mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-12 23:58:04 -05:00
* Fixed multitype list * Cast to float * Reverted to all floats * Moved all remaining to float
313 lines
8.0 KiB
Python
313 lines
8.0 KiB
Python
"""
|
|
|
|
Probabilistic Road Map (PRM) Planner
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
|
|
"""
|
|
|
|
import math
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from scipy.spatial import KDTree
|
|
|
|
# parameter
|
|
N_SAMPLE = 500 # number of sample_points
|
|
N_KNN = 10 # number of edge from one sampled point
|
|
MAX_EDGE_LEN = 30.0 # [m] Maximum edge length
|
|
|
|
show_animation = True
|
|
|
|
|
|
class Node:
|
|
"""
|
|
Node class for dijkstra search
|
|
"""
|
|
|
|
def __init__(self, x, y, cost, parent_index):
|
|
self.x = x
|
|
self.y = y
|
|
self.cost = cost
|
|
self.parent_index = parent_index
|
|
|
|
def __str__(self):
|
|
return str(self.x) + "," + str(self.y) + "," +\
|
|
str(self.cost) + "," + str(self.parent_index)
|
|
|
|
|
|
def prm_planning(start_x, start_y, goal_x, goal_y,
|
|
obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None):
|
|
"""
|
|
Run probabilistic road map planning
|
|
|
|
:param start_x: start x position
|
|
:param start_y: start y position
|
|
:param goal_x: goal x position
|
|
:param goal_y: goal y position
|
|
:param obstacle_x_list: obstacle x positions
|
|
:param obstacle_y_list: obstacle y positions
|
|
:param robot_radius: robot radius
|
|
:param rng: (Optional) Random generator
|
|
:return:
|
|
"""
|
|
obstacle_kd_tree = KDTree(np.vstack((obstacle_x_list, obstacle_y_list)).T)
|
|
|
|
sample_x, sample_y = sample_points(start_x, start_y, goal_x, goal_y,
|
|
robot_radius,
|
|
obstacle_x_list, obstacle_y_list,
|
|
obstacle_kd_tree, rng)
|
|
if show_animation:
|
|
plt.plot(sample_x, sample_y, ".b")
|
|
|
|
road_map = generate_road_map(sample_x, sample_y,
|
|
robot_radius, obstacle_kd_tree)
|
|
|
|
rx, ry = dijkstra_planning(
|
|
start_x, start_y, goal_x, goal_y, road_map, sample_x, sample_y)
|
|
|
|
return rx, ry
|
|
|
|
|
|
def is_collision(sx, sy, gx, gy, rr, obstacle_kd_tree):
|
|
x = sx
|
|
y = sy
|
|
dx = gx - sx
|
|
dy = gy - sy
|
|
yaw = math.atan2(gy - sy, gx - sx)
|
|
d = math.hypot(dx, dy)
|
|
|
|
if d >= MAX_EDGE_LEN:
|
|
return True
|
|
|
|
D = rr
|
|
n_step = round(d / D)
|
|
|
|
for i in range(n_step):
|
|
dist, _ = obstacle_kd_tree.query([x, y])
|
|
if dist <= rr:
|
|
return True # collision
|
|
x += D * math.cos(yaw)
|
|
y += D * math.sin(yaw)
|
|
|
|
# goal point check
|
|
dist, _ = obstacle_kd_tree.query([gx, gy])
|
|
if dist <= rr:
|
|
return True # collision
|
|
|
|
return False # OK
|
|
|
|
|
|
def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree):
|
|
"""
|
|
Road map generation
|
|
|
|
sample_x: [m] x positions of sampled points
|
|
sample_y: [m] y positions of sampled points
|
|
robot_radius: Robot Radius[m]
|
|
obstacle_kd_tree: KDTree object of obstacles
|
|
"""
|
|
|
|
road_map = []
|
|
n_sample = len(sample_x)
|
|
sample_kd_tree = KDTree(np.vstack((sample_x, sample_y)).T)
|
|
|
|
for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y):
|
|
|
|
dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample)
|
|
edge_id = []
|
|
|
|
for ii in range(1, len(indexes)):
|
|
nx = sample_x[indexes[ii]]
|
|
ny = sample_y[indexes[ii]]
|
|
|
|
if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree):
|
|
edge_id.append(indexes[ii])
|
|
|
|
if len(edge_id) >= N_KNN:
|
|
break
|
|
|
|
road_map.append(edge_id)
|
|
|
|
# plot_road_map(road_map, sample_x, sample_y)
|
|
|
|
return road_map
|
|
|
|
|
|
def dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y):
|
|
"""
|
|
s_x: start x position [m]
|
|
s_y: start y position [m]
|
|
goal_x: goal x position [m]
|
|
goal_y: goal y position [m]
|
|
obstacle_x_list: x position list of Obstacles [m]
|
|
obstacle_y_list: y position list of Obstacles [m]
|
|
robot_radius: robot radius [m]
|
|
road_map: ??? [m]
|
|
sample_x: ??? [m]
|
|
sample_y: ??? [m]
|
|
|
|
@return: Two lists of path coordinates ([x1, x2, ...], [y1, y2, ...]), empty list when no path was found
|
|
"""
|
|
|
|
start_node = Node(sx, sy, 0.0, -1)
|
|
goal_node = Node(gx, gy, 0.0, -1)
|
|
|
|
open_set, closed_set = dict(), dict()
|
|
open_set[len(road_map) - 2] = start_node
|
|
|
|
path_found = True
|
|
|
|
while True:
|
|
if not open_set:
|
|
print("Cannot find path")
|
|
path_found = False
|
|
break
|
|
|
|
c_id = min(open_set, key=lambda o: open_set[o].cost)
|
|
current = open_set[c_id]
|
|
|
|
# show graph
|
|
if show_animation and len(closed_set.keys()) % 2 == 0:
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect(
|
|
'key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.plot(current.x, current.y, "xg")
|
|
plt.pause(0.001)
|
|
|
|
if c_id == (len(road_map) - 1):
|
|
print("goal is found!")
|
|
goal_node.parent_index = current.parent_index
|
|
goal_node.cost = current.cost
|
|
break
|
|
|
|
# Remove the item from the open set
|
|
del open_set[c_id]
|
|
# Add it to the closed set
|
|
closed_set[c_id] = current
|
|
|
|
# expand search grid based on motion model
|
|
for i in range(len(road_map[c_id])):
|
|
n_id = road_map[c_id][i]
|
|
dx = sample_x[n_id] - current.x
|
|
dy = sample_y[n_id] - current.y
|
|
d = math.hypot(dx, dy)
|
|
node = Node(sample_x[n_id], sample_y[n_id],
|
|
current.cost + d, c_id)
|
|
|
|
if n_id in closed_set:
|
|
continue
|
|
# Otherwise if it is already in the open set
|
|
if n_id in open_set:
|
|
if open_set[n_id].cost > node.cost:
|
|
open_set[n_id].cost = node.cost
|
|
open_set[n_id].parent_index = c_id
|
|
else:
|
|
open_set[n_id] = node
|
|
|
|
if path_found is False:
|
|
return [], []
|
|
|
|
# generate final course
|
|
rx, ry = [goal_node.x], [goal_node.y]
|
|
parent_index = goal_node.parent_index
|
|
while parent_index != -1:
|
|
n = closed_set[parent_index]
|
|
rx.append(n.x)
|
|
ry.append(n.y)
|
|
parent_index = n.parent_index
|
|
|
|
return rx, ry
|
|
|
|
|
|
def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover
|
|
|
|
for i, _ in enumerate(road_map):
|
|
for ii in range(len(road_map[i])):
|
|
ind = road_map[i][ii]
|
|
|
|
plt.plot([sample_x[i], sample_x[ind]],
|
|
[sample_y[i], sample_y[ind]], "-k")
|
|
|
|
|
|
def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng):
|
|
max_x = max(ox)
|
|
max_y = max(oy)
|
|
min_x = min(ox)
|
|
min_y = min(oy)
|
|
|
|
sample_x, sample_y = [], []
|
|
|
|
if rng is None:
|
|
rng = np.random.default_rng()
|
|
|
|
while len(sample_x) <= N_SAMPLE:
|
|
tx = (rng.random() * (max_x - min_x)) + min_x
|
|
ty = (rng.random() * (max_y - min_y)) + min_y
|
|
|
|
dist, index = obstacle_kd_tree.query([tx, ty])
|
|
|
|
if dist >= rr:
|
|
sample_x.append(tx)
|
|
sample_y.append(ty)
|
|
|
|
sample_x.append(sx)
|
|
sample_y.append(sy)
|
|
sample_x.append(gx)
|
|
sample_y.append(gy)
|
|
|
|
return sample_x, sample_y
|
|
|
|
|
|
def main(rng=None):
|
|
print(__file__ + " start!!")
|
|
|
|
# start and goal position
|
|
sx = 10.0 # [m]
|
|
sy = 10.0 # [m]
|
|
gx = 50.0 # [m]
|
|
gy = 50.0 # [m]
|
|
robot_size = 5.0 # [m]
|
|
|
|
ox = []
|
|
oy = []
|
|
|
|
for i in range(60):
|
|
ox.append(float(i))
|
|
oy.append(0.0)
|
|
for i in range(60):
|
|
ox.append(60.0)
|
|
oy.append(float(i))
|
|
for i in range(61):
|
|
ox.append(float(i))
|
|
oy.append(60.0)
|
|
for i in range(61):
|
|
ox.append(0.0)
|
|
oy.append(float(i))
|
|
for i in range(40):
|
|
ox.append(20.0)
|
|
oy.append(float(i))
|
|
for i in range(40):
|
|
ox.append(40.0)
|
|
oy.append(60.0 - i)
|
|
|
|
if show_animation:
|
|
plt.plot(ox, oy, ".k")
|
|
plt.plot(sx, sy, "^r")
|
|
plt.plot(gx, gy, "^c")
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
|
|
rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size, rng=rng)
|
|
|
|
assert rx, 'Cannot found path'
|
|
|
|
if show_animation:
|
|
plt.plot(rx, ry, "-r")
|
|
plt.pause(0.001)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|