Compare commits

..

1 Commits

Author SHA1 Message Date
Anush Elangovan
6d6a9dcae8 Revert "Revert "Enable --device_allocator=caching""
This reverts commit 41ee65b377.
2023-02-09 23:00:32 -08:00
71 changed files with 795 additions and 5864 deletions

View File

@@ -14,7 +14,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v2
@@ -44,20 +44,18 @@ jobs:
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: true
prerelease: false
- name: Build Package
shell: powershell
run: |
./setup_venv.ps1
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
pyinstaller .\apps\stable_diffusion\shark_sd_cli.spec
python process_skipfiles.py
mv ./dist/shark_sd_cli.exe ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
# GHA windows VM OOMs so disable for now
@@ -67,9 +65,9 @@ jobs:
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
#- uses: actions/upload-artifact@v2
# with:
# path: dist/*
- uses: actions/upload-artifact@v2
with:
path: dist/*
- name: Upload Release Assets
id: upload-release-assets
@@ -79,7 +77,6 @@ jobs:
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./dist/*
#asset_content_type: application/vnd.microsoft.portable-executable
- name: Publish Release
id: publish_release
@@ -95,7 +92,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
backend: [IREE, SHARK]
steps:
@@ -134,7 +131,7 @@ jobs:
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://iree-org.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models

View File

@@ -31,7 +31,7 @@ jobs:
matrix:
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
suite: [cpu,cuda,vulkan]
python-version: ["3.11"]
python-version: ["3.10"]
include:
- os: ubuntu-latest
suite: lint
@@ -151,10 +151,12 @@ jobs:
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
pytest -k vulkan -s
pytest --benchmark -k vulkan -s
type bench_results.csv
- name: Validate Stable Diffusion Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
./shark.venv/Scripts/activate
python build_tools/stable_diffusion_testing.py --device=vulkan

View File

@@ -10,7 +10,7 @@ High Performance Machine Learning Distribution
<summary>Prerequisites - Drivers </summary>
#### Install your Windows hardware drivers
* [AMD RDNA Users] Download the latest driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-2-1).
* [AMD RDNA Users] Download this specific driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mril-iree). Latest drivers may not work.
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
@@ -25,32 +25,18 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Install Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Download the [stable release](https://github.com/nod-ai/shark/releases/latest)
Download the latest .exe https://github.com/nod-ai/SHARK/releases.
Double click the .exe and you should have the [UI](http://localhost:8080/) in the browser.
Double click the .exe and you should have the [UI]( http://localhost:8080/?__theme=dark) in the browser.
If you have custom models put them in a `models/` directory where the .exe is.
If you have custom models (ckpt, safetensors) put in a `models/` directory where the .exe is.
Enjoy.
<details>
<summary>More installation notes</summary>
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
Some known AMD Driver quirks and fixes with cursors are documented [here](https://github.com/nod-ai/SHARK/blob/main/apps/stable_diffusion/stable_diffusion_amd.md ).
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE)
* The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
</details>
<details>
<summary>Advanced Installation (Only for developers)</summary>
@@ -68,7 +54,7 @@ cd SHARK
### Windows 10/11 Users
* Install the latest Python 3.11.x version from [here](https://www.python.org/downloads/windows/)
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
@@ -119,15 +105,16 @@ source shark.venv/bin/activate
#### Linux / macOS Users
```shell
python3.11 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
python3.10 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
</details>
The output on a AMD 7900XTX would look something like:
The output on a 7900XTX would like:
```shell
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
@@ -153,7 +140,7 @@ Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any
This step sets up a new VirtualEnv for Python
```shell
python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
python --version #Check you have 3.10 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
@@ -167,7 +154,7 @@ python -m pip install --upgrade pip
### Install SHARK
This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
```shell
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
@@ -202,10 +189,10 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
<details>
<summary>Development, Testing and Benchmarks</summary>
If you want to use Python3.11 and with TF Import tools you can use the environment variables like:
If you want to use Python3.10 and with TF Import tools you can use the environment variables like:
Set `USE_IREE=1` to use upstream IREE
```
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
```
### Run any of the hundreds of SHARK tank models via the test framework
@@ -215,14 +202,14 @@ python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use g
pytest tank/test_models.py -k "MiniLM"
```
### How to use your locally built IREE / Torch-MLIR with SHARK
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
How to use your locally built Torch-MLIR with SHARK:
### How to use your locally built Torch-MLIR with SHARK
```shell
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
@@ -240,15 +227,9 @@ Now the SHARK will use your locally build Torch-MLIR repo.
## Benchmarking Dispatches
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
For example, to generate and run dispatch benchmarks for MiniLM on CUDA:
```
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
```
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
```
@@ -272,7 +253,7 @@ Output will include:
- A .txt file containing benchmark output
See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.
See tank/README.md for instructions on how to run model tests and benchmarks from the SHARK tank.
</details>

View File

@@ -1,4 +1 @@
from apps.stable_diffusion.scripts.txt2img import txt2img_inf
from apps.stable_diffusion.scripts.img2img import img2img_inf
from apps.stable_diffusion.scripts.inpaint import inpaint_inf
from apps.stable_diffusion.scripts.outpaint import outpaint_inf

View File

@@ -1,327 +0,0 @@
import sys
import torch
import time
from PIL import Image
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
Image2ImagePipeline,
StencilPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
@dataclass
class Config:
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
use_stencil: str
img2img_obj = None
config_obj = None
schedulers = None
# Exposed to UI.
def img2img_inf(
prompt: str,
negative_prompt: str,
init_image: Image,
height: int,
width: int,
steps: int,
strength: float,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
use_stencil: str,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
):
global img2img_obj
global config_obj
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.seed = seed
args.steps = steps
args.strength = strength
args.scheduler = scheduler
args.img_path = "not none"
if init_image is None:
return None, "An Initial Image is required"
image = init_image.convert("RGB")
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
use_stencil = None if use_stencil == "None" else use_stencil
args.use_stencil = use_stencil
if use_stencil is not None:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
args.precision = precision
dtype = torch.float32 if precision == "fp32" else torch.half
new_config_obj = Config(
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_stencil,
)
if not img2img_obj or config_obj != new_config_obj:
config_obj = new_config_obj
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = ""
args.use_tuned = True
args.import_mlir = True
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
if use_stencil is not None:
args.use_tuned = False
img2img_obj = StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
)
else:
img2img_obj = Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
)
img2img_obj.scheduler = schedulers[scheduler]
start_time = time.time()
img2img_obj.log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
extra_info = {"STRENGTH": strength}
for current_batch in range(batch_count):
if current_batch > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = img2img_obj.generate_images(
prompt,
negative_prompt,
image,
batch_size,
height,
width,
steps,
strength,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
save_output_img(out_imgs[0], img_seed, extra_info)
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
img2img_obj.log += "\n"
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={steps}, strength={args.strength}, guidance_scale={guidance_scale}, seed={seeds}"
text_output += f"\nsize={height}x{width}, batch_count={batch_count}, batch_size={batch_size}, max_length={args.max_length}"
text_output += img2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
# When the models get uploaded, it should be default to False.
args.import_mlir = True
use_stencil = args.use_stencil
if use_stencil:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
image = Image.open(args.img_path).convert("RGB")
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
if use_stencil:
img2img_obj = StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
)
else:
img2img_obj = Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
)
start_time = time.time()
generated_imgs = img2img_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.strength,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, strength={args.strength}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += img2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"STRENGTH": args.strength}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,258 +0,0 @@
import sys
import torch
import time
from PIL import Image
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
InpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
@dataclass
class Config:
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
inpaint_obj = None
config_obj = None
schedulers = None
# Exposed to UI.
def inpaint_inf(
prompt: str,
negative_prompt: str,
image_dict,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
):
global inpaint_obj
global config_obj
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
args.mask_path = "not none"
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
)
if not inpaint_obj or config_obj != new_config_obj:
config_obj = new_config_obj
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = ""
args.use_tuned = True
args.import_mlir = False
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
inpaint_obj = InpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
inpaint_obj.scheduler = schedulers[scheduler]
start_time = time.time()
inpaint_obj.log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
image = image_dict["image"]
mask_image = image_dict["mask"]
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = inpaint_obj.generate_images(
prompt,
negative_prompt,
image,
mask_image,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
inpaint_obj.log += "\n"
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
text_output += inpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
if args.mask_path is None:
print("Flag --mask_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
mask_image = Image.open(args.mask_path)
inpaint_obj = InpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = inpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
mask_image,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += inpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)

View File

@@ -1,293 +0,0 @@
import sys
import torch
import time
from PIL import Image
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
OutpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
@dataclass
class Config:
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
outpaint_obj = None
config_obj = None
schedulers = None
# Exposed to UI.
def outpaint_inf(
prompt: str,
negative_prompt: str,
init_image: Image,
pixels: int,
mask_blur: int,
directions: list,
noise_q: float,
color_variation: float,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
):
global outpaint_obj
global config_obj
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
)
if not outpaint_obj or config_obj != new_config_obj:
config_obj = new_config_obj
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = ""
args.use_tuned = True
args.import_mlir = False
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
outpaint_obj = OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
outpaint_obj.scheduler = schedulers[scheduler]
start_time = time.time()
outpaint_obj.log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
left = True if "left" in directions else False
right = True if "right" in directions else False
top = True if "up" in directions else False
bottom = True if "down" in directions else False
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = outpaint_obj.generate_images(
prompt,
negative_prompt,
init_image,
pixels,
mask_blur,
left,
right,
top,
bottom,
noise_q,
color_variation,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
outpaint_obj.log += "\n"
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
text_output += outpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
outpaint_obj = OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = outpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.pixels,
args.mask_blur,
args.left,
args.right,
args.top,
args.bottom,
args.noise_q,
args.color_variation,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += outpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
# save this information as metadata of output generated image.
directions = []
if args.left:
directions.append("left")
if args.right:
directions.append("right")
if args.top:
directions.append("up")
if args.bottom:
directions.append("down")
extra_info = {
"PIXELS": args.pixels,
"MASK_BLUR": args.mask_blur,
"DIRECTIONS": directions,
"NOISE_Q": args.noise_q,
"COLOR_VARIATION": args.color_variation,
}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,15 +1,24 @@
import os
if "AMD_ENABLE_LLPC" not in os.environ:
os.environ["AMD_ENABLE_LLPC"] = "1"
import sys
import json
import torch
import re
import time
from pathlib import Path
from PIL import PngImagePlugin
from datetime import datetime as dt
from dataclasses import dataclass
from csv import DictWriter
from apps.stable_diffusion.src import (
args,
Text2ImagePipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
@@ -25,6 +34,96 @@ class Config:
device: str
# This has to come before importing cache objects
if args.clear_all:
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(output_path, "generated_imgs")
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = os.path.basename(args.ckpt_loc)
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
with open(csv_path, "a") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
txt2img_obj = None
config_obj = None
schedulers = None
@@ -94,7 +193,7 @@ def txt2img_inf(
width,
device,
)
if not txt2img_obj or config_obj != new_config_obj:
if config_obj != new_config_obj:
config_obj = new_config_obj
args.precision = precision
args.batch_size = batch_size
@@ -102,10 +201,8 @@ def txt2img_inf(
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = ""
args.use_tuned = True
args.import_mlir = False
args.img_path = None
set_init_device_flags()
model_id = (
args.hf_model_id
@@ -119,7 +216,6 @@ def txt2img_inf(
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
@@ -127,9 +223,11 @@ def txt2img_inf(
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
)
if not txt2img_obj:
sys.exit("text to image pipeline must not return a null value")
txt2img_obj.scheduler = schedulers[scheduler]
start_time = time.time()
@@ -158,27 +256,21 @@ def txt2img_inf(
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
txt2img_obj.log += "\n"
yield generated_imgs, generated_imgs[0], txt2img_obj.log
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += (
f"\nsteps={steps}, guidance_scale={guidance_scale}, seed={seeds}"
)
text_output += f"\nsize={height}x{width}, batch_count={batch_count}, batch_size={batch_size}, max_length={args.max_length}"
# text_output += txt2img_obj.log
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
yield generated_imgs, text_output
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
@@ -191,7 +283,6 @@ if __name__ == "__main__":
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
@@ -199,11 +290,10 @@ if __name__ == "__main__":
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
for run in range(args.runs):
if run > 0:
seed = -1
seed = utils.sanitize_seed(seed)
@@ -233,7 +323,7 @@ if __name__ == "__main__":
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
# TODO: if using --runs=x txt2img_obj.log will output on each display every iteration infos from the start
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"

View File

@@ -15,12 +15,12 @@ datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('gradio')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
@@ -30,8 +30,8 @@ datas += [
( 'src/utils/resources/model_db.json', 'resources' ),
( 'src/utils/resources/opt_flags.json', 'resources' ),
( 'src/utils/resources/base_model.json', 'resources' ),
( 'web/ui/css/*', 'ui/css' ),
( 'web/ui/logos/*', 'logos' )
( 'web/css/*', 'css' ),
( 'web/logos/*', 'logos' )
]
binaries = []
@@ -44,7 +44,7 @@ a = Analysis(
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=['shark', 'shark.shark_inference', 'apps'],
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],

View File

@@ -15,12 +15,12 @@ datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('gradio')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
@@ -42,7 +42,7 @@ a = Analysis(
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=['shark', 'shark.shark_inference', 'apps'],
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],

View File

@@ -3,14 +3,6 @@ from apps.stable_diffusion.src.utils import (
set_init_device_flags,
prompt_examples,
get_available_devices,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.pipelines import (
Text2ImagePipeline,
Image2ImagePipeline,
InpaintPipeline,
OutpaintPipeline,
StencilPipeline,
)
from apps.stable_diffusion.src.pipelines import Text2ImagePipeline
from apps.stable_diffusion.src.schedulers import get_schedulers

View File

@@ -2,7 +2,6 @@ from apps.stable_diffusion.src.models.model_wrappers import (
SharkifyStableDiffusionModel,
)
from apps.stable_diffusion.src.models.opt_params import (
get_vae_encode,
get_vae,
get_unet,
get_clip,

View File

@@ -1,9 +1,9 @@
from diffusers import AutoencoderKL, UNet2DConditionModel, ControlNetModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel
from collections import defaultdict
import torch
import safetensors.torch
import traceback
import re
import sys
from apps.stable_diffusion.src.utils import (
compile_through_fx,
@@ -14,8 +14,6 @@ from apps.stable_diffusion.src.utils import (
preprocessCKPT,
get_path_to_diffusers_checkpoint,
fetch_and_update_base_model_id,
get_path_stem,
get_extended_name,
)
@@ -30,19 +28,15 @@ def replace_shape_str(shape, max_len, width, height, batch_size):
elif shape[i] == "width":
new_shape.append(width)
elif isinstance(shape[i], str):
mul_val = int(shape[i].split("*")[0])
if "batch_size" in shape[i]:
mul_val = int(shape[i].split("*")[0])
new_shape.append(batch_size * mul_val)
elif "height" in shape[i]:
new_shape.append(height * mul_val)
elif "width" in shape[i]:
new_shape.append(width * mul_val)
else:
new_shape.append(shape[i])
return new_shape
# Get the input info for various models i.e. "unet", "clip", "vae", "vae_encode".
# Get the input info for various models i.e. "unet", "clip", "vae".
def get_input_info(model_info, max_len, width, height, batch_size):
dtype_config = {"f32": torch.float32, "i64": torch.int64}
input_map = defaultdict(list)
@@ -72,7 +66,6 @@ class SharkifyStableDiffusionModel:
self,
model_id: str,
custom_weights: str,
custom_vae: str,
precision: str,
max_len: int = 64,
width: int = 512,
@@ -80,8 +73,6 @@ class SharkifyStableDiffusionModel:
batch_size: int = 1,
use_base_vae: bool = False,
use_tuned: bool = False,
low_cpu_mem_usage: bool = False,
is_inpaint: bool = False
):
self.check_params(max_len, width, height)
self.max_len = max_len
@@ -95,10 +86,6 @@ class SharkifyStableDiffusionModel:
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
custom_weights = get_path_to_diffusers_checkpoint(custom_weights)
self.model_id = model_id if custom_weights == "" else custom_weights
# TODO: remove the following line when stable-diffusion-2-1 works
if self.model_id == "stabilityai/stable-diffusion-2-1":
self.model_id = "stabilityai/stable-diffusion-2-1-base"
self.custom_vae = custom_vae
self.precision = precision
self.base_vae = use_base_vae
self.model_name = (
@@ -115,28 +102,17 @@ class SharkifyStableDiffusionModel:
self.use_tuned = use_tuned
if use_tuned:
self.model_name = self.model_name + "_tuned"
self.model_name = self.model_name + "_" + get_path_stem(self.model_id)
self.low_cpu_mem_usage = low_cpu_mem_usage
self.is_inpaint = is_inpaint
def get_extended_name_for_all_model(self, mask_to_fetch):
model_name = {}
sub_model_list = ["clip", "unet", "stencil_unet", "vae", "vae_encode", "stencil_adaptor"]
index = 0
for model in sub_model_list:
if mask_to_fetch[index] == False:
index += 1
continue
sub_model = model
model_config = self.model_name
if "vae" == model:
if self.custom_vae != "":
model_config = model_config + get_path_stem(self.custom_vae)
if self.base_vae:
sub_model = "base_vae"
model_name[model] = get_extended_name(sub_model + model_config)
index += 1
return model_name
# We need a better naming convention for the .vmfbs because despite
# using the custom model variant the .vmfb names remain the same and
# it'll always pick up the compiled .vmfb instead of compiling the
# custom model.
# So, currently, we add `self.model_id` in the `self.model_name` of
# .vmfb file.
# TODO: Have a better way of naming the vmfbs using self.model_name.
model_name = re.sub(r"\W+", "_", self.model_id)
if model_name[0] == "_":
model_name = model_name[1:]
self.model_name = self.model_name + "_" + model_name
def check_params(self, max_len, width, height):
if not (max_len >= 32 and max_len <= 77):
@@ -146,57 +122,14 @@ class SharkifyStableDiffusionModel:
if not (height % 8 == 0 and height >= 384):
sys.exit("height should be greater than 384 and multiple of 8")
def get_vae_encode(self):
class VaeEncodeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
def get_vae(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, base_vae=self.base_vae):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
latents = self.vae.encode(input).latent_dist.sample()
return 0.18215 * latents
vae_encode = VaeEncodeModel()
inputs = tuple(self.inputs["vae_encode"])
is_f16 = True if self.precision == "fp16" else False
shark_vae_encode = compile_through_fx(
vae_encode,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae_encode"],
extra_args=get_opt_flags("vae", precision=self.precision),
)
return shark_vae_encode
def get_vae(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, base_vae=self.base_vae, custom_vae=self.custom_vae, low_cpu_mem_usage=False):
super().__init__()
self.vae = None
if custom_vae == "":
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
elif not isinstance(custom_vae, dict):
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.vae.load_state_dict(custom_vae)
self.base_vae = base_vae
def forward(self, input):
@@ -209,145 +142,33 @@ class SharkifyStableDiffusionModel:
x = x * 255.0
return x.round()
vae = VaeModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
vae = VaeModel()
inputs = tuple(self.inputs["vae"])
is_f16 = True if self.precision == "fp16" else False
vae_name = "base_vae" if self.base_vae else "vae"
shark_vae = compile_through_fx(
vae,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae"],
model_name=vae_name + self.model_name,
extra_args=get_opt_flags("vae", precision=self.precision),
)
return shark_vae
def get_controlled_unet(self):
class ControlledUnetModel(torch.nn.Module):
def __init__(
self, model_id=self.model_id, low_cpu_mem_usage=False
):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
"takuma104/control_sd15_canny", # TODO: ADD with model ID
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward( self, latent, timestep, text_embedding, guidance_scale, control1,
control2, control3, control4, control5, control6, control7,
control8, control9, control10, control11, control12, control13,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
db_res_samples = tuple([ control1, control2, control3, control4, control5, control6, control7, control8, control9, control10, control11, control12,])
mb_res_samples = control13
latents = torch.cat([latent] * 2)
unet_out = self.unet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
down_block_additional_residuals=db_res_samples,
mid_block_additional_residual=mb_res_samples,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
unet = ControlledUnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["stencil_unet"])
input_mask = [True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True,]
shark_controlled_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["stencil_unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
)
return shark_controlled_unet
def get_control_net(self):
class StencilControlNetModel(torch.nn.Module):
def __init__(
self, model_id=self.model_id, low_cpu_mem_usage=False
):
super().__init__()
self.cnet = ControlNetModel.from_pretrained(
"takuma104/control_sd15_canny", # TODO: ADD with model ID
subfolder="controlnet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.cnet.in_channels
self.train(False)
def forward(
self,
latent,
timestep,
text_embedding,
stencil_image_input,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
# TODO: guidance NOT NEEDED change in `get_input_info` later
latents = torch.cat(
[latent] * 2
) # needs to be same as controlledUNET latents
stencil_image = torch.cat(
[stencil_image_input] * 2
) # needs to be same as controlledUNET latents
down_block_res_samples, mid_block_res_sample = self.cnet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
controlnet_cond=stencil_image,
return_dict=False,
)
return tuple(list(down_block_res_samples) + [mid_block_res_sample])
scnet = StencilControlNetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["stencil_adaptor"])
input_mask = [True, True, True, True]
shark_cnet = compile_through_fx(
scnet,
inputs,
model_name=self.model_name["stencil_adaptor"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
)
return shark_cnet
def get_unet(self):
class UnetModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
def __init__(self, model_id=self.model_id):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.unet.in_channels
self.train(False)
if(args.attention_slicing is not None and args.attention_slicing != "none"):
if(args.attention_slicing.isdigit()):
self.unet.set_attention_slice(int(args.attention_slicing))
else:
self.unet.set_attention_slice(args.attention_slicing)
# TODO: Instead of flattening the `control` try to use the list.
def forward(
self, latent, timestep, text_embedding, guidance_scale,
self, latent, timestep, text_embedding, guidance_scale
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latent] * 2)
@@ -360,14 +181,14 @@ class SharkifyStableDiffusionModel:
)
return noise_pred
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
unet = UnetModel()
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False]
shark_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["unet"],
model_name="unet" + self.model_name,
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
@@ -377,50 +198,28 @@ class SharkifyStableDiffusionModel:
def get_clip(self):
class CLIPText(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
def __init__(self, model_id=self.model_id):
super().__init__()
self.text_encoder = CLIPTextModel.from_pretrained(
model_id,
subfolder="text_encoder",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
return self.text_encoder(input)[0]
clip_model = CLIPText(low_cpu_mem_usage=self.low_cpu_mem_usage)
clip_model = CLIPText()
shark_clip = compile_through_fx(
clip_model,
tuple(self.inputs["clip"]),
model_name=self.model_name["clip"],
model_name="clip" + self.model_name,
extra_args=get_opt_flags("clip", precision="fp32"),
)
return shark_clip
def process_custom_vae(self):
custom_vae = self.custom_vae.lower()
if not custom_vae.endswith((".ckpt", ".safetensors")):
return self.custom_vae
try:
preprocessCKPT(self.custom_vae)
return get_path_to_diffusers_checkpoint(self.custom_vae)
except:
print("Processing standalone Vae checkpoint")
vae_checkpoint = None
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
if custom_vae.endswith(".ckpt"):
vae_checkpoint = torch.load(self.custom_vae, map_location="cpu")
else:
vae_checkpoint = safetensors.torch.load_file(self.custom_vae, device="cpu")
if "state_dict" in vae_checkpoint:
vae_checkpoint = vae_checkpoint["state_dict"]
vae_dict = {k: v for k, v in vae_checkpoint.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
return vae_dict
# Compiles Clip, Unet and Vae with `base_model_id` as defining their input
# configiration.
def compile_all(self, base_model_id, need_vae_encode, need_stencil):
def compile_all(self, base_model_id):
self.inputs = get_input_info(
base_models[base_model_id],
self.max_len,
@@ -428,45 +227,18 @@ class SharkifyStableDiffusionModel:
self.height,
self.batch_size,
)
compiled_controlnet = None
compiled_controlled_unet = None
compiled_unet = None
if need_stencil:
compiled_controlnet = self.get_control_net()
compiled_controlled_unet = self.get_controlled_unet()
else:
compiled_unet = self.get_unet()
if self.custom_vae != "":
print("Plugging in custom Vae")
compiled_unet = self.get_unet()
compiled_vae = self.get_vae()
compiled_clip = self.get_clip()
if need_stencil:
return compiled_clip, compiled_controlled_unet, compiled_vae, compiled_controlnet
if need_vae_encode:
compiled_vae_encode = self.get_vae_encode()
return compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode
return compiled_clip, compiled_unet, compiled_vae
def __call__(self):
# Step 1:
# -- Fetch all vmfbs for the model, if present, else delete the lot.
need_vae_encode, need_stencil = False, False
if args.img_path is not None:
if args.use_stencil is not None:
need_stencil = True
else:
need_vae_encode = True
# `mask_to_fetch` prepares a mask to pick a combination out of :-
# ["clip", "unet", "stencil_unet", "vae", "vae_encode", "stencil_adaptor"]
mask_to_fetch = [True, True, False, True, False, False]
if need_vae_encode:
mask_to_fetch = [True, True, False, True, True, False]
elif need_stencil:
mask_to_fetch = [True, False, True, True, False, True]
self.model_name = self.get_extended_name_for_all_model(mask_to_fetch)
vmfbs = fetch_or_delete_vmfbs(self.model_name, self.precision)
vmfbs = fetch_or_delete_vmfbs(
self.model_name, self.base_vae, self.precision
)
if vmfbs[0]:
# -- If all vmfbs are indeed present, we also try and fetch the base
# model configuration for running SD with custom checkpoints.
@@ -486,18 +258,15 @@ class SharkifyStableDiffusionModel:
assert self.custom_weights.lower().endswith(
(".ckpt", ".safetensors")
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
preprocessCKPT(self.custom_weights, self.is_inpaint)
preprocessCKPT(self.custom_weights)
else:
model_to_run = args.hf_model_id
# For custom Vae user can provide either the repo-id or a checkpoint file,
# and for a checkpoint file we'd need to process it via Diffusers' script.
self.custom_vae = self.process_custom_vae()
base_model_fetched = fetch_and_update_base_model_id(model_to_run)
if base_model_fetched != "":
print("Compiling all the models with the fetched base model configuration.")
if args.ckpt_loc != "":
args.hf_model_id = base_model_fetched
return self.compile_all(base_model_fetched, need_vae_encode, need_stencil)
return self.compile_all(base_model_fetched)
# Step 3:
# -- This is the retry mechanism where the base model's configuration is not
@@ -505,13 +274,10 @@ class SharkifyStableDiffusionModel:
print("Inferring base model configuration.")
for model_id in base_models:
try:
if need_vae_encode:
compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode = self.compile_all(model_id, need_vae_encode, need_stencil)
elif need_stencil:
compiled_clip, compiled_unet, compiled_vae, compiled_controlnet = self.compile_all(model_id, need_vae_encode, need_stencil)
else:
compiled_clip, compiled_unet, compiled_vae = self.compile_all(model_id, need_vae_encode, need_stencil)
compiled_clip, compiled_unet, compiled_vae = self.compile_all(model_id)
except Exception as e:
if args.enable_stack_trace:
traceback.print_exc()
print("Retrying with a different base model configuration")
continue
# -- Once a successful compilation has taken place we'd want to store
@@ -523,21 +289,7 @@ class SharkifyStableDiffusionModel:
# the knowledge of base model id accordingly into `args.hf_model_id`.
if args.ckpt_loc != "":
args.hf_model_id = model_id
if need_vae_encode:
return (
compiled_clip,
compiled_unet,
compiled_vae,
compiled_vae_encode,
)
if need_stencil:
return (
compiled_clip,
compiled_unet,
compiled_vae,
compiled_controlnet,
)
return compiled_clip, compiled_unet, compiled_vae
sys.exit(
"Cannot compile the model. Please create an issue with the detailed log at https://github.com/nod-ai/SHARK/issues"
"Cannot compile the model. Please re-run the command with `--enable_stack_trace` flag and create an issue with detailed log at https://github.com/nod-ai/SHARK/issues"
)

View File

@@ -9,15 +9,13 @@ from apps.stable_diffusion.src.utils import (
hf_model_variant_map = {
"Linaqruf/anything-v3.0": ["anythingv3", "v1_4"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v1_4"],
"prompthero/openjourney": ["openjourney", "v1_4"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v1_4"],
"Linaqruf/anything-v3.0": ["anythingv3", "v2_1base"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v2_1base"],
"prompthero/openjourney": ["openjourney", "v2_1base"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1": ["stablediffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1-base": ["stablediffusion", "v2_1base"],
"CompVis/stable-diffusion-v1-4": ["stablediffusion", "v1_4"],
"runwayml/stable-diffusion-inpainting": ["stablediffusion", "inpaint_v1"],
"stabilityai/stable-diffusion-2-inpainting": ["stablediffusion", "inpaint_v2"],
}
@@ -54,23 +52,6 @@ def get_unet():
return get_shark_model(bucket, model_name, iree_flags)
def get_vae_encode():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "vae", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.

View File

@@ -1,15 +1,3 @@
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
Text2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
Image2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_inpaint import (
InpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_outpaint import (
OutpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_stencil import (
StencilPipeline,
)

View File

@@ -1,172 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
class Image2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_image_latents(
self,
image,
batch_size,
height,
width,
generator,
num_inference_steps,
strength,
dtype,
):
# Pre process image -> get image encoded -> process latents
# TODO: process with variable HxW combos
# Pre process image
image = image.resize((width, height))
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
image_arr = image_arr / 255.0
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(dtype)
image_arr = 2 * (image_arr - 0.5)
# set scheduler steps
self.scheduler.set_timesteps(num_inference_steps)
init_timestep = min(
int(num_inference_steps * strength), num_inference_steps
)
t_start = max(num_inference_steps - init_timestep, 0)
# timesteps reduced as per strength
timesteps = self.scheduler.timesteps[t_start:]
# new number of steps to be used as per strength will be
# num_inference_steps = num_inference_steps - t_start
# image encode
latents = self.encode_image((image_arr,))
latents = torch.from_numpy(latents).to(dtype)
# add noise to data
noise = torch.randn(latents.shape, generator=generator, dtype=dtype)
latents = self.scheduler.add_noise(
latents, noise, timesteps[0].repeat(1)
)
return latents, timesteps
def encode_image(self, input_image):
vae_encode_start = time.time()
latents = self.vae_encode("forward", input_image)
vae_inf_time = (time.time() - vae_encode_start) * 1000
self.log += f"\nVAE Encode Inference time (ms): {vae_inf_time:.3f}"
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare input image latent
image_latents, final_timesteps = self.prepare_image_latents(
image=image,
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=image_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -1,233 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
class InpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_mask_and_masked_image(self, image, mask, height, width):
# preprocess image
image = image.resize((width, height))
mask = mask.resize((width, height))
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
mask_image,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Preprocess mask and image
mask, masked_image = self.prepare_mask_and_masked_image(
image, mask_image, height, width
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -1,542 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageDraw, ImageFilter
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
import math
class OutpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_and_masked_image(
self, image, mask, mask_blur, width, height
):
if mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(mask_blur))
image = image.resize((width, height))
mask = mask.resize((width, height))
# preprocess image
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def get_matched_noise(
self, _np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05
):
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_fft[:, :, c] = np.fft.fft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
else: # one channel
out_fft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_fft[:, :] = np.fft.fft2(
np.fft.fftshift(data), norm="ortho"
)
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_ifft[:, :, c] = np.fft.ifft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
else: # one channel
out_ifft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_ifft[:, :] = np.fft.ifft2(
np.fft.fftshift(data), norm="ortho"
)
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
for y in range(height):
fy = (y / height * 2.0 - 1.0) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2 + fy**2) * std)
else:
window[:, y] = (
1 / ((x**2 + 1.0) * (fy**2 + 1.0))
) ** (std / 3.14)
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.0):
np_mask_rgb = np.zeros(
(np_mask_grey.shape[0], np_mask_grey.shape[1], 3)
)
if hardness != 1.0:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:, :, c] = hardened[:]
return np_mask_rgb
def _match_cumulative_cdf(source, template):
src_values, src_unique_indices, src_counts = np.unique(
source.ravel(), return_inverse=True, return_counts=True
)
tmpl_values, tmpl_counts = np.unique(
template.ravel(), return_counts=True
)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(
src_quantiles, tmpl_quantiles, tmpl_values
)
return interp_a_values[src_unique_indices].reshape(source.shape)
def _match_histograms(image, reference):
if image.ndim != reference.ndim:
raise ValueError(
"Image and reference must have the same number of channels."
)
if image.shape[-1] != reference.shape[-1]:
raise ValueError(
"Number of channels in the input image and reference image must match!"
)
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(
image[..., channel], reference[..., channel]
)
matched[..., channel] = matched_channel
matched = matched.astype(np.float64, copy=False)
return matched
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1.0 - np_mask_rgb)
np_mask_grey = np.sum(np_mask_rgb, axis=2) / 3.0
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
# rather than leave the masked area black, we get better results from fft by filling the average unmasked color
windowed_image = _np_src_image * (
1.0 - _get_masked_window_rgb(np_mask_grey)
)
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb
src_fft = _fft2(
windowed_image
) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
# create a generator with a static seed to make outpainting deterministic / only follow global seed
rng = np.random.default_rng(0)
noise_window = _get_gaussian_window(
width, height, mode=1
) # start with simple gaussian noise
noise_rgb = rng.random((width, height, num_channels))
noise_grey = np.sum(noise_rgb, axis=2) / 3.0
# the colorfulness of the starting noise is blended to greyscale with a parameter
noise_rgb *= color_variation
for c in range(num_channels):
noise_rgb[:, :, c] += (1.0 - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:, :, c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:, :, :] = (
np.absolute(shaped_noise_fft[:, :, :]) ** 2
* (src_dist**noise_q)
* src_phase
) # perform the actual shaping
# color_variation
brightness_variation = 0.0
contrast_adjusted_np_src = (
_np_src_image[:] * (brightness_variation + 1.0)
- brightness_variation * 2.0
)
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask, :] = _match_histograms(
shaped_noise[img_mask, :] ** 1.0,
contrast_adjusted_np_src[ref_mask, :],
)
shaped_noise = (
_np_src_image[:] * (1.0 - np_mask_rgb) + shaped_noise * np_mask_rgb
)
matched_noise = shaped_noise[:]
return np.clip(matched_noise, 0.0, 1.0)
def generate_images(
self,
prompts,
neg_prompts,
image,
pixels,
mask_blur,
is_left,
is_right,
is_top,
is_bottom,
noise_q,
color_variation,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
process_width = width
process_height = height
left = pixels if is_left else 0
right = pixels if is_right else 0
up = pixels if is_top else 0
down = pixels if is_bottom else 0
target_w = math.ceil((image.width + left + right) / 64) * 64
target_h = math.ceil((image.height + up + down) / 64) * 64
if left > 0:
left = left * (target_w - image.width) // (left + right)
if right > 0:
right = target_w - image.width - left
if up > 0:
up = up * (target_h - image.height) // (up + down)
if down > 0:
down = target_h - image.height - up
def expand(
init_img,
expand_pixels,
is_left=False,
is_right=False,
is_top=False,
is_bottom=False,
):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
res_w = init_img.width + pixels_horiz
res_h = init_img.height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(
init_img,
(pixels_horiz if is_left else 0, pixels_vert if is_top else 0),
)
msk = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(msk)
draw.rectangle(
(
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
msk.width - expand_pixels - mask_blur
if is_right
else res_w,
msk.height - expand_pixels - mask_blur
if is_bottom
else res_h,
),
fill="black",
)
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(msk) / 255.0).astype(np.float64)
noised = self.get_matched_noise(
np_image, np_mask, noise_q, color_variation
)
output_image = Image.fromarray(
np.clip(noised * 255.0, 0.0, 255.0).astype(np.uint8),
mode="RGB",
)
target_width = (
min(width, init_img.width + pixels_horiz)
if is_horiz
else img.width
)
target_height = (
min(height, init_img.height + pixels_vert)
if is_vert
else img.height
)
crop_region = (
0 if is_left else output_image.width - target_width,
0 if is_top else output_image.height - target_height,
target_width if is_left else output_image.width,
target_height if is_top else output_image.height,
)
mask_to_process = msk.crop(crop_region)
image_to_process = output_image.crop(crop_region)
# Preprocess mask and image
mask, masked_image = self.prepare_mask_and_masked_image(
image_to_process, mask_to_process, mask_blur, width, height
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
res_img = all_imgs[0].resize(
(image_to_process.width, image_to_process.height)
)
output_image.paste(
res_img,
(
0 if is_left else output_image.width - res_img.width,
0 if is_top else output_image.height - res_img.height,
),
)
output_image = output_image.crop((0, 0, res_w, res_h))
return output_image
img = image.resize((width, height))
if left > 0:
img = expand(img, left, is_left=True)
if right > 0:
img = expand(img, right, is_right=True)
if up > 0:
img = expand(img, up, is_top=True)
if down > 0:
img = expand(img, down, is_bottom=True)
return [img]

View File

@@ -1,150 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import controlnet_hint_conversion
class StencilPipeline(StableDiffusionPipeline):
def __init__(
self,
controlnet: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.controlnet = controlnet
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# Control Embedding check & conversion
# TODO: 1. Change `num_images_per_prompt`.
controlnet_hint = controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
)
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare initial latent.
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
final_timesteps = self.scheduler.timesteps
# Get Image latents
latents = self.produce_stencil_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
controlnet_hint=controlnet_hint,
controlnet=self.controlnet,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -9,20 +9,15 @@ from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
import cv2
from PIL import Image
class Text2ImagePipeline(StableDiffusionPipeline):
def __init__(
@@ -35,12 +30,10 @@ class Text2ImagePipeline(StableDiffusionPipeline):
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)

View File

@@ -1,5 +1,4 @@
import torch
import numpy as np
from transformers import CLIPTokenizer
from PIL import Image
from tqdm.auto import tqdm
@@ -9,17 +8,14 @@ from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from shark.shark_inference import SharkInference
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
get_vae,
get_clip,
get_unet,
@@ -42,12 +38,10 @@ class StableDiffusionPipeline:
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
self.vae = vae
@@ -110,118 +104,6 @@ class StableDiffusionPipeline:
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def produce_stencil_latents(
self,
latents,
text_embeddings,
guidance_scale,
total_timesteps,
dtype,
cpu_scheduling,
controlnet_hint=None,
controlnet=None,
controlnet_conditioning_scale: float = 1.0,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype)
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
if not torch.is_tensor(latent_model_input):
latent_model_input_1 = torch.from_numpy(
np.asarray(latent_model_input)
).to(dtype)
else:
latent_model_input_1 = latent_model_input
control = controlnet(
"forward",
(
latent_model_input_1,
timestep,
text_embeddings,
controlnet_hint,
),
send_to_host=False,
)
down_block_res_samples = control[0:12]
mid_block_res_sample = control[12:]
down_block_res_samples = [
down_block_res_sample * controlnet_conditioning_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample = (
mid_block_res_sample[0] * controlnet_conditioning_scale
)
timestep = timestep.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
# TODO: Pass `control` as it is to Unet. Same as TODO mentioned in model_wrappers.py.
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
down_block_res_samples[0],
down_block_res_samples[1],
down_block_res_samples[2],
down_block_res_samples[3],
down_block_res_samples[4],
down_block_res_samples[5],
down_block_res_samples[6],
down_block_res_samples[7],
down_block_res_samples[8],
down_block_res_samples[9],
down_block_res_samples[10],
down_block_res_samples[11],
mid_block_res_sample,
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = self.scheduler.step(
noise_pred, t, latents
).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def produce_img_latents(
self,
latents,
@@ -230,8 +112,6 @@ class StableDiffusionPipeline:
total_timesteps,
dtype,
cpu_scheduling,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
step_time_sum = 0
@@ -242,15 +122,6 @@ class StableDiffusionPipeline:
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype).detach().numpy()
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
@@ -298,17 +169,14 @@ class StableDiffusionPipeline:
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
import_mlir: bool,
model_id: str,
ckpt_loc: str,
custom_vae: str,
precision: str,
max_length: int,
batch_size: int,
@@ -316,18 +184,13 @@ class StableDiffusionPipeline:
width: int,
use_base_vae: bool,
use_tuned: bool,
low_cpu_mem_usage: bool = False,
use_stencil: bool = False,
):
is_inpaint = cls.__name__ in [
"InpaintPipeline",
"OutpaintPipeline",
]
if import_mlir:
# TODO: Delet this when on-the-fly tuning of models work.
use_tuned = False
mlir_import = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
@@ -335,77 +198,9 @@ class StableDiffusionPipeline:
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
is_inpaint=is_inpaint,
)
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
clip, unet, vae, vae_encode = mlir_import()
return cls(
vae_encode, vae, clip, get_tokenizer(), unet, scheduler
)
if cls.__name__ in ["StencilPipeline"]:
clip, unet, vae, controlnet = mlir_import()
return cls(
controlnet, vae, clip, get_tokenizer(), unet, scheduler
)
clip, unet, vae = mlir_import()
return cls(vae, clip, get_tokenizer(), unet, scheduler)
try:
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
return cls(
get_vae_encode(),
get_vae(),
get_clip(),
get_tokenizer(),
get_unet(),
scheduler,
)
if cls.__name__ == "StencilPipeline":
import sys
sys.exit(
"StencilPipeline not supported with SharkTank currently."
)
return cls(
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
)
except:
print("download pipeline failed, falling back to import_mlir")
mlir_import = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
is_inpaint=is_inpaint,
)
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
clip, unet, vae, vae_encode = mlir_import()
return cls(
vae_encode, vae, clip, get_tokenizer(), unet, scheduler
)
if cls.__name__ == "StencilPipeline":
clip, unet, vae, controlnet = mlir_import()
return cls(
controlnet, vae, clip, get_tokenizer(), unet, scheduler
)
clip, unet, vae = mlir_import()
return cls(vae, clip, get_tokenizer(), unet, scheduler)
return cls(
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
)

View File

@@ -3,10 +3,8 @@ from diffusers import (
PNDMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
@@ -19,10 +17,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
@@ -47,10 +41,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"SharkEulerDiscrete"
] = SharkEulerDiscreteScheduler.from_pretrained(

View File

@@ -87,7 +87,7 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
def _import(self):
if args.import_mlir:
scaling_model = ScalingModel()
self.scaling_model = compile_through_fx(
scaling_model,
@@ -105,28 +105,15 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
+ args.precision,
extra_args=iree_flags,
)
if args.import_mlir:
_import(self)
else:
try:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_step_" + args.precision,
iree_flags,
)
except:
print(
"failed to download model, falling back and using import_mlir"
)
args.import_mlir = True
_import(self)
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET, "euler_step_" + args.precision, iree_flags
)
def scale_model_input(self, sample, timestep):
step_index = (self.timesteps == timestep).nonzero().item()

View File

@@ -11,9 +11,6 @@ from apps.stable_diffusion.src.utils.resources import (
)
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.stencils.stencil_utils import (
controlnet_hint_conversion,
)
from apps.stable_diffusion.src.utils.utils import (
get_shark_model,
compile_through_fx,
@@ -27,8 +24,4 @@ from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
get_path_to_diffusers_checkpoint,
sanitize_seed,
get_path_stem,
get_extended_name,
clear_all,
save_output_img,
)

View File

@@ -29,14 +29,6 @@
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
@@ -85,236 +77,6 @@
"dtype": "f32"
}
},
"stencil_adaptor": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"controlnet_hint": {
"shape": [1, 3, 512, 512],
"dtype": "f32"
}
},
"stencil_unet": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
},
"control1": {
"shape": [2, 320, 64, 64],
"dtype": "f32"
},
"control2": {
"shape": [2, 320, 64, 64],
"dtype": "f32"
},
"control3": {
"shape": [2, 320, 64, 64],
"dtype": "f32"
},
"control4": {
"shape": [2, 320, 32, 32],
"dtype": "f32"
},
"control5": {
"shape": [2, 640, 32, 32],
"dtype": "f32"
},
"control6": {
"shape": [2, 640, 32, 32],
"dtype": "f32"
},
"control7": {
"shape": [2, 640, 16, 16],
"dtype": "f32"
},
"control8": {
"shape": [2, 1280, 16, 16],
"dtype": "f32"
},
"control9": {
"shape": [2, 1280, 16, 16],
"dtype": "f32"
},
"control10": {
"shape": [2, 1280, 8, 8],
"dtype": "f32"
},
"control11": {
"shape": [2, 1280, 8, 8],
"dtype": "f32"
},
"control12": {
"shape": [2, 1280, 8, 8],
"dtype": "f32"
},
"control13": {
"shape": [2, 1280, 8, 8],
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
},
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"stabilityai/stable-diffusion-2-inpainting": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
},
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"runwayml/stable-diffusion-inpainting": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
@@ -333,4 +95,4 @@
}
}
}
}
}

View File

@@ -3,8 +3,6 @@
"stablediffusion/v1_4":"CompVis/stable-diffusion-v1-4",
"stablediffusion/v2_1base":"stabilityai/stable-diffusion-2-1-base",
"stablediffusion/v2_1":"stabilityai/stable-diffusion-2-1",
"stablediffusion/inpaint_v1":"runwayml/stable-diffusion-inpainting",
"stablediffusion/inpaint_v2":"stabilityai/stable-diffusion-2-inpainting",
"anythingv3/v1_4":"Linaqruf/anything-v3.0",
"analogdiffusion/v1_4":"wavymulder/Analog-Diffusion",
"openjourney/v1_4":"prompthero/openjourney",

View File

@@ -22,6 +22,8 @@
"stablediffusion/v1_4/vae/fp16/length_77/tuned":"vae_19dec_fp16_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/tuned/cuda":"vae_19dec_fp16_cuda_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/untuned/base":"vae_8dec_fp16",
"stablediffusion/v1_4/vae/fp32/length_77/untuned":"vae_1dec_fp32",
"stablediffusion/v1_4/clip/fp32/length_77/untuned":"clip_18dec_fp32",
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned":"unet2base_8dec_fp16_tuned_v2",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"unet2base_8dec_fp16_cuda_tuned",
@@ -40,41 +42,41 @@
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1/vae/fp16/length_77/untuned/base":"vae2_8dec_fp16",
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"anythingv3/v1_4/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
"anythingv3/v1_4/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
"anythingv3/v1_4/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
"anythingv3/v1_4/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
"anythingv3/v1_4/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
"anythingv3/v1_4/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
"anythingv3/v1_4/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
"anythingv3/v1_4/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
"anythingv3/v1_4/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
"anythingv3/v1_4/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
"anythingv3/v1_4/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
"analogdiffusion/v1_4/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
"analogdiffusion/v1_4/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
"analogdiffusion/v1_4/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
"analogdiffusion/v1_4/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
"analogdiffusion/v1_4/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
"analogdiffusion/v1_4/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
"analogdiffusion/v1_4/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
"analogdiffusion/v1_4/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
"analogdiffusion/v1_4/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
"analogdiffusion/v1_4/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
"analogdiffusion/v1_4/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
"openjourney/v1_4/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
"openjourney/v1_4/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
"openjourney/v1_4/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
"openjourney/v1_4/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
"openjourney/v1_4/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
"openjourney/v1_4/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
"openjourney/v1_4/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
"dreamlike/v1_4/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
"dreamlike/v1_4/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
"dreamlike/v1_4/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
"dreamlike/v1_4/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
"dreamlike/v1_4/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
"dreamlike/v1_4/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
"dreamlike/v1_4/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
"anythingv3/v2_1base/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
"anythingv3/v2_1base/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
"anythingv3/v2_1base/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
"anythingv3/v2_1base/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
"anythingv3/v2_1base/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
"anythingv3/v2_1base/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
"anythingv3/v2_1base/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
"anythingv3/v2_1base/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
"analogdiffusion/v2_1base/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
"analogdiffusion/v2_1base/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
"openjourney/v2_1base/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
"openjourney/v2_1base/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
"openjourney/v2_1base/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
"openjourney/v2_1base/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
"openjourney/v2_1base/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
"openjourney/v2_1base/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
"openjourney/v2_1base/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
"dreamlike/v2_1base/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
"dreamlike/v2_1base/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
"dreamlike/v2_1base/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
"dreamlike/v2_1base/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
"dreamlike/v2_1base/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
"dreamlike/v2_1base/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
"dreamlike/v2_1base/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
}
]

View File

@@ -45,12 +45,12 @@
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}

View File

@@ -20,22 +20,6 @@ def get_device():
return device
def get_device_args():
device = get_device()
device_spec_args = []
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args.append(flag)
elif device == "vulkan":
device_spec_args.append(
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
return device, device_spec_args
# Download the model (Unet or VAE fp16) from shark_tank
def load_model_from_tank():
from apps.stable_diffusion.src.models import (
@@ -70,7 +54,7 @@ def load_winograd_configs():
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_name = f"{args.annotation_model}_winograd_{device}.json"
full_gs_url = config_bucket + config_name
winograd_config_dir = os.path.join(WORKDIR, "configs", config_name)
winograd_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading Winograd config file from ", winograd_config_dir)
download_public_file(full_gs_url, winograd_config_dir, True)
return winograd_config_dir
@@ -78,48 +62,20 @@ def load_winograd_configs():
def load_lower_configs():
from apps.stable_diffusion.src.models import get_variant_version
from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
)
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
variant, version = get_variant_version(base_model_id)
if version == "inpaint_v1":
version = "v1_4"
elif version == "inpaint_v2":
version = "v2_1base"
config_bucket = "gs://shark_tank/sd_tuned_configs/"
device, device_spec_args = get_device_args()
spec = ""
if device_spec_args:
spec = device_spec_args[-1].split("=")[-1].strip()
if device == "vulkan":
spec = spec.split("-")[0]
variant, version = get_variant_version(args.hf_model_id)
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_version = version
if variant in ["anythingv3", "analogdiffusion"]:
args.max_length = 77
config_version = "v1_4"
if args.annotation_model == "vae":
if not spec or spec in ["rdna3", "sm_80"]:
config_name = (
f"{args.annotation_model}_{args.precision}_{device}.json"
)
else:
config_name = f"{args.annotation_model}_{args.precision}_{device}_{spec}.json"
else:
if not spec or spec in ["rdna3", "sm_80"]:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}.json"
else:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}_{spec}.json"
args.max_length = 77
device = get_device()
config_name = f"{args.annotation_model}_{config_version}_{args.precision}_len{args.max_length}_{device}.json"
full_gs_url = config_bucket + config_name
lowering_config_dir = os.path.join(WORKDIR, "configs", config_name)
lowering_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading lowering config file from ", lowering_config_dir)
download_public_file(full_gs_url, lowering_config_dir, True)
return lowering_config_dir
@@ -127,6 +83,13 @@ def load_lower_configs():
# Annotate the model with Winograd attribute on selected conv ops
def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with create_context() as ctx:
winograd_model = model_annotation(
ctx,
@@ -140,41 +103,59 @@ def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
winograd_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = os.path.join(
args.annotation_output, model_name + "_tuned_torch.mlir"
)
else:
out_file_path = os.path.join(
args.annotation_output, model_name + "_torch.mlir"
)
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode, out_file_path
def dump_after_mlir(input_mlir, use_winograd):
import iree.compiler as ireec
device, device_spec_args = get_device_args()
def dump_after_mlir(input_mlir, model_name, use_winograd):
if use_winograd:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
dump_after = "iree-linalg-ext-convert-conv2d-to-winograd"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32},"
"iree-linalg-ext-convert-conv2d-to-winograd))' "
)
else:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
dump_after = "iree-preprocessing-pad-linalg-ops"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32}))' "
)
dump_module = ireec.compile_str(
input_mlir,
target_backends=[iree_target_map(device)],
extra_args=device_spec_args
+ [
preprocess_flag,
"--compile-to=preprocessing",
],
device_spec_args = ""
device = get_device()
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args += flag + " "
elif device == "vulkan":
device_spec_args = (
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
print("Applying tuned configs on", model_name)
run_cmd(
f"iree-compile {input_mlir} "
"--iree-input-type=tm_tensor "
f"--iree-hal-target-backends={iree_target_map(device)} "
f"{device_spec_args}"
f"{preprocess_flag}"
"--iree-stream-resource-index-bits=64 "
"--iree-vm-target-index-bits=64 "
f"--mlir-print-ir-after={dump_after} "
"--compile-to=flow "
f"2>{args.annotation_output}/dump_after_winograd.mlir "
)
return dump_module
# For Unet annotate the model with tuned lowering configs
@@ -182,63 +163,72 @@ def annotate_with_lower_configs(
input_mlir, lowering_config_dir, model_name, use_winograd
):
# Dump IR after padding/img2col/winograd passes
dump_module = dump_after_mlir(input_mlir, use_winograd)
print("Applying tuned configs on", model_name)
dump_after_mlir(input_mlir, model_name, use_winograd)
# Annotate the model with lowering configs in the config file
with create_context() as ctx:
tuned_model = model_annotation(
ctx,
input_contents=dump_module,
input_contents=f"{args.annotation_output}/dump_after_winograd.mlir",
config_path=lowering_config_dir,
search_op="all",
)
# Remove the intermediate mlir and save the final annotated model
os.remove(f"{args.annotation_output}/dump_after_winograd.mlir")
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
bytecode_stream = io.BytesIO()
tuned_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode, out_file_path
def sd_model_annotation(mlir_model, model_name):
def sd_model_annotation(mlir_model, model_name, model_from_tank=False):
device = get_device()
if args.annotation_model == "unet" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
winograd_model = annotate_with_winograd(
winograd_model, model_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
lowering_config_dir = load_lower_configs()
tuned_model = annotate_with_lower_configs(
winograd_model, lowering_config_dir, model_name, use_winograd
tuned_model, output_path = annotate_with_lower_configs(
model_path, lowering_config_dir, model_name, use_winograd
)
elif args.annotation_model == "vae" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
tuned_model = annotate_with_winograd(
tuned_model, output_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
else:
use_winograd = False
if model_from_tank:
mlir_model = f"{WORKDIR}{model_name}_torch/{model_name}_torch.mlir"
else:
# Just use this function to convert bytecode to string
orig_model, model_path = annotate_with_winograd(
mlir_model, "", model_name
)
mlir_model = model_path
lowering_config_dir = load_lower_configs()
tuned_model = annotate_with_lower_configs(
tuned_model, output_path = annotate_with_lower_configs(
mlir_model, lowering_config_dir, model_name, use_winograd
)
print(f"Saved the annotated mlir in {output_path}.")
return tuned_model
if __name__ == "__main__":
mlir_model, model_name = load_model_from_tank()
sd_model_annotation(mlir_model, model_name)
sd_model_annotation(mlir_model, model_name, model_from_tank=True)

View File

@@ -17,24 +17,18 @@ p = argparse.ArgumentParser(
p.add_argument(
"-p",
"--prompts",
nargs="+",
default=["cyberpunk forest by Salvador Dali"],
action="append",
default=[],
help="text of which images to be generated.",
)
p.add_argument(
"--negative_prompts",
nargs="+",
default=["trees, green"],
default=[""],
help="text you don't want to see in the generated image.",
)
p.add_argument(
"--img_path",
type=str,
help="Path to the image input for img2img/inpainting",
)
p.add_argument(
"--steps",
type=int,
@@ -45,8 +39,8 @@ p.add_argument(
p.add_argument(
"--seed",
type=int,
default=-1,
help="the seed to use. -1 for a random one.",
default=42,
help="the seed to use.",
)
p.add_argument(
@@ -54,14 +48,13 @@ p.add_argument(
type=int,
default=1,
choices=range(1, 4),
help="the number of inferences to be made in a single `batch_count`.",
help="the number of inferences to be made in a single `run`.",
)
p.add_argument(
"--height",
type=int,
default=512,
choices=range(384, 769, 8),
help="the height of the output image.",
)
@@ -69,7 +62,6 @@ p.add_argument(
"--width",
type=int,
default=512,
choices=range(384, 769, 8),
help="the width of the output image.",
)
@@ -87,81 +79,6 @@ p.add_argument(
help="max length of the tokenizer output, options are 64 and 77.",
)
p.add_argument(
"--strength",
type=float,
default=0.8,
help="the strength of change applied on the given input image for img2img",
)
##############################################################################
### Inpainting and Outpainting Params
##############################################################################
p.add_argument(
"--mask_path",
type=str,
help="Path to the mask image input for inpainting",
)
p.add_argument(
"--pixels",
type=int,
default=128,
choices=range(8, 257, 8),
help="Number of expended pixels for one direction for outpainting",
)
p.add_argument(
"--mask_blur",
type=int,
default=8,
choices=range(0, 65),
help="Number of blur pixels for outpainting",
)
p.add_argument(
"--left",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend left for outpainting",
)
p.add_argument(
"--right",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend right for outpainting",
)
p.add_argument(
"--top",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend top for outpainting",
)
p.add_argument(
"--bottom",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend bottom for outpainting",
)
p.add_argument(
"--noise_q",
type=float,
default=1.0,
help="Fall-off exponent for outpainting (lower=higher detail) (min=0.0, max=4.0)",
)
p.add_argument(
"--color_variation",
type=float,
default=0.05,
help="Color variation for outpainting (min=0.0, max=1.0)",
)
##############################################################################
### Model Config and Usage Params
##############################################################################
@@ -231,10 +148,10 @@ p.add_argument(
)
p.add_argument(
"--batch_count",
"--runs",
type=int,
default=1,
help="number of batch to be generated with random seeds in single execution",
help="number of images to be generated with random seeds in single execution",
)
p.add_argument(
@@ -244,13 +161,6 @@ p.add_argument(
help="Path to SD's .ckpt file.",
)
p.add_argument(
"--custom_vae",
type=str,
default="",
help="HuggingFace repo-id or path to SD model's checkpoint whose Vae needs to be plugged in.",
)
p.add_argument(
"--hf_model_id",
type=str,
@@ -259,23 +169,10 @@ p.add_argument(
)
p.add_argument(
"--low_cpu_mem_usage",
"--enable_stack_trace",
default=False,
action=argparse.BooleanOptionalAction,
help="Use the accelerate package to reduce cpu memory consumption",
)
p.add_argument(
"--attention_slicing",
type=str,
default="none",
help="Amount of attention slicing to use (one of 'max', 'auto', 'none', or an integer)",
)
p.add_argument(
"--use_stencil",
choices=["canny"],
help="Enable the stencil feature.",
help="Enable showing the stack trace when retrying the base model configuration",
)
##############################################################################
@@ -283,7 +180,7 @@ p.add_argument(
##############################################################################
p.add_argument(
"--iree_vulkan_target_triple",
"--iree-vulkan-target-triple",
type=str,
default="",
help="Specify target triple for vulkan",
@@ -382,7 +279,7 @@ p.add_argument(
p.add_argument(
"--write_metadata_to_png",
default=True,
default=False,
action=argparse.BooleanOptionalAction,
help="flag for whether or not to save generation information in PNG chunk text to generated images.",
)
@@ -395,7 +292,7 @@ p.add_argument(
"--progress_bar",
default=True,
action=argparse.BooleanOptionalAction,
help="flag for removing the progress bar animation during image generation",
help="flag for removing the pregress bar animation during image generation",
)
p.add_argument(
@@ -439,10 +336,10 @@ p.add_argument(
)
p.add_argument(
"--save_annotation",
"--use_winograd",
default=False,
action=argparse.BooleanOptionalAction,
help="Save annotated mlir file",
help="Apply Winograd on selected conv ops.",
)
args, unknown = p.parse_known_args()

View File

@@ -1,6 +0,0 @@
import cv2
class CannyDetector:
def __call__(self, img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)

View File

@@ -1,155 +0,0 @@
import cv2
import numpy as np
from PIL import Image
import torch
from apps.stable_diffusion.src.utils.stencils.canny import CannyDetector
stencil = {}
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(
input_image,
(W, H),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
)
return img
def controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt=1
):
channels = 3
if isinstance(controlnet_hint, torch.Tensor):
# torch.Tensor: acceptble shape are any of chw, bchw(b==1) or bchw(b==num_images_per_prompt)
shape_chw = (channels, height, width)
shape_bchw = (1, channels, height, width)
shape_nchw = (num_images_per_prompt, channels, height, width)
if controlnet_hint.shape in [shape_chw, shape_bchw, shape_nchw]:
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
if controlnet_hint.shape != shape_nchw:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({channels}, {height}, {width}),"
+ f" (1, {channels}, {height}, {width}) or ({num_images_per_prompt}, "
+ f"{channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, np.ndarray):
# np.ndarray: acceptable shape is any of hw, hwc, bhwc(b==1) or bhwc(b==num_images_per_promot)
# hwc is opencv compatible image format. Color channel must be BGR Format.
if controlnet_hint.shape == (height, width):
controlnet_hint = np.repeat(
controlnet_hint[:, :, np.newaxis], channels, axis=2
) # hw -> hwc(c==3)
shape_hwc = (height, width, channels)
shape_bhwc = (1, height, width, channels)
shape_nhwc = (num_images_per_prompt, height, width, channels)
if controlnet_hint.shape in [shape_hwc, shape_bhwc, shape_nhwc]:
controlnet_hint = torch.from_numpy(controlnet_hint.copy())
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
controlnet_hint /= 255.0
if controlnet_hint.shape != shape_nhwc:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
controlnet_hint = controlnet_hint.permute(
0, 3, 1, 2
) # b h w c -> b c h w
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({width}, {channels}), "
+ f"({height}, {width}, {channels}), "
+ f"(1, {height}, {width}, {channels}) or "
+ f"({num_images_per_prompt}, {channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, Image.Image):
if controlnet_hint.size == (width, height):
controlnet_hint = controlnet_hint.convert(
"RGB"
) # make sure 3 channel RGB format
controlnet_hint = np.array(controlnet_hint) # to numpy
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
return controlnet_hint_shaping(
controlnet_hint, height, width, num_images_per_prompt
)
else:
raise ValueError(
f"Acceptable image size of `stencil` is ({width}, {height}) but is {controlnet_hint.size}"
)
else:
raise ValueError(
f"Acceptable type of `stencil` are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
)
def controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
):
controlnet_hint = None
match use_stencil:
case "canny":
print("Detecting edge with canny")
controlnet_hint = hint_canny(image, width)
case _:
return None
controlnet_hint = controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt
)
return controlnet_hint
# Stencil 1. Canny
def hint_canny(
image: Image.Image,
width=512,
height=512,
low_threshold=100,
high_threshold=200,
):
with torch.no_grad():
input_image = np.array(image)
image_resolution = width
img = resize_image(HWC3(input_image), image_resolution)
if not "canny" in stencil:
stencil["canny"] = CannyDetector()
detected_map = stencil["canny"](img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
return detected_map

View File

@@ -1,10 +1,6 @@
import os
import gc
import json
import re
from PIL import PngImagePlugin
from datetime import datetime as dt
from csv import DictWriter
from pathlib import Path
import numpy as np
from random import randint
@@ -18,30 +14,26 @@ from shark.iree_utils.gpu_utils import get_cuda_sm_cc
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.resources import opt_flags
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
import sys
import sys, functools, operator
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
load_pipeline_from_original_stable_diffusion_ckpt,
)
def get_extended_name(model_name):
def get_vmfb_path_name(model_name):
device = (
args.device
if "://" not in args.device
else "-".join(args.device.split("://"))
)
extended_name = "{}_{}".format(model_name, device)
return extended_name
def get_vmfb_path_name(model_name):
vmfb_path = os.path.join(os.getcwd(), model_name + ".vmfb")
return vmfb_path
vmfb_path = os.path.join(os.getcwd(), extended_name + ".vmfb")
return [vmfb_path, extended_name]
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
vmfb_path = get_vmfb_path_name(model_name)
[vmfb_path, extended_name] = get_vmfb_path_name(model_name)
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
@@ -55,7 +47,7 @@ def _compile_module(shark_module, model_name, extra_args=[]):
)
)
path = shark_module.save_module(
os.getcwd(), model_name, extra_args
os.getcwd(), extended_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
@@ -125,6 +117,7 @@ def compile_through_fx(
def set_iree_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--device_allocator=caching",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
@@ -239,15 +232,10 @@ def set_init_device_flags():
args.max_length = 64
# Use tuned models in the case of fp16, vulkan rdna3 or cuda sm devices.
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
if (
args.precision != "fp16"
args.hf_model_id == "prompthero/openjourney"
or args.ckpt_loc != ""
or args.precision != "fp16"
or args.height != 512
or args.width != 512
or args.batch_size != 1
@@ -255,26 +243,13 @@ def set_init_device_flags():
):
args.use_tuned = False
elif base_model_id not in [
"Linaqruf/anything-v3.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]:
args.use_tuned = False
elif "vulkan" in args.device and not any(
x in args.iree_vulkan_target_triple for x in ["rdna2", "rdna3"]
elif (
"vulkan" in args.device
and "rdna3" not in args.iree_vulkan_target_triple
):
args.use_tuned = False
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80", "sm_89"]:
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80"]:
args.use_tuned = False
elif args.use_base_vae and args.hf_model_id not in [
@@ -284,7 +259,7 @@ def set_init_device_flags():
args.use_tuned = False
if args.use_tuned:
print(f"Using tuned models for {base_model_id}/fp16/{args.device}.")
print(f"Using tuned models for {args.hf_model_id}/fp16/{args.device}.")
else:
print("Tuned models are currently not supported for this setting.")
@@ -306,27 +281,6 @@ def set_init_device_flags():
elif args.height != 512 or args.width != 512 or args.batch_size != 1:
args.import_mlir = True
elif args.use_tuned and args.hf_model_id in [
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"stabilityai/stable-diffusion-2-1",
]:
args.import_mlir = True
elif (
args.use_tuned
and "vulkan" in args.device
and "rdna2" in args.iree_vulkan_target_triple
):
args.import_mlir = True
elif (
args.use_tuned
and "cuda" in args.device
and get_cuda_sm_cc() == "sm_89"
):
args.import_mlir = True
# Utility to get list of devices available.
def get_available_devices():
@@ -401,11 +355,6 @@ def get_opt_flags(model, precision="fp16"):
return iree_flags
def get_path_stem(path):
path = Path(path)
return path.stem
def get_path_to_diffusers_checkpoint(custom_weights):
path = Path(custom_weights)
diffusers_path = path.parent.absolute()
@@ -416,7 +365,7 @@ def get_path_to_diffusers_checkpoint(custom_weights):
return path_to_diffusers
def preprocessCKPT(custom_weights, is_inpaint=False):
def preprocessCKPT(custom_weights):
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights)
if next(Path(path_to_diffusers).iterdir(), None):
print("Checkpoint already loaded at : ", path_to_diffusers)
@@ -437,20 +386,17 @@ def preprocessCKPT(custom_weights, is_inpaint=False):
print(
"Loading diffusers' pipeline from original stable diffusion checkpoint"
)
num_in_channels = 9 if is_inpaint else 4
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path=custom_weights,
extract_ema=extract_ema,
from_safetensors=from_safetensors,
num_in_channels=num_in_channels,
)
pipe.save_pretrained(path_to_diffusers)
print("Loading complete")
def load_vmfb(vmfb_path, model, precision):
model = "vae" if "base_vae" in model or "vae_encode" in model else model
model = "unet" if "stencil" in model else model
model = "vae" if "base_vae" in model else model
precision = "fp32" if "clip" in model else precision
extra_args = get_opt_flags(model, precision)
shark_module = SharkInference(mlir_module=None, device=args.device)
@@ -458,30 +404,24 @@ def load_vmfb(vmfb_path, model, precision):
return shark_module
# This utility returns vmfbs of Clip, Unet, Vae and Vae_encode, in case all of them
# This utility returns vmfbs of Clip, Unet and Vae, in case all three of them
# are present; deletes them otherwise.
def fetch_or_delete_vmfbs(extended_model_name, precision="fp32"):
def fetch_or_delete_vmfbs(basic_model_name, use_base_vae, precision="fp32"):
model_name = ["clip", "unet", "base_vae" if use_base_vae else "vae"]
vmfb_path = [
get_vmfb_path_name(extended_model_name[model])
for model in extended_model_name
get_vmfb_path_name(model + basic_model_name)[0] for model in model_name
]
number_of_vmfbs = len(vmfb_path)
vmfb_present = [os.path.isfile(vmfb) for vmfb in vmfb_path]
all_vmfb_present = True
compiled_models = [None] * number_of_vmfbs
for i in range(number_of_vmfbs):
all_vmfb_present = all_vmfb_present and vmfb_present[i]
all_vmfb_present = functools.reduce(operator.__and__, vmfb_present)
compiled_models = [None] * 3
# We need to delete vmfbs only if some of the models were compiled.
if not all_vmfb_present:
for i in range(number_of_vmfbs):
for i in range(len(vmfb_path)):
if vmfb_present[i]:
os.remove(vmfb_path[i])
print("Deleted: ", vmfb_path[i])
else:
model_name = [model for model in extended_model_name.keys()]
for i in range(number_of_vmfbs):
for i in range(len(vmfb_path)):
compiled_models[i] = load_vmfb(
vmfb_path[i], model_name[i], precision
)
@@ -519,97 +459,3 @@ def sanitize_seed(seed):
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
return seed
# clear all the cached objects to recompile cleanly.
def clear_all():
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed, extra_info={}):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(
output_path, "generated_imgs", dt.now().strftime("%Y%m%d")
)
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = os.path.basename(args.ckpt_loc)
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
new_entry.update(extra_info)
with open(csv_path, "a") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)

View File

@@ -0,0 +1,70 @@
# Stable Diffusion optimized for AMD RDNA2/RDNA3 GPUs
Before you start, please be aware that this is beta software that relies on a special AMD driver. Like all StableDiffusion GUIs published so far, you need some technical expertise to set it up. We apologize in advance if you bump into issues. If that happens, please don't hesitate to ask our Discord community for help! Please be assured that we (Nod and AMD) are working hard to improve the user experience in coming months.
If it works well for you, please "star" the following GitHub projects... this is one of the best ways to help and spread the word!
* https://github.com/nod-ai/SHARK
* https://github.com/iree-org/iree
## Install this specific AMD Drivers (AMD latest may not have all the fixes).
### AMD KB Drivers for RDNA2 and RDNA3:
*AMD Software: Adrenalin Edition 22.11.1 for MLIR/IREE Driver Version 22.20.29.09 for Windows® 10 and Windows® 11 (Windows Driver Store Version 31.0.12029.9003)*
First, for RDNA2 users, download this special driver in a folder of your choice. We recommend you keep the installation files around, since you may need to re-install it later, if Windows Update decides to overwrite it:
https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mlir-iree
For RDNA3, the latest driver 23.1.2 supports MLIR/IREE as well: https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-1-2-kb
KNOWN ISSUES with this special AMD driver:
* `Windows Update` may (depending how it's configured) automatically install a new official AMD driver that overwrites this IREE-specific driver. If Stable Diffusion used to work, then a few days later, it slows down a lot or produces incorrect results (e.g. black images), this may be the cause. To fix this problem, please check the installed driver version, and re-install the special driver if needed. (TODO: document how to prevent this `Windows Update` behavior!)
* Some people using this special driver experience mouse pointer accuracy issues, especially if using a larger-than-default mouse pointer. The clicked point isn't centered properly. One possible work-around is to reset the pointer size to "1" in "Change pointer size and color".
## Installation
Download the latest Windows SHARK SD binary [492 here](https://github.com/nod-ai/SHARK/releases/download/20230203.492/shark_sd_20230203_492.exe) in a folder of your choice. If you want nighly builds, you can look for them on the GitHub releases page.
Notes:
* We recommend that you download this EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files. Those contain Vulkan dispatches compiled from MLIR which can be outdated if you run a new EXE from the same folder. You can use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you:
* clear all the local artifacts with `--clear_all` OR
* clear the Vulkan shader cache: For Windows users this can be done by clearing the contents of `C:\Users\%username%\AppData\Local\AMD\VkCache\`. On Linux the same cache is typically located at `~/.cache/AMD/VkCache/`.
* clear the `huggingface` cache. In Windows, this is `C:\Users\%username%\.cache\huggingface`.
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE to start the web browser)
* The first run may take about 10-15 minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* If successful, you will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/?__theme=dark.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment. The application should stop.
* Please make sure to do the above step before you attempt to update the EXE to a new version.
# Results
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
The output on a 7900XTX would like:
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
Total image generation time: 2.5788655281066895sec
```
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.

View File

@@ -144,30 +144,19 @@
--dataset-table-border-hover: var(--color-grey-800);
}
/* SHARK theme */
body {
/* SHARK theme customization */
.gradio-container {
background-color: var(--color-background-primary);
}
/* display in full width for desktop devices */
@media (min-width: 1536px)
{
.gradio-container {
max-width: var(--size-full) !important;
}
}
.gradio-container .contain {
padding: 0 var(--size-4) !important;
}
.container {
background-color: black !important;
padding-top: var(--size-5) !important;
padding-top: 20px !important;
}
#ui_title {
padding: var(--size-2) 0 0 var(--size-1);
padding: 10px !important;
}
#top_logo {
@@ -176,6 +165,15 @@ body {
border: 0;
}
#demo_title {
background-color: var(--color-background-primary);
border-radius: 0 !important;
border: 0;
padding-top: 15px;
padding-bottom: 0px;
width: 350px !important;
}
#demo_title_outer {
border-radius: 0;
}
@@ -184,7 +182,7 @@ body {
border-radius: 0 !important
}
#prompt_box textarea, #negative_prompt_box textarea {
#prompt_box textarea {
background-color: var(--color-background-primary) !important;
}
@@ -198,7 +196,7 @@ body {
#ui_body {
background-color: var(--color-background-secondary) !important;
padding: var(--size-2) !important;
padding: 10px !important;
border-radius: 0.5em !important;
}
@@ -209,13 +207,3 @@ body {
footer {
display: none !important;
}
#gallery + div {
border-radius: 0 !important;
}
/* Prevent progress bar to block gallery navigation while building images (Gradio V3.19.0) */
#gallery .wrap.default {
pointer-events: none;
}

View File

@@ -1,21 +1,14 @@
import os
import sys
from pathlib import Path
import glob
if "AMD_ENABLE_LLPC" not in os.environ:
os.environ["AMD_ENABLE_LLPC"] = "1"
if sys.platform == "darwin":
os.environ["DYLD_LIBRARY_PATH"] = "/usr/local/lib"
import gradio as gr
from apps.stable_diffusion.src import args, clear_all
from apps.stable_diffusion.web.utils.gradio_configs import (
clear_gradio_tmp_imgs_folder,
)
# clear all gradio tmp images from the last session
clear_gradio_tmp_imgs_folder()
if args.clear_all:
clear_all()
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
@@ -25,114 +18,245 @@ def resource_path(relative_path):
return os.path.join(base_path, relative_path)
dark_theme = resource_path("ui/css/sd_dark_theme.css")
from apps.stable_diffusion.web.ui import (
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
import gradio as gr
from PIL import Image
from apps.stable_diffusion.src import (
prompt_examples,
args,
get_available_devices,
)
from apps.stable_diffusion.scripts import txt2img_inf
nodlogo_loc = resource_path("logos/nod-logo.png")
sdlogo_loc = resource_path("logos/sd-demo-logo.png")
def register_button_click(button, selectedid, inputs, outputs):
button.click(
lambda x: (
x[0]["name"] if len(x) != 0 else None,
gr.Tabs.update(selected=selectedid),
),
inputs,
outputs,
)
demo_css = resource_path("css/sd_dark_theme.css")
with gr.Blocks(
css=dark_theme, analytics_enabled=False, title="Stable Diffusion"
) as sd_web:
with gr.Tabs() as tabs:
with gr.TabItem(label="Text-to-Image", id=0):
txt2img_web.render()
with gr.TabItem(label="Image-to-Image", id=1):
img2img_web.render()
with gr.TabItem(label="Inpainting", id=2):
inpaint_web.render()
with gr.TabItem(label="Outpainting", id=3):
outpaint_web.render()
with gr.Blocks(title="Stable Diffusion", css=demo_css) as shark_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
logo2 = Image.open(sdlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=100)
with gr.Column(scale=5, elem_id="demo_title_outer"):
gr.Image(
value=logo2,
show_label=False,
interactive=False,
elem_id="demo_title",
).style(width=150, height=100)
register_button_click(
txt2img_sendto_img2img,
1,
[txt2img_gallery],
[img2img_init_image, tabs],
)
register_button_click(
txt2img_sendto_inpaint,
2,
[txt2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
txt2img_sendto_outpaint,
3,
[txt2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_inpaint,
2,
[img2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_outpaint,
3,
[img2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
inpaint_sendto_img2img,
1,
[inpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
inpaint_sendto_outpaint,
3,
[inpaint_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
outpaint_sendto_img2img,
1,
[outpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
outpaint_sendto_inpaint,
2,
[outpaint_gallery],
[inpaint_init_image, tabs],
)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value="None",
choices=ckpt_files
+ [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value="cyberpunk forest by Salvador Dali",
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="trees, green",
lines=1,
elem_id="prompt_box",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value="SharkEulerDiscrete",
choices=[
"DDIM",
"PNDM",
"LMSDiscrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=True,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=False,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 786, value=512, step=8, label="Height"
)
width = gr.Slider(
384, 786, value=512, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value="fp16",
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=64,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=50, step=1, label="Steps"
)
guidance_scale = gr.Slider(
0,
50,
value=7.5,
step=0.1,
label="CFG Scale",
)
with gr.Row():
batch_count = gr.Slider(
1,
10,
value=1,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=1,
step=1,
label="Batch Size",
interactive=True,
)
with gr.Row():
seed = gr.Number(value=-1, precision=0, label="Seed")
available_devices = get_available_devices()
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
sd_web.queue()
sd_web.launch(
with gr.Column(scale=1, min_width=600):
with gr.Group():
gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2], height="auto")
std_output = gr.Textbox(
value="Nothing to show.",
lines=4,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
kwargs = dict(
fn=txt2img_inf,
inputs=[
prompt,
negative_prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)
shark_web.queue()
shark_web.launch(
share=args.share,
inbrowser=True,
server_name="0.0.0.0",

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

View File

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -1,28 +0,0 @@
from apps.stable_diffusion.web.ui.txt2img_ui import (
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
)
from apps.stable_diffusion.web.ui.img2img_ui import (
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
)
from apps.stable_diffusion.web.ui.inpaint_ui import (
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
)
from apps.stable_diffusion.web.ui.outpaint_ui import (
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
)

View File

@@ -1,247 +0,0 @@
import os
import sys
import glob
from pathlib import Path
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import img2img_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
)
with gr.Blocks(title="Image-to-Image") as img2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value=args.ckpt_loc if args.ckpt_loc else "None",
choices=ckpt_files
+ [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
img2img_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="Stencil Options", open=False):
with gr.Row():
use_stencil = gr.Dropdown(
label="Stencil model",
value="None",
choices=["None", "canny"],
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value="PNDM",
choices=[
"DDIM",
"PNDM",
"DPMSolverMultistep",
"EulerAncestralDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
strength = gr.Slider(
0,
1,
value=args.strength,
step=0.01,
label="Strength",
)
with gr.Row():
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
img2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
img2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
img2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
kwargs = dict(
fn=img2img_inf,
inputs=[
prompt,
negative_prompt,
img2img_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
use_stencil,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[img2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
negative_prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)

View File

@@ -1,230 +0,0 @@
import os
import sys
import glob
from pathlib import Path
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import inpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
)
with gr.Blocks(title="Inpainting") as inpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value=args.ckpt_loc if args.ckpt_loc else "None",
choices=ckpt_files
+ [
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
inpaint_init_image = gr.Image(
label="Masked Image",
source="upload",
tool="sketch",
type="pil",
).style(height=350)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value="PNDM",
choices=[
"DDIM",
"PNDM",
"DPMSolverMultistep",
"EulerAncestralDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
with gr.Row():
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
inpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
inpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
inpaint_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
kwargs = dict(
fn=inpaint_inf,
inputs=[
prompt,
negative_prompt,
inpaint_init_image,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[inpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
negative_prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)

View File

@@ -1,266 +0,0 @@
import os
import sys
import glob
from pathlib import Path
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import outpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
)
with gr.Blocks(title="Outpainting") as outpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value=args.ckpt_loc if args.ckpt_loc else "None",
choices=ckpt_files
+ [
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
outpaint_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value="PNDM",
choices=[
"DDIM",
"PNDM",
"DPMSolverMultistep",
"EulerAncestralDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
pixels = gr.Slider(
8,
256,
value=args.pixels,
step=8,
label="Pixels to expand",
)
mask_blur = gr.Slider(
0,
64,
value=args.mask_blur,
step=1,
label="Mask blur",
)
with gr.Row():
directions = gr.CheckboxGroup(
label="Outpainting direction",
choices=["left", "right", "up", "down"],
value=["left", "right", "up", "down"],
)
with gr.Row():
noise_q = gr.Slider(
0.0,
4.0,
value=1.0,
step=0.01,
label="Fall-off exponent (lower=higher detail)",
)
color_variation = gr.Slider(
0.0,
1.0,
value=0.05,
step=0.01,
label="Color variation",
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=20, step=1, label="Steps"
)
with gr.Row():
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
outpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
outpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
outpaint_sendto_inpaint = gr.Button(value="SendTo Inpaint")
kwargs = dict(
fn=outpaint_inf,
inputs=[
prompt,
negative_prompt,
outpaint_init_image,
pixels,
mask_blur,
directions,
noise_q,
color_variation,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[outpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
negative_prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)

View File

@@ -1,236 +0,0 @@
import os
import sys
import glob
from pathlib import Path
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import txt2img_inf
from apps.stable_diffusion.src import prompt_examples, args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
)
with gr.Blocks(title="Text-to-Image") as txt2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value=args.ckpt_loc if args.ckpt_loc else "None",
choices=ckpt_files
+ [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value=args.scheduler,
choices=[
"DDIM",
"PNDM",
"LMSDiscrete",
"KDPM2Discrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Row():
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=True,
)
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
with gr.Column(scale=1, min_width=600):
with gr.Group():
txt2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
txt2img_sendto_img2img = gr.Button(value="SendTo Img2Img")
txt2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
txt2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
kwargs = dict(
fn=txt2img_inf,
inputs=[
prompt,
negative_prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[txt2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
negative_prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)

View File

@@ -1,15 +0,0 @@
import os
import sys
from apps.stable_diffusion.src import get_available_devices
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
nodlogo_loc = resource_path("logos/nod-logo.png")
available_devices = get_available_devices()

View File

@@ -1,31 +0,0 @@
import os
import tempfile
import gradio
from os import listdir
gradio_tmp_imgs_folder = os.path.join(os.getcwd(), "shark_tmp/")
# Clear all gradio tmp images
def clear_gradio_tmp_imgs_folder():
if not os.path.exists(gradio_tmp_imgs_folder):
return
for fileName in listdir(gradio_tmp_imgs_folder):
# Delete tmp png files
if fileName.startswith("tmp") and fileName.endswith(".png"):
os.remove(gradio_tmp_imgs_folder + fileName)
# Overwrite save_pil_to_file from gradio to save tmp images generated by gradio into our own tmp folder
def save_pil_to_file(pil_image, dir=None):
if not os.path.exists(gradio_tmp_imgs_folder):
os.mkdir(gradio_tmp_imgs_folder)
file_obj = tempfile.NamedTemporaryFile(
delete=False, suffix=".png", dir=gradio_tmp_imgs_folder
)
pil_image.save(file_obj)
return file_obj
# Register save_pil_to_file override
gradio.processing_utils.save_pil_to_file = save_pil_to_file

View File

@@ -30,15 +30,9 @@ def compare_images(new_filename, golden_filename):
diff = np.abs(new - golden)
mean = np.mean(diff)
if mean > 0.1:
if os.name != "nt":
subprocess.run(
[
"gsutil",
"cp",
new_filename,
"gs://shark_tank/testdata/builder/",
]
)
subprocess.run(
["gsutil", "cp", new_filename, "gs://shark_tank/testdata/builder/"]
)
raise SystemExit("new and golden not close")
else:
print("SUCCESS")

View File

@@ -1,16 +1,13 @@
import os
from sys import executable
import subprocess
from apps.stable_diffusion.src.utils.resources import (
get_json_file,
)
from datetime import datetime as dt
from shark.shark_downloader import download_public_file
from image_comparison import compare_images
import argparse
from glob import glob
import shutil
import requests
model_config_dicts = get_json_file(
os.path.join(
@@ -20,179 +17,51 @@ model_config_dicts = get_json_file(
)
def parse_sd_out(filename, command, device, use_tune, model_name, import_mlir):
with open(filename, "r+") as f:
lines = f.readlines()
metrics = {}
vals_to_read = [
"Clip Inference time",
"Average step",
"VAE Inference time",
"Total image generation",
]
for line in lines:
for val in vals_to_read:
if val in line:
metrics[val] = line.split(" ")[-1].strip("\n")
metrics["Average step"] = metrics["Average step"].strip("ms/it")
metrics["Total image generation"] = metrics[
"Total image generation"
].strip("sec")
metrics["device"] = device
metrics["use_tune"] = use_tune
metrics["model_name"] = model_name
metrics["import_mlir"] = import_mlir
metrics["command"] = command
return metrics
def get_inpaint_inputs():
os.mkdir("./test_images/inputs")
img_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_image.png"
)
mask_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_mask.png"
)
img = requests.get(img_url)
mask = requests.get(mask_url)
open("./test_images/inputs/image.png", "wb").write(img.content)
open("./test_images/inputs/mask.png", "wb").write(mask.content)
def test_loop(device="vulkan", beta=False, extra_flags=[]):
# Get golden values from tank
shutil.rmtree("./test_images", ignore_errors=True)
model_metrics = []
os.mkdir("./test_images")
os.mkdir("./test_images/golden")
get_inpaint_inputs()
hf_model_names = model_config_dicts[0].values()
tuned_options = ["--no-use_tuned", "--use_tuned"]
import_options = ["--import_mlir", "--no-import_mlir"]
prompt_text = "--prompt=cyberpunk forest by Salvador Dali"
inpaint_prompt_text = "--prompt=Face of a yellow cat, high resolution, sitting on a park bench"
if os.name == "nt":
prompt_text = '--prompt="cyberpunk forest by Salvador Dali"'
inpaint_prompt_text = '--prompt="Face of a yellow cat, high resolution, sitting on a park bench"'
tuned_options = ["--no-use_tuned", "use_tuned"]
if beta:
extra_flags.append("--beta_models=True")
extra_flags.append("--no-progress_bar")
to_skip = [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]
for import_opt in import_options:
for model_name in hf_model_names:
if model_name in to_skip:
continue
for use_tune in tuned_options:
command = (
[
executable, # executable is the python from the venv used to run this
"apps/stable_diffusion/scripts/txt2img.py",
"--device=" + device,
prompt_text,
"--negative_prompts=" + '""',
"--seed=42",
import_opt,
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
if "inpainting" not in model_name
else [
executable,
"apps/stable_diffusion/scripts/inpaint.py",
"--device=" + device,
inpaint_prompt_text,
"--negative_prompts=" + '""',
"--img_path=./test_images/inputs/image.png",
"--mask_path=./test_images/inputs/mask.png",
"--seed=42",
"--import_mlir",
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
)
command += extra_flags
if os.name == "nt":
command = " ".join(command)
dumpfile_name = "_".join(model_name.split("/")) + ".txt"
dumpfile_name = os.path.join(os.getcwd(), dumpfile_name)
with open(dumpfile_name, "w+") as f:
generated_image = not subprocess.call(
command,
stdout=f,
stderr=f,
)
if os.name != "nt":
command = " ".join(command)
if generated_image:
model_metrics.append(
parse_sd_out(
dumpfile_name,
command,
device,
use_tune,
model_name,
import_opt,
)
)
print(command)
print("Successfully generated image")
os.makedirs(
"./test_images/golden/" + model_name, exist_ok=True
)
download_public_file(
"gs://shark_tank/testdata/golden/" + model_name,
"./test_images/golden/" + model_name,
)
test_file_path = os.path.join(
os.getcwd(),
"test_images",
model_name,
"generated_imgs",
dt.now().strftime("%Y%m%d"),
"*.png",
)
test_file = glob(test_file_path)[0]
golden_path = (
"./test_images/golden/" + model_name + "/*.png"
)
golden_file = glob(golden_path)[0]
compare_images(test_file, golden_file)
else:
print(command)
print("failed to generate image for this configuration")
if "2_1_base" in model_name:
print("failed a known successful model.")
exit(1)
with open(os.path.join(os.getcwd(), "sd_testing_metrics.csv"), "w+") as f:
header = "model_name;device;use_tune;import_opt;Clip Inference time(ms);Average Step (ms/it);VAE Inference time(ms);total image generation(s);command\n"
f.write(header)
for metric in model_metrics:
output = [
metric["model_name"],
metric["device"],
metric["use_tune"],
metric["import_mlir"],
metric["Clip Inference time"],
metric["Average step"],
metric["VAE Inference time"],
metric["Total image generation"],
metric["command"],
for model_name in hf_model_names:
for use_tune in tuned_options:
command = [
"python",
"apps/stable_diffusion/scripts/txt2img.py",
"--device=" + device,
"--prompt=cyberpunk forest by Salvador Dali",
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
f.write(";".join(output) + "\n")
command += extra_flags
generated_image = not subprocess.call(
command, stdout=subprocess.DEVNULL
)
if generated_image:
print(" ".join(command))
print("Successfully generated image")
os.makedirs(
"./test_images/golden/" + model_name, exist_ok=True
)
download_public_file(
"gs://shark_tank/testdata/golden/" + model_name,
"./test_images/golden/" + model_name,
)
test_file_path = os.path.join(
os.getcwd(), "test_images", model_name, "generated_imgs"
)
test_file = glob(test_file_path + "/*.png")[0]
golden_path = "./test_images/golden/" + model_name + "/*.png"
golden_file = glob(golden_path)[0]
compare_images(test_file, golden_file)
else:
print(" ".join(command))
print("failed to generate image for this configuration")
parser = argparse.ArgumentParser()

View File

@@ -60,13 +60,3 @@ def pytest_addoption(parser):
default="gs://shark_tank/latest",
help="URL to bucket from which to download SHARK tank artifacts. Default is gs://shark_tank/latest",
)
parser.addoption(
"--benchmark_dispatches",
default=None,
help="Benchmark individual dispatch kernels produced by IREE compiler. Use 'All' for all, or specific dispatches e.g. '0 1 2 10'",
)
parser.addoption(
"--dispatch_benchmarks_dir",
default="./temp_dispatch_benchmarks",
help="Directory in which dispatch benchmarks are saved.",
)

View File

@@ -1,118 +0,0 @@
# Overview
This document is intended to provide a starting point for profiling with SHARK/IREE. At it's core
[SHARK](https://github.com/nod-ai/SHARK/tree/main/tank) is a python API that links the MLIR lowerings from various
frameworks + frontends (e.g. PyTorch -> Torch-MLIR) with the compiler + runtime offered by IREE. More information
on model coverage and framework support can be found [here](https://github.com/nod-ai/SHARK/tree/main/tank). The intended
use case for SHARK is for compilation and deployment of performant state of the art AI models.
![image](https://user-images.githubusercontent.com/22101546/217151219-9bb184a3-cfb9-4788-bb7e-5b502953525c.png)
## Benchmarking with SHARK
TODO: Expand this section.
SHARK offers native benchmarking support, although because it is model focused, fine grain profiling is
hidden when compared against the common "model benchmarking suite" use case SHARK is good at.
### SharkBenchmarkRunner
SharkBenchmarkRunner is a class designed for benchmarking models against other runtimes.
TODO: List supported runtimes for comparison + example on how to benchmark with it.
## Directly profiling IREE
A number of excellent developer resources on profiling with IREE can be
found [here](https://github.com/iree-org/iree/tree/main/docs/developers/developing_iree). As a result this section will
focus on the bridging the gap between the two.
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_with_tracy.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_vulkan_gpu.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_cpu_events.md
Internally, SHARK builds a pair of IREE commands to compile + run a model. At a high level the flow starts with the
model represented with a high level dialect (commonly Linalg) and is compiled to a flatbuffer (.vmfb) that
the runtime is capable of ingesting. At this point (with potentially a few runtime flags) the compiled model is then run
through the IREE runtime. This is all facilitated with the IREE python bindings, which offers a convenient method
to capture the compile command SHARK comes up with. This is done by setting the environment variable
`IREE_SAVE_TEMPS` to point to a directory of choice, e.g. for stable diffusion
```
# Linux
$ export IREE_SAVE_TEMPS=/path/to/some/directory
# Windows
$ $env:IREE_SAVE_TEMPS="C:\path\to\some\directory"
$ python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse" --save_vmfb
```
NOTE: Currently this will only save the compile command + input MLIR for a single model if run in a pipeline.
In the case of stable diffusion this (should) be UNet so to get examples for other models in the pipeline they
need to be extracted and tested individually.
The save temps directory should contain three files: `core-command-line.txt`, `core-input.mlir`, and `core-output.bin`.
The command line for compilation will start something like this, where the `-` needs to be replaced with the path to `core-input.mlir`.
```
/home/quinn/nod/iree-build/compiler/bindings/python/iree/compiler/tools/../_mlir_libs/iree-compile - --iree-input-type=none ...
```
The `-o output_filename.vmfb` flag can be used to specify the location to save the compiled vmfb. Note that a dump of the
dispatches that can be compiled + run in isolation can be generated by adding `--iree-hal-dump-executable-benchmarks-to=/some/directory`. Say, if they are in the `benchmarks` directory, the following compile/run commands would work for Vulkan on RDNA3.
```
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna3-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.mlir -o benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb
iree-benchmark-module --module=benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb --function=forward --device=vulkan
```
Where `${NUM}` is the dispatch number that you want to benchmark/profile in isolation.
### Enabling Tracy for Vulkan profiling
To begin profiling with Tracy, a build of IREE runtime with tracing enabled is needed. SHARK-Runtime builds an
instrumented version alongside the normal version nightly (.whls typically found [here](https://github.com/nod-ai/SHARK-Runtime/releases)), however this is only available for Linux. For Windows, tracing can be enabled by enabling a CMake flag.
```
$env:IREE_ENABLE_RUNTIME_TRACING="ON"
```
Getting a trace can then be done by setting environment variable `TRACY_NO_EXIT=1` and running the program that is to be
traced. Then, to actually capture the trace, use the `iree-tracy-capture` tool in a different terminal. Note that to get
the capture and profiler tools the `IREE_BUILD_TRACY=ON` CMake flag needs to be set.
```
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# (in another terminal, either on the same machine or through ssh with a tunnel through port 8086)
iree-tracy-capture -o trace_filename.tracy
```
To do it over ssh, the flow looks like this
```
# From terminal 1 on local machine
ssh -L 8086:localhost:8086 <remote_server_name>
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# From terminal 2 on local machine. Requires having built IREE with the CMake flag `IREE_BUILD_TRACY=ON` to build the required tooling.
iree-tracy-capture -o /path/to/trace.tracy
```
The trace can then be viewed with
```
iree-tracy-profiler /path/to/trace.tracy
```
Capturing a runtime trace will work with any IREE tooling that uses the runtime. For example, `iree-benchmark-module`
can be used for benchmarking an individual module. Importantly this means that any SHARK script can be profiled with tracy.
NOTE: Not all backends have the same tracy support. This writeup is focused on CPU/Vulkan backends but there is recently added support for tracing on CUDA (requires the `--cuda_tracing` flag).
## Experimental RGP support
TODO: This section is temporary until proper RGP support is added.
Currently, for stable diffusion there is a flag for enabling UNet to be visible to RGP with `--enable_rgp`. To get a proper capture though, the `DevModeSqttPrepareFrameCount=1` flag needs to be set for the driver (done with `VkPanel` on Windows).
With these two settings, a single iteration of UNet can be captured.
(AMD only) To get a dump of the pipelines (result of compiled SPIR-V) the `EnablePipelineDump=1` driver flag can be set. The
files will typically be dumped to a directory called `spvPipeline` (on Linux `/var/tmp/spvPipeline`. The dumped files will
include header information that can be used to map back to the source dispatch/SPIR-V, e.g.
```
[Version]
version = 57
[CsSpvFile]
fileName = Shader_0x946C08DFD0C10D9A.spv
[CsInfo]
entryPoint = forward_dispatch_193_matmul_256x65536x2304
```

View File

@@ -162,13 +162,13 @@ def save_tf_model(tf_model_list):
tf_model_name = tf_model_name.replace("/", "_")
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
os.makedirs(tf_model_dir, exist_ok=True)
mlir_importer = SharkImporter(
model,
inputs=input,
input,
frontend="tf",
)
mlir_importer.import_debug(
is_dynamic=False,
dir=tf_model_dir,
model_name=tf_model_name,
)

View File

@@ -1,44 +0,0 @@
# This script will toggle the comment/uncommenting aspect for dealing
# with __file__ AttributeError arising in case of a few modules in
# `torch/_dynamo/skipfiles.py` (within shark.venv)
from distutils.sysconfig import get_python_lib
import fileinput
from pathlib import Path
# Diffusers 0.13.1 fails with transformers __init.py errros in BLIP. So remove it for now until we fork it
pix2pix_file = Path(
get_python_lib()
+ "/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py"
)
if pix2pix_file.exists():
print("Removing..%s", pix2pix_file)
pix2pix_file.unlink()
path_to_skipfiles = Path(get_python_lib() + "/torch/_dynamo/skipfiles.py")
modules_to_comment = ["abc,", "os,", "posixpath,", "_collections_abc,"]
startMonitoring = 0
for line in fileinput.input(path_to_skipfiles, inplace=True):
if "SKIP_DIRS = " in line:
startMonitoring = 1
print(line, end="")
elif startMonitoring in [1, 2]:
if "]" in line:
startMonitoring += 1
print(line, end="")
else:
flag = True
for module in modules_to_comment:
if module in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
flag = False
break
if flag:
print(line, end="")
else:
print(line, end="")

View File

@@ -1,7 +1,7 @@
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
--pre
numpy>1.22.4
numpy==1.22.4
torchvision
pytorch-triton
tabulate
@@ -15,8 +15,8 @@ iree-tools-tf
# TensorFlow and JAX.
gin-config
tf-nightly
keras>=2.10
tensorflow==2.10.1
keras==2.10
#tf-models-nightly
#tensorflow-text-nightly
transformers

View File

@@ -16,14 +16,13 @@ parameterized
# Add transformers, diffusers and scipy since it most commonly used
transformers
diffusers @ git+https://github.com/nod-ai/diffusers@stable_stencil
diffusers
scipy
ftfy
gradio
altair
omegaconf
safetensors
opencv-python
# Keep PyInstaller at the end. Sometimes Windows Defender flags it but most folks can continue even if it errors
pefile

View File

@@ -1,54 +1,19 @@
<#
.SYNOPSIS
A script to update and install the SHARK runtime and its dependencies.
.DESCRIPTION
This script updates and installs the SHARK runtime and its dependencies.
It checks the Python version installed and installs any required build
dependencies into a Python virtual environment.
If that environment does not exist, it creates it.
.PARAMETER update-src
git pulls latest version
.PARAMETER force
removes and recreates venv to force update of all dependencies
.EXAMPLE
.\setup_venv.ps1 --force
.EXAMPLE
.\setup_venv.ps1 --update-src
.INPUTS
None
.OUTPUTS
None
#>
param([string]$arguments)
if ($arguments -eq "--update-src"){
git pull
}
if ($arguments -eq "--force"){
if (Test-Path env:VIRTUAL_ENV) {
Write-Host "deactivating..."
Deactivate
}
if (Test-Path .\shark.venv\) {
Write-Host "removing and recreating venv..."
Remove-Item .\shark.venv -Force -Recurse
if (Test-Path .\shark.venv\) {
Write-Host 'could not remove .\shark-venv - please try running ".\setup_venv.ps1 --force" again!'
break
}
}
}
#Write-Host "Installing python"
#Start-Process winget install Python.Python.3.10 '/quiet InstallAllUsers=1 PrependPath=1' -wait -NoNewWindow
#Write-Host "python installation completed successfully"
#Write-Host "Reload environment variables"
#$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
#Write-Host "Reloaded environment variables"
# redirect stderr into stdout
$p = &{python -V} 2>&1
@@ -60,36 +25,19 @@ $version = if($p -is [System.Management.Automation.ErrorRecord])
}
else
{
# otherwise return complete Python list
$ErrorActionPreference = 'SilentlyContinue'
$PyVer = py --list
# otherwise return as is
$p
}
# deactivate any activated venvs
if ($PyVer -like "*venv*")
{
deactivate # make sure we don't update the wrong venv
$PyVer = py --list # update list
}
Write-Host "Python version found is"
Write-Host $p
Write-Host "Python versions found are"
Write-Host ($PyVer | Out-String) # formatted output with line breaks
if (!($PyVer.length -ne 0)) {$p} # return Python --version String if py.exe is unavailable
if (!($PyVer -like "*3.11*") -and !($p -like "*3.11*")) # if 3.11 is not in any list
{
Write-Host "Please install Python 3.11 and try again"
break
}
Write-Host "Installing Build Dependencies"
# make sure we really use 3.11 from list, even if it's not the default.
if (!($PyVer.length -ne 0)) {py -3.11 -m venv .\shark.venv\}
else {python -m venv .\shark.venv\}
python -m venv .\shark.venv\
.\shark.venv\Scripts\activate
python -m pip install --upgrade pip
pip install wheel
pip install -r requirements.txt
pip install --pre torch-mlir torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --pre torch-mlir torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --upgrade -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html iree-compiler iree-runtime
Write-Host "Building SHARK..."
pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html

View File

@@ -42,7 +42,7 @@ Green=`tput setaf 2`
Yellow=`tput setaf 3`
# Assume no binary torch-mlir.
# Currently available for macOS m1&intel (3.11) and Linux(3.8,3.10,3.11)
# Currently available for macOS m1&intel (3.10) and Linux(3.7,3.8,3.9,3.10)
torch_mlir_bin=false
if [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}Apple macOS detected"
@@ -60,12 +60,12 @@ if [[ $(uname -s) = 'Darwin' ]]; then
fi
echo "${Yellow}Run the following commands to setup your SSL certs for your Python version if you see SSL errors with tests"
echo "${Yellow}/Applications/Python\ 3.XX/Install\ Certificates.command"
if [ "$PYTHON_VERSION_X_Y" == "3.11" ]; then
if [ "$PYTHON_VERSION_X_Y" == "3.10" ]; then
torch_mlir_bin=true
fi
elif [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected"
if [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] || [ "$PYTHON_VERSION_X_Y" == "3.11" ] ; then
if [ "$PYTHON_VERSION_X_Y" == "3.7" ] || [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.9" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] ; then
torch_mlir_bin=true
fi
else
@@ -89,7 +89,7 @@ if [ "$torch_mlir_bin" = true ]; then
fi
else
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
echo "${Yello}Python 3.11 supported on macOS and 3.8,3.10 and 3.11 on Linux"
echo "${Yello}Python 3.10 supported on macOS and 3.7,3.8,3.9 and 3.10 on Linux"
echo "${Red}Please build torch-mlir from source in your environment"
exit 1
fi
@@ -98,7 +98,7 @@ if [[ -z "${USE_IREE}" ]]; then
RUNTIME="https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html"
else
touch ./.use-iree
RUNTIME="https://openxla.github.io/iree/pip-release-links.html"
RUNTIME="https://iree-org.github.io/iree/pip-release-links.html"
fi
if [[ -z "${NO_BACKEND}" ]]; then
echo "Installing ${RUNTIME}..."
@@ -112,7 +112,7 @@ if [[ ! -z "${IMPORTER}" ]]; then
if [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected.. installing Linux importer tools"
#Always get the importer tools from upstream IREE
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://openxla.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://iree-org.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
elif [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}macOS detected.. installing macOS importer tools"
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
@@ -129,7 +129,7 @@ if [[ $(uname -s) = 'Linux' && ! -z "${BENCHMARK}" ]]; then
TV_VERSION=${TV_VER:9:18}
$PYTHON -m pip uninstall -y torch torchvision
$PYTHON -m pip install -U --pre --no-warn-conflicts triton
$PYTHON -m pip install --no-deps https://download.pytorch.org/whl/nightly/cu117/torch-${TORCH_VERSION}%2Bcu117-cp311-cp311-linux_x86_64.whl https://download.pytorch.org/whl/nightly/cu117/torchvision-${TV_VERSION}%2Bcu117-cp311-cp311-linux_x86_64.whl
$PYTHON -m pip install --no-deps https://download.pytorch.org/whl/nightly/cu117/torch-${TORCH_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/nightly/cu117/torchvision-${TV_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl
if [ $? -eq 0 ];then
echo "Successfully Installed torch + cu117."
else

View File

@@ -1,698 +0,0 @@
####################################################################################
# Please make sure you have transformers 4.21.2 installed before running this demo
#
# -p --model_path: the directory in which you want to store the bloom files.
# -dl --device_list: the list of device indices you want to use. if you want to only use the first device, or you are running on cpu leave this blank.
# Otherwise, please give this argument in this format: "[0, 1, 2]"
# -de --device: the device you want to run bloom on. E.G. cpu, cuda
# -c, --recompile: set to true if you want to recompile to vmfb.
# -d, --download: set to true if you want to redownload the mlir files
# -t --token_count: the number of tokens you want to generate
# -pr --prompt: the prompt you want to feed to the model
# -m --model_namme: the name of the model, e.g. bloom-560m
#####################################################################################
import os
import io
import torch
import torch.nn as nn
from collections import OrderedDict
import torch_mlir
from torch_mlir import TensorPlaceholder
import re
from transformers.models.bloom.configuration_bloom import BloomConfig
import json
import sys
import argparse
import json
import urllib.request
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_public_file
from transformers import (
BloomTokenizerFast,
BloomForSequenceClassification,
BloomForCausalLM,
)
from transformers.models.bloom.modeling_bloom import (
BloomBlock,
build_alibi_tensor,
)
IS_CUDA = False
class ShardedBloom:
def __init__(self, src_folder):
f = open(f"{src_folder}/config.json")
config = json.load(f)
f.close()
self.layers_initialized = False
self.src_folder = src_folder
try:
self.n_embed = config["n_embed"]
except KeyError:
self.n_embed = config["hidden_size"]
self.vocab_size = config["vocab_size"]
self.n_layer = config["n_layer"]
try:
self.n_head = config["num_attention_heads"]
except KeyError:
self.n_head = config["n_head"]
def _init_layer(self, layer_name, device, replace, device_idx):
if replace or not os.path.exists(
f"{self.src_folder}/{layer_name}.vmfb"
):
f_ = open(f"{self.src_folder}/{layer_name}.mlir", encoding="utf-8")
module = f_.read()
f_.close()
module = bytes(module, "utf-8")
shark_module = SharkInference(
module,
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
)
shark_module.save_module(
module_name=f"{self.src_folder}/{layer_name}",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
else:
shark_module = SharkInference(
"",
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
)
return shark_module
def init_layers(self, device, replace=False, device_idx=[0]):
if device_idx is not None:
n_devices = len(device_idx)
self.word_embeddings_module = self._init_layer(
"word_embeddings",
device,
replace,
device_idx if device_idx is None else device_idx[0 % n_devices],
)
self.word_embeddings_layernorm_module = self._init_layer(
"word_embeddings_layernorm",
device,
replace,
device_idx if device_idx is None else device_idx[1 % n_devices],
)
self.ln_f_module = self._init_layer(
"ln_f",
device,
replace,
device_idx if device_idx is None else device_idx[2 % n_devices],
)
self.lm_head_module = self._init_layer(
"lm_head",
device,
replace,
device_idx if device_idx is None else device_idx[3 % n_devices],
)
self.block_modules = [
self._init_layer(
f"bloom_block_{i}",
device,
replace,
device_idx
if device_idx is None
else device_idx[(i + 4) % n_devices],
)
for i in range(self.n_layer)
]
self.layers_initialized = True
def load_layers(self):
assert self.layers_initialized
self.word_embeddings_module.load_module(
f"{self.src_folder}/word_embeddings.vmfb"
)
self.word_embeddings_layernorm_module.load_module(
f"{self.src_folder}/word_embeddings_layernorm.vmfb"
)
for block_module, i in zip(self.block_modules, range(self.n_layer)):
block_module.load_module(f"{self.src_folder}/bloom_block_{i}.vmfb")
self.ln_f_module.load_module(f"{self.src_folder}/ln_f.vmfb")
self.lm_head_module.load_module(f"{self.src_folder}/lm_head.vmfb")
def forward_pass(self, input_ids, device):
if IS_CUDA:
cudaSetDevice(self.word_embeddings_module.device_idx)
input_embeds = self.word_embeddings_module(
inputs=(input_ids,), function_name="forward"
)
input_embeds = torch.tensor(input_embeds).float()
if IS_CUDA:
cudaSetDevice(self.word_embeddings_layernorm_module.device_idx)
hidden_states = self.word_embeddings_layernorm_module(
inputs=(input_embeds,), function_name="forward"
)
hidden_states = torch.tensor(hidden_states).float()
attention_mask = torch.ones(
[hidden_states.shape[0], len(input_ids[0])]
)
alibi = build_alibi_tensor(
attention_mask,
self.n_head,
hidden_states.dtype,
hidden_states.device,
)
causal_mask = _prepare_attn_mask(
attention_mask, input_ids.size(), input_embeds, 0
)
causal_mask = torch.tensor(causal_mask).float()
presents = ()
all_hidden_states = tuple(hidden_states)
for block_module, i in zip(self.block_modules, range(self.n_layer)):
if IS_CUDA:
cudaSetDevice(block_module.device_idx)
output = block_module(
inputs=(
hidden_states.detach().numpy(),
alibi.detach().numpy(),
causal_mask.detach().numpy(),
),
function_name="forward",
)
hidden_states = torch.tensor(output[0]).float()
all_hidden_states = all_hidden_states + (hidden_states,)
presents = presents + (
tuple(
(
output[1],
output[2],
)
),
)
if IS_CUDA:
cudaSetDevice(self.ln_f_module.device_idx)
hidden_states = self.ln_f_module(
inputs=(hidden_states,), function_name="forward"
)
if IS_CUDA:
cudaSetDevice(self.lm_head_module.device_idx)
logits = self.lm_head_module(
inputs=(hidden_states,), function_name="forward"
)
logits = torch.tensor(logits).float()
return torch.argmax(logits[:, -1, :], dim=-1)
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.full((target_length, target_length), torch.finfo(dtype).min)
mask_cond = torch.arange(mask.size(-1))
intermediate_mask = mask_cond < (mask_cond + 1).view(mask.size(-1), 1)
mask.masked_fill_(intermediate_mask, 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
target_length, past_key_values_length, dtype=dtype
),
mask,
],
dim=-1,
)
expanded_mask = mask[None, None, :, :].expand(
batch_size, 1, target_length, target_length + past_key_values_length
)
return expanded_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: int = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
batch_size, source_length = mask.size()
tgt_len = tgt_len if tgt_len is not None else source_length
expanded_mask = (
mask[:, None, None, :]
.expand(batch_size, 1, tgt_len, source_length)
.to(dtype)
)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
def _prepare_attn_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
past_key_values_length=past_key_values_length,
).to(attention_mask.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def download_model(destination_folder, model_name):
download_public_file(
f"https://{model_name}/config.json", destination_folder
)
f = open(f"{destination_folder}/config.json")
config = json.load(f)
f.close()
n_blocks = config["n_layer"]
download_public_file(
f"https://{model_name}/lm_head.mlir", destination_folder
)
download_public_file(f"https://{model_name}/ln_f.mlir", destination_folder)
download_public_file(
f"https://{model_name}/word_embeddings.mlir", destination_folder
)
download_public_file(
f"https://{model_name}/word_embeddings_layernorm.mlir",
destination_folder,
)
download_public_file(
f"https://{model_name}/tokenizer.json", destination_folder
)
for i in range(n_blocks):
download_public_file(
f"https://{model_name}/bloom_block_{i}.mlir", destination_folder
)
def compile_embeddings(embeddings_layer, input_ids, path):
input_ids_placeholder = torch_mlir.TensorPlaceholder.like(
input_ids, dynamic_axes=[1]
)
module = torch_mlir.compile(
embeddings_layer,
(input_ids_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_word_embeddings_layernorm(
embeddings_layer_layernorm, embeds, path
):
embeds_placeholder = torch_mlir.TensorPlaceholder.like(
embeds, dynamic_axes=[1]
)
module = torch_mlir.compile(
embeddings_layer_layernorm,
(embeds_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
def compile_to_mlir(
bblock,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
use_cache=None,
output_attentions=False,
alibi=None,
block_index=0,
path=".",
):
fx_g = make_fx(
bblock,
decomposition_table=get_decompositions(
[
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
tracing_mode="real",
_allow_non_fake_inputs=False,
)(hidden_states, alibi, attention_mask)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
strip_overloads(fx_g)
hidden_states_placeholder = TensorPlaceholder.like(
hidden_states, dynamic_axes=[1]
)
attention_mask_placeholder = TensorPlaceholder.like(
attention_mask, dynamic_axes=[2, 3]
)
alibi_placeholder = TensorPlaceholder.like(alibi, dynamic_axes=[2])
ts_g = torch.jit.script(fx_g)
module = torch_mlir.compile(
ts_g,
(
hidden_states_placeholder,
alibi_placeholder,
attention_mask_placeholder,
),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
module_placeholder = module
module_context = module_placeholder.context
def check_valid_line(line, line_n, mlir_file_len):
if "private" in line:
return False
if "attributes" in line:
return False
if mlir_file_len - line_n == 2:
return False
return True
mlir_file_len = len(str(module).split("\n"))
def remove_constant_dim(line):
if "17x" in line:
line = re.sub("17x", "?x", line)
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
if "tensor.empty" in line and "?x?" in line:
line = re.sub(
"tensor.empty\(%dim\)", "tensor.empty(%dim, %dim)", line
)
if "arith.cmpi eq" in line:
line = re.sub("c17", "dim", line)
if " 17," in line:
line = re.sub(" 17,", " %dim,", line)
return line
module = "\n".join(
[
remove_constant_dim(line)
for line, line_n in zip(
str(module).split("\n"), range(mlir_file_len)
)
if check_valid_line(line, line_n, mlir_file_len)
]
)
module = module_placeholder.parse(module, context=module_context)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_ln_f(ln_f, hidden_layers, path):
hidden_layers_placeholder = torch_mlir.TensorPlaceholder.like(
hidden_layers, dynamic_axes=[1]
)
module = torch_mlir.compile(
ln_f,
(hidden_layers_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_lm_head(lm_head, hidden_layers, path):
hidden_layers_placeholder = torch_mlir.TensorPlaceholder.like(
hidden_layers, dynamic_axes=[1]
)
module = torch_mlir.compile(
lm_head,
(hidden_layers_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def create_mlirs(destination_folder, model_name):
model_config = "bigscience/" + model_name
sample_input_ids = torch.ones([1, 17], dtype=torch.int64)
urllib.request.urlretrieve(
f"https://huggingface.co/bigscience/{model_name}/resolve/main/config.json",
filename=f"{destination_folder}/config.json",
)
urllib.request.urlretrieve(
f"https://huggingface.co/bigscience/bloom/resolve/main/tokenizer.json",
filename=f"{destination_folder}/tokenizer.json",
)
class HuggingFaceLanguage(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = BloomForCausalLM.from_pretrained(model_config)
def forward(self, tokens):
return self.model.forward(tokens)[0]
class HuggingFaceBlock(torch.nn.Module):
def __init__(self, block):
super().__init__()
self.model = block
def forward(self, tokens, alibi, attention_mask):
output = self.model(
hidden_states=tokens,
alibi=alibi,
attention_mask=attention_mask,
use_cache=True,
output_attentions=False,
)
return (output[0], output[1][0], output[1][1])
model = HuggingFaceLanguage()
compile_embeddings(
model.model.transformer.word_embeddings,
sample_input_ids,
f"{destination_folder}/word_embeddings.mlir",
)
inputs_embeds = model.model.transformer.word_embeddings(sample_input_ids)
compile_word_embeddings_layernorm(
model.model.transformer.word_embeddings_layernorm,
inputs_embeds,
f"{destination_folder}/word_embeddings_layernorm.mlir",
)
hidden_states = model.model.transformer.word_embeddings_layernorm(
inputs_embeds
)
input_shape = sample_input_ids.size()
current_sequence_length = hidden_states.shape[1]
past_key_values_length = 0
past_key_values = tuple([None] * len(model.model.transformer.h))
attention_mask = torch.ones(
(hidden_states.shape[0], current_sequence_length), device="cpu"
)
alibi = build_alibi_tensor(
attention_mask,
model.model.transformer.n_head,
hidden_states.dtype,
"cpu",
)
causal_mask = _prepare_attn_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
head_mask = model.model.transformer.get_head_mask(
None, model.model.transformer.config.n_layer
)
output_attentions = model.model.transformer.config.output_attentions
all_hidden_states = ()
for i, (block, layer_past) in enumerate(
zip(model.model.transformer.h, past_key_values)
):
all_hidden_states = all_hidden_states + (hidden_states,)
proxy_model = HuggingFaceBlock(block)
compile_to_mlir(
proxy_model,
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=True,
output_attentions=output_attentions,
alibi=alibi,
block_index=i,
path=f"{destination_folder}/bloom_block_{i}.mlir",
)
compile_ln_f(
model.model.transformer.ln_f,
hidden_states,
f"{destination_folder}/ln_f.mlir",
)
hidden_states = model.model.transformer.ln_f(hidden_states)
compile_lm_head(
model.model.lm_head,
hidden_states,
f"{destination_folder}/lm_head.mlir",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog="Bloom-560m")
parser.add_argument("-p", "--model_path")
parser.add_argument("-dl", "--device_list", default=None)
parser.add_argument("-de", "--device", default="cpu")
parser.add_argument("-c", "--recompile", default=False, type=bool)
parser.add_argument("-d", "--download", default=False, type=bool)
parser.add_argument("-t", "--token_count", default=10, type=int)
parser.add_argument("-m", "--model_name", default="bloom-560m")
parser.add_argument(
"-pr",
"--prompt",
default="The SQL command to extract all the users whose name starts with A is: ",
)
args = parser.parse_args()
if args.device_list is not None:
args.device_list = json.loads(args.device_list)
if args.device == "cuda" and args.device_list is not None:
IS_CUDA = True
from cuda.cudart import cudaSetDevice
if args.download:
# download_model(args.model_path, args.model_name)
create_mlirs(args.model_path, args.model_name)
from transformers import AutoTokenizer, AutoModelForCausalLM, BloomConfig
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
shardedbloom = ShardedBloom(args.model_path)
shardedbloom.init_layers(
device=args.device, replace=args.recompile, device_idx=args.device_list
)
shardedbloom.load_layers()
for _ in range(args.token_count):
next_token = shardedbloom.forward_pass(
torch.tensor(input_ids), device=args.device
)
input_ids = torch.cat([input_ids, next_token.unsqueeze(-1)], dim=-1)
print(tokenizer.decode(input_ids.squeeze()))

View File

@@ -139,14 +139,9 @@ def run_benchmark_module(benchmark_cl):
benchmark_path
), "Cannot find benchmark_module, Please contact SHARK maintainer on discord."
bench_result = run_cmd(" ".join(benchmark_cl))
try:
regex_split = re.compile("(\d+[.]*\d*)( *)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(3)
except AttributeError:
regex_split = re.compile("(\d+[.]*\d*)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(2)
print(bench_result)
regex_split = re.compile("(\d+[.]*\d*)( *)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(3)
return 1.0 / (time * 0.001)

View File

@@ -70,6 +70,7 @@ def get_iree_common_args():
return [
"--iree-stream-resource-index-bits=64",
"--iree-vm-target-index-bits=64",
"--iree-vm-bytecode-module-strip-source-map=true",
"--iree-util-zero-fill-elided-attrs",
]

View File

@@ -22,7 +22,7 @@ from shark.parser import shark_args
# Get the default gpu args given the architecture.
def get_iree_gpu_args():
ireert.flags.FUNCTION_INPUT_VALIDATION = False
ireert.flags.parse_flags("--cuda_allow_inline_execution")
ireert.flags.parse_flags("--cuda_allow_inline_execution", "--device_allocator=caching")
# TODO: Give the user_interface to pass the sm_arch.
sm_arch = get_cuda_sm_cc()
if (

View File

@@ -139,9 +139,8 @@ def get_vulkan_triple_flag(device_name="", extra_args=[]):
def get_iree_vulkan_args(extra_args=[]):
# vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
res_vulkan_flag = ["--device_allocator=caching"]
res_vulkan_flag = []
vulkan_triple_flag = None
for arg in extra_args:
if "-iree-vulkan-target-triple=" in arg:

View File

@@ -118,11 +118,10 @@ class SharkBenchmarkRunner(SharkRunner):
)
HFmodel, input = get_torch_model(modelname)[:2]
frontend_model = HFmodel.model
# frontend_model = dynamo.optimize("inductor")(frontend_model)
frontend_model.to(torch_device)
input.to(torch_device)
# frontend_model = torch.compile(frontend_model, mode="max-autotune", backend="inductor")
for i in range(shark_args.num_warmup_iterations):
frontend_model.forward(input)

View File

@@ -99,7 +99,6 @@ else:
print(
f"shark_tank local cache is located at {WORKDIR} . You may change this by setting the --local_tank_cache= flag"
)
os.makedirs(WORKDIR, exist_ok=True)
# Checks whether the directory and files exists.

View File

@@ -1,8 +1,8 @@
resnet50,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
albert-base-v2,mhlo,tf,1e-2,1e-2,default,None,False,False,False,"",""
roberta-base,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,True,True,True,"","macos"
bert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"","enabled_windows"
camembert-base,mhlo,tf,1e-2,1e-3,default,None,True,True,True,"",""
roberta-base,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
bert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
camembert-base,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
dbmdz/convbert-base-turkish-cased,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,True,True,False,"https://github.com/iree-org/iree/issues/9971",""
distilbert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
facebook/convnext-tiny-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,True,True,False,"https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342",""
@@ -12,18 +12,17 @@ google/mobilebert-uncased,mhlo,tf,1e-2,1e-3,default,None,True,False,False,"Fails
google/vit-base-patch16-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,False,False,False,"",""
microsoft/MiniLM-L12-H384-uncased,mhlo,tf,1e-2,1e-3,tf_hf,None,True,False,False,"Fails during iree-compile.",""
microsoft/layoutlm-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
microsoft/mpnet-base,mhlo,tf,1e-2,1e-2,default,None,True,True,True,"",""
microsoft/mpnet-base,mhlo,tf,1e-2,1e-2,default,None,False,False,False,"",""
albert-base-v2,linalg,torch,1e-2,1e-3,default,None,True,True,True,"issue with aten.tanh in torch-mlir",""
alexnet,linalg,torch,1e-2,1e-3,default,None,True,True,False,"https://github.com/nod-ai/SHARK/issues/879",""
bert-base-cased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-base-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-base-uncased_fp16,linalg,torch,1e-1,1e-1,default,None,True,False,True,"",""
bert-large-uncased,linalg,torch,1e-2,1e-3,default,None,True,True,True,"disabled until generateable",""
bert-large-uncased,mhlo,tf,1e-2,1e-3,default,None,True,True,True,"disabled until generatedable",""
facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"Fails during iree-compile.",""
google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/311",""
microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/390",""
microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
microsoft/resnet-50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,False,False,False,"","macos"
google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"https://github.com/nod-ai/SHARK/issues/344",""
mobilenet_v3_small,linalg,torch,1e-1,1e-2,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/388","macos"
nvidia/mit-b0,linalg,torch,1e-2,1e-3,default,None,True,True,False,"https://github.com/nod-ai/SHARK/issues/343","macos"
@@ -34,4 +33,4 @@ resnet50_fp16,linalg,torch,1e-2,1e-2,default,nhcw-nhwc/img2col,True,False,True,"
squeezenet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
wide_resnet50_2,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,False,False,False,"","macos"
efficientnet-v2-s,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"","macos"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
1 resnet50 mhlo tf 1e-2 1e-3 default nhcw-nhwc False False False macos
2 albert-base-v2 mhlo tf 1e-2 1e-2 default None False False False
3 roberta-base mhlo tf 1e-02 1e-3 default nhcw-nhwc True False True False True False macos
4 bert-base-uncased mhlo tf 1e-2 1e-3 default None False False False enabled_windows
5 camembert-base mhlo tf 1e-2 1e-3 default None True False True False True False
6 dbmdz/convbert-base-turkish-cased mhlo tf 1e-2 1e-3 default nhcw-nhwc True True False https://github.com/iree-org/iree/issues/9971
7 distilbert-base-uncased mhlo tf 1e-2 1e-3 default None False False False
8 facebook/convnext-tiny-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc True True False https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342
12 google/vit-base-patch16-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc False False False
13 microsoft/MiniLM-L12-H384-uncased mhlo tf 1e-2 1e-3 tf_hf None True False False Fails during iree-compile.
14 microsoft/layoutlm-base-uncased mhlo tf 1e-2 1e-3 default None False False False
15 microsoft/mpnet-base mhlo tf 1e-2 1e-2 default None True False True False True False
16 albert-base-v2 linalg torch 1e-2 1e-3 default None True True True issue with aten.tanh in torch-mlir
17 alexnet linalg torch 1e-2 1e-3 default None True True False https://github.com/nod-ai/SHARK/issues/879
18 bert-base-cased linalg torch 1e-2 1e-3 default None False False False
19 bert-base-uncased linalg torch 1e-2 1e-3 default None False False False
20 bert-base-uncased_fp16 linalg torch 1e-1 1e-1 default None True False True
bert-large-uncased linalg torch 1e-2 1e-3 default None True True True disabled until generateable
bert-large-uncased mhlo tf 1e-2 1e-3 default None True True True disabled until generatedable
21 facebook/deit-small-distilled-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False Fails during iree-compile.
22 google/vit-base-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/311
23 microsoft/beit-base-patch16-224-pt22k-ft22k linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/390
24 microsoft/MiniLM-L12-H384-uncased linalg torch 1e-2 1e-3 default None False False False
25 microsoft/resnet-50 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col False False False macos
26 google/mobilebert-uncased linalg torch 1e-2 1e-3 default None False False False https://github.com/nod-ai/SHARK/issues/344
27 mobilenet_v3_small linalg torch 1e-1 1e-2 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/388 macos
28 nvidia/mit-b0 linalg torch 1e-2 1e-3 default None True True False https://github.com/nod-ai/SHARK/issues/343 macos
33 squeezenet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False macos
34 wide_resnet50_2 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col False False False macos
35 efficientnet-v2-s mhlo tf 1e-02 1e-3 default nhcw-nhwc False False False macos
36 mnasnet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc True False True False True False macos

View File

@@ -31,4 +31,3 @@ xlm-roberta-base,False,False,-,-,-
facebook/convnext-tiny-224,False,False,-,-,-
efficientnet-v2-s,False,False,22M,"image-classification,cnn","Includes MBConv and Fused-MBConv"
mnasnet1_0,False,True,-,"cnn, torchvision, mobile, architecture-search","Outperforms other mobile CNNs on Accuracy vs. Latency"
bert-large-uncased,True,hf,True,330M,"nlp;bert-variant;transformer-encoder","24 layers, 1024 hidden units, 16 attention heads"
1 model_name use_tracing dynamic param_count tags notes
31 facebook/convnext-tiny-224 False False - - -
32 efficientnet-v2-s False False 22M image-classification,cnn Includes MBConv and Fused-MBConv
33 mnasnet1_0 False True - cnn, torchvision, mobile, architecture-search Outperforms other mobile CNNs on Accuracy vs. Latency
bert-large-uncased True hf True 330M nlp;bert-variant;transformer-encoder

View File

@@ -15,7 +15,6 @@ keras_models = ["resnet50", "efficientnet-v2-s"]
maskedlm_models = [
"albert-base-v2",
"bert-base-uncased",
"bert-large-uncased",
"camembert-base",
"dbmdz/convbert-base-turkish-cased",
"deberta-base",

View File

@@ -137,19 +137,6 @@ class SharkModuleTester:
def create_and_check_module(self, dynamic, device):
shark_args.local_tank_cache = self.local_tank_cache
shark_args.force_update_tank = self.update_tank
shark_args.dispatch_benchmarks = self.benchmark_dispatches
if self.benchmark_dispatches is not None:
_m = self.config["model_name"].split("/")
_m.extend([self.config["framework"], str(dynamic), device])
_m = "_".join(_m)
shark_args.dispatch_benchmarks_dir = os.path.join(
self.dispatch_benchmarks_dir,
_m,
)
if not os.path.exists(self.dispatch_benchmarks_dir):
os.mkdir(self.dispatch_benchmarks_dir)
if not os.path.exists(shark_args.dispatch_benchmarks_dir):
os.mkdir(shark_args.dispatch_benchmarks_dir)
if "nhcw-nhwc" in self.config["flags"] and not os.path.isfile(
".use-iree"
):
@@ -291,12 +278,6 @@ class SharkModuleTest(unittest.TestCase):
"update_tank"
)
self.module_tester.tank_url = self.pytestconfig.getoption("tank_url")
self.module_tester.benchmark_dispatches = self.pytestconfig.getoption(
"benchmark_dispatches"
)
self.module_tester.dispatch_benchmarks_dir = (
self.pytestconfig.getoption("dispatch_benchmarks_dir")
)
if config["xfail_cpu"] == "True" and device == "cpu":
pytest.xfail(reason=config["xfail_reason"])
@@ -307,9 +288,6 @@ class SharkModuleTest(unittest.TestCase):
if config["xfail_vkm"] == "True" and device in ["metal", "vulkan"]:
pytest.xfail(reason=config["xfail_reason"])
if os.name == "nt" and "enabled_windows" not in config["xfail_other"]:
pytest.xfail(reason="this model skipped on windows")
# Special cases that need to be marked.
if "macos" in config["xfail_other"] and device in [
"metal",

View File

@@ -18,4 +18,3 @@ microsoft/mpnet-base,hf
facebook/convnext-tiny-224,img
google/vit-base-patch16-224,img
efficientnet-v2-s,keras
bert-large-uncased,hf
1 model_name model_type
18 facebook/convnext-tiny-224 img
19 google/vit-base-patch16-224 img
20 efficientnet-v2-s keras
bert-large-uncased hf

View File

@@ -18,4 +18,3 @@ nvidia/mit-b0,True,hf_img_cls,False,3.7M,"image-classification,transformer-encod
mnasnet1_0,False,vision,True,-,"cnn, torchvision, mobile, architecture-search","Outperforms other mobile CNNs on Accuracy vs. Latency"
resnet50_fp16,False,vision,True,23M,"cnn,image-classification,residuals,resnet-variant","Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)"
bert-base-uncased_fp16,True,fp16,False,109M,"nlp;bert-variant;transformer-encoder","12 layers; 768 hidden; 12 attention heads"
bert-large-uncased,True,hf,True,330M,"nlp;bert-variant;transformer-encoder","24 layers, 1024 hidden units, 16 attention heads"
1 model_name use_tracing model_type dynamic param_count tags notes
18 mnasnet1_0 False vision True - cnn, torchvision, mobile, architecture-search Outperforms other mobile CNNs on Accuracy vs. Latency
19 resnet50_fp16 False vision True 23M cnn,image-classification,residuals,resnet-variant Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
20 bert-base-uncased_fp16 True fp16 False 109M nlp;bert-variant;transformer-encoder 12 layers; 768 hidden; 12 attention heads
bert-large-uncased True hf True 330M nlp;bert-variant;transformer-encoder 24 layers, 1024 hidden units, 16 attention heads