
return BoundingBoxOutput(bounding_box=bounding_box)

View File

@@ -10,7 +10,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
@@ -65,14 +65,10 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class VAEField(BaseModel):
@@ -80,6 +76,15 @@ class VAEField(BaseModel):
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
class ControlLoRAField(LoRAField):
img: ImageField = Field(description="Image to use in structural conditioning")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field."""
@@ -201,7 +206,7 @@ class LoRALoaderInvocation(BaseInvocation):
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise Exception(f"Unkown lora: {lora_key}!")
raise Exception(f"Unknown lora: {lora_key}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
@@ -252,12 +257,12 @@ class LoRASelectorInvocation(BaseInvocation):
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.1.0")
class LoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
@@ -277,7 +282,14 @@ class LoRACollectionLoader(BaseInvocation):
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -288,14 +300,10 @@ class LoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
if self.unet is not None and output.unet is not None:
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
if self.clip is not None and output.clip is not None:
output.clip.loras.append(lora)
return output
@@ -395,13 +403,13 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
title="SDXL LoRA Collection Loader",
tags=["model"],
category="model",
version="1.0.0",
version="1.1.0",
)
class SDXLLoRACollectionLoader(BaseInvocation):
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
loras: Optional[LoRAField | list[LoRAField]] = InputField(
default=None, description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
@@ -427,7 +435,18 @@ class SDXLLoRACollectionLoader(BaseInvocation):
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
if self.unet is not None:
output.unet = self.unet.model_copy(deep=True)
if self.clip is not None:
output.clip = self.clip.model_copy(deep=True)
if self.clip2 is not None:
output.clip2 = self.clip2.model_copy(deep=True)
for lora in loras:
if lora is None:
continue
if lora.lora.key in added_loras:
continue
@@ -438,19 +457,13 @@ class SDXLLoRACollectionLoader(BaseInvocation):
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
if self.unet is not None and output.unet is not None:
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
if self.clip is not None and output.clip is not None:
output.clip.loras.append(lora)
if self.clip2 is not None:
if output.clip2 is None:
output.clip2 = self.clip2.model_copy(deep=True)
if self.clip2 is not None and output.clip2 is not None:
output.clip2.loras.append(lora)
return output
@@ -468,7 +481,7 @@ class VAELoaderInvocation(BaseInvocation):
key = self.vae_model.key
if not context.models.exists(key):
raise Exception(f"Unkown vae: {key}!")
raise Exception(f"Unknown vae: {key}!")
return VAEOutput(vae=VAEField(vae=self.vae_model))

View File

@@ -7,7 +7,6 @@ import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -417,6 +416,7 @@ class ColorInvocation(BaseInvocation):
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor."""
# shape: [1, H, W], dtype: bool
mask: TensorField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@@ -539,23 +539,3 @@ class BoundingBoxInvocation(BaseInvocation):
# endregion
@invocation(
"image_batch",
title="Image Batch",
tags=["primitives", "image", "batch", "internal"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageBatchInvocation(BaseInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(min_length=1, description="The images to batch over", input=Input.Direct)
def __init__(self):
raise NotImplementedError("This class should never be executed or instantiated directly.")
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotImplementedError("This class should never be executed or instantiated directly.")

View File

@@ -16,6 +16,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
@invocation(
@@ -39,7 +40,7 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.disable_tiling()
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.

View File

@@ -6,6 +6,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -26,7 +27,7 @@ from invokeai.backend.util.devices import TorchDevice
title="SD3 Latents to Image",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.0",
version="1.3.1",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -40,16 +41,34 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1230 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(vae.device)
latents = latents.to(TorchDevice.choose_torch_device())
vae.disable_tiling()

View File

@@ -10,6 +10,10 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.model_manager.config import SubModelType
@@ -88,21 +92,13 @@ class Sd3ModelLoaderInvocation(BaseInvocation):
if self.clip_g_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
)
tokenizer_t5 = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
)
t5_encoder = (
self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
if self.t5_encoder_model
else self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
)
tokenizer_t5 = preprocess_t5_tokenizer_model_identifier(self.t5_encoder_model or self.model)
t5_encoder = preprocess_t5_encoder_model_identifier(self.t5_encoder_model or self.model)
return Sd3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder, loras=[]),
vae=VAEField(vae=vae),
)

View File

@@ -16,11 +16,12 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
SD3_T5_MAX_SEQ_LEN = 256
@@ -86,14 +87,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
def _t5_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
assert self.t5_encoder is not None
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
context.models.load(self.t5_encoder.text_encoder) as t5_text_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
context.util.signal_progress("Running T5 encoder")
assert isinstance(t5_text_encoder, T5EncoderModel)
@@ -120,7 +118,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
f" {max_seq_len} tokens: {removed_text}"
)
prompt_embeds = t5_text_encoder(text_input_ids.to(t5_text_encoder.device))[0]
prompt_embeds = t5_text_encoder(text_input_ids.to(TorchDevice.choose_torch_device()))[0]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
@@ -128,14 +126,12 @@ class Sd3TextEncoderInvocation(BaseInvocation):
def _clip_encode(
self, context: InvocationContext, clip_model: CLIPField, tokenizer_max_length: int = 77
) -> Tuple[torch.Tensor, torch.Tensor]:
clip_tokenizer_info = context.models.load(clip_model.tokenizer)
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
prompt = [self.prompt]
clip_text_encoder_info = context.models.load(clip_model.text_encoder)
with (
clip_text_encoder_info.model_on_device() as (cached_weights, clip_text_encoder),
clip_tokenizer_info as clip_tokenizer,
context.models.load(clip_model.tokenizer) as clip_tokenizer,
ExitStack() as exit_stack,
):
context.util.signal_progress("Running CLIP encoder")
@@ -150,10 +146,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
exit_stack.enter_context(
LoRAPatcher.apply_lora_patches(
LayerPatcher.apply_smart_model_patches(
model=clip_text_encoder,
patches=self._clip_lora_iterator(context, clip_model),
prefix=FLUX_LORA_CLIP_PREFIX,
dtype=clip_text_encoder.dtype,
cached_weights=cached_weights,
)
)
@@ -184,7 +181,7 @@ class Sd3TextEncoderInvocation(BaseInvocation):
f" {tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = clip_text_encoder(
input_ids=text_input_ids.to(clip_text_encoder.device), output_hidden_states=True
input_ids=text_input_ids.to(TorchDevice.choose_torch_device()), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
@@ -193,9 +190,9 @@ class Sd3TextEncoderInvocation(BaseInvocation):
def _clip_lora_iterator(
self, context: InvocationContext, clip_model: CLIPField
) -> Iterator[Tuple[LoRAModelRaw, float]]:
) -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in clip_model.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info

View File

@@ -49,7 +49,7 @@ class SAMPointsField(BaseModel):
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.1.0",
version="1.2.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
@@ -96,8 +96,10 @@ class SegmentAnythingInvocation(BaseInvocation):
# masks contains bool values, so we merge them via max-reduce.
combined_mask, _ = torch.stack(masks).max(dim=0)
# Unsqueeze the channel dimension.
combined_mask = combined_mask.unsqueeze(0)
mask_tensor_name = context.tensors.save(combined_mask)
height, width = combined_mask.shape
_, height, width = combined_mask.shape
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
@staticmethod

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
from invokeai.backend.util.devices import TorchDevice
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
@@ -102,7 +103,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=spandrel_model.dtype)
# Run the model on each tile.
pbar = tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles")
@@ -116,9 +117,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
raise CanceledException
# Extract the current tile from the input tensor.
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
input_tile = image_tensor[:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right]
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
@@ -151,15 +150,12 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
return pil_image
@torch.inference_mode()
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
def step_callback(step: int, total_steps: int) -> None:
context.util.signal_progress(
message=f"Processing tile {step}/{total_steps}",
@@ -167,7 +163,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
with context.models.load(self.image_to_image_model) as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Upscale the image
@@ -200,15 +196,12 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
)
@torch.inference_mode()
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
target_width = int(image.width * self.scale)
@@ -221,7 +214,7 @@ class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
with context.models.load(self.image_to_image_model) as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
iteration = 1

View File

@@ -22,8 +22,8 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
@@ -194,30 +194,31 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context.util.sd_step_callback(state, unet_config.base)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
def _lora_loader() -> Iterator[Tuple[ModelPatchRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
device = TorchDevice.choose_torch_device()
with (
ExitStack() as exit_stack,
unet_info as unet,
LoRAPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
context.models.load(self.unet.unet) as unet,
LayerPatcher.apply_smart_model_patches(
model=unet, patches=_lora_loader(), prefix="lora_unet_", dtype=unet.dtype
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = latents.to(device=device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
noise = noise.to(device=device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
unet_config=unet_config,
)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
@@ -226,7 +227,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
device=unet.device,
device=device,
dtype=unet.dtype,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
@@ -239,6 +240,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
device=device,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
@@ -264,7 +266,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
device=device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,

View File

@@ -57,7 +57,7 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(default=None, description="The board's new name.")
board_name: Optional[str] = Field(default=None, description="The board's new name.", max_length=300)
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")

View File

@@ -13,7 +13,6 @@ from functools import lru_cache
from pathlib import Path
from typing import Any, Literal, Optional
import psutil
import yaml
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic_settings import BaseSettings, PydanticBaseSettingsSource, SettingsConfigDict
@@ -25,8 +24,6 @@ from invokeai.frontend.cli.arg_parser import InvokeAIArgs
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
@@ -36,24 +33,6 @@ LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.2"
def get_default_ram_cache_size() -> float:
"""Run a heuristic for the default RAM cache based on installed RAM."""
# On some machines, psutil.virtual_memory().total gives a value that is slightly less than the actual RAM, so the
# limits are set slightly lower than than what we expect the actual RAM to be.
GB = 1024**3
max_ram = psutil.virtual_memory().total / GB
if max_ram >= 60:
return 15.0
if max_ram >= 30:
return 7.5
if max_ram >= 14:
return 4.0
return 2.1 # 2.1 is just large enough for sd 1.5 ;-)
class URLRegexTokenPair(BaseModel):
url_regex: str = Field(description="Regular expression to match against the URL")
token: str = Field(description="Token to use when the URL matches the regex")
@@ -97,15 +76,21 @@ class InvokeAIAppConfig(BaseSettings):
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
log_sql: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.
log_level_network: Log level for network-related messages. 'info' and 'debug' are very verbose.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
use_memory_db: Use in-memory database. Useful for development.
dev_reload: Automatically reload when Python sources are changed. Does not reload node definitions.
profile_graphs: Enable graph profiling using `cProfile`.
profile_prefix: An optional prefix for profile output files.
profiles_dir: Path to profiles output directory.
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: Amount of VRAM reserved for model storage (GB).
lazy_offload: Keep models in VRAM until their space is needed.
max_cache_ram_gb: The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.
max_cache_vram_gb: The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device_working_mem_gb: The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.
enable_partial_loading: Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.
keep_ram_copy_of_weights: Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.
ram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
@@ -163,6 +148,7 @@ class InvokeAIAppConfig(BaseSettings):
log_format: LOG_FORMAT = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.')
log_level: LOG_LEVEL = Field(default="info", description="Emit logging messages at this level or higher.")
log_sql: bool = Field(default=False, description="Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.")
log_level_network: LOG_LEVEL = Field(default='warning', description="Log level for network-related messages. 'info' and 'debug' are very verbose.")
# Development
use_memory_db: bool = Field(default=False, description="Use in-memory database. Useful for development.")
@@ -172,10 +158,16 @@ class InvokeAIAppConfig(BaseSettings):
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
# CACHE
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
max_cache_ram_gb: Optional[float] = Field(default=None, gt=0, description="The maximum amount of CPU RAM to use for model caching in GB. If unset, the limit will be configured based on the available RAM. In most cases, it is recommended to leave this unset.")
max_cache_vram_gb: Optional[float] = Field(default=None, ge=0, description="The amount of VRAM to use for model caching in GB. If unset, the limit will be configured based on the available VRAM and the device_working_mem_gb. In most cases, it is recommended to leave this unset.")
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
device_working_mem_gb: float = Field(default=3, description="The amount of working memory to keep available on the compute device (in GB). Has no effect if running on CPU. If you are experiencing OOM errors, try increasing this value.")
enable_partial_loading: bool = Field(default=False, description="Enable partial loading of models. This enables models to run with reduced VRAM requirements (at the cost of slower speed) by streaming the model from RAM to VRAM as its used. In some edge cases, partial loading can cause models to run more slowly if they were previously being fully loaded into VRAM.")
keep_ram_copy_of_weights: bool = Field(default=True, description="Whether to keep a full RAM copy of a model's weights when the model is loaded in VRAM. Keeping a RAM copy increases average RAM usage, but speeds up model switching and LoRA patching (assuming there is sufficient RAM). Set this to False if RAM pressure is consistently high.")
# Deprecated CACHE configs
ram: Optional[float] = Field(default=None, gt=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_ram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
vram: Optional[float] = Field(default=None, ge=0, description="DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.")
lazy_offload: bool = Field(default=True, description="DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.")
# DEVICE
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")

View File

@@ -8,7 +8,7 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Literal, Optional, Set
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
@@ -28,11 +28,13 @@ from invokeai.app.services.download.download_base import (
ServiceInactiveException,
UnknownJobIDException,
)
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000

View File

@@ -1 +0,0 @@
from .events_base import EventServiceBase # noqa F401

View File

@@ -4,6 +4,7 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.registry.payload_schema import registry as payload_schema
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@@ -18,7 +19,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
class EventBase(BaseModel):
@@ -422,7 +423,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -443,7 +444,7 @@ class ModelInstallDownloadStartedEvent(ModelEventBase):
]
return cls(
id=job.id,
source=str(job.source),
source=job.source,
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -458,7 +459,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
__event_name__ = "model_install_download_progress"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
@@ -479,7 +480,7 @@ class ModelInstallDownloadProgressEvent(ModelEventBase):
]
return cls(
id=job.id,
source=str(job.source),
source=job.source,
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
@@ -494,11 +495,11 @@ class ModelInstallDownloadsCompleteEvent(ModelEventBase):
__event_name__ = "model_install_downloads_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadsCompleteEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -508,11 +509,11 @@ class ModelInstallStartedEvent(ModelEventBase):
__event_name__ = "model_install_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallStartedEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -522,14 +523,14 @@ class ModelInstallCompleteEvent(ModelEventBase):
__event_name__ = "model_install_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
key: str = Field(description="Model config record key")
total_bytes: Optional[int] = Field(description="Size of the model (may be None for installation of a local path)")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCompleteEvent":
assert job.config_out is not None
return cls(id=job.id, source=str(job.source), key=(job.config_out.key), total_bytes=job.total_bytes)
return cls(id=job.id, source=job.source, key=(job.config_out.key), total_bytes=job.total_bytes)
@payload_schema.register
@@ -539,11 +540,11 @@ class ModelInstallCancelledEvent(ModelEventBase):
__event_name__ = "model_install_cancelled"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCancelledEvent":
return cls(id=job.id, source=str(job.source))
return cls(id=job.id, source=job.source)
@payload_schema.register
@@ -553,7 +554,7 @@ class ModelInstallErrorEvent(ModelEventBase):
__event_name__ = "model_install_error"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
error_type: str = Field(description="The name of the exception")
error: str = Field(description="A text description of the exception")
@@ -561,7 +562,7 @@ class ModelInstallErrorEvent(ModelEventBase):
def build(cls, job: "ModelInstallJob") -> "ModelInstallErrorEvent":
assert job.error_type is not None
assert job.error is not None
return cls(id=job.id, source=str(job.source), error_type=job.error_type, error=job.error)
return cls(id=job.id, source=job.source, error_type=job.error_type, error=job.error)
class BulkDownloadEventBase(EventBase):

View File

@@ -20,7 +20,7 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@@ -3,18 +3,20 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from typing import TYPE_CHECKING, List, Optional, Union
from pydantic.networks import AnyHttpUrl
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallServiceBase(ABC):
"""Abstract base class for InvokeAI model installation."""

View File

@@ -9,7 +9,7 @@ from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
@@ -20,7 +20,6 @@ from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
@@ -57,6 +56,10 @@ from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
TMPDIR_PREFIX = "tmpinstall_"
@@ -438,9 +441,10 @@ class ModelInstallService(ModelInstallServiceBase):
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
source_stripped = source.strip('"')
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source))
if Path(source_stripped).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source_stripped))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),

View File

@@ -7,7 +7,7 @@ from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
class ModelLoadServiceBase(ABC):
@@ -24,7 +24,7 @@ class ModelLoadServiceBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
@abstractmethod

View File

@@ -18,7 +18,7 @@ from invokeai.backend.model_manager.load import (
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -30,7 +30,7 @@ class ModelLoadService(ModelLoadServiceBase):
def __init__(
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
):
"""Initialize the model load service."""
@@ -45,7 +45,7 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker = invoker
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the RAM cache used by this loader."""
return self._ram_cache
@@ -78,9 +78,8 @@ class ModelLoadService(ModelLoadServiceBase):
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)
except IndexError:
pass
@@ -109,5 +108,5 @@ class ModelLoadService(ModelLoadServiceBase):
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
self._ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(cache_record=self._ram_cache.get(key=cache_key), cache=self._ram_cache)

View File

@@ -16,7 +16,8 @@ from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBas
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -81,11 +82,13 @@ class ModelManagerService(ModelManagerServiceBase):
logger.setLevel(app_config.log_level.upper())
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device_working_mem_gb=app_config.device_working_mem_gb,
enable_partial_loading=app_config.enable_partial_loading,
keep_ram_copy_of_weights=app_config.keep_ram_copy_of_weights,
max_ram_cache_size_gb=app_config.max_cache_ram_gb,
max_vram_cache_size_gb=app_config.max_cache_vram_gb,
execution_device=execution_device or TorchDevice.choose_torch_device(),
logger=logger,
)
loader = ModelLoadService(
app_config=app_config,

View File

@@ -439,7 +439,9 @@ class DefaultSessionProcessor(SessionProcessorBase):
poll_now_event.wait(self._polling_interval)
continue
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
self._invoker.services.logger.info(
f"Executing queue item {self._queue_item.item_id}, session {self._queue_item.session_id}"
)
cancel_event.clear()
# Run the graph

View File

@@ -5,6 +5,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
@@ -112,6 +113,11 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with matching queue ID"""
pass
@abstractmethod
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
"""Cancels all queue items except in-progress items"""
pass
@abstractmethod
def list_queue_items(
self,

View File

@@ -108,8 +108,16 @@ class Batch(BaseModel):
return v
for batch_data_list in v:
for datum in batch_data_list:
if not datum.items:
continue
# Special handling for numbers - they can be mixed
# TODO(psyche): Update BatchDatum to have a `type` field to specify the type of the items, then we can have strict float and int fields
if all(isinstance(item, (int, float)) for item in datum.items):
continue
# Get the type of the first item in the list
first_item_type = type(datum.items[0]) if datum.items else None
first_item_type = type(datum.items[0])
for item in datum.items:
if type(item) is not first_item_type:
raise BatchItemsTypeError("All items in a batch must have the same type")
@@ -366,6 +374,12 @@ class CancelByQueueIDResult(CancelByBatchIDsResult):
pass
class CancelAllExceptCurrentResult(CancelByBatchIDsResult):
"""Result of canceling all except current"""
pass
class IsEmptyResult(BaseModel):
"""Result of checking if the session queue is empty"""

View File

@@ -9,6 +9,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
@@ -510,6 +511,39 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return CancelByQueueIDResult(canceled=count)
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
try:
where = """--sql
WHERE
queue_id == ?
AND status == 'pending'
"""
self.__lock.acquire()
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
(queue_id,),
)
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
{where};
""",
(queue_id,),
)
self.__conn.commit()
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelAllExceptCurrentResult(canceled=count)
def get_queue_item(self, item_id: int) -> SessionQueueItem:
try:
self.__lock.acquire()

View File

@@ -51,15 +51,18 @@ class Edge(BaseModel):
source: EdgeConnection = Field(description="The connection for the edge's from node and field")
destination: EdgeConnection = Field(description="The connection for the edge's to node and field")
def __str__(self):
return f"{self.source.node_id}.{self.source.field} -> {self.destination.node_id}.{self.destination.field}"
def get_output_field(node: BaseInvocation, field: str) -> Any:
def get_output_field_type(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_outputs = get_type_hints(node_type.get_output_annotation())
node_output_field = node_outputs.get(field) or None
return node_output_field
def get_input_field(node: BaseInvocation, field: str) -> Any:
def get_input_field_type(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_inputs = get_type_hints(node_type)
node_input_field = node_inputs.get(field) or None
@@ -93,6 +96,10 @@ def is_list_or_contains_list(t):
return False
def is_any(t: Any) -> bool:
return t == Any or Any in get_args(t)
def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if not from_type:
return False
@@ -102,13 +109,7 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
# TODO: this is pretty forgiving on generic types. Clean that up (need to handle optionals and such)
if from_type and to_type:
# Ports are compatible
if (
from_type == to_type
or from_type == Any
or to_type == Any
or Any in get_args(from_type)
or Any in get_args(to_type)
):
if from_type == to_type or is_any(from_type) or is_any(to_type):
return True
if from_type in get_args(to_type):
@@ -140,10 +141,10 @@ def are_connections_compatible(
"""Determines if a connection between fields of two nodes is compatible."""
# TODO: handle iterators and collectors
from_node_field = get_output_field(from_node, from_field)
to_node_field = get_input_field(to_node, to_field)
from_type = get_output_field_type(from_node, from_field)
to_type = get_input_field_type(to_node, to_field)
return are_connection_types_compatible(from_node_field, to_node_field)
return are_connection_types_compatible(from_type, to_type)
T = TypeVar("T")
@@ -440,17 +441,19 @@ class Graph(BaseModel):
self.get_node(edge.destination.node_id),
edge.destination.field,
):
raise InvalidEdgeError(
f"Invalid edge from {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
raise InvalidEdgeError(f"Edge source and target types do not match ({edge})")
# Validate all iterators & collectors
# TODO: may need to validate all iterators & collectors in subgraphs so edge connections in parent graphs will be available
for node in self.nodes.values():
if isinstance(node, IterateInvocation) and not self._is_iterator_connection_valid(node.id):
raise InvalidEdgeError(f"Invalid iterator node {node.id}")
if isinstance(node, CollectInvocation) and not self._is_collector_connection_valid(node.id):
raise InvalidEdgeError(f"Invalid collector node {node.id}")
if isinstance(node, IterateInvocation):
err = self._is_iterator_connection_valid(node.id)
if err is not None:
raise InvalidEdgeError(f"Invalid iterator node ({node.id}): {err}")
if isinstance(node, CollectInvocation):
err = self._is_collector_connection_valid(node.id)
if err is not None:
raise InvalidEdgeError(f"Invalid collector node ({node.id}): {err}")
return None
@@ -477,11 +480,11 @@ class Graph(BaseModel):
def _is_destination_field_Any(self, edge: Edge) -> bool:
"""Checks if the destination field for an edge is of type typing.Any"""
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == Any
return get_input_field_type(self.get_node(edge.destination.node_id), edge.destination.field) == Any
def _is_destination_field_list_of_Any(self, edge: Edge) -> bool:
"""Checks if the destination field for an edge is of type typing.Any"""
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == list[Any]
return get_input_field_type(self.get_node(edge.destination.node_id), edge.destination.field) == list[Any]
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
@@ -491,55 +494,40 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
raise InvalidEdgeError("One or both nodes don't exist: {edge.source.node_id} -> {edge.destination.node_id}")
raise InvalidEdgeError(f"One or both nodes don't exist ({edge})")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
raise InvalidEdgeError(
f"Edge to node {edge.destination.node_id} field {edge.destination.field} already exists"
)
raise InvalidEdgeError(f"Edge already exists ({edge})")
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(
f"Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}"
)
raise InvalidEdgeError(f"Edge creates a cycle in the graph ({edge})")
# Validate that the field types are compatible
if not are_connections_compatible(from_node, edge.source.field, to_node, edge.destination.field):
raise InvalidEdgeError(
f"Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
raise InvalidEdgeError(f"Field types are incompatible ({edge})")
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source):
raise InvalidEdgeError(
f"Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
err = self._is_iterator_connection_valid(edge.destination.node_id, new_input=edge.source)
if err is not None:
raise InvalidEdgeError(f"Iterator input type does not match iterator output type ({edge}): {err}")
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination):
raise InvalidEdgeError(
f"Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
err = self._is_iterator_connection_valid(edge.source.node_id, new_output=edge.destination)
if err is not None:
raise InvalidEdgeError(f"Iterator output type does not match iterator input type ({edge}): {err}")
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source):
raise InvalidEdgeError(
f"Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate that we are not connecting collector to iterator (currently unsupported)
if isinstance(from_node, CollectInvocation) and isinstance(to_node, IterateInvocation):
raise InvalidEdgeError(
f"Cannot connect collector to iterator: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
err = self._is_collector_connection_valid(edge.destination.node_id, new_input=edge.source)
if err is not None:
raise InvalidEdgeError(f"Collector output type does not match collector input type ({edge}): {err}")
# Validate if collector output type matches input type (if this edge results in both being set) - skip if the destination field is not Any or list[Any]
if (
@@ -548,10 +536,9 @@ class Graph(BaseModel):
and not self._is_destination_field_list_of_Any(edge)
and not self._is_destination_field_Any(edge)
):
if not self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination):
raise InvalidEdgeError(
f"Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
err = self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination)
if err is not None:
raise InvalidEdgeError(f"Collector input type does not match collector output type ({edge}): {err}")
def has_node(self, node_id: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@@ -634,7 +621,7 @@ class Graph(BaseModel):
node_id: str,
new_input: Optional[EdgeConnection] = None,
new_output: Optional[EdgeConnection] = None,
) -> bool:
) -> str | None:
inputs = [e.source for e in self._get_input_edges(node_id, "collection")]
outputs = [e.destination for e in self._get_output_edges(node_id, "item")]
@@ -645,29 +632,47 @@ class Graph(BaseModel):
# Only one input is allowed for iterators
if len(inputs) > 1:
return False
return "Iterator may only have one input edge"
input_node = self.get_node(inputs[0].node_id)
# Get input and output fields (the fields linked to the iterator's input/output)
input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
input_field_type = get_output_field_type(input_node, inputs[0].field)
output_field_types = [get_input_field_type(self.get_node(e.node_id), e.field) for e in outputs]
# Input type must be a list
if get_origin(input_field) is not list:
return False
if get_origin(input_field_type) is not list:
return "Iterator input must be a collection"
# Validate that all outputs match the input type
input_field_item_type = get_args(input_field)[0]
if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)):
return False
input_field_item_type = get_args(input_field_type)[0]
if not all((are_connection_types_compatible(input_field_item_type, t) for t in output_field_types)):
return "Iterator outputs must connect to an input with a matching type"
return True
# Collector input type must match all iterator output types
if isinstance(input_node, CollectInvocation):
# Traverse the graph to find the first collector input edge. Collectors validate that their collection
# inputs are all of the same type, so we can use the first input edge to determine the collector's type
first_collector_input_edge = self._get_input_edges(input_node.id, "item")[0]
first_collector_input_type = get_output_field_type(
self.get_node(first_collector_input_edge.source.node_id), first_collector_input_edge.source.field
)
resolved_collector_type = (
first_collector_input_type
if get_origin(first_collector_input_type) is None
else get_args(first_collector_input_type)
)
if not all((are_connection_types_compatible(resolved_collector_type, t) for t in output_field_types)):
return "Iterator collection type must match all iterator output types"
return None
def _is_collector_connection_valid(
self,
node_id: str,
new_input: Optional[EdgeConnection] = None,
new_output: Optional[EdgeConnection] = None,
) -> bool:
) -> str | None:
inputs = [e.source for e in self._get_input_edges(node_id, "item")]
outputs = [e.destination for e in self._get_output_edges(node_id, "collection")]
@@ -677,38 +682,42 @@ class Graph(BaseModel):
outputs.append(new_output)
# Get input and output fields (the fields linked to the iterator's input/output)
input_fields = [get_output_field(self.get_node(e.node_id), e.field) for e in inputs]
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
input_field_types = [get_output_field_type(self.get_node(e.node_id), e.field) for e in inputs]
output_field_types = [get_input_field_type(self.get_node(e.node_id), e.field) for e in outputs]
# Validate that all inputs are derived from or match a single type
input_field_types = {
t
for input_field in input_fields
for t in ([input_field] if get_origin(input_field) is None else get_args(input_field))
if t != NoneType
resolved_type
for input_field_type in input_field_types
for resolved_type in (
[input_field_type] if get_origin(input_field_type) is None else get_args(input_field_type)
)
if resolved_type != NoneType
} # Get unique types
type_tree = nx.DiGraph()
type_tree.add_nodes_from(input_field_types)
type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
type_degrees = type_tree.in_degree(type_tree.nodes)
if sum((t[1] == 0 for t in type_degrees)) != 1: # type: ignore
return False # There is more than one root type
return "Collector input collection items must be of a single type"
# Get the input root type
input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # type: ignore
# Verify that all outputs are lists
if not all(is_list_or_contains_list(f) for f in output_fields):
return False
if not all(is_list_or_contains_list(t) or is_any(t) for t in output_field_types):
return "Collector output must connect to a collection input"
# Verify that all outputs match the input type (are a base class or the same class)
if not all(
is_union_subtype(input_root_type, get_args(f)[0]) or issubclass(input_root_type, get_args(f)[0])
for f in output_fields
is_any(t)
or is_union_subtype(input_root_type, get_args(t)[0])
or issubclass(input_root_type, get_args(t)[0])
for t in output_field_types
):
return False
return "Collector outputs must connect to a collection input with a matching type"
return True
return None
def nx_graph(self) -> nx.DiGraph:
"""Returns a NetworkX DiGraph representing the layout of this graph"""

View File

@@ -0,0 +1,26 @@
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.backend.model_manager.config import BaseModelType, SubModelType
def preprocess_t5_encoder_model_identifier(model_identifier: ModelIdentifierField) -> ModelIdentifierField:
"""A helper function to normalize a T5 encoder model identifier so that T5 models associated with FLUX
or SD3 models can be used interchangeably.
"""
if model_identifier.base == BaseModelType.Any:
return model_identifier.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
elif model_identifier.base == BaseModelType.StableDiffusion3:
return model_identifier.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
else:
raise ValueError(f"Unsupported model base: {model_identifier.base}")
def preprocess_t5_tokenizer_model_identifier(model_identifier: ModelIdentifierField) -> ModelIdentifierField:
"""A helper function to normalize a T5 tokenizer model identifier so that T5 models associated with FLUX
or SD3 models can be used interchangeably.
"""
if model_identifier.base == BaseModelType.Any:
return model_identifier.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
elif model_identifier.base == BaseModelType.StableDiffusion3:
return model_identifier.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
else:
raise ValueError(f"Unsupported model base: {model_identifier.base}")

View File

@@ -30,6 +30,8 @@ def denoise(
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
# extra img tokens
img_cond: torch.Tensor | None,
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -69,9 +71,9 @@ def denoise(
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
pred = model(
img=img,
img=pred_img,
img_ids=img_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,

View File

@@ -8,6 +8,7 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.util.devices import TorchDevice
class XLabsIPAdapterExtension:
@@ -45,7 +46,7 @@ class XLabsIPAdapterExtension:
) -> torch.Tensor:
clip_image_processor = CLIPImageProcessor()
clip_image: torch.Tensor = clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder.device, dtype=image_encoder.dtype)
clip_image = clip_image.to(device=TorchDevice.choose_torch_device(), dtype=image_encoder.dtype)
clip_image_embeds = image_encoder(clip_image).image_embeds
return clip_image_embeds

View File

@@ -1,6 +1,7 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
from typing import Optional
import torch
from torch import Tensor, nn
@@ -35,6 +36,7 @@ class FluxParams:
theta: int
qkv_bias: bool
guidance_embed: bool
out_channels: Optional[int] = None
class Flux(nn.Module):
@@ -47,7 +49,7 @@ class Flux(nn.Module):
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
self.out_channels = params.out_channels or self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads

View File

@@ -1,11 +1,19 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
from invokeai.backend.util.devices import TorchDevice
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
def __init__(
self,
encoder: PreTrainedModel,
tokenizer: PreTrainedTokenizer | PreTrainedTokenizerFast,
is_clip: bool,
max_length: int,
):
super().__init__()
self.max_length = max_length
self.is_clip = is_clip
@@ -26,7 +34,7 @@ class HFEncoder(nn.Module):
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
input_ids=batch_encoding["input_ids"].to(TorchDevice.choose_torch_device()),
attention_mask=None,
output_hidden_states=False,
)

View File

@@ -18,6 +18,7 @@ from invokeai.backend.image_util.util import (
resize_image_to_resolution,
safe_step,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class DoubleConvBlock(torch.nn.Module):
@@ -109,7 +110,7 @@ class HEDProcessor:
Returns:
The detected edges.
"""
device = next(iter(self.network.parameters())).device
device = get_effective_device(self.network)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
@@ -183,7 +184,7 @@ class HEDEdgeDetector:
The detected edges.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -7,6 +7,7 @@ from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
def norm_img(np_img):
@@ -31,7 +32,7 @@ class LaMA:
mask = norm_img(mask)
mask = (mask > 0) * 1
device = next(self._model.buffers()).device
device = get_effective_device(self._model)
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)

View File

@@ -17,6 +17,7 @@ from invokeai.backend.image_util.util import (
pil_to_np,
resize_image_to_resolution,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class ResidualBlock(nn.Module):
@@ -130,7 +131,7 @@ class LineartProcessor:
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
@@ -201,7 +202,7 @@ class LineartEdgeDetector:
Returns:
The detected edges.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -19,6 +19,7 @@ from invokeai.backend.image_util.util import (
pil_to_np,
resize_image_to_resolution,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class UnetGenerator(nn.Module):
@@ -171,7 +172,7 @@ class LineartAnimeProcessor:
Returns:
The detected lineart.
"""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
@@ -239,7 +240,7 @@ class LineartAnimeEdgeDetector:
def run(self, image: Image.Image) -> Image.Image:
"""Processes an image and returns the detected edges."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)

View File

@@ -14,6 +14,8 @@ import numpy as np
import torch
from torch.nn import functional as F
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
'''
@@ -49,7 +51,7 @@ def pred_lines(image, model,
dist_thr=20.0):
h, w, _ = image.shape
device = next(iter(model.parameters())).device
device = get_effective_device(model)
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
@@ -108,7 +110,7 @@ def pred_squares(image,
'''
h, w, _ = image.shape
original_shape = [h, w]
device = next(iter(model.parameters())).device
device = get_effective_device(model)
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)

View File

@@ -13,6 +13,7 @@ from PIL import Image
from invokeai.backend.image_util.normal_bae.nets.NNET import NNET
from invokeai.backend.image_util.util import np_to_pil, pil_to_np, resize_to_multiple
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class NormalMapDetector:
@@ -64,7 +65,7 @@ class NormalMapDetector:
def run(self, image: Image.Image):
"""Processes an image and returns the detected normal map."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_image = pil_to_np(image)
height, width, _channels = np_image.shape

View File

@@ -11,6 +11,7 @@ from PIL import Image
from invokeai.backend.image_util.pidi.model import PiDiNet, pidinet
from invokeai.backend.image_util.util import nms, normalize_image_channel_count, np_to_pil, pil_to_np, safe_step
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class PIDINetDetector:
@@ -45,7 +46,7 @@ class PIDINetDetector:
) -> Image.Image:
"""Processes an image and returns the detected edges."""
device = next(iter(self.model.parameters())).device
device = get_effective_device(self.model)
np_img = pil_to_np(image)
np_img = normalize_image_channel_count(np_img)

View File

@@ -1,11 +0,0 @@
from typing import Union
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer]

View File

@@ -1,55 +0,0 @@
from typing import Optional, Sequence
import torch
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class ConcatenatedLoRALayer(LoRALayerBase):
"""A LoRA layer that is composed of multiple LoRA layers concatenated along a specified axis.
This class was created to handle a special case with FLUX LoRA models. In the BFL FLUX model format, the attention
Q, K, V matrices are concatenated along the first dimension. In the diffusers LoRA format, the Q, K, V matrices are
stored as separate tensors. This class enables diffusers LoRA layers to be used in BFL FLUX models.
"""
def __init__(self, lora_layers: Sequence[LoRALayer], concat_axis: int = 0):
super().__init__(alpha=None, bias=None)
self.lora_layers = lora_layers
self.concat_axis = concat_axis
def rank(self) -> int | None:
return None
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
# TODO(ryand): Currently, we pass orig_weight=None to the sub-layers. If we want to support sub-layers that
# require this value, we will need to implement chunking of the original weight tensor here.
# Note that we must apply the sub-layer scales here.
layer_weights = [lora_layer.get_weight(None) * lora_layer.scale() for lora_layer in self.lora_layers] # pyright: ignore[reportArgumentType]
return torch.cat(layer_weights, dim=self.concat_axis)
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
# TODO(ryand): Currently, we pass orig_bias=None to the sub-layers. If we want to support sub-layers that
# require this value, we will need to implement chunking of the original bias tensor here.
# Note that we must apply the sub-layer scales here.
layer_biases: list[torch.Tensor] = []
for lora_layer in self.lora_layers:
layer_bias = lora_layer.get_bias(None)
if layer_bias is not None:
layer_biases.append(layer_bias * lora_layer.scale())
if len(layer_biases) == 0:
return None
assert len(layer_biases) == len(self.lora_layers)
return torch.cat(layer_biases, dim=self.concat_axis)
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
super().to(device=device, dtype=dtype)
for lora_layer in self.lora_layers:
lora_layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
return super().calc_size() + sum(lora_layer.calc_size() for lora_layer in self.lora_layers)

View File

@@ -1,302 +0,0 @@
from contextlib import contextmanager
from typing import Dict, Iterable, Optional, Tuple
import torch
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.sidecar_layers.concatenated_lora.concatenated_lora_linear_sidecar_layer import (
ConcatenatedLoRALinearSidecarLayer,
)
from invokeai.backend.lora.sidecar_layers.lora.lora_linear_sidecar_layer import LoRALinearSidecarLayer
from invokeai.backend.lora.sidecar_layers.lora_sidecar_module import LoRASidecarModule
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class LoRAPatcher:
@staticmethod
@torch.no_grad()
@contextmanager
def apply_lora_patches(
model: torch.nn.Module,
patches: Iterable[Tuple[LoRAModelRaw, float]],
prefix: str,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
):
"""Apply one or more LoRA patches to a model within a context manager.
Args:
model (torch.nn.Module): The model to patch.
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
all at once.
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
cached_weights (Optional[Dict[str, torch.Tensor]], optional): Read-only copy of the model's state dict in
CPU RAM, for efficient unpatching purposes.
"""
original_weights = OriginalWeightsStorage(cached_weights)
try:
for patch, patch_weight in patches:
LoRAPatcher.apply_lora_patch(
model=model,
prefix=prefix,
patch=patch,
patch_weight=patch_weight,
original_weights=original_weights,
)
del patch
yield
finally:
for param_key, weight in original_weights.get_changed_weights():
model.get_parameter(param_key).copy_(weight)
@staticmethod
@torch.no_grad()
def apply_lora_patch(
model: torch.nn.Module,
prefix: str,
patch: LoRAModelRaw,
patch_weight: float,
original_weights: OriginalWeightsStorage,
):
"""Apply a single LoRA patch to a model.
Args:
model (torch.nn.Module): The model to patch.
prefix (str): A string prefix that precedes keys used in the LoRAs weight layers.
patch (LoRAModelRaw): The LoRA model to patch in.
patch_weight (float): The weight of the LoRA patch.
original_weights (OriginalWeightsStorage): Storage for the original weights of the model, for unpatching.
"""
if patch_weight == 0:
return
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
# without searching, but some legacy code still uses flattened keys.
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
prefix_len = len(prefix)
for layer_key, layer in patch.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = LoRAPatcher._get_submodule(
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
layer_scale = layer.scale()
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, lora_param_weight in layer.get_parameters(module).items():
param_key = module_key + "." + param_name
module_param = module.get_parameter(param_name)
# Save original weight
original_weights.save(param_key, module_param)
if module_param.shape != lora_param_weight.shape:
lora_param_weight = lora_param_weight.reshape(module_param.shape)
lora_param_weight *= patch_weight * layer_scale
module_param += lora_param_weight.to(dtype=dtype)
layer.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
@torch.no_grad()
@contextmanager
def apply_lora_sidecar_patches(
model: torch.nn.Module,
patches: Iterable[Tuple[LoRAModelRaw, float]],
prefix: str,
dtype: torch.dtype,
):
"""Apply one or more LoRA sidecar patches to a model within a context manager. Sidecar patches incur some
overhead compared to normal LoRA patching, but they allow for LoRA layers to applied to base layers in any
quantization format.
Args:
model (torch.nn.Module): The model to patch.
patches (Iterable[Tuple[LoRAModelRaw, float]]): An iterator that returns tuples of LoRA patches and
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
all at once.
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
dtype (torch.dtype): The compute dtype of the sidecar layers. This cannot easily be inferred from the model,
since the sidecar layers are typically applied on top of quantized layers whose weight dtype is
different from their compute dtype.
"""
original_modules: dict[str, torch.nn.Module] = {}
try:
for patch, patch_weight in patches:
LoRAPatcher._apply_lora_sidecar_patch(
model=model,
prefix=prefix,
patch=patch,
patch_weight=patch_weight,
original_modules=original_modules,
dtype=dtype,
)
yield
finally:
# Restore original modules.
# Note: This logic assumes no nested modules in original_modules.
for module_key, orig_module in original_modules.items():
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
parent_module = model.get_submodule(module_parent_key)
LoRAPatcher._set_submodule(parent_module, module_name, orig_module)
@staticmethod
def _apply_lora_sidecar_patch(
model: torch.nn.Module,
patch: LoRAModelRaw,
patch_weight: float,
prefix: str,
original_modules: dict[str, torch.nn.Module],
dtype: torch.dtype,
):
"""Apply a single LoRA sidecar patch to a model."""
if patch_weight == 0:
return
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
# without searching, but some legacy code still uses flattened keys.
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
prefix_len = len(prefix)
for layer_key, layer in patch.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = LoRAPatcher._get_submodule(
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
)
# Initialize the LoRA sidecar layer.
lora_sidecar_layer = LoRAPatcher._initialize_lora_sidecar_layer(module, layer, patch_weight)
# Replace the original module with a LoRASidecarModule if it has not already been done.
if module_key in original_modules:
# The module has already been patched with a LoRASidecarModule. Append to it.
assert isinstance(module, LoRASidecarModule)
lora_sidecar_module = module
else:
# The module has not yet been patched with a LoRASidecarModule. Create one.
lora_sidecar_module = LoRASidecarModule(module, [])
original_modules[module_key] = module
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
module_parent = model.get_submodule(module_parent_key)
LoRAPatcher._set_submodule(module_parent, module_name, lora_sidecar_module)
# Move the LoRA sidecar layer to the same device/dtype as the orig module.
# TODO(ryand): Experiment with moving to the device first, then casting. This could be faster.
lora_sidecar_layer.to(device=lora_sidecar_module.orig_module.weight.device, dtype=dtype)
# Add the LoRA sidecar layer to the LoRASidecarModule.
lora_sidecar_module.add_lora_layer(lora_sidecar_layer)
@staticmethod
def _split_parent_key(module_key: str) -> tuple[str, str]:
"""Split a module key into its parent key and module name.
Args:
module_key (str): The module key to split.
Returns:
tuple[str, str]: A tuple containing the parent key and module name.
"""
split_key = module_key.rsplit(".", 1)
if len(split_key) == 2:
return tuple(split_key)
elif len(split_key) == 1:
return "", split_key[0]
else:
raise ValueError(f"Invalid module key: {module_key}")
@staticmethod
def _initialize_lora_sidecar_layer(orig_layer: torch.nn.Module, lora_layer: AnyLoRALayer, patch_weight: float):
# TODO(ryand): Add support for more original layer types and LoRA layer types.
if isinstance(orig_layer, torch.nn.Linear) or (
isinstance(orig_layer, LoRASidecarModule) and isinstance(orig_layer.orig_module, torch.nn.Linear)
):
if isinstance(lora_layer, LoRALayer):
return LoRALinearSidecarLayer(lora_layer=lora_layer, weight=patch_weight)
elif isinstance(lora_layer, ConcatenatedLoRALayer):
return ConcatenatedLoRALinearSidecarLayer(concatenated_lora_layer=lora_layer, weight=patch_weight)
else:
raise ValueError(f"Unsupported Linear LoRA layer type: {type(lora_layer)}")
else:
raise ValueError(f"Unsupported layer type: {type(orig_layer)}")
@staticmethod
def _set_submodule(parent_module: torch.nn.Module, module_name: str, submodule: torch.nn.Module):
try:
submodule_index = int(module_name)
# If the module name is an integer, then we use the __setitem__ method to set the submodule.
parent_module[submodule_index] = submodule # type: ignore
except ValueError:
# If the module name is not an integer, then we use the setattr method to set the submodule.
setattr(parent_module, module_name, submodule)
@staticmethod
def _get_submodule(
model: torch.nn.Module, layer_key: str, layer_key_is_flattened: bool
) -> tuple[str, torch.nn.Module]:
"""Get the submodule corresponding to the given layer key.
Args:
model (torch.nn.Module): The model to search.
layer_key (str): The layer key to search for.
layer_key_is_flattened (bool): Whether the layer key is flattened. If flattened, then all '.' have been
replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed
directly without searching, but some legacy code still uses flattened keys.
Returns:
tuple[str, torch.nn.Module]: A tuple containing the module key and the submodule.
"""
if not layer_key_is_flattened:
return layer_key, model.get_submodule(layer_key)
# Handle flattened keys.
assert "." not in layer_key
module = model
module_key = ""
key_parts = layer_key.split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return module_key, module

View File

@@ -1,34 +0,0 @@
import torch
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
class ConcatenatedLoRALinearSidecarLayer(torch.nn.Module):
def __init__(
self,
concatenated_lora_layer: ConcatenatedLoRALayer,
weight: float,
):
super().__init__()
self._concatenated_lora_layer = concatenated_lora_layer
self._weight = weight
def forward(self, input: torch.Tensor) -> torch.Tensor:
x_chunks: list[torch.Tensor] = []
for lora_layer in self._concatenated_lora_layer.lora_layers:
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
if lora_layer.mid is not None:
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
x_chunk *= self._weight * lora_layer.scale()
x_chunks.append(x_chunk)
# TODO(ryand): Generalize to support concat_axis != 0.
assert self._concatenated_lora_layer.concat_axis == 0
x = torch.cat(x_chunks, dim=-1)
return x
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
self._concatenated_lora_layer.to(device=device, dtype=dtype)
return self

View File

@@ -1,27 +0,0 @@
import torch
from invokeai.backend.lora.layers.lora_layer import LoRALayer
class LoRALinearSidecarLayer(torch.nn.Module):
def __init__(
self,
lora_layer: LoRALayer,
weight: float,
):
super().__init__()
self._lora_layer = lora_layer
self._weight = weight
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.nn.functional.linear(x, self._lora_layer.down)
if self._lora_layer.mid is not None:
x = torch.nn.functional.linear(x, self._lora_layer.mid)
x = torch.nn.functional.linear(x, self._lora_layer.up, bias=self._lora_layer.bias)
x *= self._weight * self._lora_layer.scale()
return x
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
self._lora_layer.to(device=device, dtype=dtype)
return self

View File

@@ -1,24 +0,0 @@
import torch
class LoRASidecarModule(torch.nn.Module):
"""A LoRA sidecar module that wraps an original module and adds LoRA layers to it."""
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[torch.nn.Module]):
super().__init__()
self.orig_module = orig_module
self._lora_layers = lora_layers
def add_lora_layer(self, lora_layer: torch.nn.Module):
self._lora_layers.append(lora_layer)
def forward(self, input: torch.Tensor) -> torch.Tensor:
x = self.orig_module(input)
for lora_layer in self._lora_layers:
x += lora_layer(input)
return x
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
self._orig_module.to(device=device, dtype=dtype)
for lora_layer in self._lora_layers:
lora_layer.to(device=device, dtype=dtype)

View File

@@ -67,6 +67,7 @@ class ModelType(str, Enum):
Main = "main"
VAE = "vae"
LoRA = "lora"
ControlLoRa = "control_lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
@@ -273,6 +274,36 @@ class LoRALyCORISConfig(LoRAConfigBase):
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlLoRALyCORISConfig(ModelConfigBase, ControlAdapterConfigBase):
"""Model config for Control LoRA models."""
type: Literal[ModelType.ControlLoRa] = ModelType.ControlLoRa
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlLoRa.value}.{ModelFormat.LyCORIS.value}")
class ControlLoRADiffusersConfig(ModelConfigBase, ControlAdapterConfigBase):
"""Model config for Control LoRA models."""
type: Literal[ModelType.ControlLoRa] = ModelType.ControlLoRa
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.ControlLoRa.value}.{ModelFormat.Diffusers.value}")
class LoRADiffusersConfig(LoRAConfigBase):
"""Model config for LoRA/Diffusers models."""
@@ -304,12 +335,6 @@ class VAEDiffusersConfig(ModelConfigBase):
return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}")
class ControlAdapterConfigBase(BaseModel):
default_settings: Optional[ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
)
class ControlNetDiffusersConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for ControlNet models (diffusers version)."""
@@ -535,6 +560,8 @@ AnyModelConfig = Annotated[
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[ControlLoRALyCORISConfig, ControlLoRALyCORISConfig.get_tag()],
Annotated[ControlLoRADiffusersConfig, ControlLoRADiffusersConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],

View File

@@ -8,7 +8,7 @@ from pathlib import Path
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
# This registers the subclasses that implement loaders of specific model types

View File

@@ -5,7 +5,6 @@ Base class for model loading in InvokeAI.
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Dict, Generator, Optional, Tuple
@@ -18,19 +17,17 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
SubModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
@dataclass
class LoadedModelWithoutConfig:
"""
Context manager object that mediates transfer from RAM<->VRAM.
"""Context manager object that mediates transfer from RAM<->VRAM.
This is a context manager object that has two distinct APIs:
1. Older API (deprecated):
Use the LoadedModel object directly as a context manager.
It will move the model into VRAM (on CUDA devices), and
Use the LoadedModel object directly as a context manager. It will move the model into VRAM (on CUDA devices), and
return the model in a form suitable for passing to torch.
Example:
```
@@ -40,13 +37,9 @@ class LoadedModelWithoutConfig:
```
2. Newer API (recommended):
Call the LoadedModel's `model_on_device()` method in a
context. It returns a tuple consisting of a copy of
the model's state dict in CPU RAM followed by a copy
of the model in VRAM. The state dict is provided to allow
LoRAs and other model patchers to return the model to
its unpatched state without expensive copy and restore
operations.
Call the LoadedModel's `model_on_device()` method in a context. It returns a tuple consisting of a copy of the
model's state dict in CPU RAM followed by a copy of the model in VRAM. The state dict is provided to allow LoRAs and
other model patchers to return the model to its unpatched state without expensive copy and restore operations.
Example:
```
@@ -55,43 +48,48 @@ class LoadedModelWithoutConfig:
image = vae.decode(latents)[0]
```
The state_dict should be treated as a read-only object and
never modified. Also be aware that some loadable models do
not have a state_dict, in which case this value will be None.
The state_dict should be treated as a read-only object and never modified. Also be aware that some loadable models
do not have a state_dict, in which case this value will be None.
"""
_locker: ModelLockerBase
def __init__(self, cache_record: CacheRecord, cache: ModelCache):
self._cache_record = cache_record
self._cache = cache
def __enter__(self) -> AnyModel:
"""Context entry."""
self._locker.lock()
self._cache.lock(self._cache_record, None)
return self.model
def __exit__(self, *args: Any, **kwargs: Any) -> None:
"""Context exit."""
self._locker.unlock()
self._cache.unlock(self._cache_record)
@contextmanager
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
locked_model = self._locker.lock()
def model_on_device(
self, working_mem_bytes: Optional[int] = None
) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device.
:param working_mem_bytes: The amount of working memory to keep available on the compute device when loading the
model.
"""
self._cache.lock(self._cache_record, working_mem_bytes)
try:
state_dict = self._locker.get_state_dict()
yield (state_dict, locked_model)
yield (self._cache_record.cached_model.get_cpu_state_dict(), self._cache_record.cached_model.model)
finally:
self._locker.unlock()
self._cache.unlock(self._cache_record)
@property
def model(self) -> AnyModel:
"""Return the model without locking it."""
return self._locker.model
return self._cache_record.cached_model.model
@dataclass
class LoadedModel(LoadedModelWithoutConfig):
"""Context manager object that mediates transfer from RAM<->VRAM."""
config: Optional[AnyModelConfig] = None
def __init__(self, config: Optional[AnyModelConfig], cache_record: CacheRecord, cache: ModelCache):
super().__init__(cache_record=cache_record, cache=cache)
self.config = config
# TODO(MM2):
@@ -110,7 +108,7 @@ class ModelLoaderBase(ABC):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
pass
@@ -138,6 +136,6 @@ class ModelLoaderBase(ABC):
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
pass

View File

@@ -14,7 +14,8 @@ from invokeai.backend.model_manager import (
)
from invokeai.backend.model_manager.config import DiffusersConfigBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache, get_model_cache_key
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice
@@ -28,7 +29,7 @@ class ModelLoader(ModelLoaderBase):
self,
app_config: InvokeAIAppConfig,
logger: Logger,
ram_cache: ModelCacheBase[AnyModel],
ram_cache: ModelCache,
):
"""Initialize the loader."""
self._app_config = app_config
@@ -54,11 +55,11 @@ class ModelLoader(ModelLoaderBase):
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
with skip_torch_weight_init():
locker = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, _locker=locker)
cache_record = self._load_and_cache(model_config, submodel_type)
return LoadedModel(config=model_config, cache_record=cache_record, cache=self._ram_cache)
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
def ram_cache(self) -> ModelCache:
"""Return the ram cache associated with this loader."""
return self._ram_cache
@@ -66,10 +67,10 @@ class ModelLoader(ModelLoaderBase):
model_base = self._app_config.models_path
return (model_base / config.path).resolve()
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> CacheRecord:
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
try:
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
except IndexError:
pass
@@ -78,16 +79,11 @@ class ModelLoader(ModelLoaderBase):
loaded_model = self._load_model(config, submodel_type)
self._ram_cache.put(
config.key,
submodel_type=submodel_type,
get_model_cache_key(config.key, submodel_type),
model=loaded_model,
)
return self._ram_cache.get(
key=config.key,
submodel_type=submodel_type,
stats_name=stats_name,
)
return self._ram_cache.get(key=get_model_cache_key(config.key, submodel_type), stats_name=stats_name)
def get_size_fs(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None

View File

@@ -1,6 +0,0 @@
"""Init file for ModelCache."""
from .model_cache_base import ModelCacheBase, CacheStats # noqa F401
from .model_cache_default import ModelCache # noqa F401
_all__ = ["ModelCacheBase", "ModelCache", "CacheStats"]

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
@dataclass
class CacheRecord:
"""A class that represents a model in the model cache."""
# Cache key.
key: str
# Model in memory.
cached_model: CachedModelWithPartialLoad | CachedModelOnlyFullLoad
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def is_locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0

View File

@@ -0,0 +1,15 @@
from dataclasses import dataclass, field
from typing import Dict
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)

View File

@@ -0,0 +1,98 @@
from typing import Any
import torch
class CachedModelOnlyFullLoad:
"""A wrapper around a PyTorch model to handle full loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(
self, model: torch.nn.Module | Any, compute_device: torch.device, total_bytes: int, keep_ram_copy: bool = False
):
"""Initialize a CachedModelOnlyFullLoad.
Args:
model (torch.nn.Module | Any): The model to wrap. Should be on the CPU.
compute_device (torch.device): The compute device to move the model to.
total_bytes (int): The total size (in bytes) of all the weights in the model.
keep_ram_copy (bool): Whether to keep a read-only copy of the model's state dict in RAM. Keeping a RAM copy
increases RAM usage, but speeds up model offload from VRAM and LoRA patching (assuming there is
sufficient RAM).
"""
# model is often a torch.nn.Module, but could be any model type. Throughout this class, we handle both cases.
self._model = model
self._compute_device = compute_device
self._offload_device = torch.device("cpu")
# A CPU read-only copy of the model's state dict.
self._cpu_state_dict: dict[str, torch.Tensor] | None = None
if isinstance(model, torch.nn.Module) and keep_ram_copy:
self._cpu_state_dict = model.state_dict()
self._total_bytes = total_bytes
self._is_in_vram = False
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better.
return self._cpu_state_dict
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._is_in_vram:
return self._total_bytes
else:
return 0
def is_in_vram(self) -> bool:
"""Return true if the model is currently in VRAM."""
return self._is_in_vram
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM (if supported by the model).
Returns:
The number of bytes loaded into VRAM.
"""
if self._is_in_vram:
# Already in VRAM.
return 0
if not hasattr(self._model, "to"):
# Model doesn't support moving to a device.
return 0
if self._cpu_state_dict is not None:
new_state_dict: dict[str, torch.Tensor] = {}
for k, v in self._cpu_state_dict.items():
new_state_dict[k] = v.to(self._compute_device, copy=True)
self._model.load_state_dict(new_state_dict, assign=True)
self._model.to(self._compute_device)
self._is_in_vram = True
return self._total_bytes
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM.
Returns:
The number of bytes unloaded from VRAM.
"""
if not self._is_in_vram:
# Already in RAM.
return 0
if self._cpu_state_dict is not None:
self._model.load_state_dict(self._cpu_state_dict, assign=True)
self._model.to(self._offload_device)
self._is_in_vram = False
return self._total_bytes

View File

@@ -0,0 +1,339 @@
import torch
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.custom_modules.custom_module_mixin import (
CustomModuleMixin,
)
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
from invokeai.backend.util.logging import InvokeAILogger
class CachedModelWithPartialLoad:
"""A wrapper around a PyTorch model to handle partial loads and unloads between the CPU and the compute device.
Note: "VRAM" is used throughout this class to refer to the memory on the compute device. It could be CUDA memory,
MPS memory, etc.
"""
def __init__(self, model: torch.nn.Module, compute_device: torch.device, keep_ram_copy: bool = False):
self._model = model
self._compute_device = compute_device
model_state_dict = model.state_dict()
# A CPU read-only copy of the model's state dict. Used for faster model unloads from VRAM, and to speed up LoRA
# patching. Set to `None` if keep_ram_copy is False.
self._cpu_state_dict: dict[str, torch.Tensor] | None = model_state_dict if keep_ram_copy else None
# A dictionary of the size of each tensor in the state dict.
# HACK(ryand): We use this dictionary any time we are doing byte tracking calculations. We do this for
# consistency in case the application code has modified the model's size (e.g. by casting to a different
# precision). Of course, this means that we are making model cache load/unload decisions based on model size
# data that may not be fully accurate.
self._state_dict_bytes = {k: calc_tensor_size(v) for k, v in model_state_dict.items()}
self._total_bytes = sum(self._state_dict_bytes.values())
self._cur_vram_bytes: int | None = None
self._modules_that_support_autocast = self._find_modules_that_support_autocast()
self._keys_in_modules_that_do_not_support_autocast = self._find_keys_in_modules_that_do_not_support_autocast(
model_state_dict
)
self._state_dict_keys_by_module_prefix = self._group_state_dict_keys_by_module_prefix(model_state_dict)
def _find_modules_that_support_autocast(self) -> dict[str, torch.nn.Module]:
"""Find all modules that support autocasting."""
return {n: m for n, m in self._model.named_modules() if isinstance(m, CustomModuleMixin)} # type: ignore
def _find_keys_in_modules_that_do_not_support_autocast(self, state_dict: dict[str, torch.Tensor]) -> set[str]:
keys_in_modules_that_do_not_support_autocast: set[str] = set()
for key in state_dict.keys():
for module_name in self._modules_that_support_autocast.keys():
if key.startswith(module_name):
break
else:
keys_in_modules_that_do_not_support_autocast.add(key)
return keys_in_modules_that_do_not_support_autocast
def _group_state_dict_keys_by_module_prefix(self, state_dict: dict[str, torch.Tensor]) -> dict[str, list[str]]:
"""A helper function that groups state dict keys by module prefix.
Example:
```
state_dict = {
"weight": ...,
"module.submodule.weight": ...,
"module.submodule.bias": ...,
"module.other_submodule.weight": ...,
"module.other_submodule.bias": ...,
}
output = group_state_dict_keys_by_module_prefix(state_dict)
# The output will be:
output = {
"": [
"weight",
],
"module.submodule": [
"module.submodule.weight",
"module.submodule.bias",
],
"module.other_submodule": [
"module.other_submodule.weight",
"module.other_submodule.bias",
],
}
```
"""
state_dict_keys_by_module_prefix: dict[str, list[str]] = {}
for key in state_dict.keys():
split = key.rsplit(".", 1)
# `split` will have length 1 if the root module has parameters.
module_name = split[0] if len(split) > 1 else ""
if module_name not in state_dict_keys_by_module_prefix:
state_dict_keys_by_module_prefix[module_name] = []
state_dict_keys_by_module_prefix[module_name].append(key)
return state_dict_keys_by_module_prefix
def _move_non_persistent_buffers_to_device(self, device: torch.device):
"""Move the non-persistent buffers to the target device. These buffers are not included in the state dict,
so we need to move them manually.
"""
# HACK(ryand): Typically, non-persistent buffers are moved when calling module.to(device). We don't move entire
# modules, because we manage the devices of individual tensors using the state dict. Since non-persistent
# buffers are not included in the state dict, we need to handle them manually. The only way to do this is by
# using private torch.nn.Module attributes.
for module in self._model.modules():
for name, buffer in module.named_buffers():
if name in module._non_persistent_buffers_set:
module._buffers[name] = buffer.to(device, copy=True)
def _set_autocast_enabled_in_all_modules(self, enabled: bool):
"""Set autocast_enabled flag in all modules that support device autocasting."""
for module in self._modules_that_support_autocast.values():
module.set_device_autocasting_enabled(enabled)
@property
def model(self) -> torch.nn.Module:
return self._model
def get_cpu_state_dict(self) -> dict[str, torch.Tensor] | None:
"""Get a read-only copy of the model's state dict in RAM."""
# TODO(ryand): Document this better.
return self._cpu_state_dict
def total_bytes(self) -> int:
"""Get the total size (in bytes) of all the weights in the model."""
return self._total_bytes
def cur_vram_bytes(self) -> int:
"""Get the size (in bytes) of the weights that are currently in VRAM."""
if self._cur_vram_bytes is None:
cur_state_dict = self._model.state_dict()
self._cur_vram_bytes = sum(
self._state_dict_bytes[k]
for k, v in cur_state_dict.items()
if v.device.type == self._compute_device.type
)
return self._cur_vram_bytes
def full_load_to_vram(self) -> int:
"""Load all weights into VRAM."""
return self.partial_load_to_vram(self.total_bytes())
def full_unload_from_vram(self) -> int:
"""Unload all weights from VRAM."""
return self.partial_unload_from_vram(self.total_bytes())
def _load_state_dict_with_device_conversion(
self, state_dict: dict[str, torch.Tensor], keys_to_convert: set[str], target_device: torch.device
):
if self._cpu_state_dict is not None:
# Run the fast version.
self._load_state_dict_with_fast_device_conversion(
state_dict=state_dict,
keys_to_convert=keys_to_convert,
target_device=target_device,
cpu_state_dict=self._cpu_state_dict,
)
else:
# Run the low-virtual-memory version.
self._load_state_dict_with_jit_device_conversion(
state_dict=state_dict,
keys_to_convert=keys_to_convert,
target_device=target_device,
)
def _load_state_dict_with_jit_device_conversion(
self,
state_dict: dict[str, torch.Tensor],
keys_to_convert: set[str],
target_device: torch.device,
):
"""A custom state dict loading implementation with good peak memory properties.
This implementation has the important property that it copies parameters to the target device one module at a time
rather than applying all of the device conversions and then calling load_state_dict(). This is done to minimize the
peak virtual memory usage. Specifically, we want to avoid a case where we hold references to all of the CPU weights
and CUDA weights simultaneously, because Windows will reserve virtual memory for both.
"""
for module_name, module in self._model.named_modules():
module_keys = self._state_dict_keys_by_module_prefix.get(module_name, [])
# Calculate the length of the module name prefix.
prefix_len = len(module_name)
if prefix_len > 0:
prefix_len += 1
module_state_dict = {}
for key in module_keys:
if key in keys_to_convert:
# It is important that we overwrite `state_dict[key]` to avoid keeping two copies of the same
# parameter.
state_dict[key] = state_dict[key].to(target_device)
# Note that we keep parameters that have not been moved to a new device in case the module implements
# weird custom state dict loading logic that requires all parameters to be present.
module_state_dict[key[prefix_len:]] = state_dict[key]
if len(module_state_dict) > 0:
# We set strict=False, because if `module` has both parameters and child modules, then we are loading a
# state dict that only contains the parameters of `module` (not its children).
# We assume that it is rare for non-leaf modules to have parameters. Calling load_state_dict() on non-leaf
# modules will recurse through all of the children, so is a bit wasteful.
incompatible_keys = module.load_state_dict(module_state_dict, strict=False, assign=True)
# Missing keys are ok, unexpected keys are not.
assert len(incompatible_keys.unexpected_keys) == 0
def _load_state_dict_with_fast_device_conversion(
self,
state_dict: dict[str, torch.Tensor],
keys_to_convert: set[str],
target_device: torch.device,
cpu_state_dict: dict[str, torch.Tensor],
):
"""Convert parameters to the target device and load them into the model. Leverages the `cpu_state_dict` to speed
up transfers of weights to the CPU.
"""
for key in keys_to_convert:
if target_device.type == "cpu":
state_dict[key] = cpu_state_dict[key]
else:
state_dict[key] = state_dict[key].to(target_device)
self._model.load_state_dict(state_dict, assign=True)
@torch.no_grad()
def partial_load_to_vram(self, vram_bytes_to_load: int) -> int:
"""Load more weights into VRAM without exceeding vram_bytes_to_load.
Returns:
The number of bytes loaded into VRAM.
"""
# TODO(ryand): Handle the case where an exception is thrown while loading or unloading weights. At the very
# least, we should reset self._cur_vram_bytes to None.
vram_bytes_loaded = 0
cur_state_dict = self._model.state_dict()
# Identify the keys that will be loaded into VRAM.
keys_to_load: set[str] = set()
# First, process the keys that *must* be loaded into VRAM.
for key in self._keys_in_modules_that_do_not_support_autocast:
param = cur_state_dict[key]
if param.device.type == self._compute_device.type:
continue
keys_to_load.add(key)
param_size = self._state_dict_bytes[key]
vram_bytes_loaded += param_size
if vram_bytes_loaded > vram_bytes_to_load:
logger = InvokeAILogger.get_logger()
logger.warning(
f"Loading {vram_bytes_loaded / 2**20} MB into VRAM, but only {vram_bytes_to_load / 2**20} MB were "
"requested. This is the minimum set of weights in VRAM required to run the model."
)
# Next, process the keys that can optionally be loaded into VRAM.
fully_loaded = True
for key, param in cur_state_dict.items():
# Skip the keys that have already been processed above.
if key in keys_to_load:
continue
if param.device.type == self._compute_device.type:
continue
param_size = self._state_dict_bytes[key]
if vram_bytes_loaded + param_size > vram_bytes_to_load:
# TODO(ryand): Should we just break here? If we couldn't fit this parameter into VRAM, is it really
# worth continuing to search for a smaller parameter that would fit?
fully_loaded = False
continue
keys_to_load.add(key)
vram_bytes_loaded += param_size
if len(keys_to_load) > 0:
# We load the entire state dict, not just the parameters that changed, in case there are modules that
# override _load_from_state_dict() and do some funky stuff that requires the entire state dict.
# Alternatively, in the future, grouping parameters by module could probably solve this problem.
self._load_state_dict_with_device_conversion(cur_state_dict, keys_to_load, self._compute_device)
if self._cur_vram_bytes is not None:
self._cur_vram_bytes += vram_bytes_loaded
if fully_loaded:
self._set_autocast_enabled_in_all_modules(False)
else:
self._set_autocast_enabled_in_all_modules(True)
# Move all non-persistent buffers to the compute device. These are a weird edge case and do not participate in
# the vram_bytes_loaded tracking.
self._move_non_persistent_buffers_to_device(self._compute_device)
return vram_bytes_loaded
@torch.no_grad()
def partial_unload_from_vram(self, vram_bytes_to_free: int, keep_required_weights_in_vram: bool = False) -> int:
"""Unload weights from VRAM until vram_bytes_to_free bytes are freed. Or the entire model is unloaded.
:param keep_required_weights_in_vram: If True, any weights that must be kept in VRAM to run the model will be
kept in VRAM.
Returns:
The number of bytes unloaded from VRAM.
"""
vram_bytes_freed = 0
required_weights_in_vram = 0
offload_device = "cpu"
cur_state_dict = self._model.state_dict()
# Identify the keys that will be offloaded to CPU.
keys_to_offload: set[str] = set()
for key, param in cur_state_dict.items():
if vram_bytes_freed >= vram_bytes_to_free:
break
if param.device.type == offload_device:
continue
if keep_required_weights_in_vram and key in self._keys_in_modules_that_do_not_support_autocast:
required_weights_in_vram += self._state_dict_bytes[key]
continue
keys_to_offload.add(key)
vram_bytes_freed += self._state_dict_bytes[key]
if len(keys_to_offload) > 0:
self._load_state_dict_with_device_conversion(cur_state_dict, keys_to_offload, torch.device("cpu"))
if self._cur_vram_bytes is not None:
self._cur_vram_bytes -= vram_bytes_freed
# We may have gone from a fully-loaded model to a partially-loaded model, so we need to reapply the custom
# layers.
self._set_autocast_enabled_in_all_modules(True)
return vram_bytes_freed

View File

@@ -0,0 +1,33 @@
from contextlib import contextmanager
import torch
from invokeai.backend.util.logging import InvokeAILogger
@contextmanager
def log_operation_vram_usage(operation_name: str):
"""A helper function for tuning working memory requirements for memory-intensive ops.
Sample usage:
```python
with log_operation_vram_usage("some_operation"):
some_operation()
```
"""
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
max_allocated_before = torch.cuda.max_memory_allocated()
max_reserved_before = torch.cuda.max_memory_reserved()
try:
yield
finally:
torch.cuda.synchronize()
max_allocated_after = torch.cuda.max_memory_allocated()
max_reserved_after = torch.cuda.max_memory_reserved()
logger = InvokeAILogger.get_logger()
logger.info(
f">>>{operation_name} Peak VRAM allocated: {(max_allocated_after - max_allocated_before) / 2**20} MB, "
f"Peak VRAM reserved: {(max_reserved_after - max_reserved_before) / 2**20} MB"
)

View File

@@ -0,0 +1,659 @@
import gc
import logging
import threading
import time
from functools import wraps
from logging import Logger
from typing import Any, Callable, Dict, List, Optional
import psutil
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.model_manager.load.model_cache.cache_record import CacheRecord
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_only_full_load import (
CachedModelOnlyFullLoad,
)
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
CachedModelWithPartialLoad,
)
from invokeai.backend.model_manager.load.model_cache.torch_module_autocast.torch_module_autocast import (
apply_custom_layers_to_model,
)
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.prefix_logger_adapter import PrefixedLoggerAdapter
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
# TODO(ryand): Where should this go? The ModelCache shouldn't be concerned with submodels.
def get_model_cache_key(model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
"""Get the cache key for a model based on the optional submodel type."""
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
def synchronized(method: Callable[..., Any]) -> Callable[..., Any]:
"""A decorator that applies the class's self._lock to the method."""
@wraps(method)
def wrapper(self, *args, **kwargs):
with self._lock: # Automatically acquire and release the lock
return method(self, *args, **kwargs)
return wrapper
class ModelCache:
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
execution_device_working_mem_gb: float,
enable_partial_loading: bool,
keep_ram_copy_of_weights: bool,
max_ram_cache_size_gb: float | None = None,
max_vram_cache_size_gb: float | None = None,
execution_device: torch.device | str = "cuda",
storage_device: torch.device | str = "cpu",
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""Initialize the model RAM cache.
:param execution_device_working_mem_gb: The amount of working memory to keep on the GPU (in GB) i.e. non-model
VRAM.
:param enable_partial_loading: Whether to enable partial loading of models.
:param max_ram_cache_size_gb: The maximum amount of CPU RAM to use for model caching in GB. This parameter is
kept to maintain compatibility with previous versions of the model cache, but should be deprecated in the
future. If set, this parameter overrides the default cache size logic.
:param max_vram_cache_size_gb: The amount of VRAM to use for model caching in GB. This parameter is kept to
maintain compatibility with previous versions of the model cache, but should be deprecated in the future.
If set, this parameter overrides the default cache size logic.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
self._enable_partial_loading = enable_partial_loading
self._keep_ram_copy_of_weights = keep_ram_copy_of_weights
self._execution_device_working_mem_gb = execution_device_working_mem_gb
self._execution_device: torch.device = torch.device(execution_device)
self._storage_device: torch.device = torch.device(storage_device)
self._max_ram_cache_size_gb = max_ram_cache_size_gb
self._max_vram_cache_size_gb = max_vram_cache_size_gb
self._logger = PrefixedLoggerAdapter(
logger or InvokeAILogger.get_logger(self.__class__.__name__), "MODEL CACHE"
)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord] = {}
self._cache_stack: List[str] = []
self._ram_cache_size_bytes = self._calc_ram_available_to_model_cache()
# A lock applied to all public method calls to make the ModelCache thread-safe.
# At the time of writing, the ModelCache should only be accessed from two threads:
# - The graph execution thread
# - Requests to empty the cache from a separate thread
self._lock = threading.RLock()
@property
@synchronized
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
@synchronized
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collecting cache statistics."""
self._stats = stats
@synchronized
def put(self, key: str, model: AnyModel) -> None:
"""Add a model to the cache."""
if key in self._cached_models:
self._logger.debug(
f"Attempted to add model {key} ({model.__class__.__name__}), but it already exists in the cache. No action necessary."
)
return
size = calc_model_size_by_data(self._logger, model)
self.make_room(size)
# Inject custom modules into the model.
if isinstance(model, torch.nn.Module):
apply_custom_layers_to_model(model)
# Partial loading only makes sense on CUDA.
# - When running on CPU, there is no 'loading' to do.
# - When running on MPS, memory is shared with the CPU, so the default OS memory management already handles this
# well.
running_with_cuda = self._execution_device.type == "cuda"
# Wrap model.
if isinstance(model, torch.nn.Module) and running_with_cuda and self._enable_partial_loading:
wrapped_model = CachedModelWithPartialLoad(
model, self._execution_device, keep_ram_copy=self._keep_ram_copy_of_weights
)
else:
wrapped_model = CachedModelOnlyFullLoad(
model, self._execution_device, size, keep_ram_copy=self._keep_ram_copy_of_weights
)
cache_record = CacheRecord(key=key, cached_model=wrapped_model)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
self._logger.debug(
f"Added model {key} (Type: {model.__class__.__name__}, Wrap mode: {wrapped_model.__class__.__name__}, Model size: {size/MB:.2f}MB)"
)
@synchronized
def get(self, key: str, stats_name: Optional[str] = None) -> CacheRecord:
"""Retrieve a model from the cache.
:param key: Model key
:param stats_name: A human-readable id for the model for the purposes of stats reporting.
Raises IndexError if the model is not in the cache.
"""
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
self._logger.debug(f"Cache miss: {key}")
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.high_watermark = max(self.stats.high_watermark, self._get_ram_in_use())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.cached_model.total_bytes()
)
# This moves the entry to the top (right end) of the stack.
self._cache_stack = [k for k in self._cache_stack if k != key]
self._cache_stack.append(key)
self._logger.debug(f"Cache hit: {key} (Type: {cache_entry.cached_model.model.__class__.__name__})")
return cache_entry
@synchronized
def lock(self, cache_entry: CacheRecord, working_mem_bytes: Optional[int]) -> None:
"""Lock a model for use and move it into VRAM."""
if cache_entry.key not in self._cached_models:
self._logger.info(
f"Locking model cache entry {cache_entry.key} "
f"(Type: {cache_entry.cached_model.model.__class__.__name__}), but it has already been dropped from "
"the RAM cache. This is a sign that the model loading order is non-optimal in the invocation code "
"(See https://github.com/invoke-ai/InvokeAI/issues/7513)."
)
# cache_entry = self._cached_models[key]
cache_entry.lock()
self._logger.debug(
f"Locking model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
if self._execution_device.type == "cpu":
# Models don't need to be loaded into VRAM if we're running on CPU.
return
try:
self._load_locked_model(cache_entry, working_mem_bytes)
self._logger.debug(
f"Finished locking model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
except torch.cuda.OutOfMemoryError:
self._logger.warning("Insufficient GPU memory to load model. Aborting")
cache_entry.unlock()
raise
except Exception:
cache_entry.unlock()
raise
self._log_cache_state()
@synchronized
def unlock(self, cache_entry: CacheRecord) -> None:
"""Unlock a model."""
if cache_entry.key not in self._cached_models:
self._logger.info(
f"Unlocking model cache entry {cache_entry.key} "
f"(Type: {cache_entry.cached_model.model.__class__.__name__}), but it has already been dropped from "
"the RAM cache. This is a sign that the model loading order is non-optimal in the invocation code "
"(See https://github.com/invoke-ai/InvokeAI/issues/7513)."
)
# cache_entry = self._cached_models[key]
cache_entry.unlock()
self._logger.debug(
f"Unlocked model {cache_entry.key} (Type: {cache_entry.cached_model.model.__class__.__name__})"
)
def _load_locked_model(self, cache_entry: CacheRecord, working_mem_bytes: Optional[int] = None) -> None:
"""Helper function for self.lock(). Loads a locked model into VRAM."""
start_time = time.time()
# Calculate model_vram_needed, the amount of additional VRAM that will be used if we fully load the model into
# VRAM.
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
model_total_bytes = cache_entry.cached_model.total_bytes()
model_vram_needed = model_total_bytes - model_cur_vram_bytes
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"Before unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
# Make room for the model in VRAM.
# 1. If the model can fit entirely in VRAM, then make enough room for it to be loaded fully.
# 2. If the model can't fit fully into VRAM, then unload all other models and load as much of the model as
# possible.
vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
self._logger.debug(f"Unloaded models (if necessary): vram_bytes_freed={(vram_bytes_freed/MB):.2f}MB")
# Check the updated vram_available after offloading.
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"After unloading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
if vram_available < 0:
# There is insufficient VRAM available. As a last resort, try to unload the model being locked from VRAM,
# as it may still be loaded from a previous use.
vram_bytes_freed_from_own_model = self._move_model_to_ram(cache_entry, -vram_available)
vram_available = self._get_vram_available(working_mem_bytes)
self._logger.debug(
f"Unloaded {vram_bytes_freed_from_own_model/MB:.2f}MB from the model being locked ({cache_entry.key})."
)
# Move as much of the model as possible into VRAM.
# For testing, only allow 10% of the model to be loaded into VRAM.
# vram_available = int(model_vram_needed * 0.1)
# We add 1 MB to the available VRAM to account for small errors in memory tracking (e.g. off-by-one). A fully
# loaded model is much faster than a 95% loaded model.
model_bytes_loaded = self._move_model_to_vram(cache_entry, vram_available + MB)
model_cur_vram_bytes = cache_entry.cached_model.cur_vram_bytes()
vram_available = self._get_vram_available(working_mem_bytes)
loaded_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
self._logger.info(
f"Loaded model '{cache_entry.key}' ({cache_entry.cached_model.model.__class__.__name__}) onto "
f"{self._execution_device.type} device in {(time.time() - start_time):.2f}s. "
f"Total model size: {model_total_bytes/MB:.2f}MB, "
f"VRAM: {model_cur_vram_bytes/MB:.2f}MB ({loaded_percent:.1%})"
)
self._logger.debug(f"Loaded model onto execution device: model_bytes_loaded={(model_bytes_loaded/MB):.2f}MB, ")
self._logger.debug(
f"After loading: {self._get_vram_state_str(model_cur_vram_bytes, model_total_bytes, vram_available)}"
)
def _move_model_to_vram(self, cache_entry: CacheRecord, vram_available: int) -> int:
try:
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
return cache_entry.cached_model.partial_load_to_vram(vram_available)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
# Partial load is not supported, so we have not choice but to try and fit it all into VRAM.
return cache_entry.cached_model.full_load_to_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
except Exception as e:
if isinstance(e, torch.cuda.OutOfMemoryError):
self._logger.warning("Insufficient GPU memory to load model. Aborting")
# If an exception occurs, the model could be left in a bad state, so we delete it from the cache entirely.
self._delete_cache_entry(cache_entry)
raise
def _move_model_to_ram(self, cache_entry: CacheRecord, vram_bytes_to_free: int) -> int:
try:
if isinstance(cache_entry.cached_model, CachedModelWithPartialLoad):
return cache_entry.cached_model.partial_unload_from_vram(
vram_bytes_to_free, keep_required_weights_in_vram=cache_entry.is_locked
)
elif isinstance(cache_entry.cached_model, CachedModelOnlyFullLoad): # type: ignore
return cache_entry.cached_model.full_unload_from_vram()
else:
raise ValueError(f"Unsupported cached model type: {type(cache_entry.cached_model)}")
except Exception:
# If an exception occurs, the model could be left in a bad state, so we delete it from the cache entirely.
self._delete_cache_entry(cache_entry)
raise
def _get_vram_available(self, working_mem_bytes: Optional[int]) -> int:
"""Calculate the amount of additional VRAM available for the cache to use (takes into account the working
memory).
"""
# If self._max_vram_cache_size_gb is set, then it overrides the default logic.
if self._max_vram_cache_size_gb is not None:
vram_total_available_to_cache = int(self._max_vram_cache_size_gb * GB)
return vram_total_available_to_cache - self._get_vram_in_use()
working_mem_bytes_default = int(self._execution_device_working_mem_gb * GB)
working_mem_bytes = max(working_mem_bytes or working_mem_bytes_default, working_mem_bytes_default)
if self._execution_device.type == "cuda":
# TODO(ryand): It is debatable whether we should use memory_reserved() or memory_allocated() here.
# memory_reserved() includes memory reserved by the torch CUDA memory allocator that may or may not be
# re-used for future allocations. For now, we use memory_allocated() to be conservative.
# vram_reserved = torch.cuda.memory_reserved(self._execution_device)
vram_allocated = torch.cuda.memory_allocated(self._execution_device)
vram_free, _vram_total = torch.cuda.mem_get_info(self._execution_device)
vram_available_to_process = vram_free + vram_allocated
elif self._execution_device.type == "mps":
vram_reserved = torch.mps.driver_allocated_memory()
# TODO(ryand): Is it accurate that MPS shares memory with the CPU?
vram_free = psutil.virtual_memory().available
vram_available_to_process = vram_free + vram_reserved
else:
raise ValueError(f"Unsupported execution device: {self._execution_device.type}")
vram_total_available_to_cache = vram_available_to_process - working_mem_bytes
vram_cur_available_to_cache = vram_total_available_to_cache - self._get_vram_in_use()
return vram_cur_available_to_cache
def _get_vram_in_use(self) -> int:
"""Get the amount of VRAM currently in use by the cache."""
if self._execution_device.type == "cuda":
return torch.cuda.memory_allocated()
elif self._execution_device.type == "mps":
return torch.mps.current_allocated_memory()
else:
raise ValueError(f"Unsupported execution device type: {self._execution_device.type}")
# Alternative definition of VRAM in use:
# return sum(ce.cached_model.cur_vram_bytes() for ce in self._cached_models.values())
def _calc_ram_available_to_model_cache(self) -> int:
"""Calculate the amount of RAM available for the cache to use."""
# If self._max_ram_cache_size_gb is set, then it overrides the default logic.
if self._max_ram_cache_size_gb is not None:
self._logger.info(f"Using user-defined RAM cache size: {self._max_ram_cache_size_gb} GB.")
return int(self._max_ram_cache_size_gb * GB)
# Heuristics for dynamically calculating the RAM cache size, **in order of increasing priority**:
# 1. As an initial default, use 50% of the total RAM for InvokeAI.
# - Assume a 2GB baseline for InvokeAI's non-model RAM usage, and use the rest of the RAM for the model cache.
# 2. On a system with a lot of RAM, users probably don't want InvokeAI to eat up too much RAM.
# There are diminishing returns to storing more and more models. So, we apply an upper bound. (Keep in mind
# that most OSes have some amount of disk caching, which we still benefit from if there is excess memory,
# even if we drop models from the cache.)
# - On systems without a CUDA device, the upper bound is 32GB.
# - On systems with a CUDA device, the upper bound is 1x the amount of VRAM (less the working memory).
# 3. Absolute minimum of 4GB.
# NOTE(ryand): We explored dynamically adjusting the RAM cache size based on memory pressure (using psutil), but
# decided against it for now, for the following reasons:
# - It was surprisingly difficult to get memory metrics with consistent definitions across OSes. (If you go
# down this path again, don't underestimate the amount of complexity here and be sure to test rigorously on all
# OSes.)
# - Making the RAM cache size dynamic opens the door for performance regressions that are hard to diagnose and
# hard for users to understand. It is better for users to see that their RAM is maxed out, and then override
# the default value if desired.
# Lookup the total VRAM size for the CUDA execution device.
total_cuda_vram_bytes: int | None = None
if self._execution_device.type == "cuda":
_, total_cuda_vram_bytes = torch.cuda.mem_get_info(self._execution_device)
# Apply heuristic 1.
# ------------------
heuristics_applied = [1]
total_system_ram_bytes = psutil.virtual_memory().total
# Assumed baseline RAM used by InvokeAI for non-model stuff.
baseline_ram_used_by_invokeai = 2 * GB
ram_available_to_model_cache = int(total_system_ram_bytes * 0.5 - baseline_ram_used_by_invokeai)
# Apply heuristic 2.
# ------------------
max_ram_cache_size_bytes = 32 * GB
if total_cuda_vram_bytes is not None:
if self._max_vram_cache_size_gb is not None:
max_ram_cache_size_bytes = int(self._max_vram_cache_size_gb * GB)
else:
max_ram_cache_size_bytes = total_cuda_vram_bytes - int(self._execution_device_working_mem_gb * GB)
if ram_available_to_model_cache > max_ram_cache_size_bytes:
heuristics_applied.append(2)
ram_available_to_model_cache = max_ram_cache_size_bytes
# Apply heuristic 3.
# ------------------
if ram_available_to_model_cache < 4 * GB:
heuristics_applied.append(3)
ram_available_to_model_cache = 4 * GB
self._logger.info(
f"Calculated model RAM cache size: {ram_available_to_model_cache / MB:.2f} MB. Heuristics applied: {heuristics_applied}."
)
return ram_available_to_model_cache
def _get_ram_in_use(self) -> int:
"""Get the amount of RAM currently in use."""
return sum(ce.cached_model.total_bytes() for ce in self._cached_models.values())
def _get_ram_available(self) -> int:
"""Get the amount of RAM available for the cache to use."""
return self._ram_cache_size_bytes - self._get_ram_in_use()
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _get_vram_state_str(self, model_cur_vram_bytes: int, model_total_bytes: int, vram_available: int) -> str:
"""Helper function for preparing a VRAM state log string."""
model_cur_vram_bytes_percent = model_cur_vram_bytes / model_total_bytes if model_total_bytes > 0 else 0
return (
f"model_total={model_total_bytes/MB:.0f} MB, "
+ f"model_vram={model_cur_vram_bytes/MB:.0f} MB ({model_cur_vram_bytes_percent:.1%} %), "
# + f"vram_total={int(self._max_vram_cache_size * GB)/MB:.0f} MB, "
+ f"vram_available={(vram_available/MB):.0f} MB, "
)
def _offload_unlocked_models(self, vram_bytes_required: int, working_mem_bytes: Optional[int] = None) -> int:
"""Offload models from the execution_device until vram_bytes_required bytes are available, or all models are
offloaded. Of course, locked models are not offloaded.
Returns:
int: The number of bytes freed based on believed model sizes. The actual change in VRAM may be different.
"""
self._logger.debug(
f"Offloading unlocked models with goal of making room for {vram_bytes_required/MB:.2f}MB of VRAM."
)
vram_bytes_freed = 0
# TODO(ryand): Give more thought to the offloading policy used here.
cache_entries_increasing_size = sorted(self._cached_models.values(), key=lambda x: x.cached_model.total_bytes())
for cache_entry in cache_entries_increasing_size:
# We do not fully trust the count of bytes freed, so we check again on each iteration.
vram_available = self._get_vram_available(working_mem_bytes)
vram_bytes_to_free = vram_bytes_required - vram_available
if vram_bytes_to_free <= 0:
break
if cache_entry.is_locked:
# TODO(ryand): In the future, we may want to partially unload locked models, but this requires careful
# handling of model patches (e.g. LoRA).
continue
cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
if cache_entry_bytes_freed > 0:
self._logger.debug(
f"Unloaded {cache_entry.key} from VRAM to free {(cache_entry_bytes_freed/MB):.0f} MB."
)
vram_bytes_freed += cache_entry_bytes_freed
TorchDevice.empty_cache()
return vram_bytes_freed
def _log_cache_state(self, title: str = "Model cache state:", include_entry_details: bool = True):
if self._logger.getEffectiveLevel() > logging.DEBUG:
# Short circuit if the logger is not set to debug. Some of the data lookups could take a non-negligible
# amount of time.
return
log = f"{title}\n"
log_format = " {:<30} Limit: {:>7.1f} MB, Used: {:>7.1f} MB ({:>5.1%}), Available: {:>7.1f} MB ({:>5.1%})\n"
ram_in_use_bytes = self._get_ram_in_use()
ram_available_bytes = self._get_ram_available()
ram_size_bytes = ram_in_use_bytes + ram_available_bytes
ram_in_use_bytes_percent = ram_in_use_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
ram_available_bytes_percent = ram_available_bytes / ram_size_bytes if ram_size_bytes > 0 else 0
log += log_format.format(
f"Storage Device ({self._storage_device.type})",
ram_size_bytes / MB,
ram_in_use_bytes / MB,
ram_in_use_bytes_percent,
ram_available_bytes / MB,
ram_available_bytes_percent,
)
if self._execution_device.type != "cpu":
vram_in_use_bytes = self._get_vram_in_use()
vram_available_bytes = self._get_vram_available(None)
vram_size_bytes = vram_in_use_bytes + vram_available_bytes
vram_in_use_bytes_percent = vram_in_use_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
vram_available_bytes_percent = vram_available_bytes / vram_size_bytes if vram_size_bytes > 0 else 0
log += log_format.format(
f"Compute Device ({self._execution_device.type})",
vram_size_bytes / MB,
vram_in_use_bytes / MB,
vram_in_use_bytes_percent,
vram_available_bytes / MB,
vram_available_bytes_percent,
)
if torch.cuda.is_available():
log += " {:<30} {:.1f} MB\n".format("CUDA Memory Allocated:", torch.cuda.memory_allocated() / MB)
log += " {:<30} {}\n".format("Total models:", len(self._cached_models))
if include_entry_details and len(self._cached_models) > 0:
log += " Models:\n"
log_format = (
" {:<80} total={:>7.1f} MB, vram={:>7.1f} MB ({:>5.1%}), ram={:>7.1f} MB ({:>5.1%}), locked={}\n"
)
for cache_record in self._cached_models.values():
total_bytes = cache_record.cached_model.total_bytes()
cur_vram_bytes = cache_record.cached_model.cur_vram_bytes()
cur_vram_bytes_percent = cur_vram_bytes / total_bytes if total_bytes > 0 else 0
cur_ram_bytes = total_bytes - cur_vram_bytes
cur_ram_bytes_percent = cur_ram_bytes / total_bytes if total_bytes > 0 else 0
log += log_format.format(
f"{cache_record.key} ({cache_record.cached_model.model.__class__.__name__}):",
total_bytes / MB,
cur_vram_bytes / MB,
cur_vram_bytes_percent,
cur_ram_bytes / MB,
cur_ram_bytes_percent,
cache_record.is_locked,
)
self._logger.debug(log)
@synchronized
def make_room(self, bytes_needed: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
self._logger.debug(f"Making room for {bytes_needed/MB:.2f}MB of RAM.")
self._log_cache_state(title="Before dropping models:")
ram_bytes_available = self._get_ram_available()
ram_bytes_to_free = max(0, bytes_needed - ram_bytes_available)
ram_bytes_freed = 0
pos = 0
models_cleared = 0
while ram_bytes_freed < ram_bytes_to_free and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
if not cache_entry.is_locked:
ram_bytes_freed += cache_entry.cached_model.total_bytes()
self._logger.debug(
f"Dropping {model_key} from RAM cache to free {(cache_entry.cached_model.total_bytes()/MB):.2f}MB."
)
self._delete_cache_entry(cache_entry)
del cache_entry
models_cleared += 1
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self._logger.debug(f"Dropped {models_cleared} models to free {ram_bytes_freed/MB:.2f}MB of RAM.")
self._log_cache_state(title="After dropping models:")
def _delete_cache_entry(self, cache_entry: CacheRecord) -> None:
"""Delete cache_entry from the cache if it exists. No exception is thrown if it doesn't exist."""
self._cache_stack = [key for key in self._cache_stack if key != cache_entry.key]
self._cached_models.pop(cache_entry.key, None)

View File

@@ -1,221 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict, Generic, Optional, TypeVar
import torch
from invokeai.backend.model_manager.config import AnyModel, SubModelType
class ModelLockerBase(ABC):
"""Base class for the model locker used by the loader."""
@abstractmethod
def lock(self) -> AnyModel:
"""Lock the contained model and move it into VRAM."""
pass
@abstractmethod
def unlock(self) -> None:
"""Unlock the contained model, and remove it from VRAM."""
pass
@abstractmethod
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
pass
@property
@abstractmethod
def model(self) -> AnyModel:
"""Return the model."""
pass
T = TypeVar("T")
@dataclass
class CacheRecord(Generic[T]):
"""
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
loaded: bool = False
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelCacheBase(ABC, Generic[T]):
"""Virtual base class for RAM model cache."""
@property
@abstractmethod
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
pass
@property
@abstractmethod
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
pass
@property
@abstractmethod
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@property
@abstractmethod
def max_cache_size(self) -> float:
"""Return the maximum size the RAM cache can grow to."""
pass
@max_cache_size.setter
@abstractmethod
def max_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
@property
@abstractmethod
def max_vram_cache_size(self) -> float:
"""Return the maximum size the VRAM cache can grow to."""
pass
@max_vram_cache_size.setter
@abstractmethod
def max_vram_cache_size(self, value: float) -> float:
"""Set the maximum size the VRAM cache can grow to."""
pass
@abstractmethod
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload from VRAM any models not actively in use."""
pass
@abstractmethod
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device."""
pass
@property
@abstractmethod
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
pass
@stats.setter
@abstractmethod
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
pass
@property
@abstractmethod
def logger(self) -> Logger:
"""Return the logger used by the cache."""
pass
@abstractmethod
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
pass
@abstractmethod
def put(
self,
key: str,
model: T,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
pass
@abstractmethod
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
pass
@abstractmethod
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
pass
@abstractmethod
def print_cuda_stats(self) -> None:
"""Log debugging information on CUDA usage."""
pass

View File

@@ -1,426 +0,0 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
""" """
import gc
import math
import time
from contextlib import suppress
from logging import Logger
from typing import Dict, List, Optional
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
CacheStats,
ModelCacheBase,
ModelLockerBase,
)
from invokeai.backend.model_manager.load.model_cache.model_locker import ModelLocker
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
class ModelCache(ModelCacheBase[AnyModel]):
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
max_cache_size: float,
max_vram_cache_size: float,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
lazy_offloading: bool = True,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the storage_device cache in GBs.
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
self._cache_stack: List[str] = []
@property
def logger(self) -> Logger:
"""Return the logger used by the cache."""
return self._logger
@property
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
return self._lazy_offloading
@property
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
return self._storage_device
@property
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
return self._execution_device
@property
def max_cache_size(self) -> float:
"""Return the cap on cache size."""
return self._max_cache_size
@max_cache_size.setter
def max_cache_size(self, value: float) -> None:
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def max_vram_cache_size(self) -> float:
"""Return the cap on vram cache size."""
return self._max_vram_cache_size
@max_vram_cache_size.setter
def max_vram_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
self._max_vram_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
return self._stats
@stats.setter
def stats(self, stats: CacheStats) -> None:
"""Set the CacheStats object for collectin cache statistics."""
self._stats = stats
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""
total = 0
for cache_record in self._cached_models.values():
total += cache_record.size
return total
def put(
self,
key: str,
model: AnyModel,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(self.logger, model)
self.make_room(size)
running_on_cpu = self.execution_device == torch.device("cpu")
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not running_on_cpu else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
def get(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GB)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return ModelLocker(
cache=self,
cache_entry=cache_entry,
)
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
return None
def _make_cache_key(self, model_key: str, submodel_type: Optional[SubModelType] = None) -> str:
if submodel_type:
return f"{model_key}:{submodel_type.value}"
else:
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload models from the execution_device to make room for size_required.
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
"""
reserved = self._max_vram_cache_size * GB
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
)
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
snapshot_after = self._capture_memory_snapshot()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if (
snapshot_before is not None
and snapshot_after is not None
and snapshot_before.vram is not None
and snapshot_after.vram is not None
):
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.debug(
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GB):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
ram = "%4.2fG" % (self.cache_size() / GB)
in_ram_models = 0
in_vram_models = 0
locked_in_vram_models = 0
for cache_record in self._cached_models.values():
if hasattr(cache_record.model, "device"):
if cache_record.model.device == self.storage_device:
in_ram_models += 1
else:
in_vram_models += 1
if cache_record.locked:
locked_in_vram_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; models_in_ram/models_in_vram(locked) ="
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
bytes_needed = size
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
current_size = self.cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GB):.2f} GB"
)
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
pos = 0
models_cleared = 0
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
)
if not cache_entry.locked:
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1
self._delete_cache_entry(cache_entry)
del cache_entry
else:
pos += 1
if models_cleared > 0:
# There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but
# there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost
# is high even if no garbage gets collected.)
#
# Calling gc.collect(...) when a model is cleared seems like a good middle-ground:
# - If models had to be cleared, it's a signal that we are close to our memory limit.
# - If models were cleared, there's a good chance that there's a significant amount of garbage to be
# collected.
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]

View File

@@ -1,64 +0,0 @@
"""
Base class and implementation of a class that moves models in and out of VRAM.
"""
from typing import Dict, Optional
import torch
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import (
CacheRecord,
ModelCacheBase,
ModelLockerBase,
)
class ModelLocker(ModelLockerBase):
"""Internal class that mediates movement in and out of GPU."""
def __init__(self, cache: ModelCacheBase[AnyModel], cache_entry: CacheRecord[AnyModel]):
"""
Initialize the model locker.
:param cache: The ModelCache object
:param cache_entry: The entry in the model cache
"""
self._cache = cache
self._cache_entry = cache_entry
@property
def model(self) -> AnyModel:
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise
except Exception:
self._cache_entry.unlock()
raise
return self.model
def unlock(self) -> None:
"""Call upon exit from context."""
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()

Some files were not shown because too many files have changed in this diff Show More