Compare commits

..

1 Commits

Author SHA1 Message Date
Anush Elangovan
6d6a9dcae8 Revert "Revert "Enable --device_allocator=caching""
This reverts commit 41ee65b377.
2023-02-09 23:00:32 -08:00
102 changed files with 1100 additions and 11626 deletions

View File

@@ -1,5 +0,0 @@
[flake8]
count = 1
show-source = 1
select = E9,F63,F7,F82
exclude = lit.cfg.py

View File

@@ -14,7 +14,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v2
@@ -44,20 +44,18 @@ jobs:
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: true
prerelease: false
- name: Build Package
shell: powershell
run: |
./setup_venv.ps1
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
pyinstaller .\apps\stable_diffusion\shark_sd_cli.spec
python process_skipfiles.py
mv ./dist/shark_sd_cli.exe ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
# GHA windows VM OOMs so disable for now
@@ -67,9 +65,9 @@ jobs:
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
#- uses: actions/upload-artifact@v2
# with:
# path: dist/*
- uses: actions/upload-artifact@v2
with:
path: dist/*
- name: Upload Release Assets
id: upload-release-assets
@@ -79,7 +77,6 @@ jobs:
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./dist/*
#asset_content_type: application/vnd.microsoft.portable-executable
- name: Publish Release
id: publish_release
@@ -95,7 +92,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
backend: [IREE, SHARK]
steps:
@@ -134,7 +131,7 @@ jobs:
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://iree-org.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models

View File

@@ -31,7 +31,7 @@ jobs:
matrix:
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
suite: [cpu,cuda,vulkan]
python-version: ["3.11"]
python-version: ["3.10"]
include:
- os: ubuntu-latest
suite: lint
@@ -99,12 +99,11 @@ jobs:
run: |
# black format check
black --version
black --check .
black --line-length 79 --check .
# stop the build if there are Python syntax errors or undefined names
flake8 . --statistics
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude lit.cfg.py
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --isolated --count --exit-zero --max-complexity=10 --max-line-length=127 \
--statistics --exclude lit.cfg.py
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude lit.cfg.py
- name: Validate Models on CPU
if: matrix.suite == 'cpu'
@@ -112,7 +111,7 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cpu
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cpu
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
@@ -122,7 +121,7 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cuda
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cuda
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
# Disabled due to black image bug
@@ -137,7 +136,7 @@ jobs:
export DYLD_LIBRARY_PATH=/usr/local/lib/
echo $PATH
pip list | grep -E "torch|iree"
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" --tank_url="gs://shark_tank/nightly/" -k vulkan --update_tank
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" -k vulkan --update_tank
- name: Validate Vulkan Models (a100)
if: matrix.suite == 'vulkan' && matrix.os == 'a100'
@@ -145,17 +144,19 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k vulkan
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k vulkan
python build_tools/stable_diffusion_testing.py --device=vulkan
- name: Validate Vulkan Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
pytest -k vulkan -s
pytest --benchmark -k vulkan -s
type bench_results.csv
- name: Validate Stable Diffusion Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
./shark.venv/Scripts/activate
python build_tools/stable_diffusion_testing.py --device=vulkan

5
.gitignore vendored
View File

@@ -168,8 +168,6 @@ shark_tmp/
*.vmfb
.use-iree
tank/dict_configs.py
*.csv
reproducers/
# ORT related artefacts
cache_models/
@@ -184,6 +182,3 @@ models/
# models folder
apps/stable_diffusion/web/models/
# Stencil annotators.
stencil_annotator/

3
.style.yapf Normal file
View File

@@ -0,0 +1,3 @@
[style]
based_on_style = google
column_limit = 80

View File

@@ -10,7 +10,7 @@ High Performance Machine Learning Distribution
<summary>Prerequisites - Drivers </summary>
#### Install your Windows hardware drivers
* [AMD RDNA Users] Download the latest driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-2-1).
* [AMD RDNA Users] Download this specific driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mril-iree). Latest drivers may not work.
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
@@ -25,32 +25,18 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Install Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Download the [stable release](https://github.com/nod-ai/shark/releases/latest)
Download the latest .exe https://github.com/nod-ai/SHARK/releases.
Double click the .exe and you should have the [UI](http://localhost:8080/) in the browser.
Double click the .exe and you should have the [UI]( http://localhost:8080/?__theme=dark) in the browser.
If you have custom models put them in a `models/` directory where the .exe is.
If you have custom models (ckpt, safetensors) put in a `models/` directory where the .exe is.
Enjoy.
<details>
<summary>More installation notes</summary>
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
Some known AMD Driver quirks and fixes with cursors are documented [here](https://github.com/nod-ai/SHARK/blob/main/apps/stable_diffusion/stable_diffusion_amd.md ).
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE)
* The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
</details>
<details>
<summary>Advanced Installation (Only for developers)</summary>
@@ -68,7 +54,7 @@ cd SHARK
### Windows 10/11 Users
* Install the latest Python 3.11.x version from [here](https://www.python.org/downloads/windows/)
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
@@ -119,15 +105,16 @@ source shark.venv/bin/activate
#### Linux / macOS Users
```shell
python3.11 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
python3.10 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
</details>
The output on a AMD 7900XTX would look something like:
The output on a 7900XTX would like:
```shell
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
@@ -153,7 +140,7 @@ Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any
This step sets up a new VirtualEnv for Python
```shell
python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
python --version #Check you have 3.10 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
@@ -167,7 +154,7 @@ python -m pip install --upgrade pip
### Install SHARK
This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
```shell
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
@@ -202,10 +189,10 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
<details>
<summary>Development, Testing and Benchmarks</summary>
If you want to use Python3.11 and with TF Import tools you can use the environment variables like:
If you want to use Python3.10 and with TF Import tools you can use the environment variables like:
Set `USE_IREE=1` to use upstream IREE
```
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
```
### Run any of the hundreds of SHARK tank models via the test framework
@@ -215,14 +202,14 @@ python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use g
pytest tank/test_models.py -k "MiniLM"
```
### How to use your locally built IREE / Torch-MLIR with SHARK
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
How to use your locally built Torch-MLIR with SHARK:
### How to use your locally built Torch-MLIR with SHARK
```shell
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
@@ -240,15 +227,9 @@ Now the SHARK will use your locally build Torch-MLIR repo.
## Benchmarking Dispatches
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
For example, to generate and run dispatch benchmarks for MiniLM on CUDA:
```
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
```
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
```
@@ -272,7 +253,7 @@ Output will include:
- A .txt file containing benchmark output
See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.
See tank/README.md for instructions on how to run model tests and benchmarks from the SHARK tank.
</details>

View File

@@ -1,6 +1 @@
from apps.stable_diffusion.scripts.txt2img import txt2img_inf
from apps.stable_diffusion.scripts.img2img import img2img_inf
from apps.stable_diffusion.scripts.inpaint import inpaint_inf
from apps.stable_diffusion.scripts.outpaint import outpaint_inf
from apps.stable_diffusion.scripts.upscaler import upscaler_inf
from apps.stable_diffusion.scripts.train_lora_word import lora_train

View File

@@ -1,382 +0,0 @@
import sys
import torch
import time
from PIL import Image
from apps.stable_diffusion.src import (
args,
Image2ImagePipeline,
StencilPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
schedulers = None
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# For stencil, the input image can be of any size but we need to ensure that
# it conforms with our model contraints :-
# Both width and height should be > 384 and multiple of 8.
# This utility function performs the transformation on the input image while
# also maintaining the aspect ratio before sending it to the stencil pipeline.
def resize_stencil(image: Image.Image):
width, height = image.size
aspect_ratio = width / height
min_size = min(width, height)
if min_size < 384:
n_size = 384
if width == min_size:
width = n_size
height = n_size / aspect_ratio
else:
height = n_size
width = n_size * aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
new_image = image.resize((n_width, n_height))
return new_image, n_width, n_height
# Exposed to UI.
def img2img_inf(
prompt: str,
negative_prompt: str,
init_image,
height: int,
width: int,
steps: int,
strength: float,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
use_stencil: str,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.seed = seed
args.steps = steps
args.strength = strength
args.scheduler = scheduler
args.img_path = "not none"
if init_image is None:
return None, "An Initial Image is required"
image = init_image.convert("RGB")
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
use_lora = ""
if lora_weights == "None" and not lora_hf_id:
use_lora = ""
elif not lora_hf_id:
use_lora = lora_weights
else:
use_lora = lora_hf_id
args.use_lora = use_lora
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
use_stencil = None if use_stencil == "None" else use_stencil
args.use_stencil = use_stencil
if use_stencil is not None:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
image, width, height = resize_stencil(image)
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
args.precision = precision
dtype = torch.float32 if precision == "fp32" else torch.half
new_config_obj = Config(
"img2img",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=use_lora,
use_stencil=use_stencil,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
if use_stencil is not None:
args.use_tuned = False
global_obj.set_sd_obj(
StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
debug=args.import_debug if args.import_mlir else False,
use_lora=use_lora,
)
)
else:
global_obj.set_sd_obj(
Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=use_lora,
)
)
global_obj.set_schedulers(schedulers[scheduler])
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
extra_info = {"STRENGTH": strength}
text_output = ""
for current_batch in range(batch_count):
if current_batch > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
image,
batch_size,
height,
width,
steps,
strength,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed, extra_info)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
image = Image.open(args.img_path).convert("RGB")
# When the models get uploaded, it should be default to False.
args.import_mlir = True
use_stencil = args.use_stencil
if use_stencil:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
image, args.width, args.height = resize_stencil(image)
elif args.scheduler != "PNDM":
if "Shark" in args.scheduler:
print(
f"SharkEulerDiscrete scheduler not supported. Switching to PNDM scheduler"
)
args.scheduler = "PNDM"
else:
sys.exit(
"Img2Img works best with PNDM scheduler. Other schedulers are not supported yet."
)
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
if use_stencil:
img2img_obj = StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
)
else:
img2img_obj = Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
)
start_time = time.time()
generated_imgs = img2img_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.strength,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
use_stencil=use_stencil,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, strength={args.strength}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += img2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"STRENGTH": args.strength}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,287 +0,0 @@
import torch
import time
from PIL import Image
from apps.stable_diffusion.src import (
args,
InpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
schedulers = None
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def inpaint_inf(
prompt: str,
negative_prompt: str,
image_dict,
height: int,
width: int,
inpaint_full_res: bool,
inpaint_full_res_padding: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
args.mask_path = "not none"
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
use_lora = ""
if lora_weights == "None" and not lora_hf_id:
use_lora = ""
elif not lora_hf_id:
use_lora = lora_weights
else:
use_lora = lora_hf_id
args.use_lora = use_lora
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"inpaint",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=use_lora,
use_stencil=None,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
global_obj.set_sd_obj(
InpaintPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=use_lora,
)
)
global_obj.set_schedulers(schedulers[scheduler])
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
image = image_dict["image"]
mask_image = image_dict["mask"]
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
image,
mask_image,
batch_size,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
if args.mask_path is None:
print("Flag --mask_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
mask_image = Image.open(args.mask_path)
inpaint_obj = InpaintPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = inpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
mask_image,
args.batch_size,
args.height,
args.width,
args.inpaint_full_res,
args.inpaint_full_res_padding,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += inpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)

View File

@@ -1,312 +0,0 @@
import torch
import time
from PIL import Image
from apps.stable_diffusion.src import (
args,
OutpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
schedulers = None
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def outpaint_inf(
prompt: str,
negative_prompt: str,
init_image,
pixels: int,
mask_blur: int,
directions: list,
noise_q: float,
color_variation: float,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
args.img_path = "not none"
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
use_lora = ""
if lora_weights == "None" and not lora_hf_id:
use_lora = ""
elif not lora_hf_id:
use_lora = lora_weights
else:
use_lora = lora_hf_id
args.use_lora = use_lora
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"outpaint",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
use_lora=use_lora,
use_stencil=None,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
global_obj.set_sd_obj(
OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
use_lora=use_lora,
)
)
global_obj.set_schedulers(schedulers[scheduler])
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
left = True if "left" in directions else False
right = True if "right" in directions else False
top = True if "up" in directions else False
bottom = True if "down" in directions else False
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
init_image,
pixels,
mask_blur,
left,
right,
top,
bottom,
noise_q,
color_variation,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
outpaint_obj = OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
use_lora=args.use_lora,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = outpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.pixels,
args.mask_blur,
args.left,
args.right,
args.top,
args.bottom,
args.noise_q,
args.color_variation,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += outpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
# save this information as metadata of output generated image.
directions = []
if args.left:
directions.append("left")
if args.right:
directions.append("right")
if args.top:
directions.append("up")
if args.bottom:
directions.append("down")
extra_info = {
"PIXELS": args.pixels,
"MASK_BLUR": args.mask_blur,
"DIRECTIONS": directions,
"NOISE_Q": args.noise_q,
"COLOR_VARIATION": args.color_variation,
}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,674 +0,0 @@
# Install the required libs
# pip install -U git+https://github.com/huggingface/diffusers.git
# pip install accelerate transformers ftfy
# HuggingFace Token
# YOUR_TOKEN = "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"
# Import required libraries
import itertools
import math
import os
from typing import List
import random
import torch_mlir
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
import logging
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.loaders import AttnProcsLayers
from diffusers.models.cross_attention import LoRACrossAttnProcessor
import torch_mlir
from torch_mlir.dynamo import make_simple_dynamo_backend
import torch._dynamo as dynamo
from torch.fx.experimental.proxy_tensor import make_fx
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
from shark.shark_inference import SharkInference
torch._dynamo.config.verbose = True
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import (
StableDiffusionSafetyChecker,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import (
CLIPFeatureExtractor,
CLIPTextModel,
CLIPTokenizer,
)
from io import BytesIO
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
get_schedulers,
set_init_device_flags,
clear_all,
)
# Setup the dataset
class LoraDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
size=512,
repeats=100,
interpolation="bicubic",
set="train",
prompt="myloraprompt",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.size = size
self.center_crop = center_crop
self.prompt = prompt
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
example["input_ids"] = self.tokenizer(
self.prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
image = Image.fromarray(img)
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
schedulers = None
########## Setting up the model ##########
def lora_train(
prompt: str,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
training_images_dir: str,
lora_save_dir: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
global schedulers
print(
"Note LoRA training is not compatible with the latest torch-mlir branch"
)
print(
"To run LoRA training you'll need this to follow this guide for the torch-mlir branch: https://github.com/nod-ai/SHARK/tree/main/shark/examples/shark_training/stable_diffusion"
)
torch.manual_seed(seed)
args.prompts = [prompt]
args.steps = steps
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.training_images_dir = training_images_dir
args.lora_save_dir = lora_save_dir
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device
# Load the Stable Diffusion model
text_encoder = CLIPTextModel.from_pretrained(
args.hf_model_id, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(args.hf_model_id, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
args.hf_model_id, subfolder="unet"
)
def freeze_params(params):
for param in params:
param.requires_grad = False
# Freeze everything but LoRA
freeze_params(vae.parameters())
freeze_params(unet.parameters())
freeze_params(text_encoder.parameters())
# Move vae and unet to device
vae.to(args.device)
unet.to(args.device)
text_encoder.to(args.device)
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRACrossAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = vae
def forward(self, input):
x = self.vae.encode(input, return_dict=False)[0]
return x
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = unet
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
shark_vae = VaeModel()
shark_unet = UnetModel()
####### Creating our training data ########
tokenizer = CLIPTokenizer.from_pretrained(
args.hf_model_id,
subfolder="tokenizer",
)
# Let's create the Dataset and Dataloader
train_dataset = LoraDataset(
data_root=args.training_images_dir,
tokenizer=tokenizer,
size=vae.sample_size,
prompt=args.prompts[0],
repeats=100,
center_crop=False,
set="train",
)
def create_dataloader(train_batch_size=1):
return torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Create noise_scheduler for training
noise_scheduler = DDPMScheduler.from_config(
args.hf_model_id, subfolder="scheduler"
)
######## Training ###########
# Define hyperparameters for our training. If you are not happy with your results,
# you can tune the `learning_rate` and the `max_train_steps`
# Setting up all training args
hyperparameters = {
"learning_rate": 5e-04,
"scale_lr": True,
"max_train_steps": steps,
"train_batch_size": batch_size,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"mixed_precision": "fp16",
"seed": 42,
"output_dir": "sd-concept-output",
}
# creating output directory
cwd = os.getcwd()
out_dir = os.path.join(cwd, hyperparameters["output_dir"])
while not os.path.exists(str(out_dir)):
try:
os.mkdir(out_dir)
except OSError as error:
print("Output directory not created")
###### Torch-MLIR Compilation ######
def _remove_nones(fx_g: torch.fx.GraphModule) -> List[int]:
removed_indexes = []
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, (list, tuple)):
node_arg = list(node_arg)
node_args_len = len(node_arg)
for i in range(node_args_len):
curr_index = node_args_len - (i + 1)
if node_arg[curr_index] is None:
removed_indexes.append(curr_index)
node_arg.pop(curr_index)
node.args = (tuple(node_arg),)
break
if len(removed_indexes) > 0:
fx_g.graph.lint()
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
removed_indexes.sort()
return removed_indexes
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule) -> bool:
"""
Replace tuple with tuple element in functions that return one-element tuples.
Returns true if an unwrapping took place, and false otherwise.
"""
unwrapped_tuple = False
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
if len(node_arg) == 1:
node.args = (node_arg[0],)
unwrapped_tuple = True
break
if unwrapped_tuple:
fx_g.graph.lint()
fx_g.recompile()
return unwrapped_tuple
def _returns_nothing(fx_g: torch.fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
return len(node_arg) == 0
return False
def transform_fx(fx_g):
for node in fx_g.graph.nodes:
if node.op == "call_function":
if node.target in [
torch.ops.aten.empty,
]:
# aten.empty should be filled with zeros.
if node.target in [torch.ops.aten.empty]:
with fx_g.graph.inserting_after(node):
new_node = fx_g.graph.call_function(
torch.ops.aten.zero_,
args=(node,),
)
node.append(new_node)
node.replace_all_uses_with(new_node)
new_node.args = (node,)
fx_g.graph.lint()
@make_simple_dynamo_backend
def refbackend_torchdynamo_backend(
fx_graph: torch.fx.GraphModule, example_inputs: List[torch.Tensor]
):
# handling usage of empty tensor without initializing
transform_fx(fx_graph)
fx_graph.recompile()
if _returns_nothing(fx_graph):
return fx_graph
removed_none_indexes = _remove_nones(fx_graph)
was_unwrapped = _unwrap_single_tuple_return(fx_graph)
mlir_module = torch_mlir.compile(
fx_graph, example_inputs, output_type="linalg-on-tensors"
)
bytecode_stream = BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
shark_module = SharkInference(
mlir_module=bytecode, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
def compiled_callable(*inputs):
inputs = [x.numpy() for x in inputs]
result = shark_module("forward", inputs)
if was_unwrapped:
result = [
result,
]
if not isinstance(result, list):
result = torch.from_numpy(result)
else:
result = tuple(torch.from_numpy(x) for x in result)
result = list(result)
for removed_index in removed_none_indexes:
result.insert(removed_index, None)
result = tuple(result)
return result
return compiled_callable
def predictions(torch_func, jit_func, batchA, batchB):
res = jit_func(batchA.numpy(), batchB.numpy())
if res is not None:
# prediction = torch.from_numpy(res)
prediction = res
else:
prediction = None
return prediction
logger = logging.getLogger(__name__)
train_batch_size = hyperparameters["train_batch_size"]
gradient_accumulation_steps = hyperparameters[
"gradient_accumulation_steps"
]
learning_rate = hyperparameters["learning_rate"]
if hyperparameters["scale_lr"]:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
# * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
lora_layers.parameters(), # only optimize the embeddings
lr=learning_rate,
)
# Training function
def train_func(batch_pixel_values, batch_input_ids):
# Convert images to latent space
latents = shark_vae(batch_pixel_values).sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch_input_ids)[0]
# Predict the noise residual
noise_pred = shark_unet(
noisy_latents,
timesteps,
encoder_hidden_states,
)
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = (
F.mse_loss(noise_pred, target, reduction="none")
.mean([1, 2, 3])
.mean()
)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return loss
def training_function():
max_train_steps = hyperparameters["max_train_steps"]
output_dir = hyperparameters["output_dir"]
gradient_checkpointing = hyperparameters["gradient_checkpointing"]
train_dataloader = create_dataloader(train_batch_size)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(
max_train_steps / num_update_steps_per_epoch
)
# Train!
total_batch_size = (
train_batch_size
* gradient_accumulation_steps
# train_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(
f" Instantaneous batch size per device = {train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
# range(max_train_steps), disable=not accelerator.is_local_main_process
range(max_train_steps)
)
progress_bar.set_description("Steps")
global_step = 0
params__ = [
i for i in text_encoder.get_input_embeddings().parameters()
]
for epoch in range(num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
dynamo_callable = dynamo.optimize(
refbackend_torchdynamo_backend
)(train_func)
lam_func = lambda x, y: dynamo_callable(
torch.from_numpy(x), torch.from_numpy(y)
)
loss = predictions(
train_func,
lam_func,
batch["pixel_values"],
batch["input_ids"],
)
# Checks if the accelerator has performed an optimization step behind the scenes
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
training_function()
# Save the lora weights
unet.save_attn_procs(args.lora_save_dir)
for param in itertools.chain(unet.parameters(), text_encoder.parameters()):
if param.grad is not None:
del param.grad # free some memory
torch.cuda.empty_cache()
if __name__ == "__main__":
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
if len(args.prompts) != 1:
print("Need exactly one prompt for the LoRA word")
lora_train(
args.prompts[0],
args.height,
args.width,
args.training_steps,
args.guidance_scale,
args.seed,
args.batch_count,
args.batch_size,
args.scheduler,
"None",
args.hf_model_id,
args.precision,
args.device,
args.max_length,
args.training_images_dir,
args.lora_save_dir,
)

View File

@@ -1,23 +1,133 @@
import os
if "AMD_ENABLE_LLPC" not in os.environ:
os.environ["AMD_ENABLE_LLPC"] = "1"
import sys
import json
import torch
import re
import time
from pathlib import Path
from PIL import PngImagePlugin
from datetime import datetime as dt
from dataclasses import dataclass
from csv import DictWriter
from apps.stable_diffusion.src import (
args,
Text2ImagePipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
@dataclass
class Config:
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
# This has to come before importing cache objects
if args.clear_all:
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(output_path, "generated_imgs")
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = os.path.basename(args.ckpt_loc)
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
with open(csv_path, "a") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
txt2img_obj = None
config_obj = None
schedulers = None
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def txt2img_inf(
@@ -38,18 +148,9 @@ def txt2img_inf(
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
global txt2img_obj
global config_obj
global schedulers
args.prompts = [prompt]
@@ -73,26 +174,16 @@ def txt2img_inf(
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
use_lora = ""
if lora_weights == "None" and not lora_hf_id:
use_lora = ""
elif not lora_hf_id:
use_lora = lora_weights
else:
use_lora = lora_hf_id
args.use_lora = use_lora
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
"txt2img",
args.hf_model_id,
args.ckpt_loc,
precision,
@@ -101,26 +192,17 @@ def txt2img_inf(
height,
width,
device,
use_lora=use_lora,
use_stencil=None,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
if config_obj != new_config_obj:
config_obj = new_config_obj
args.precision = precision
args.batch_count = batch_count
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
args.img_path = None
args.use_tuned = True
args.import_mlir = False
set_init_device_flags()
model_id = (
args.hf_model_id
@@ -129,38 +211,34 @@ def txt2img_inf(
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
global_obj.set_sd_obj(
Text2ImagePipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=use_lora,
)
txt2img_obj = Text2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
global_obj.set_schedulers(schedulers[scheduler])
if not txt2img_obj:
sys.exit("text to image pipeline must not return a null value")
txt2img_obj.scheduler = schedulers[scheduler]
start_time = time.time()
global_obj.get_sd_obj().log = ""
txt2img_obj.log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
text_output = ""
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = global_obj.get_sd_obj().generate_images(
out_imgs = txt2img_obj.generate_images(
prompt,
negative_prompt,
batch_size,
@@ -174,53 +252,48 @@ def txt2img_inf(
args.use_base_vae,
cpu_scheduling,
)
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
total_time = time.time() - start_time
text_output = get_generation_text_info(seeds, device)
text_output += "\n" + global_obj.get_sd_obj().log
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
txt2img_obj.log += "\n"
if global_obj.get_sd_status() == SD_STATE_CANCEL:
break
else:
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
yield generated_imgs, text_output
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
return generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
use_lora = args.use_lora
txt2img_obj = Text2ImagePipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=use_lora,
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
for current_batch in range(args.batch_count):
if current_batch > 0:
for run in range(args.runs):
if run > 0:
seed = -1
seed = utils.sanitize_seed(seed)
@@ -250,7 +323,7 @@ if __name__ == "__main__":
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
# TODO: if using --runs=x txt2img_obj.log will output on each display every iteration infos from the start
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"

View File

@@ -1,269 +0,0 @@
import torch
import time
from PIL import Image
from apps.stable_diffusion.src import (
args,
UpscalerPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
schedulers = None
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
init_use_tuned = args.use_tuned
init_import_mlir = args.import_mlir
# Exposed to UI.
def upscaler_inf(
prompt: str,
negative_prompt: str,
init_image,
height: int,
width: int,
steps: int,
noise_level: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.seed = seed
args.steps = steps
args.scheduler = scheduler
if init_image is None:
return None, "An Initial Image is required"
image = init_image.convert("RGB").resize((height, width))
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = get_custom_model_pathfile(custom_model)
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
args.height = 128
args.width = 128
new_config_obj = Config(
"upscaler",
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
args.height,
args.width,
device,
use_lora=None,
use_stencil=None,
)
if (
not global_obj.get_sd_obj()
or global_obj.get_cfg_obj() != new_config_obj
):
global_obj.clear_cache()
global_obj.set_cfg_obj(new_config_obj)
args.batch_size = batch_size
args.max_length = max_length
args.device = device.split("=>", 1)[1].strip()
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
args.use_tuned = init_use_tuned
args.import_mlir = init_import_mlir
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
global_obj.set_sd_obj(
UpscalerPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
)
)
global_obj.set_schedulers(schedulers[scheduler])
global_obj.get_sd_obj().low_res_scheduler = schedulers["DDPM"]
start_time = time.time()
global_obj.get_sd_obj().log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
extra_info = {"NOISE LEVEL": noise_level}
for current_batch in range(batch_count):
if current_batch > 0:
img_seed = utils.sanitize_seed(-1)
low_res_img = image
high_res_img = Image.new("RGB", (height * 4, width * 4))
for i in range(0, width, 128):
for j in range(0, height, 128):
box = (j, i, j + 128, i + 128)
upscaled_image = global_obj.get_sd_obj().generate_images(
prompt,
negative_prompt,
low_res_img.crop(box),
batch_size,
args.height,
args.width,
steps,
noise_level,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
high_res_img.paste(upscaled_image[0], (j * 4, i * 4))
save_output_img(high_res_img, img_seed, extra_info)
generated_imgs.append(high_res_img)
seeds.append(img_seed)
global_obj.get_sd_obj().log += "\n"
yield generated_imgs, global_obj.get_sd_obj().log
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={steps}, noise_level={noise_level}, guidance_scale={guidance_scale}, seed={seeds}"
text_output += f"\nsize={height}x{width}, batch_count={batch_count}, batch_size={batch_size}, max_length={args.max_length}"
text_output += global_obj.get_sd_obj().log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
yield generated_imgs, text_output
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
# When the models get uploaded, it should be default to False.
args.import_mlir = True
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
image = (
Image.open(args.img_path)
.convert("RGB")
.resize((args.height, args.width))
)
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
upscaler_obj = UpscalerPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
ddpm_scheduler=schedulers["DDPM"],
)
start_time = time.time()
generated_imgs = upscaler_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.noise_level,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, noise_level={args.noise_level}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += upscaler_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"NOISE LEVEL": args.noise_level}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,7 +1,6 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import copy_metadata
from PyInstaller.utils.hooks import collect_submodules
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
@@ -16,14 +15,12 @@ datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('opencv-python')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
@@ -33,23 +30,21 @@ datas += [
( 'src/utils/resources/model_db.json', 'resources' ),
( 'src/utils/resources/opt_flags.json', 'resources' ),
( 'src/utils/resources/base_model.json', 'resources' ),
( 'web/ui/css/*', 'ui/css' ),
( 'web/ui/logos/*', 'logos' )
( 'web/css/*', 'css' ),
( 'web/logos/*', 'logos' )
]
binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
a = Analysis(
['web/index.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],

View File

@@ -1,6 +1,5 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import collect_submodules
from PyInstaller.utils.hooks import copy_metadata
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
@@ -16,14 +15,12 @@ datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
@@ -39,15 +36,13 @@ binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
a = Analysis(
['scripts/txt2img.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],

View File

@@ -3,15 +3,6 @@ from apps.stable_diffusion.src.utils import (
set_init_device_flags,
prompt_examples,
get_available_devices,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.pipelines import (
Text2ImagePipeline,
Image2ImagePipeline,
InpaintPipeline,
OutpaintPipeline,
StencilPipeline,
UpscalerPipeline,
)
from apps.stable_diffusion.src.pipelines import Text2ImagePipeline
from apps.stable_diffusion.src.schedulers import get_schedulers

View File

@@ -2,7 +2,6 @@ from apps.stable_diffusion.src.models.model_wrappers import (
SharkifyStableDiffusionModel,
)
from apps.stable_diffusion.src.models.opt_params import (
get_vae_encode,
get_vae,
get_unet,
get_clip,

View File

@@ -1,11 +1,10 @@
from diffusers import AutoencoderKL, UNet2DConditionModel, ControlNetModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel
from collections import defaultdict
import torch
import safetensors.torch
import traceback
import re
import sys
import os
from apps.stable_diffusion.src.utils import (
compile_through_fx,
get_opt_flags,
@@ -15,9 +14,6 @@ from apps.stable_diffusion.src.utils import (
preprocessCKPT,
get_path_to_diffusers_checkpoint,
fetch_and_update_base_model_id,
get_path_stem,
get_extended_name,
get_stencil_model_id,
)
@@ -32,29 +28,15 @@ def replace_shape_str(shape, max_len, width, height, batch_size):
elif shape[i] == "width":
new_shape.append(width)
elif isinstance(shape[i], str):
if "*" in shape[i]:
if "batch_size" in shape[i]:
mul_val = int(shape[i].split("*")[0])
if "batch_size" in shape[i]:
new_shape.append(batch_size * mul_val)
elif "height" in shape[i]:
new_shape.append(height * mul_val)
elif "width" in shape[i]:
new_shape.append(width * mul_val)
elif "/" in shape[i]:
import math
div_val = int(shape[i].split("/")[1])
if "batch_size" in shape[i]:
new_shape.append(math.ceil(batch_size / div_val))
elif "height" in shape[i]:
new_shape.append(math.ceil(height / div_val))
elif "width" in shape[i]:
new_shape.append(math.ceil(width / div_val))
new_shape.append(batch_size * mul_val)
else:
new_shape.append(shape[i])
return new_shape
# Get the input info for various models i.e. "unet", "clip", "vae", "vae_encode".
# Get the input info for various models i.e. "unet", "clip", "vae".
def get_input_info(model_info, max_len, width, height, batch_size):
dtype_config = {"f32": torch.float32, "i64": torch.int64}
input_map = defaultdict(list)
@@ -84,7 +66,6 @@ class SharkifyStableDiffusionModel:
self,
model_id: str,
custom_weights: str,
custom_vae: str,
precision: str,
max_len: int = 64,
width: int = 512,
@@ -92,14 +73,6 @@ class SharkifyStableDiffusionModel:
batch_size: int = 1,
use_base_vae: bool = False,
use_tuned: bool = False,
low_cpu_mem_usage: bool = False,
debug: bool = False,
sharktank_dir: str = "",
generate_vmfb: bool = True,
is_inpaint: bool = False,
is_upscaler: bool = False,
use_stencil: str = None,
use_lora: str = ""
):
self.check_params(max_len, width, height)
self.max_len = max_len
@@ -113,15 +86,10 @@ class SharkifyStableDiffusionModel:
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
custom_weights = get_path_to_diffusers_checkpoint(custom_weights)
self.model_id = model_id if custom_weights == "" else custom_weights
# TODO: remove the following line when stable-diffusion-2-1 works
if self.model_id == "stabilityai/stable-diffusion-2-1":
self.model_id = "stabilityai/stable-diffusion-2-1-base"
self.custom_vae = custom_vae
self.precision = precision
self.base_vae = use_base_vae
self.model_name = (
"_"
+ str(batch_size)
str(batch_size)
+ "_"
+ str(max_len)
+ "_"
@@ -131,102 +99,37 @@ class SharkifyStableDiffusionModel:
+ "_"
+ precision
)
print(f'use_tuned? sharkify: {use_tuned}')
self.use_tuned = use_tuned
if use_tuned:
self.model_name = self.model_name + "_tuned"
self.model_name = self.model_name + "_" + get_path_stem(self.model_id)
self.low_cpu_mem_usage = low_cpu_mem_usage
self.is_inpaint = is_inpaint
self.is_upscaler = is_upscaler
self.use_stencil = get_stencil_model_id(use_stencil)
if use_lora != "":
self.model_name = self.model_name + "_" + get_path_stem(use_lora)
self.use_lora = use_lora
print(self.model_name)
self.debug = debug
self.sharktank_dir = sharktank_dir
self.generate_vmfb = generate_vmfb
def get_extended_name_for_all_model(self, mask_to_fetch):
model_name = {}
sub_model_list = ["clip", "unet", "stencil_unet", "vae", "vae_encode", "stencil_adaptor"]
index = 0
for model in sub_model_list:
if mask_to_fetch[index] == False:
index += 1
continue
sub_model = model
model_config = self.model_name
if "vae" == model:
if self.custom_vae != "":
model_config = model_config + get_path_stem(self.custom_vae)
if self.base_vae:
sub_model = "base_vae"
model_name[model] = get_extended_name(sub_model + model_config)
index += 1
return model_name
# We need a better naming convention for the .vmfbs because despite
# using the custom model variant the .vmfb names remain the same and
# it'll always pick up the compiled .vmfb instead of compiling the
# custom model.
# So, currently, we add `self.model_id` in the `self.model_name` of
# .vmfb file.
# TODO: Have a better way of naming the vmfbs using self.model_name.
model_name = re.sub(r"\W+", "_", self.model_id)
if model_name[0] == "_":
model_name = model_name[1:]
self.model_name = self.model_name + "_" + model_name
def check_params(self, max_len, width, height):
if not (max_len >= 32 and max_len <= 77):
sys.exit("please specify max_len in the range [32, 77].")
if not (width % 8 == 0 and width >= 128):
sys.exit("width should be greater than 128 and multiple of 8")
if not (height % 8 == 0 and height >= 128):
sys.exit("height should be greater than 128 and multiple of 8")
if not (width % 8 == 0 and width >= 384):
sys.exit("width should be greater than 384 and multiple of 8")
if not (height % 8 == 0 and height >= 384):
sys.exit("height should be greater than 384 and multiple of 8")
def get_vae_encode(self):
class VaeEncodeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
def get_vae(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, base_vae=self.base_vae):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
latents = self.vae.encode(input).latent_dist.sample()
return 0.18215 * latents
vae_encode = VaeEncodeModel()
inputs = tuple(self.inputs["vae_encode"])
is_f16 = True if self.precision == "fp16" else False
shark_vae_encode = compile_through_fx(
vae_encode,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae_encode"],
extra_args=get_opt_flags("vae", precision=self.precision),
)
return shark_vae_encode
def get_vae(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, base_vae=self.base_vae, custom_vae=self.custom_vae, low_cpu_mem_usage=False):
super().__init__()
self.vae = None
if custom_vae == "":
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
elif not isinstance(custom_vae, dict):
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.vae.load_state_dict(custom_vae)
self.base_vae = base_vae
def forward(self, input):
@@ -239,178 +142,33 @@ class SharkifyStableDiffusionModel:
x = x * 255.0
return x.round()
vae = VaeModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
vae = VaeModel()
inputs = tuple(self.inputs["vae"])
is_f16 = True if self.precision == "fp16" else False
save_dir = os.path.join(self.sharktank_dir, self.model_name["vae"])
if self.debug:
os.makedirs(save_dir, exist_ok=True)
vae_name = "base_vae" if self.base_vae else "vae"
shark_vae = compile_through_fx(
vae,
inputs,
is_f16=is_f16,
use_tuned=self.use_tuned,
model_name=self.model_name["vae"],
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
model_name=vae_name + self.model_name,
extra_args=get_opt_flags("vae", precision=self.precision),
)
return shark_vae
def get_vae_upscaler(self):
class VaeModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
x = self.vae.decode(input, return_dict=False)[0]
x = (x / 2 + 0.5).clamp(0, 1)
return x
vae = VaeModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
inputs = tuple(self.inputs["vae"])
shark_vae = compile_through_fx(
vae,
inputs,
use_tuned=self.use_tuned,
model_name=self.model_name["vae"],
extra_args=get_opt_flags("vae", precision="fp32"),
)
return shark_vae
def get_controlled_unet(self):
class ControlledUnetModel(torch.nn.Module):
def __init__(
self, model_id=self.model_id, low_cpu_mem_usage=False
):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward( self, latent, timestep, text_embedding, guidance_scale, control1,
control2, control3, control4, control5, control6, control7,
control8, control9, control10, control11, control12, control13,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
db_res_samples = tuple([ control1, control2, control3, control4, control5, control6, control7, control8, control9, control10, control11, control12,])
mb_res_samples = control13
latents = torch.cat([latent] * 2)
unet_out = self.unet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
down_block_additional_residuals=db_res_samples,
mid_block_additional_residual=mb_res_samples,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
unet = ControlledUnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["stencil_unet"])
input_mask = [True, True, True, False, True, True, True, True, True, True, True, True, True, True, True, True, True,]
shark_controlled_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["stencil_unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
)
return shark_controlled_unet
def get_control_net(self):
class StencilControlNetModel(torch.nn.Module):
def __init__(
self, model_id=self.use_stencil, low_cpu_mem_usage=False
):
super().__init__()
self.cnet = ControlNetModel.from_pretrained(
model_id,
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.cnet.in_channels
self.train(False)
def forward(
self,
latent,
timestep,
text_embedding,
stencil_image_input,
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
# TODO: guidance NOT NEEDED change in `get_input_info` later
latents = torch.cat(
[latent] * 2
) # needs to be same as controlledUNET latents
stencil_image = torch.cat(
[stencil_image_input] * 2
) # needs to be same as controlledUNET latents
down_block_res_samples, mid_block_res_sample = self.cnet.forward(
latents,
timestep,
encoder_hidden_states=text_embedding,
controlnet_cond=stencil_image,
return_dict=False,
)
return tuple(list(down_block_res_samples) + [mid_block_res_sample])
scnet = StencilControlNetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["stencil_adaptor"])
input_mask = [True, True, True, True]
shark_cnet = compile_through_fx(
scnet,
inputs,
model_name=self.model_name["stencil_adaptor"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
extra_args=get_opt_flags("unet", precision=self.precision),
)
return shark_cnet
def get_unet(self):
class UnetModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False, use_lora=self.use_lora):
def __init__(self, model_id=self.model_id):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
if use_lora != "":
self.unet.load_attn_procs(use_lora)
self.in_channels = self.unet.in_channels
self.train(False)
if(args.attention_slicing is not None and args.attention_slicing != "none"):
if(args.attention_slicing.isdigit()):
self.unet.set_attention_slice(int(args.attention_slicing))
else:
self.unet.set_attention_slice(args.attention_slicing)
# TODO: Instead of flattening the `control` try to use the list.
def forward(
self, latent, timestep, text_embedding, guidance_scale,
self, latent, timestep, text_embedding, guidance_scale
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latent] * 2)
@@ -423,60 +181,14 @@ class SharkifyStableDiffusionModel:
)
return noise_pred
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False]
save_dir = os.path.join(self.sharktank_dir, self.model_name["unet"])
if self.debug:
os.makedirs(
save_dir,
exist_ok=True,
)
shark_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["unet"],
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
extra_args=get_opt_flags("unet", precision=self.precision),
)
return shark_unet
def get_unet_upscaler(self):
class UnetModel(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward(self, latent, timestep, text_embedding, noise_level):
unet_out = self.unet.forward(
latent,
timestep,
text_embedding,
noise_level,
return_dict=False,
)[0]
return unet_out
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
unet = UnetModel()
is_f16 = True if self.precision == "fp16" else False
inputs = tuple(self.inputs["unet"])
input_mask = [True, True, True, False]
shark_unet = compile_through_fx(
unet,
inputs,
model_name=self.model_name["unet"],
model_name="unet" + self.model_name,
is_f16=is_f16,
f16_input_mask=input_mask,
use_tuned=self.use_tuned,
@@ -486,59 +198,28 @@ class SharkifyStableDiffusionModel:
def get_clip(self):
class CLIPText(torch.nn.Module):
def __init__(self, model_id=self.model_id, low_cpu_mem_usage=False):
def __init__(self, model_id=self.model_id):
super().__init__()
self.text_encoder = CLIPTextModel.from_pretrained(
model_id,
subfolder="text_encoder",
low_cpu_mem_usage=low_cpu_mem_usage,
)
def forward(self, input):
return self.text_encoder(input)[0]
clip_model = CLIPText(low_cpu_mem_usage=self.low_cpu_mem_usage)
save_dir = os.path.join(self.sharktank_dir, self.model_name["clip"])
if self.debug:
os.makedirs(
save_dir,
exist_ok=True,
)
clip_model = CLIPText()
shark_clip = compile_through_fx(
clip_model,
tuple(self.inputs["clip"]),
model_name=self.model_name["clip"],
debug=self.debug,
generate_vmfb=self.generate_vmfb,
save_dir=save_dir,
model_name="clip" + self.model_name,
extra_args=get_opt_flags("clip", precision="fp32"),
)
return shark_clip
def process_custom_vae(self):
custom_vae = self.custom_vae.lower()
if not custom_vae.endswith((".ckpt", ".safetensors")):
return self.custom_vae
try:
preprocessCKPT(self.custom_vae)
return get_path_to_diffusers_checkpoint(self.custom_vae)
except:
print("Processing standalone Vae checkpoint")
vae_checkpoint = None
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
if custom_vae.endswith(".ckpt"):
vae_checkpoint = torch.load(self.custom_vae, map_location="cpu")
else:
vae_checkpoint = safetensors.torch.load_file(self.custom_vae, device="cpu")
if "state_dict" in vae_checkpoint:
vae_checkpoint = vae_checkpoint["state_dict"]
vae_dict = {k: v for k, v in vae_checkpoint.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
return vae_dict
# Compiles Clip, Unet and Vae with `base_model_id` as defining their input
# configiration.
def compile_all(self, base_model_id, need_vae_encode, need_stencil):
def compile_all(self, base_model_id):
self.inputs = get_input_info(
base_models[base_model_id],
self.max_len,
@@ -546,48 +227,18 @@ class SharkifyStableDiffusionModel:
self.height,
self.batch_size,
)
if self.is_upscaler:
return self.get_clip(), self.get_unet_upscaler(), self.get_vae_upscaler()
compiled_controlnet = None
compiled_controlled_unet = None
compiled_unet = None
if need_stencil:
compiled_controlnet = self.get_control_net()
compiled_controlled_unet = self.get_controlled_unet()
else:
compiled_unet = self.get_unet()
if self.custom_vae != "":
print("Plugging in custom Vae")
compiled_unet = self.get_unet()
compiled_vae = self.get_vae()
compiled_clip = self.get_clip()
if need_stencil:
return compiled_clip, compiled_controlled_unet, compiled_vae, compiled_controlnet
if need_vae_encode:
compiled_vae_encode = self.get_vae_encode()
return compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode
return compiled_clip, compiled_unet, compiled_vae
def __call__(self):
# Step 1:
# -- Fetch all vmfbs for the model, if present, else delete the lot.
need_vae_encode, need_stencil = False, False
if not self.is_upscaler and args.img_path is not None:
if self.use_stencil is not None:
need_stencil = True
else:
need_vae_encode = True
# `mask_to_fetch` prepares a mask to pick a combination out of :-
# ["clip", "unet", "stencil_unet", "vae", "vae_encode", "stencil_adaptor"]
mask_to_fetch = [True, True, False, True, False, False]
if need_vae_encode:
mask_to_fetch = [True, True, False, True, True, False]
elif need_stencil:
mask_to_fetch = [True, False, True, True, False, True]
self.model_name = self.get_extended_name_for_all_model(mask_to_fetch)
vmfbs = fetch_or_delete_vmfbs(self.model_name, self.precision)
vmfbs = fetch_or_delete_vmfbs(
self.model_name, self.base_vae, self.precision
)
if vmfbs[0]:
# -- If all vmfbs are indeed present, we also try and fetch the base
# model configuration for running SD with custom checkpoints.
@@ -607,18 +258,15 @@ class SharkifyStableDiffusionModel:
assert self.custom_weights.lower().endswith(
(".ckpt", ".safetensors")
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
preprocessCKPT(self.custom_weights, self.is_inpaint)
preprocessCKPT(self.custom_weights)
else:
model_to_run = args.hf_model_id
# For custom Vae user can provide either the repo-id or a checkpoint file,
# and for a checkpoint file we'd need to process it via Diffusers' script.
self.custom_vae = self.process_custom_vae()
base_model_fetched = fetch_and_update_base_model_id(model_to_run)
if base_model_fetched != "":
print("Compiling all the models with the fetched base model configuration.")
if args.ckpt_loc != "":
args.hf_model_id = base_model_fetched
return self.compile_all(base_model_fetched, need_vae_encode, need_stencil)
return self.compile_all(base_model_fetched)
# Step 3:
# -- This is the retry mechanism where the base model's configuration is not
@@ -626,14 +274,10 @@ class SharkifyStableDiffusionModel:
print("Inferring base model configuration.")
for model_id in base_models:
try:
if need_vae_encode:
compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode = self.compile_all(model_id, need_vae_encode, need_stencil)
elif need_stencil:
compiled_clip, compiled_unet, compiled_vae, compiled_controlnet = self.compile_all(model_id, need_vae_encode, need_stencil)
else:
compiled_clip, compiled_unet, compiled_vae = self.compile_all(model_id, need_vae_encode, need_stencil)
compiled_clip, compiled_unet, compiled_vae = self.compile_all(model_id)
except Exception as e:
print(e)
if args.enable_stack_trace:
traceback.print_exc()
print("Retrying with a different base model configuration")
continue
# -- Once a successful compilation has taken place we'd want to store
@@ -645,21 +289,7 @@ class SharkifyStableDiffusionModel:
# the knowledge of base model id accordingly into `args.hf_model_id`.
if args.ckpt_loc != "":
args.hf_model_id = model_id
if need_vae_encode:
return (
compiled_clip,
compiled_unet,
compiled_vae,
compiled_vae_encode,
)
if need_stencil:
return (
compiled_clip,
compiled_unet,
compiled_vae,
compiled_controlnet,
)
return compiled_clip, compiled_unet, compiled_vae
sys.exit(
"Cannot compile the model. Please create an issue with the detailed log at https://github.com/nod-ai/SHARK/issues"
"Cannot compile the model. Please re-run the command with `--enable_stack_trace` flag and create an issue with detailed log at https://github.com/nod-ai/SHARK/issues"
)

View File

@@ -9,15 +9,13 @@ from apps.stable_diffusion.src.utils import (
hf_model_variant_map = {
"Linaqruf/anything-v3.0": ["anythingv3", "v1_4"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v1_4"],
"prompthero/openjourney": ["openjourney", "v1_4"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v1_4"],
"Linaqruf/anything-v3.0": ["anythingv3", "v2_1base"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v2_1base"],
"prompthero/openjourney": ["openjourney", "v2_1base"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1": ["stablediffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1-base": ["stablediffusion", "v2_1base"],
"CompVis/stable-diffusion-v1-4": ["stablediffusion", "v1_4"],
"runwayml/stable-diffusion-inpainting": ["stablediffusion", "inpaint_v1"],
"stabilityai/stable-diffusion-2-inpainting": ["stablediffusion", "inpaint_v2"],
}
@@ -54,23 +52,6 @@ def get_unet():
return get_shark_model(bucket, model_name, iree_flags)
def get_vae_encode():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "vae", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.

View File

@@ -1,18 +1,3 @@
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
Text2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
Image2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_inpaint import (
InpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_outpaint import (
OutpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_stencil import (
StencilPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_upscaler import (
UpscalerPipeline,
)

View File

@@ -1,172 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
class Image2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_image_latents(
self,
image,
batch_size,
height,
width,
generator,
num_inference_steps,
strength,
dtype,
):
# Pre process image -> get image encoded -> process latents
# TODO: process with variable HxW combos
# Pre process image
image = image.resize((width, height))
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
image_arr = image_arr / 255.0
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(dtype)
image_arr = 2 * (image_arr - 0.5)
# set scheduler steps
self.scheduler.set_timesteps(num_inference_steps)
init_timestep = min(
int(num_inference_steps * strength), num_inference_steps
)
t_start = max(num_inference_steps - init_timestep, 0)
# timesteps reduced as per strength
timesteps = self.scheduler.timesteps[t_start:]
# new number of steps to be used as per strength will be
# num_inference_steps = num_inference_steps - t_start
# image encode
latents = self.encode_image((image_arr,))
latents = torch.from_numpy(latents).to(dtype)
# add noise to data
noise = torch.randn(latents.shape, generator=generator, dtype=dtype)
latents = self.scheduler.add_noise(
latents, noise, timesteps[0].repeat(1)
)
return latents, timesteps
def encode_image(self, input_image):
vae_encode_start = time.time()
latents = self.vae_encode("forward", input_image)
vae_inf_time = (time.time() - vae_encode_start) * 1000
self.log += f"\nVAE Encode Inference time (ms): {vae_inf_time:.3f}"
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare input image latent
image_latents, final_timesteps = self.prepare_image_latents(
image=image,
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=image_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -1,445 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageOps
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
class InpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_crop_region(self, mask, pad=0):
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left - pad, 0)),
int(max(crop_top - pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h)),
)
def expand_crop_region(
self,
crop_region,
processing_width,
processing_height,
image_width,
image_height,
):
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2 - y1))
y1 -= desired_height_diff // 2
y2 += desired_height_diff - desired_height_diff // 2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2 - x1))
x1 -= desired_width_diff // 2
x2 += desired_width_diff - desired_width_diff // 2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
def resize_image(self, resize_mode, im, width, height):
"""
resize_mode:
0: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
1: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
"""
if resize_mode == 0:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio > src_ratio else im.width * height // im.height
)
src_h = (
height if ratio <= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio < src_ratio else im.width * height // im.height
)
src_h = (
height if ratio >= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(
resized.resize((width, fill_height), box=(0, 0, width, 0)),
box=(0, 0),
)
res.paste(
resized.resize(
(width, fill_height),
box=(0, resized.height, width, resized.height),
),
box=(0, fill_height + src_h),
)
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(
resized.resize(
(fill_width, height), box=(0, 0, 0, height)
),
box=(0, 0),
)
res.paste(
resized.resize(
(fill_width, height),
box=(resized.width, 0, resized.width, height),
),
box=(fill_width + src_w, 0),
)
return res
def prepare_mask_and_masked_image(
self,
image,
mask,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
):
# preprocess image
image = image.resize((width, height))
mask = mask.resize((width, height))
paste_to = ()
overlay_image = None
if inpaint_full_res:
# prepare overlay image
overlay_image = Image.new("RGB", (image.width, image.height))
overlay_image.paste(
image.convert("RGB"),
mask=ImageOps.invert(mask.convert("L")),
)
# prepare mask
mask = mask.convert("L")
crop_region = self.get_crop_region(
np.array(mask), inpaint_full_res_padding
)
crop_region = self.expand_crop_region(
crop_region, width, height, mask.width, mask.height
)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
mask = self.resize_image(1, mask, width, height)
paste_to = (x1, y1, x2 - x1, y2 - y1)
# prepare image
image = image.crop(crop_region)
image = self.resize_image(1, image, width, height)
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image, paste_to, overlay_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def apply_overlay(self, image, paste_loc, overlay):
x, y, w, h = paste_loc
image = self.resize_image(0, image, w, h)
overlay.paste(image, (x, y))
return overlay
def generate_images(
self,
prompts,
neg_prompts,
image,
mask_image,
batch_size,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Preprocess mask and image
(
mask,
masked_image,
paste_to,
overlay_image,
) = self.prepare_mask_and_masked_image(
image,
mask_image,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if inpaint_full_res:
output_image = self.apply_overlay(
all_imgs[0], paste_to, overlay_image
)
return [output_image]
return all_imgs

View File

@@ -1,541 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageDraw, ImageFilter
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
import math
class OutpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
vae_encode: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.vae_encode = vae_encode
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_and_masked_image(
self, image, mask, mask_blur, width, height
):
if mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(mask_blur))
image = image.resize((width, height))
mask = mask.resize((width, height))
# preprocess image
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def get_matched_noise(
self, _np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05
):
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_fft[:, :, c] = np.fft.fft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
else: # one channel
out_fft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_fft[:, :] = np.fft.fft2(
np.fft.fftshift(data), norm="ortho"
)
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_ifft[:, :, c] = np.fft.ifft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
else: # one channel
out_ifft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_ifft[:, :] = np.fft.ifft2(
np.fft.fftshift(data), norm="ortho"
)
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
for y in range(height):
fy = (y / height * 2.0 - 1.0) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2 + fy**2) * std)
else:
window[:, y] = (
1 / ((x**2 + 1.0) * (fy**2 + 1.0))
) ** (std / 3.14)
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.0):
np_mask_rgb = np.zeros(
(np_mask_grey.shape[0], np_mask_grey.shape[1], 3)
)
if hardness != 1.0:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:, :, c] = hardened[:]
return np_mask_rgb
def _match_cumulative_cdf(source, template):
src_values, src_unique_indices, src_counts = np.unique(
source.ravel(), return_inverse=True, return_counts=True
)
tmpl_values, tmpl_counts = np.unique(
template.ravel(), return_counts=True
)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(
src_quantiles, tmpl_quantiles, tmpl_values
)
return interp_a_values[src_unique_indices].reshape(source.shape)
def _match_histograms(image, reference):
if image.ndim != reference.ndim:
raise ValueError(
"Image and reference must have the same number of channels."
)
if image.shape[-1] != reference.shape[-1]:
raise ValueError(
"Number of channels in the input image and reference image must match!"
)
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(
image[..., channel], reference[..., channel]
)
matched[..., channel] = matched_channel
matched = matched.astype(np.float64, copy=False)
return matched
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1.0 - np_mask_rgb)
np_mask_grey = np.sum(np_mask_rgb, axis=2) / 3.0
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
# rather than leave the masked area black, we get better results from fft by filling the average unmasked color
windowed_image = _np_src_image * (
1.0 - _get_masked_window_rgb(np_mask_grey)
)
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb
src_fft = _fft2(
windowed_image
) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
# create a generator with a static seed to make outpainting deterministic / only follow global seed
rng = np.random.default_rng(0)
noise_window = _get_gaussian_window(
width, height, mode=1
) # start with simple gaussian noise
noise_rgb = rng.random((width, height, num_channels))
noise_grey = np.sum(noise_rgb, axis=2) / 3.0
# the colorfulness of the starting noise is blended to greyscale with a parameter
noise_rgb *= color_variation
for c in range(num_channels):
noise_rgb[:, :, c] += (1.0 - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:, :, c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:, :, :] = (
np.absolute(shaped_noise_fft[:, :, :]) ** 2
* (src_dist**noise_q)
* src_phase
) # perform the actual shaping
# color_variation
brightness_variation = 0.0
contrast_adjusted_np_src = (
_np_src_image[:] * (brightness_variation + 1.0)
- brightness_variation * 2.0
)
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask, :] = _match_histograms(
shaped_noise[img_mask, :] ** 1.0,
contrast_adjusted_np_src[ref_mask, :],
)
shaped_noise = (
_np_src_image[:] * (1.0 - np_mask_rgb) + shaped_noise * np_mask_rgb
)
matched_noise = shaped_noise[:]
return np.clip(matched_noise, 0.0, 1.0)
def generate_images(
self,
prompts,
neg_prompts,
image,
pixels,
mask_blur,
is_left,
is_right,
is_top,
is_bottom,
noise_q,
color_variation,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
process_width = width
process_height = height
left = pixels if is_left else 0
right = pixels if is_right else 0
up = pixels if is_top else 0
down = pixels if is_bottom else 0
target_w = math.ceil((image.width + left + right) / 64) * 64
target_h = math.ceil((image.height + up + down) / 64) * 64
if left > 0:
left = left * (target_w - image.width) // (left + right)
if right > 0:
right = target_w - image.width - left
if up > 0:
up = up * (target_h - image.height) // (up + down)
if down > 0:
down = target_h - image.height - up
def expand(
init_img,
expand_pixels,
is_left=False,
is_right=False,
is_top=False,
is_bottom=False,
):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
res_w = init_img.width + pixels_horiz
res_h = init_img.height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(
init_img,
(pixels_horiz if is_left else 0, pixels_vert if is_top else 0),
)
msk = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(msk)
draw.rectangle(
(
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
msk.width - expand_pixels - mask_blur
if is_right
else res_w,
msk.height - expand_pixels - mask_blur
if is_bottom
else res_h,
),
fill="black",
)
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(msk) / 255.0).astype(np.float64)
noised = self.get_matched_noise(
np_image, np_mask, noise_q, color_variation
)
output_image = Image.fromarray(
np.clip(noised * 255.0, 0.0, 255.0).astype(np.uint8),
mode="RGB",
)
target_width = (
min(width, init_img.width + pixels_horiz)
if is_horiz
else img.width
)
target_height = (
min(height, init_img.height + pixels_vert)
if is_vert
else img.height
)
crop_region = (
0 if is_left else output_image.width - target_width,
0 if is_top else output_image.height - target_height,
target_width if is_left else output_image.width,
target_height if is_top else output_image.height,
)
mask_to_process = msk.crop(crop_region)
image_to_process = output_image.crop(crop_region)
# Preprocess mask and image
mask, masked_image = self.prepare_mask_and_masked_image(
image_to_process, mask_to_process, mask_blur, width, height
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
res_img = all_imgs[0].resize(
(image_to_process.width, image_to_process.height)
)
output_image.paste(
res_img,
(
0 if is_left else output_image.width - res_img.width,
0 if is_top else output_image.height - res_img.height,
),
)
output_image = output_image.crop((0, 0, res_w, res_h))
return output_image
img = image.resize((width, height))
if left > 0:
img = expand(img, left, is_left=True)
if right > 0:
img = expand(img, right, is_right=True)
if up > 0:
img = expand(img, up, is_top=True)
if down > 0:
img = expand(img, down, is_bottom=True)
return [img]

View File

@@ -1,150 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import controlnet_hint_conversion
class StencilPipeline(StableDiffusionPipeline):
def __init__(
self,
controlnet: SharkInference,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.controlnet = controlnet
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
use_stencil,
):
# Control Embedding check & conversion
# TODO: 1. Change `num_images_per_prompt`.
controlnet_hint = controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
)
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare initial latent.
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
final_timesteps = self.scheduler.timesteps
# Get Image latents
latents = self.produce_stencil_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
controlnet_hint=controlnet_hint,
controlnet=self.controlnet,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -9,11 +9,9 @@ from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
@@ -32,12 +30,10 @@ class Text2ImagePipeline(StableDiffusionPipeline):
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)

View File

@@ -1,310 +0,0 @@
import inspect
import torch
import time
from tqdm.auto import tqdm
import numpy as np
from random import randint
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
from PIL import Image
def preprocess(image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, Image.Image):
image = [image]
if isinstance(image[0], Image.Image):
w, h = image[0].size
w, h = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = [np.array(i.resize((w, h)))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
class UpscalerPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
low_res_scheduler: Union[
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
self.low_res_scheduler = low_res_scheduler
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def decode_latents(self, latents, use_base_vae, cpu_scheduling):
latents = 1 / 0.08333 * (latents.float())
latents_numpy = latents
if cpu_scheduling:
latents_numpy = latents.detach().numpy()
profile_device = start_profiling(file_path="vae.rdc")
vae_start = time.time()
images = self.vae("forward", (latents_numpy,))
vae_inf_time = (time.time() - vae_start) * 1000
end_profiling(profile_device)
self.log += f"\nVAE Inference time (ms): {vae_inf_time:.3f}"
images = torch.from_numpy(images)
images = (images.detach().cpu() * 255.0).numpy()
images = images.round()
images = torch.from_numpy(images).to(torch.uint8).permute(0, 2, 3, 1)
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height,
width,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def produce_img_latents(
self,
latents,
image,
text_embeddings,
guidance_scale,
noise_level,
total_timesteps,
dtype,
cpu_scheduling,
extra_step_kwargs,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
latent_model_input = torch.cat([latent_model_input, image], dim=1)
timestep = torch.tensor([t]).to(dtype).detach().numpy()
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
noise_level,
),
)
end_profiling(profile_device)
noise_pred = torch.from_numpy(noise_pred)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if cpu_scheduling:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
else:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
noise_level,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# 4. Preprocess image
image = preprocess(image).to(dtype)
# 5. Add noise to image
noise_level = torch.tensor([noise_level], dtype=torch.long)
noise = torch.randn(
image.shape,
generator=generator,
).to(dtype)
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
image = torch.cat([image] * 2)
noise_level = torch.cat([noise_level] * image.shape[0])
height, width = image.shape[2:]
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
eta = 0.0
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# guidance scale as a float32 tensor.
# guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
image=image,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
noise_level=noise_level,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
extra_step_kwargs=extra_step_kwargs,
)
# Img latents -> PIL images
all_imgs = []
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
return all_imgs

View File

@@ -1,5 +1,4 @@
import torch
import numpy as np
from transformers import CLIPTokenizer
from PIL import Image
from tqdm.auto import tqdm
@@ -7,20 +6,16 @@ import time
from typing import Union
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
)
from shark.shark_inference import SharkInference
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
get_vae,
get_clip,
get_unet,
@@ -31,9 +26,6 @@ from apps.stable_diffusion.src.utils import (
end_profiling,
)
SD_STATE_IDLE = "idle"
SD_STATE_CANCEL = "cancel"
class StableDiffusionPipeline:
def __init__(
@@ -46,12 +38,10 @@ class StableDiffusionPipeline:
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
):
self.vae = vae
@@ -61,7 +51,6 @@ class StableDiffusionPipeline:
self.scheduler = scheduler
# TODO: Implement using logging python utility.
self.log = ""
self.status = SD_STATE_IDLE
def encode_prompts(self, prompts, neg_prompts, max_length):
# Tokenize text and get embeddings
@@ -115,109 +104,6 @@ class StableDiffusionPipeline:
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def produce_stencil_latents(
self,
latents,
text_embeddings,
guidance_scale,
total_timesteps,
dtype,
cpu_scheduling,
controlnet_hint=None,
controlnet=None,
controlnet_conditioning_scale: float = 1.0,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype)
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
if not torch.is_tensor(latent_model_input):
latent_model_input_1 = torch.from_numpy(
np.asarray(latent_model_input)
).to(dtype)
else:
latent_model_input_1 = latent_model_input
control = controlnet(
"forward",
(
latent_model_input_1,
timestep,
text_embeddings,
controlnet_hint,
),
send_to_host=False,
)
timestep = timestep.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
# TODO: Pass `control` as it is to Unet. Same as TODO mentioned in model_wrappers.py.
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
control[0],
control[1],
control[2],
control[3],
control[4],
control[5],
control[6],
control[7],
control[8],
control[9],
control[10],
control[11],
control[12],
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = self.scheduler.step(
noise_pred, t, latents
).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def produce_img_latents(
self,
latents,
@@ -226,11 +112,8 @@ class StableDiffusionPipeline:
total_timesteps,
dtype,
cpu_scheduling,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
self.status = SD_STATE_IDLE
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
@@ -239,15 +122,6 @@ class StableDiffusionPipeline:
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype).detach().numpy()
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
@@ -280,9 +154,6 @@ class StableDiffusionPipeline:
# )
step_time_sum += step_time
if self.status == SD_STATE_CANCEL:
break
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
@@ -298,17 +169,14 @@ class StableDiffusionPipeline:
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
],
import_mlir: bool,
model_id: str,
ckpt_loc: str,
custom_vae: str,
precision: str,
max_length: int,
batch_size: int,
@@ -316,26 +184,13 @@ class StableDiffusionPipeline:
width: int,
use_base_vae: bool,
use_tuned: bool,
low_cpu_mem_usage: bool = False,
debug: bool = False,
use_stencil: str = None,
use_lora: str = "",
ddpm_scheduler: DDPMScheduler = None,
):
is_inpaint = cls.__name__ in [
"InpaintPipeline",
"OutpaintPipeline",
]
is_upscaler = cls.__name__ in ["UpscalerPipeline"]
if import_mlir or use_lora:
if not import_mlir:
print(
"Warning: LoRA provided but import_mlir not specified. Importing MLIR anyways."
)
if import_mlir:
# TODO: Delet this when on-the-fly tuning of models work.
use_tuned = False
mlir_import = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
@@ -343,88 +198,9 @@ class StableDiffusionPipeline:
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
debug=debug,
is_inpaint=is_inpaint,
is_upscaler=is_upscaler,
use_stencil=use_stencil,
use_lora=use_lora,
)
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
clip, unet, vae, vae_encode = mlir_import()
return cls(
vae_encode, vae, clip, get_tokenizer(), unet, scheduler
)
if cls.__name__ in ["StencilPipeline"]:
clip, unet, vae, controlnet = mlir_import()
return cls(
controlnet, vae, clip, get_tokenizer(), unet, scheduler
)
if cls.__name__ in ["UpscalerPipeline"]:
clip, unet, vae = mlir_import()
return cls(
vae, clip, get_tokenizer(), unet, scheduler, ddpm_scheduler
)
clip, unet, vae = mlir_import()
return cls(vae, clip, get_tokenizer(), unet, scheduler)
try:
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
return cls(
get_vae_encode(),
get_vae(),
get_clip(),
get_tokenizer(),
get_unet(),
scheduler,
)
if cls.__name__ == "StencilPipeline":
import sys
sys.exit(
"StencilPipeline not supported with SharkTank currently."
)
return cls(
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
)
except:
print("download pipeline failed, falling back to import_mlir")
mlir_import = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
is_inpaint=is_inpaint,
is_upscaler=is_upscaler,
)
if cls.__name__ in [
"Image2ImagePipeline",
"InpaintPipeline",
"OutpaintPipeline",
]:
clip, unet, vae, vae_encode = mlir_import()
return cls(
vae_encode, vae, clip, get_tokenizer(), unet, scheduler
)
if cls.__name__ == "StencilPipeline":
clip, unet, vae, controlnet = mlir_import()
return cls(
controlnet, vae, clip, get_tokenizer(), unet, scheduler
)
clip, unet, vae = mlir_import()
return cls(vae, clip, get_tokenizer(), unet, scheduler)
return cls(
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
)

View File

@@ -1,13 +1,10 @@
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDPMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
@@ -20,14 +17,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["DDPM"] = DDPMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
@@ -52,10 +41,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"SharkEulerDiscrete"
] = SharkEulerDiscreteScheduler.from_pretrained(

View File

@@ -87,11 +87,11 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
def _import(self):
if args.import_mlir:
scaling_model = ScalingModel()
self.scaling_model = compile_through_fx(
model=scaling_model,
inputs=(example_latent, example_sigma),
scaling_model,
(example_latent, example_sigma),
model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}"
+ args.precision,
extra_args=iree_flags,
@@ -105,28 +105,15 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
+ args.precision,
extra_args=iree_flags,
)
if args.import_mlir:
_import(self)
else:
try:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_step_" + args.precision,
iree_flags,
)
except:
print(
"failed to download model, falling back and using import_mlir"
)
args.import_mlir = True
_import(self)
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET, "euler_step_" + args.precision, iree_flags
)
def scale_model_input(self, sample, timestep):
step_index = (self.timesteps == timestep).nonzero().item()

View File

@@ -11,10 +11,6 @@ from apps.stable_diffusion.src.utils.resources import (
)
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.stencils.stencil_utils import (
controlnet_hint_conversion,
get_stencil_model_id,
)
from apps.stable_diffusion.src.utils.utils import (
get_shark_model,
compile_through_fx,
@@ -28,9 +24,4 @@ from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
get_path_to_diffusers_checkpoint,
sanitize_seed,
get_path_stem,
get_extended_name,
clear_all,
save_output_img,
get_generation_text_info,
)

View File

@@ -1,52 +1,4 @@
{
"stabilityai/stable-diffusion-x4-upscaler": {
"unet": {
"latents": {
"shape": [
"2*batch_size",
7,
"8*height",
"8*width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"noise_level": {
"shape": [2],
"dtype": "i64"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"8*height","8*width"
],
"dtype":"f32"
}
},
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"stabilityai/stable-diffusion-2-1": {
"unet": {
"latents": {
@@ -77,14 +29,6 @@
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
@@ -133,236 +77,6 @@
"dtype": "f32"
}
},
"stencil_adaptor": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"controlnet_hint": {
"shape": [1, 3, "8*height", "8*width"],
"dtype": "f32"
}
},
"stencil_unet": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
},
"control1": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control2": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control3": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control4": {
"shape": [2, 320, "height/2", "width/2"],
"dtype": "f32"
},
"control5": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control6": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control7": {
"shape": [2, 640, "height/4", "width/4"],
"dtype": "f32"
},
"control8": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control9": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control10": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control11": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control12": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control13": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
},
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"stabilityai/stable-diffusion-2-inpainting": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
},
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"runwayml/stable-diffusion-inpainting": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"latents" : {
"shape" : [

View File

@@ -3,8 +3,6 @@
"stablediffusion/v1_4":"CompVis/stable-diffusion-v1-4",
"stablediffusion/v2_1base":"stabilityai/stable-diffusion-2-1-base",
"stablediffusion/v2_1":"stabilityai/stable-diffusion-2-1",
"stablediffusion/inpaint_v1":"runwayml/stable-diffusion-inpainting",
"stablediffusion/inpaint_v2":"stabilityai/stable-diffusion-2-inpainting",
"anythingv3/v1_4":"Linaqruf/anything-v3.0",
"analogdiffusion/v1_4":"wavymulder/Analog-Diffusion",
"openjourney/v1_4":"prompthero/openjourney",

View File

@@ -18,15 +18,12 @@
"stablediffusion/v1_4/unet/fp16/length_77/tuned":"unet_8dec_fp16_tuned",
"stablediffusion/v1_4/unet/fp16/length_77/tuned/cuda":"unet_8dec_fp16_cuda_tuned",
"stablediffusion/v1_4/unet/fp32/length_77/untuned":"unet_1dec_fp32",
"stablediffusion/v1_4/unet/fp32/length_64/untuned":"unet_1_64_512_512_fp32_CompVis_stable_diffusion_v1_4",
"stablediffusion/v1_4/vae/fp16/length_77/untuned":"vae_19dec_fp16",
"stablediffusion/v1_4/vae/fp16/length_77/tuned":"vae_19dec_fp16_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/tuned/cuda":"vae_19dec_fp16_cuda_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/untuned/base":"vae_8dec_fp16",
"stablediffusion/v1_4/vae/fp32/length_77/untuned":"vae_1_64_512_512_fp32_CompVis_stable_diffusion_v1_4",
"stablediffusion/v1_4/vae/fp32/length_64/untuned":"vae_1_64_512_512_fp32_CompVis_stable_diffusion_v1_4",
"stablediffusion/v1_4/vae/fp32/length_77/untuned":"vae_1dec_fp32",
"stablediffusion/v1_4/clip/fp32/length_77/untuned":"clip_18dec_fp32",
"stablediffusion/v1_4/clip/fp32/length_64/untuned":"clip_1_64_512_512_fp32_CompVis_stable_diffusion_v1_4",
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned":"unet2base_8dec_fp16_tuned_v2",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"unet2base_8dec_fp16_cuda_tuned",
@@ -45,41 +42,41 @@
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1/vae/fp16/length_77/untuned/base":"vae2_8dec_fp16",
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"anythingv3/v1_4/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
"anythingv3/v1_4/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
"anythingv3/v1_4/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
"anythingv3/v1_4/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
"anythingv3/v1_4/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
"anythingv3/v1_4/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
"anythingv3/v1_4/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
"anythingv3/v1_4/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
"anythingv3/v1_4/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
"anythingv3/v1_4/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
"anythingv3/v1_4/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
"analogdiffusion/v1_4/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
"analogdiffusion/v1_4/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
"analogdiffusion/v1_4/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
"analogdiffusion/v1_4/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
"analogdiffusion/v1_4/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
"analogdiffusion/v1_4/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
"analogdiffusion/v1_4/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
"analogdiffusion/v1_4/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
"analogdiffusion/v1_4/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
"analogdiffusion/v1_4/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
"analogdiffusion/v1_4/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
"openjourney/v1_4/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
"openjourney/v1_4/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
"openjourney/v1_4/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
"openjourney/v1_4/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
"openjourney/v1_4/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
"openjourney/v1_4/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
"openjourney/v1_4/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
"dreamlike/v1_4/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
"dreamlike/v1_4/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
"dreamlike/v1_4/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
"dreamlike/v1_4/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
"dreamlike/v1_4/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
"dreamlike/v1_4/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
"dreamlike/v1_4/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
"anythingv3/v2_1base/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
"anythingv3/v2_1base/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
"anythingv3/v2_1base/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
"anythingv3/v2_1base/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
"anythingv3/v2_1base/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
"anythingv3/v2_1base/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
"anythingv3/v2_1base/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
"anythingv3/v2_1base/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
"analogdiffusion/v2_1base/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
"analogdiffusion/v2_1base/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
"openjourney/v2_1base/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
"openjourney/v2_1base/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
"openjourney/v2_1base/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
"openjourney/v2_1base/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
"openjourney/v2_1base/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
"openjourney/v2_1base/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
"openjourney/v2_1base/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
"dreamlike/v2_1base/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
"dreamlike/v2_1base/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
"dreamlike/v2_1base/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
"dreamlike/v2_1base/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
"dreamlike/v2_1base/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
"dreamlike/v2_1base/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
"dreamlike/v2_1base/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
}
]

View File

@@ -45,12 +45,12 @@
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}

View File

@@ -20,22 +20,6 @@ def get_device():
return device
def get_device_args():
device = get_device()
device_spec_args = []
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args.append(flag)
elif device == "vulkan":
device_spec_args.append(
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
return device, device_spec_args
# Download the model (Unet or VAE fp16) from shark_tank
def load_model_from_tank():
from apps.stable_diffusion.src.models import (
@@ -70,7 +54,7 @@ def load_winograd_configs():
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_name = f"{args.annotation_model}_winograd_{device}.json"
full_gs_url = config_bucket + config_name
winograd_config_dir = os.path.join(WORKDIR, "configs", config_name)
winograd_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading Winograd config file from ", winograd_config_dir)
download_public_file(full_gs_url, winograd_config_dir, True)
return winograd_config_dir
@@ -78,48 +62,20 @@ def load_winograd_configs():
def load_lower_configs():
from apps.stable_diffusion.src.models import get_variant_version
from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
)
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
variant, version = get_variant_version(base_model_id)
if version == "inpaint_v1":
version = "v1_4"
elif version == "inpaint_v2":
version = "v2_1base"
config_bucket = "gs://shark_tank/sd_tuned_configs/"
device, device_spec_args = get_device_args()
spec = ""
if device_spec_args:
spec = device_spec_args[-1].split("=")[-1].strip()
if device == "vulkan":
spec = spec.split("-")[0]
variant, version = get_variant_version(args.hf_model_id)
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_version = version
if variant in ["anythingv3", "analogdiffusion"]:
args.max_length = 77
config_version = "v1_4"
if args.annotation_model == "vae":
if not spec or spec in ["rdna3", "sm_80"]:
config_name = (
f"{args.annotation_model}_{args.precision}_{device}.json"
)
else:
config_name = f"{args.annotation_model}_{args.precision}_{device}_{spec}.json"
else:
if not spec or spec in ["rdna3", "sm_80"]:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}.json"
else:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}_{spec}.json"
args.max_length = 77
device = get_device()
config_name = f"{args.annotation_model}_{config_version}_{args.precision}_len{args.max_length}_{device}.json"
full_gs_url = config_bucket + config_name
lowering_config_dir = os.path.join(WORKDIR, "configs", config_name)
lowering_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading lowering config file from ", lowering_config_dir)
download_public_file(full_gs_url, lowering_config_dir, True)
return lowering_config_dir
@@ -127,6 +83,13 @@ def load_lower_configs():
# Annotate the model with Winograd attribute on selected conv ops
def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with create_context() as ctx:
winograd_model = model_annotation(
ctx,
@@ -140,41 +103,59 @@ def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
winograd_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = os.path.join(
args.annotation_output, model_name + "_tuned_torch.mlir"
)
else:
out_file_path = os.path.join(
args.annotation_output, model_name + "_torch.mlir"
)
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode, out_file_path
def dump_after_mlir(input_mlir, use_winograd):
import iree.compiler as ireec
device, device_spec_args = get_device_args()
def dump_after_mlir(input_mlir, model_name, use_winograd):
if use_winograd:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
dump_after = "iree-linalg-ext-convert-conv2d-to-winograd"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32},"
"iree-linalg-ext-convert-conv2d-to-winograd))' "
)
else:
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
dump_after = "iree-preprocessing-pad-linalg-ops"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32}))' "
)
dump_module = ireec.compile_str(
input_mlir,
target_backends=[iree_target_map(device)],
extra_args=device_spec_args
+ [
preprocess_flag,
"--compile-to=preprocessing",
],
device_spec_args = ""
device = get_device()
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args += flag + " "
elif device == "vulkan":
device_spec_args = (
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
print("Applying tuned configs on", model_name)
run_cmd(
f"iree-compile {input_mlir} "
"--iree-input-type=tm_tensor "
f"--iree-hal-target-backends={iree_target_map(device)} "
f"{device_spec_args}"
f"{preprocess_flag}"
"--iree-stream-resource-index-bits=64 "
"--iree-vm-target-index-bits=64 "
f"--mlir-print-ir-after={dump_after} "
"--compile-to=flow "
f"2>{args.annotation_output}/dump_after_winograd.mlir "
)
return dump_module
# For Unet annotate the model with tuned lowering configs
@@ -182,63 +163,72 @@ def annotate_with_lower_configs(
input_mlir, lowering_config_dir, model_name, use_winograd
):
# Dump IR after padding/img2col/winograd passes
dump_module = dump_after_mlir(input_mlir, use_winograd)
print("Applying tuned configs on", model_name)
dump_after_mlir(input_mlir, model_name, use_winograd)
# Annotate the model with lowering configs in the config file
with create_context() as ctx:
tuned_model = model_annotation(
ctx,
input_contents=dump_module,
input_contents=f"{args.annotation_output}/dump_after_winograd.mlir",
config_path=lowering_config_dir,
search_op="all",
)
# Remove the intermediate mlir and save the final annotated model
os.remove(f"{args.annotation_output}/dump_after_winograd.mlir")
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
bytecode_stream = io.BytesIO()
tuned_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode, out_file_path
def sd_model_annotation(mlir_model, model_name):
def sd_model_annotation(mlir_model, model_name, model_from_tank=False):
device = get_device()
if args.annotation_model == "unet" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
winograd_model = annotate_with_winograd(
winograd_model, model_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
lowering_config_dir = load_lower_configs()
tuned_model = annotate_with_lower_configs(
winograd_model, lowering_config_dir, model_name, use_winograd
tuned_model, output_path = annotate_with_lower_configs(
model_path, lowering_config_dir, model_name, use_winograd
)
elif args.annotation_model == "vae" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
tuned_model = annotate_with_winograd(
tuned_model, output_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
else:
use_winograd = False
if model_from_tank:
mlir_model = f"{WORKDIR}{model_name}_torch/{model_name}_torch.mlir"
else:
# Just use this function to convert bytecode to string
orig_model, model_path = annotate_with_winograd(
mlir_model, "", model_name
)
mlir_model = model_path
lowering_config_dir = load_lower_configs()
tuned_model = annotate_with_lower_configs(
tuned_model, output_path = annotate_with_lower_configs(
mlir_model, lowering_config_dir, model_name, use_winograd
)
print(f"Saved the annotated mlir in {output_path}.")
return tuned_model
if __name__ == "__main__":
mlir_model, model_name = load_model_from_tank()
sd_model_annotation(mlir_model, model_name)
sd_model_annotation(mlir_model, model_name, model_from_tank=True)

View File

@@ -1,5 +1,4 @@
import argparse
import os
from pathlib import Path
@@ -7,13 +6,6 @@ def path_expand(s):
return Path(s).expanduser().resolve()
def is_valid_file(arg):
if not os.path.exists(arg):
return None
else:
return arg
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
@@ -25,24 +17,18 @@ p = argparse.ArgumentParser(
p.add_argument(
"-p",
"--prompts",
nargs="+",
default=["cyberpunk forest by Salvador Dali"],
action="append",
default=[],
help="text of which images to be generated.",
)
p.add_argument(
"--negative_prompts",
nargs="+",
default=["trees, green"],
default=[""],
help="text you don't want to see in the generated image.",
)
p.add_argument(
"--img_path",
type=str,
help="Path to the image input for img2img/inpainting",
)
p.add_argument(
"--steps",
type=int,
@@ -53,8 +39,8 @@ p.add_argument(
p.add_argument(
"--seed",
type=int,
default=-1,
help="the seed to use. -1 for a random one.",
default=42,
help="the seed to use.",
)
p.add_argument(
@@ -62,14 +48,13 @@ p.add_argument(
type=int,
default=1,
choices=range(1, 4),
help="the number of inferences to be made in a single `batch_count`.",
help="the number of inferences to be made in a single `run`.",
)
p.add_argument(
"--height",
type=int,
default=512,
choices=range(128, 769, 8),
help="the height of the output image.",
)
@@ -77,7 +62,6 @@ p.add_argument(
"--width",
type=int,
default=512,
choices=range(128, 769, 8),
help="the width of the output image.",
)
@@ -88,13 +72,6 @@ p.add_argument(
help="the value to be used for guidance scaling.",
)
p.add_argument(
"--noise_level",
type=int,
default=20,
help="the value to be used for noise level of upscaler.",
)
p.add_argument(
"--max_length",
type=int,
@@ -102,121 +79,6 @@ p.add_argument(
help="max length of the tokenizer output, options are 64 and 77.",
)
p.add_argument(
"--strength",
type=float,
default=0.8,
help="the strength of change applied on the given input image for img2img",
)
##############################################################################
### Stable Diffusion Training Params
##############################################################################
p.add_argument(
"--lora_save_dir",
type=str,
default="models/lora/",
help="Directory to save the lora fine tuned model",
)
p.add_argument(
"--training_images_dir",
type=str,
default="models/lora/training_images/",
help="Directory containing images that are an example of the prompt",
)
p.add_argument(
"--training_steps",
type=int,
default=2000,
help="The no. of steps to train",
)
##############################################################################
### Inpainting and Outpainting Params
##############################################################################
p.add_argument(
"--mask_path",
type=str,
help="Path to the mask image input for inpainting",
)
p.add_argument(
"--inpaint_full_res",
default=False,
action=argparse.BooleanOptionalAction,
help="If inpaint only masked area or whole picture",
)
p.add_argument(
"--inpaint_full_res_padding",
type=int,
default=32,
choices=range(0, 257, 4),
help="Number of pixels for only masked padding",
)
p.add_argument(
"--pixels",
type=int,
default=128,
choices=range(8, 257, 8),
help="Number of expended pixels for one direction for outpainting",
)
p.add_argument(
"--mask_blur",
type=int,
default=8,
choices=range(0, 65),
help="Number of blur pixels for outpainting",
)
p.add_argument(
"--left",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend left for outpainting",
)
p.add_argument(
"--right",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend right for outpainting",
)
p.add_argument(
"--top",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend top for outpainting",
)
p.add_argument(
"--bottom",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend bottom for outpainting",
)
p.add_argument(
"--noise_q",
type=float,
default=1.0,
help="Fall-off exponent for outpainting (lower=higher detail) (min=0.0, max=4.0)",
)
p.add_argument(
"--color_variation",
type=float,
default=0.05,
help="Color variation for outpainting (min=0.0, max=1.0)",
)
##############################################################################
### Model Config and Usage Params
##############################################################################
@@ -286,10 +148,10 @@ p.add_argument(
)
p.add_argument(
"--batch_count",
"--runs",
type=int,
default=1,
help="number of batch to be generated with random seeds in single execution",
help="number of images to be generated with random seeds in single execution",
)
p.add_argument(
@@ -299,13 +161,6 @@ p.add_argument(
help="Path to SD's .ckpt file.",
)
p.add_argument(
"--custom_vae",
type=str,
default="",
help="HuggingFace repo-id or path to SD model's checkpoint whose Vae needs to be plugged in.",
)
p.add_argument(
"--hf_model_id",
type=str,
@@ -314,30 +169,10 @@ p.add_argument(
)
p.add_argument(
"--low_cpu_mem_usage",
"--enable_stack_trace",
default=False,
action=argparse.BooleanOptionalAction,
help="Use the accelerate package to reduce cpu memory consumption",
)
p.add_argument(
"--attention_slicing",
type=str,
default="none",
help="Amount of attention slicing to use (one of 'max', 'auto', 'none', or an integer)",
)
p.add_argument(
"--use_stencil",
choices=["canny", "openpose", "scribble"],
help="Enable the stencil feature.",
)
p.add_argument(
"--use_lora",
type=str,
default="",
help="Use standalone LoRA weight using a HF ID or a checkpoint file (~3 MB)",
help="Enable showing the stack trace when retrying the base model configuration",
)
##############################################################################
@@ -345,7 +180,7 @@ p.add_argument(
##############################################################################
p.add_argument(
"--iree_vulkan_target_triple",
"--iree-vulkan-target-triple",
type=str,
default="",
help="Specify target triple for vulkan",
@@ -444,17 +279,11 @@ p.add_argument(
p.add_argument(
"--write_metadata_to_png",
default=True,
default=False,
action=argparse.BooleanOptionalAction,
help="flag for whether or not to save generation information in PNG chunk text to generated images.",
)
p.add_argument(
"--import_debug",
default=False,
action=argparse.BooleanOptionalAction,
help="if import_mlir is True, saves mlir via the debug option in shark importer. Does nothing if import_mlir is false (the default)",
)
##############################################################################
### Web UI flags
##############################################################################
@@ -463,7 +292,7 @@ p.add_argument(
"--progress_bar",
default=True,
action=argparse.BooleanOptionalAction,
help="flag for removing the progress bar animation during image generation",
help="flag for removing the pregress bar animation during image generation",
)
p.add_argument(
@@ -507,14 +336,10 @@ p.add_argument(
)
p.add_argument(
"--save_annotation",
"--use_winograd",
default=False,
action=argparse.BooleanOptionalAction,
help="Save annotated mlir file",
help="Apply Winograd on selected conv ops.",
)
args, unknown = p.parse_known_args()
if args.import_debug:
os.environ["IREE_SAVE_TEMPS"] = os.path.join(
os.getcwd(), args.hf_model_id.replace("/", "_")
)

View File

@@ -1,2 +0,0 @@
from apps.stable_diffusion.src.utils.stencils.canny import CannyDetector
from apps.stable_diffusion.src.utils.stencils.openpose import OpenposeDetector

View File

@@ -1,6 +0,0 @@
import cv2
class CannyDetector:
def __call__(self, img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)

View File

@@ -1,62 +0,0 @@
import requests
from pathlib import Path
import torch
import numpy as np
# from annotator.util import annotator_ckpts_path
from apps.stable_diffusion.src.utils.stencils.openpose.body import Body
from apps.stable_diffusion.src.utils.stencils.openpose.hand import Hand
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
draw_bodypose,
draw_handpose,
handDetect,
)
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
class OpenposeDetector:
def __init__(self):
cwd = Path.cwd()
ckpt_path = Path(cwd, "stencil_annotator")
ckpt_path.mkdir(parents=True, exist_ok=True)
body_modelpath = ckpt_path / "body_pose_model.pth"
hand_modelpath = ckpt_path / "hand_pose_model.pth"
if not body_modelpath.is_file():
r = requests.get(body_model_path, allow_redirects=True)
open(body_modelpath, "wb").write(r.content)
if not hand_modelpath.is_file():
r = requests.get(hand_model_path, allow_redirects=True)
open(hand_modelpath, "wb").write(r.content)
self.body_estimation = Body(body_modelpath)
self.hand_estimation = Hand(hand_modelpath)
def __call__(self, oriImg, hand=False):
oriImg = oriImg[:, :, ::-1].copy()
with torch.no_grad():
candidate, subset = self.body_estimation(oriImg)
canvas = np.zeros_like(oriImg)
canvas = draw_bodypose(canvas, candidate, subset)
if hand:
hands_list = handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = self.hand_estimation(
oriImg[y : y + w, x : x + w, :]
)
peaks[:, 0] = np.where(
peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x
)
peaks[:, 1] = np.where(
peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y
)
all_hand_peaks.append(peaks)
canvas = draw_handpose(canvas, all_hand_peaks)
return canvas, dict(
candidate=candidate.tolist(), subset=subset.tolist()
)

View File

@@ -1,499 +0,0 @@
import cv2
import numpy as np
import math
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
)
class BodyPoseModel(nn.Module):
def __init__(self):
super(BodyPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv5_5_CPM_L1",
"conv5_5_CPM_L2",
"Mconv7_stage2_L1",
"Mconv7_stage2_L2",
"Mconv7_stage3_L1",
"Mconv7_stage3_L2",
"Mconv7_stage4_L1",
"Mconv7_stage4_L2",
"Mconv7_stage5_L1",
"Mconv7_stage5_L2",
"Mconv7_stage6_L1",
"Mconv7_stage6_L1",
]
blocks = {}
block0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3_CPM", [512, 256, 3, 1, 1]),
("conv4_4_CPM", [256, 128, 3, 1, 1]),
]
)
# Stage 1
block1_1 = OrderedDict(
[
("conv5_1_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L1", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L1", [512, 38, 1, 1, 0]),
]
)
block1_2 = OrderedDict(
[
("conv5_1_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L2", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L2", [512, 19, 1, 1, 0]),
]
)
blocks["block1_1"] = block1_1
blocks["block1_2"] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks["block%d_1" % i] = OrderedDict(
[
("Mconv1_stage%d_L1" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L1" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L1" % i, [128, 38, 1, 1, 0]),
]
)
blocks["block%d_2" % i] = OrderedDict(
[
("Mconv1_stage%d_L2" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L2" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L2" % i, [128, 19, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks["block1_1"]
self.model2_1 = blocks["block2_1"]
self.model3_1 = blocks["block3_1"]
self.model4_1 = blocks["block4_1"]
self.model5_1 = blocks["block5_1"]
self.model6_1 = blocks["block6_1"]
self.model1_2 = blocks["block1_2"]
self.model2_2 = blocks["block2_2"]
self.model3_2 = blocks["block3_2"]
self.model4_2 = blocks["block4_2"]
self.model5_2 = blocks["block5_2"]
self.model6_2 = blocks["block6_2"]
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class Body(object):
def __init__(self, model_path):
self.model = BodyPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(Mconv7_stage6_L2), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(
np.squeeze(Mconv7_stage6_L1), (1, 2, 0)
) # output 0 is PAFs
paf = cv2.resize(
paf,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
paf = paf[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
paf = cv2.resize(
paf,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += +paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(
one_heatmap >= map_left,
one_heatmap >= map_right,
one_heatmap >= map_up,
one_heatmap >= map_down,
one_heatmap > thre1,
)
)
peaks = list(
zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])
) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [
peaks_with_score[i] + (peak_id[i],)
for i in range(len(peak_id))
]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
# the middle joints heatmap correpondence
mapIdx = [
[31, 32],
[39, 40],
[33, 34],
[35, 36],
[41, 42],
[43, 44],
[19, 20],
[21, 22],
[23, 24],
[25, 26],
[27, 28],
[29, 30],
[47, 48],
[49, 50],
[53, 54],
[51, 52],
[55, 56],
[37, 38],
[45, 46],
]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(
zip(
np.linspace(
candA[i][0], candB[j][0], num=mid_num
),
np.linspace(
candA[i][1], candB[j][1], num=mid_num
),
)
)
vec_x = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
0,
]
for I in range(len(startend))
]
)
vec_y = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
1,
]
for I in range(len(startend))
]
)
score_midpts = np.multiply(
vec_x, vec[0]
) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(
score_midpts
) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(
np.nonzero(score_midpts > thre2)[0]
) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[
i,
j,
score_with_dist_prior,
score_with_dist_prior
+ candA[i][2]
+ candB[j][2],
]
)
connection_candidate = sorted(
connection_candidate, key=lambda x: x[2], reverse=True
)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack(
[connection, [candA[i][3], candB[j][3], s, i, j]]
)
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array(
[item for sublist in all_peaks for item in sublist]
)
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if (
subset[j][indexA] == partAs[i]
or subset[j][indexB] == partBs[i]
):
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = (
(subset[j1] >= 0).astype(int)
+ (subset[j2] >= 0).astype(int)
)[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += subset[j2][:-2] + 1
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = (
sum(
candidate[
connection_all[k][i, :2].astype(int), 2
]
)
+ connection_all[k][i][2]
)
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# candidate: x, y, score, id
return candidate, subset

View File

@@ -1,205 +0,0 @@
import cv2
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from skimage.measure import label
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
npmax,
)
class HandPoseModel(nn.Module):
def __init__(self):
super(HandPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv6_2_CPM",
"Mconv7_stage2",
"Mconv7_stage3",
"Mconv7_stage4",
"Mconv7_stage5",
"Mconv7_stage6",
]
# stage 1
block1_0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3", [512, 512, 3, 1, 1]),
("conv4_4", [512, 512, 3, 1, 1]),
("conv5_1", [512, 512, 3, 1, 1]),
("conv5_2", [512, 512, 3, 1, 1]),
("conv5_3_CPM", [512, 128, 3, 1, 1]),
]
)
block1_1 = OrderedDict(
[
("conv6_1_CPM", [128, 512, 1, 1, 0]),
("conv6_2_CPM", [512, 22, 1, 1, 0]),
]
)
blocks = {}
blocks["block1_0"] = block1_0
blocks["block1_1"] = block1_1
# stage 2-6
for i in range(2, 7):
blocks["block%d" % i] = OrderedDict(
[
("Mconv1_stage%d" % i, [150, 128, 7, 1, 3]),
("Mconv2_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d" % i, [128, 22, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks["block1_0"]
self.model1_1 = blocks["block1_1"]
self.model2 = blocks["block2"]
self.model3 = blocks["block3"]
self.model4 = blocks["block4"]
self.model5 = blocks["block5"]
self.model6 = blocks["block6"]
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6
class Hand(object):
def __init__(self, model_path):
self.model = HandPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
output = self.model(data).cpu().numpy()
# output = self.model(data).numpy()q
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(output), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
# 全部小于阈值
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(
binary, return_num=True, connectivity=binary.ndim
)
max_index = (
np.argmax(
[
np.sum(map_ori[label_img == i])
for i in range(1, label_numbers + 1)
]
)
+ 1
)
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = npmax(map_ori)
all_peaks.append([x, y])
return np.array(all_peaks)

View File

@@ -1,272 +0,0 @@
import math
import numpy as np
import matplotlib
import cv2
from collections import OrderedDict
import torch.nn as nn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if "pool" in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(
in_channels=v[0],
out_channels=v[1],
kernel_size=v[2],
stride=v[3],
padding=v[4],
)
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(("relu_" + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights[
".".join(weights_name.split(".")[1:])
]
return transfered_model_weights
# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset):
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)),
(int(length / 2), stickwidth),
int(angle),
0,
360,
1,
)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
# image drawed by opencv is not good.
def draw_handpose(canvas, all_hand_peaks, show_number=False):
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for peaks in all_hand_peaks:
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1) == 0) == 0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb(
[ie / float(len(edges)), 1.0, 1.0]
)
* 255,
thickness=2,
)
for i, keyponit in enumerate(peaks):
x, y = keyponit
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
if show_number:
cv2.putText(
canvas,
str(i),
(x, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.3,
(0, 0, 0),
lineType=cv2.LINE_AA,
)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
for person in subset.astype(int):
# if any of three not detected
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
if not (has_left or has_right):
continue
hands = []
# left hand
if has_left:
left_shoulder_index, left_elbow_index, left_wrist_index = person[
[5, 6, 7]
]
x1, y1 = candidate[left_shoulder_index][:2]
x2, y2 = candidate[left_elbow_index][:2]
x3, y3 = candidate[left_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, True])
# right hand
if has_right:
(
right_shoulder_index,
right_elbow_index,
right_wrist_index,
) = person[[2, 3, 4]]
x1, y1 = candidate[right_shoulder_index][:2]
x2, y2 = candidate[right_elbow_index][:2]
x3, y3 = candidate[right_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, False])
for x1, y1, x2, y2, x3, y3, is_left in hands:
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width
width2 = width
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append([int(x), int(y), int(width), is_left])
"""
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
"""
return detect_result
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return (i,)

View File

@@ -1,186 +0,0 @@
import numpy as np
from PIL import Image
import torch
from apps.stable_diffusion.src.utils.stencils import (
CannyDetector,
OpenposeDetector,
)
stencil = {}
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt=1
):
channels = 3
if isinstance(controlnet_hint, torch.Tensor):
# torch.Tensor: acceptble shape are any of chw, bchw(b==1) or bchw(b==num_images_per_prompt)
shape_chw = (channels, height, width)
shape_bchw = (1, channels, height, width)
shape_nchw = (num_images_per_prompt, channels, height, width)
if controlnet_hint.shape in [shape_chw, shape_bchw, shape_nchw]:
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
if controlnet_hint.shape != shape_nchw:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({channels}, {height}, {width}),"
+ f" (1, {channels}, {height}, {width}) or ({num_images_per_prompt}, "
+ f"{channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, np.ndarray):
# np.ndarray: acceptable shape is any of hw, hwc, bhwc(b==1) or bhwc(b==num_images_per_promot)
# hwc is opencv compatible image format. Color channel must be BGR Format.
if controlnet_hint.shape == (height, width):
controlnet_hint = np.repeat(
controlnet_hint[:, :, np.newaxis], channels, axis=2
) # hw -> hwc(c==3)
shape_hwc = (height, width, channels)
shape_bhwc = (1, height, width, channels)
shape_nhwc = (num_images_per_prompt, height, width, channels)
if controlnet_hint.shape in [shape_hwc, shape_bhwc, shape_nhwc]:
controlnet_hint = torch.from_numpy(controlnet_hint.copy())
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
controlnet_hint /= 255.0
if controlnet_hint.shape != shape_nhwc:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
controlnet_hint = controlnet_hint.permute(
0, 3, 1, 2
) # b h w c -> b c h w
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({width}, {channels}), "
+ f"({height}, {width}, {channels}), "
+ f"(1, {height}, {width}, {channels}) or "
+ f"({num_images_per_prompt}, {channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, Image.Image):
if controlnet_hint.size == (width, height):
controlnet_hint = controlnet_hint.convert(
"RGB"
) # make sure 3 channel RGB format
controlnet_hint = np.array(controlnet_hint) # to numpy
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
return controlnet_hint_shaping(
controlnet_hint, height, width, num_images_per_prompt
)
else:
raise ValueError(
f"Acceptable image size of `stencil` is ({width}, {height}) but is {controlnet_hint.size}"
)
else:
raise ValueError(
f"Acceptable type of `stencil` are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
)
def controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
):
controlnet_hint = None
match use_stencil:
case "canny":
print("Detecting edge with canny")
controlnet_hint = hint_canny(image)
case "openpose":
print("Detecting human pose")
controlnet_hint = hint_openpose(image)
case "scribble":
print("Working with scribble")
controlnet_hint = hint_scribble(image)
case _:
return None
controlnet_hint = controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt
)
return controlnet_hint
stencil_to_model_id_map = {
"canny": "lllyasviel/sd-controlnet-canny",
"depth": "lllyasviel/sd-controlnet-depth",
"hed": "lllyasviel/sd-controlnet-hed",
"mlsd": "lllyasviel/sd-controlnet-mlsd",
"normal": "lllyasviel/sd-controlnet-normal",
"openpose": "lllyasviel/sd-controlnet-openpose",
"scribble": "lllyasviel/sd-controlnet-scribble",
"seg": "lllyasviel/sd-controlnet-seg",
}
def get_stencil_model_id(use_stencil):
if use_stencil in stencil_to_model_id_map:
return stencil_to_model_id_map[use_stencil]
return None
# Stencil 1. Canny
def hint_canny(
image: Image.Image,
low_threshold=100,
high_threshold=200,
):
with torch.no_grad():
input_image = np.array(image)
if not "canny" in stencil:
stencil["canny"] = CannyDetector()
detected_map = stencil["canny"](
input_image, low_threshold, high_threshold
)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 2. OpenPose.
def hint_openpose(
image: Image.Image,
):
with torch.no_grad():
input_image = np.array(image)
if not "openpose" in stencil:
stencil["openpose"] = OpenposeDetector()
detected_map, _ = stencil["openpose"](input_image)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 3. Scribble.
def hint_scribble(image: Image.Image):
with torch.no_grad():
input_image = np.array(image)
detected_map = np.zeros_like(input_image, dtype=np.uint8)
detected_map[np.min(input_image, axis=2) < 127] = 255
return detected_map

View File

@@ -1,14 +1,9 @@
import os
import gc
import json
import re
from PIL import PngImagePlugin
from datetime import datetime as dt
from csv import DictWriter
from pathlib import Path
import numpy as np
from random import randint
import tempfile
from shark.shark_inference import SharkInference
from shark.shark_importer import import_with_fx
from shark.iree_utils.vulkan_utils import (
@@ -19,26 +14,26 @@ from shark.iree_utils.gpu_utils import get_cuda_sm_cc
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.resources import opt_flags
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
import sys
import sys, functools, operator
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
load_pipeline_from_original_stable_diffusion_ckpt,
)
def get_extended_name(model_name):
device = args.device.split("://", 1)[0]
extended_name = "{}_{}".format(model_name, device)
return extended_name
def get_vmfb_path_name(model_name):
vmfb_path = os.path.join(os.getcwd(), model_name + ".vmfb")
return vmfb_path
device = (
args.device
if "://" not in args.device
else "-".join(args.device.split("://"))
)
extended_name = "{}_{}".format(model_name, device)
vmfb_path = os.path.join(os.getcwd(), extended_name + ".vmfb")
return [vmfb_path, extended_name]
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
vmfb_path = get_vmfb_path_name(model_name)
[vmfb_path, extended_name] = get_vmfb_path_name(model_name)
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
@@ -52,7 +47,7 @@ def _compile_module(shark_module, model_name, extra_args=[]):
)
)
path = shark_module.save_module(
os.getcwd(), model_name, extra_args
os.getcwd(), extended_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
@@ -91,9 +86,6 @@ def compile_through_fx(
is_f16=False,
f16_input_mask=None,
use_tuned=False,
save_dir=tempfile.gettempdir(),
debug=False,
generate_vmfb=True,
extra_args=[],
):
from shark.parser import shark_args
@@ -101,18 +93,10 @@ def compile_through_fx(
if "cuda" in args.device:
shark_args.enable_tf32 = True
(
mlir_module,
func_name,
) = import_with_fx(
model=model,
inputs=inputs,
is_f16=is_f16,
f16_input_mask=f16_input_mask,
debug=debug,
model_name=model_name,
save_dir=save_dir,
mlir_module, func_name = import_with_fx(
model, inputs, is_f16, f16_input_mask
)
if use_tuned:
if "vae" in model_name.split("_")[0]:
args.annotation_model = "vae"
@@ -124,23 +108,16 @@ def compile_through_fx(
mlir_dialect="linalg",
)
if generate_vmfb:
shark_module = SharkInference(
mlir_module,
device=args.device,
mlir_dialect="linalg",
)
del mlir_module
gc.collect()
return _compile_module(shark_module, model_name, extra_args)
del mlir_module
gc.collect()
return _compile_module(shark_module, model_name, extra_args)
def set_iree_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--device_allocator=caching",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
@@ -255,15 +232,10 @@ def set_init_device_flags():
args.max_length = 64
# Use tuned models in the case of fp16, vulkan rdna3 or cuda sm devices.
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
if (
args.precision != "fp16"
args.hf_model_id == "prompthero/openjourney"
or args.ckpt_loc != ""
or args.precision != "fp16"
or args.height != 512
or args.width != 512
or args.batch_size != 1
@@ -271,26 +243,13 @@ def set_init_device_flags():
):
args.use_tuned = False
elif base_model_id not in [
"Linaqruf/anything-v3.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]:
args.use_tuned = False
elif "vulkan" in args.device and not any(
x in args.iree_vulkan_target_triple for x in ["rdna2", "rdna3"]
elif (
"vulkan" in args.device
and "rdna3" not in args.iree_vulkan_target_triple
):
args.use_tuned = False
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80", "sm_89"]:
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80"]:
args.use_tuned = False
elif args.use_base_vae and args.hf_model_id not in [
@@ -300,7 +259,7 @@ def set_init_device_flags():
args.use_tuned = False
if args.use_tuned:
print(f"Using tuned models for {base_model_id}/fp16/{args.device}.")
print(f"Using tuned models for {args.hf_model_id}/fp16/{args.device}.")
else:
print("Tuned models are currently not supported for this setting.")
@@ -322,27 +281,6 @@ def set_init_device_flags():
elif args.height != 512 or args.width != 512 or args.batch_size != 1:
args.import_mlir = True
elif args.use_tuned and args.hf_model_id in [
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"stabilityai/stable-diffusion-2-1",
]:
args.import_mlir = True
elif (
args.use_tuned
and "vulkan" in args.device
and "rdna2" in args.iree_vulkan_target_triple
):
args.import_mlir = True
elif (
args.use_tuned
and "cuda" in args.device
and get_cuda_sm_cc() == "sm_89"
):
args.import_mlir = True
# Utility to get list of devices available.
def get_available_devices():
@@ -417,11 +355,6 @@ def get_opt_flags(model, precision="fp16"):
return iree_flags
def get_path_stem(path):
path = Path(path)
return path.stem
def get_path_to_diffusers_checkpoint(custom_weights):
path = Path(custom_weights)
diffusers_path = path.parent.absolute()
@@ -432,7 +365,7 @@ def get_path_to_diffusers_checkpoint(custom_weights):
return path_to_diffusers
def preprocessCKPT(custom_weights, is_inpaint=False):
def preprocessCKPT(custom_weights):
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights)
if next(Path(path_to_diffusers).iterdir(), None):
print("Checkpoint already loaded at : ", path_to_diffusers)
@@ -453,20 +386,17 @@ def preprocessCKPT(custom_weights, is_inpaint=False):
print(
"Loading diffusers' pipeline from original stable diffusion checkpoint"
)
num_in_channels = 9 if is_inpaint else 4
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path=custom_weights,
extract_ema=extract_ema,
from_safetensors=from_safetensors,
num_in_channels=num_in_channels,
)
pipe.save_pretrained(path_to_diffusers)
print("Loading complete")
def load_vmfb(vmfb_path, model, precision):
model = "vae" if "base_vae" in model or "vae_encode" in model else model
model = "unet" if "stencil" in model else model
model = "vae" if "base_vae" in model else model
precision = "fp32" if "clip" in model else precision
extra_args = get_opt_flags(model, precision)
shark_module = SharkInference(mlir_module=None, device=args.device)
@@ -474,30 +404,24 @@ def load_vmfb(vmfb_path, model, precision):
return shark_module
# This utility returns vmfbs of Clip, Unet, Vae and Vae_encode, in case all of them
# This utility returns vmfbs of Clip, Unet and Vae, in case all three of them
# are present; deletes them otherwise.
def fetch_or_delete_vmfbs(extended_model_name, precision="fp32"):
def fetch_or_delete_vmfbs(basic_model_name, use_base_vae, precision="fp32"):
model_name = ["clip", "unet", "base_vae" if use_base_vae else "vae"]
vmfb_path = [
get_vmfb_path_name(extended_model_name[model])
for model in extended_model_name
get_vmfb_path_name(model + basic_model_name)[0] for model in model_name
]
number_of_vmfbs = len(vmfb_path)
vmfb_present = [os.path.isfile(vmfb) for vmfb in vmfb_path]
all_vmfb_present = True
compiled_models = [None] * number_of_vmfbs
for i in range(number_of_vmfbs):
all_vmfb_present = all_vmfb_present and vmfb_present[i]
all_vmfb_present = functools.reduce(operator.__and__, vmfb_present)
compiled_models = [None] * 3
# We need to delete vmfbs only if some of the models were compiled.
if not all_vmfb_present:
for i in range(number_of_vmfbs):
for i in range(len(vmfb_path)):
if vmfb_present[i]:
os.remove(vmfb_path[i])
print("Deleted: ", vmfb_path[i])
else:
model_name = [model for model in extended_model_name.keys()]
for i in range(number_of_vmfbs):
for i in range(len(vmfb_path)):
compiled_models[i] = load_vmfb(
vmfb_path[i], model_name[i], precision
)
@@ -535,108 +459,3 @@ def sanitize_seed(seed):
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
return seed
# clear all the cached objects to recompile cleanly.
def clear_all():
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed, extra_info={}):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(
output_path, "generated_imgs", dt.now().strftime("%Y%m%d")
)
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = Path(os.path.basename(args.ckpt_loc)).stem
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
new_entry.update(extra_info)
with open(csv_path, "a", encoding="utf-8") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
def get_generation_text_info(seeds, device):
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch_count={args.batch_count}, batch_size={args.batch_size}, max_length={args.max_length}"
return text_output

View File

@@ -0,0 +1,70 @@
# Stable Diffusion optimized for AMD RDNA2/RDNA3 GPUs
Before you start, please be aware that this is beta software that relies on a special AMD driver. Like all StableDiffusion GUIs published so far, you need some technical expertise to set it up. We apologize in advance if you bump into issues. If that happens, please don't hesitate to ask our Discord community for help! Please be assured that we (Nod and AMD) are working hard to improve the user experience in coming months.
If it works well for you, please "star" the following GitHub projects... this is one of the best ways to help and spread the word!
* https://github.com/nod-ai/SHARK
* https://github.com/iree-org/iree
## Install this specific AMD Drivers (AMD latest may not have all the fixes).
### AMD KB Drivers for RDNA2 and RDNA3:
*AMD Software: Adrenalin Edition 22.11.1 for MLIR/IREE Driver Version 22.20.29.09 for Windows® 10 and Windows® 11 (Windows Driver Store Version 31.0.12029.9003)*
First, for RDNA2 users, download this special driver in a folder of your choice. We recommend you keep the installation files around, since you may need to re-install it later, if Windows Update decides to overwrite it:
https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mlir-iree
For RDNA3, the latest driver 23.1.2 supports MLIR/IREE as well: https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-1-2-kb
KNOWN ISSUES with this special AMD driver:
* `Windows Update` may (depending how it's configured) automatically install a new official AMD driver that overwrites this IREE-specific driver. If Stable Diffusion used to work, then a few days later, it slows down a lot or produces incorrect results (e.g. black images), this may be the cause. To fix this problem, please check the installed driver version, and re-install the special driver if needed. (TODO: document how to prevent this `Windows Update` behavior!)
* Some people using this special driver experience mouse pointer accuracy issues, especially if using a larger-than-default mouse pointer. The clicked point isn't centered properly. One possible work-around is to reset the pointer size to "1" in "Change pointer size and color".
## Installation
Download the latest Windows SHARK SD binary [492 here](https://github.com/nod-ai/SHARK/releases/download/20230203.492/shark_sd_20230203_492.exe) in a folder of your choice. If you want nighly builds, you can look for them on the GitHub releases page.
Notes:
* We recommend that you download this EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files. Those contain Vulkan dispatches compiled from MLIR which can be outdated if you run a new EXE from the same folder. You can use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you:
* clear all the local artifacts with `--clear_all` OR
* clear the Vulkan shader cache: For Windows users this can be done by clearing the contents of `C:\Users\%username%\AppData\Local\AMD\VkCache\`. On Linux the same cache is typically located at `~/.cache/AMD/VkCache/`.
* clear the `huggingface` cache. In Windows, this is `C:\Users\%username%\.cache\huggingface`.
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE to start the web browser)
* The first run may take about 10-15 minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* If successful, you will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/?__theme=dark.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment. The application should stop.
* Please make sure to do the above step before you attempt to update the EXE to a new version.
# Results
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
The output on a 7900XTX would like:
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
Total image generation time: 2.5788655281066895sec
```
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.

View File

@@ -0,0 +1,209 @@
/* Overwrite the Gradio default theme with their .dark theme declarations */
:root {
--color-focus-primary: var(--color-grey-700);
--color-focus-secondary: var(--color-grey-600);
--color-focus-ring: rgb(55 65 81);
--color-background-primary: var(--color-grey-950);
--color-background-secondary: var(--color-grey-900);
--color-background-tertiary: var(--color-grey-800);
--color-text-body: var(--color-grey-100);
--color-text-label: var(--color-grey-200);
--color-text-placeholder: var(--color-grey);
--color-text-subdued: var(--color-grey-400);
--color-text-link-base: var(--color-blue-500);
--color-text-link-hover: var(--color-blue-400);
--color-text-link-visited: var(--color-blue-600);
--color-text-link-active: var(--color-blue-500);
--color-text-code-background: var(--color-grey-800);
--color-text-code-border: color.border-primary;
--color-border-primary: var(--color-grey-700);
--color-border-secondary: var(--color-grey-600);
--color-border-highlight: var(--color-accent-base);
--color-accent-base: var(--color-orange-500);
--color-accent-light: var(--color-orange-300);
--color-accent-dark: var(--color-orange-700);
--color-functional-error-base: var(--color-red-400);
--color-functional-error-subdued: var(--color-red-300);
--color-functional-error-background: var(--color-background-primary);
--color-functional-info-base: var(--color-yellow);
--color-functional-info-subdued: var(--color-yellow-300);
--color-functional-success-base: var(--color-green);
--color-functional-success-subdued: var(--color-green-300);
--shadow-spread: 2px;
--api-background: linear-gradient(to bottom, rgba(255, 216, 180, .05), transparent);
--api-pill-background: var(--color-orange-400);
--api-pill-border: var(--color-orange-600);
--api-pill-text: var(--color-orange-900);
--block-border-color: var(--color-border-primary);
--block-background: var(--color-background-tertiary);
--uploadable-border-color-hover: var(--color-border-primary);
--uploadable-border-color-loaded: var(--color-functional-success);
--uploadable-text-color: var(--color-text-subdued);
--block_label-border-color: var(--color-border-primary);
--block_label-icon-color: var(--color-text-label);
--block_label-shadow: var(--shadow-drop);
--block_label-background: var(--color-background-secondary);
--icon_button-icon-color-base: var(--color-text-label);
--icon_button-icon-color-hover: var(--color-text-label);
--icon_button-background-base: var(--color-background-primary);
--icon_button-background-hover: var(--color-background-primary);
--icon_button-border-color-base: var(--color-background-primary);
--icon_button-border-color-hover: var(--color-border-secondary);
--input-text-color: var(--color-text-body);
--input-border-color-base: var(--color-border-primary);
--input-border-color-hover: var(--color-border-primary);
--input-border-color-focus: var(--color-border-primary);
--input-background-base: var(--color-background-tertiary);
--input-background-hover: var(--color-background-tertiary);
--input-background-focus: var(--color-background-tertiary);
--input-shadow: var(--shadow-inset);
--checkbox-border-color-base: var(--color-border-primary);
--checkbox-border-color-hover: var(--color-focus-primary);
--checkbox-border-color-focus: var(--color-blue-500);
--checkbox-background-base: var(--color-background-primary);
--checkbox-background-hover: var(--color-background-primary);
--checkbox-background-focus: var(--color-background-primary);
--checkbox-background-selected: var(--color-blue-600);
--checkbox-label-border-color-base: var(--color-border-primary);
--checkbox-label-border-color-hover: var(--color-border-primary);
--checkbox-label-border-color-focus: var(--color-border-secondary);
--checkbox-label-background-base: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--checkbox-label-background-hover: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--checkbox-label-background-focus: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--form-seperator-color: var(--color-border-primary);
--button-primary-border-color-base: var(--color-orange-600);
--button-primary-border-color-hover: var(--color-orange-600);
--button-primary-border-color-focus: var(--color-orange-600);
--button-primary-text-color-base: white;
--button-primary-text-color-hover: white;
--button-primary-text-color-focus: white;
--button-primary-background-base: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-700));
--button-primary-background-hover: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
--button-primary-background-focus: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
--button-secondary-border-color-base: var(--color-grey-600);
--button-secondary-border-color-hover: var(--color-grey-600);
--button-secondary-border-color-focus: var(--color-grey-600);
--button-secondary-text-color-base: white;
--button-secondary-text-color-hover: white;
--button-secondary-text-color-focus: white;
--button-secondary-background-base: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-700));
--button-secondary-background-hover: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
--button-secondary-background-focus: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
--button-cancel-border-color-base: var(--color-red-600);
--button-cancel-border-color-hover: var(--color-red-600);
--button-cancel-border-color-focus: var(--color-red-600);
--button-cancel-text-color-base: white;
--button-cancel-text-color-hover: white;
--button-cancel-text-color-focus: white;
--button-cancel-background-base: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-700));
--button-cancel-background-focus: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
--button-cancel-background-hover: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
--button-plain-border-color-base: var(--color-grey-600);
--button-plain-border-color-hover: var(--color-grey-500);
--button-plain-border-color-focus: var(--color-grey-500);
--button-plain-text-color-base: var(--color-text-body);
--button-plain-text-color-hover: var(--color-text-body);
--button-plain-text-color-focus: var(--color-text-body);
--button-plain-background-base: var(--color-grey-700);
--button-plain-background-hover: var(--color-grey-700);
--button-plain-background-focus: var(--color-grey-700);
--gallery-label-background-base: var(--color-grey-50);
--gallery-label-background-hover: var(--color-grey-50);
--gallery-label-border-color-base: var(--color-border-primary);
--gallery-label-border-color-hover: var(--color-border-primary);
--gallery-thumb-background-base: var(--color-grey-900);
--gallery-thumb-background-hover: var(--color-grey-900);
--gallery-thumb-border-color-base: var(--color-border-primary);
--gallery-thumb-border-color-hover: var(--color-accent-base);
--gallery-thumb-border-color-focus: var(--color-blue-500);
--gallery-thumb-border-color-selected: var(--color-accent-base);
--chatbot-border-border-color-base: transparent;
--chatbot-border-border-color-latest: transparent;
--chatbot-user-background-base: ;
--chatbot-user-background-latest: ;
--chatbot-user-text-color-base: white;
--chatbot-user-text-color-latest: white;
--chatbot-bot-background-base: ;
--chatbot-bot-background-latest: ;
--chatbot-bot-text-color-base: white;
--chatbot-bot-text-color-latest: white;
--label-gradient-from: var(--color-orange-400);
--label-gradient-to: var(--color-orange-600);
--table-odd-background: var(--color-grey-900);
--table-even-background: var(--color-grey-950);
--table-background-edit: transparent;
--dataset-gallery-background-base: var(--color-background-primary);
--dataset-gallery-background-hover: var(--color-grey-800);
--dataset-dataframe-border-base: var(--color-border-primary);
--dataset-dataframe-border-hover: var(--color-border-secondary);
--dataset-table-background-base: transparent;
--dataset-table-background-hover: var(--color-grey-700);
--dataset-table-border-base: var(--color-grey-800);
--dataset-table-border-hover: var(--color-grey-800);
}
/* SHARK theme customization */
.gradio-container {
background-color: var(--color-background-primary);
}
.container {
background-color: black !important;
padding-top: 20px !important;
}
#ui_title {
padding: 10px !important;
}
#top_logo {
background-color: transparent;
border-radius: 0 !important;
border: 0;
}
#demo_title {
background-color: var(--color-background-primary);
border-radius: 0 !important;
border: 0;
padding-top: 15px;
padding-bottom: 0px;
width: 350px !important;
}
#demo_title_outer {
border-radius: 0;
}
#prompt_box_outer div:first-child {
border-radius: 0 !important
}
#prompt_box textarea {
background-color: var(--color-background-primary) !important;
}
#prompt_examples {
margin: 0 !important;
}
#prompt_examples svg {
display: none !important;
}
#ui_body {
background-color: var(--color-background-secondary) !important;
padding: 10px !important;
border-radius: 0.5em !important;
}
#img_result+div {
display: none !important;
}
footer {
display: none !important;
}

View File

@@ -1,25 +1,14 @@
import os
import sys
from pathlib import Path
import glob
if "AMD_ENABLE_LLPC" not in os.environ:
os.environ["AMD_ENABLE_LLPC"] = "1"
if sys.platform == "darwin":
os.environ["DYLD_LIBRARY_PATH"] = "/usr/local/lib"
import gradio as gr
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src import args, clear_all
from apps.stable_diffusion.web.utils.gradio_configs import (
clear_gradio_tmp_imgs_folder,
)
from apps.stable_diffusion.web.ui.utils import get_custom_model_path
# Clear all gradio tmp images from the last session
clear_gradio_tmp_imgs_folder()
# Create the custom model folder if it doesn't already exist
get_custom_model_path().mkdir(parents=True, exist_ok=True)
if args.clear_all:
clear_all()
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
@@ -29,174 +18,245 @@ def resource_path(relative_path):
return os.path.join(base_path, relative_path)
dark_theme = resource_path("ui/css/sd_dark_theme.css")
from apps.stable_diffusion.web.ui import (
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
txt2img_sendto_upscaler,
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
img2img_sendto_upscaler,
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
inpaint_sendto_upscaler,
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
outpaint_sendto_upscaler,
upscaler_web,
upscaler_gallery,
upscaler_init_image,
upscaler_sendto_img2img,
upscaler_sendto_inpaint,
upscaler_sendto_outpaint,
lora_train_web,
import gradio as gr
from PIL import Image
from apps.stable_diffusion.src import (
prompt_examples,
args,
get_available_devices,
)
from apps.stable_diffusion.scripts import txt2img_inf
# init global sd pipeline and config
global_obj.init()
nodlogo_loc = resource_path("logos/nod-logo.png")
sdlogo_loc = resource_path("logos/sd-demo-logo.png")
def register_button_click(button, selectedid, inputs, outputs):
button.click(
lambda x: (
x[0]["name"] if len(x) != 0 else None,
gr.Tabs.update(selected=selectedid),
),
inputs,
outputs,
)
demo_css = resource_path("css/sd_dark_theme.css")
with gr.Blocks(
css=dark_theme, analytics_enabled=False, title="Stable Diffusion"
) as sd_web:
with gr.Tabs() as tabs:
with gr.TabItem(label="Text-to-Image", id=0):
txt2img_web.render()
with gr.TabItem(label="Image-to-Image", id=1):
img2img_web.render()
with gr.TabItem(label="Inpainting", id=2):
inpaint_web.render()
with gr.TabItem(label="Outpainting", id=3):
outpaint_web.render()
with gr.TabItem(label="Upscaler", id=4):
upscaler_web.render()
with gr.TabItem(label="LoRA Training", id=5):
lora_train_web.render()
with gr.Blocks(title="Stable Diffusion", css=demo_css) as shark_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
logo2 = Image.open(sdlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=100)
with gr.Column(scale=5, elem_id="demo_title_outer"):
gr.Image(
value=logo2,
show_label=False,
interactive=False,
elem_id="demo_title",
).style(width=150, height=100)
register_button_click(
txt2img_sendto_img2img,
1,
[txt2img_gallery],
[img2img_init_image, tabs],
)
register_button_click(
txt2img_sendto_inpaint,
2,
[txt2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
txt2img_sendto_outpaint,
3,
[txt2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
txt2img_sendto_upscaler,
4,
[txt2img_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
img2img_sendto_inpaint,
2,
[img2img_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_outpaint,
3,
[img2img_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
img2img_sendto_upscaler,
4,
[img2img_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
inpaint_sendto_img2img,
1,
[inpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
inpaint_sendto_outpaint,
3,
[inpaint_gallery],
[outpaint_init_image, tabs],
)
register_button_click(
inpaint_sendto_upscaler,
4,
[inpaint_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
outpaint_sendto_img2img,
1,
[outpaint_gallery],
[img2img_init_image, tabs],
)
register_button_click(
outpaint_sendto_inpaint,
2,
[outpaint_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
outpaint_sendto_upscaler,
4,
[outpaint_gallery],
[upscaler_init_image, tabs],
)
register_button_click(
upscaler_sendto_img2img,
1,
[upscaler_gallery],
[img2img_init_image, tabs],
)
register_button_click(
upscaler_sendto_inpaint,
2,
[upscaler_gallery],
[inpaint_init_image, tabs],
)
register_button_click(
upscaler_sendto_outpaint,
3,
[upscaler_gallery],
[outpaint_init_image, tabs],
)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
ckpt_path = (
Path(args.ckpt_dir)
if args.ckpt_dir
else Path(Path.cwd(), "models")
)
ckpt_path.mkdir(parents=True, exist_ok=True)
types = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
ckpt_files = ["None"]
for extn in types:
files = glob.glob(os.path.join(ckpt_path, extn))
ckpt_files.extend(files)
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {ckpt_path})",
value="None",
choices=ckpt_files
+ [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
],
)
hf_model_id = gr.Textbox(
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value="cyberpunk forest by Salvador Dali",
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="trees, green",
lines=1,
elem_id="prompt_box",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
value="SharkEulerDiscrete",
choices=[
"DDIM",
"PNDM",
"LMSDiscrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
],
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=True,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=False,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 786, value=512, step=8, label="Height"
)
width = gr.Slider(
384, 786, value=512, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value="fp16",
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=64,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=50, step=1, label="Steps"
)
guidance_scale = gr.Slider(
0,
50,
value=7.5,
step=0.1,
label="CFG Scale",
)
with gr.Row():
batch_count = gr.Slider(
1,
10,
value=1,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=1,
step=1,
label="Batch Size",
interactive=True,
)
with gr.Row():
seed = gr.Number(value=-1, precision=0, label="Seed")
available_devices = get_available_devices()
device = gr.Dropdown(
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => Math.floor(Math.random() * 4294967295)",
)
stable_diffusion = gr.Button("Generate Image")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
sd_web.queue()
sd_web.launch(
with gr.Column(scale=1, min_width=600):
with gr.Group():
gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2], height="auto")
std_output = gr.Textbox(
value="Nothing to show.",
lines=4,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
kwargs = dict(
fn=txt2img_inf,
inputs=[
prompt,
negative_prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[gallery, std_output],
show_progress=args.progress_bar,
)
prompt.submit(**kwargs)
stable_diffusion.click(**kwargs)
shark_web.queue()
shark_web.launch(
share=args.share,
inbrowser=True,
server_name="0.0.0.0",

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

View File

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -1,41 +0,0 @@
from apps.stable_diffusion.web.ui.txt2img_ui import (
txt2img_web,
txt2img_gallery,
txt2img_sendto_img2img,
txt2img_sendto_inpaint,
txt2img_sendto_outpaint,
txt2img_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.img2img_ui import (
img2img_web,
img2img_gallery,
img2img_init_image,
img2img_sendto_inpaint,
img2img_sendto_outpaint,
img2img_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.inpaint_ui import (
inpaint_web,
inpaint_gallery,
inpaint_init_image,
inpaint_sendto_img2img,
inpaint_sendto_outpaint,
inpaint_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.outpaint_ui import (
outpaint_web,
outpaint_gallery,
outpaint_init_image,
outpaint_sendto_img2img,
outpaint_sendto_inpaint,
outpaint_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.upscaler_ui import (
upscaler_web,
upscaler_gallery,
upscaler_init_image,
upscaler_sendto_img2img,
upscaler_sendto_inpaint,
upscaler_sendto_outpaint,
)
from apps.stable_diffusion.web.ui.lora_train_ui import lora_train_web

View File

@@ -1,198 +0,0 @@
/*
Apply Gradio dark theme to the default Gradio theme.
Procedure to upgrade the dark theme:
- Using your browser, visit http://localhost:8080/?__theme=dark
- Open your browser inspector, search for the .dark css class
- Copy .dark class declarations, apply them here into :root
*/
:root {
--body-background-fill: var(--background-fill-primary);
--body-text-color: var(--neutral-100);
--color-accent-soft: var(--neutral-700);
--background-fill-primary: var(--neutral-950);
--background-fill-secondary: var(--neutral-900);
--border-color-accent: var(--neutral-600);
--border-color-primary: var(--neutral-700);
--link-text-color-active: var(--secondary-500);
--link-text-color: var(--secondary-500);
--link-text-color-hover: var(--secondary-400);
--link-text-color-visited: var(--secondary-600);
--body-text-color-subdued: var(--neutral-400);
--shadow-spread: 1px;
--block-background-fill: var(--neutral-800);
--block-border-color: var(--border-color-primary);
--block_border_width: None;
--block-info-text-color: var(--body-text-color-subdued);
--block-label-background-fill: var(--background-fill-secondary);
--block-label-border-color: var(--border-color-primary);
--block_label_border_width: None;
--block-label-text-color: var(--neutral-200);
--block_shadow: None;
--block_title_background_fill: None;
--block_title_border_color: None;
--block_title_border_width: None;
--block-title-text-color: var(--neutral-200);
--panel-background-fill: var(--background-fill-secondary);
--panel-border-color: var(--border-color-primary);
--panel_border_width: None;
--checkbox-background-color: var(--neutral-800);
--checkbox-background-color-focus: var(--checkbox-background-color);
--checkbox-background-color-hover: var(--checkbox-background-color);
--checkbox-background-color-selected: var(--secondary-600);
--checkbox-border-color: var(--neutral-700);
--checkbox-border-color-focus: var(--secondary-500);
--checkbox-border-color-hover: var(--neutral-600);
--checkbox-border-color-selected: var(--secondary-600);
--checkbox-border-width: var(--input-border-width);
--checkbox-label-background-fill: linear-gradient(to top, var(--neutral-900), var(--neutral-800));
--checkbox-label-background-fill-hover: linear-gradient(to top, var(--neutral-900), var(--neutral-800));
--checkbox-label-background-fill-selected: var(--checkbox-label-background-fill);
--checkbox-label-border-color: var(--border-color-primary);
--checkbox-label-border-color-hover: var(--checkbox-label-border-color);
--checkbox-label-border-width: var(--input-border-width);
--checkbox-label-text-color: var(--body-text-color);
--checkbox-label-text-color-selected: var(--checkbox-label-text-color);
--error-background-fill: var(--background-fill-primary);
--error-border-color: var(--border-color-primary);
--error_border_width: None;
--error-text-color: #ef4444;
--input-background-fill: var(--neutral-800);
--input-background-fill-focus: var(--secondary-600);
--input-background-fill-hover: var(--input-background-fill);
--input-border-color: var(--border-color-primary);
--input-border-color-focus: var(--neutral-700);
--input-border-color-hover: var(--input-border-color);
--input_border_width: None;
--input-placeholder-color: var(--neutral-500);
--input_shadow: None;
--input-shadow-focus: 0 0 0 var(--shadow-spread) var(--neutral-700), var(--shadow-inset);
--loader_color: None;
--slider_color: None;
--stat-background-fill: linear-gradient(to right, var(--primary-400), var(--primary-600));
--table-border-color: var(--neutral-700);
--table-even-background-fill: var(--neutral-950);
--table-odd-background-fill: var(--neutral-900);
--table-row-focus: var(--color-accent-soft);
--button-border-width: var(--input-border-width);
--button-cancel-background-fill: linear-gradient(to bottom right, #dc2626, #b91c1c);
--button-cancel-background-fill-hover: linear-gradient(to bottom right, #dc2626, #dc2626);
--button-cancel-border-color: #dc2626;
--button-cancel-border-color-hover: var(--button-cancel-border-color);
--button-cancel-text-color: white;
--button-cancel-text-color-hover: var(--button-cancel-text-color);
--button-primary-background-fill: linear-gradient(to bottom right, var(--primary-500), var(--primary-600));
--button-primary-background-fill-hover: linear-gradient(to bottom right, var(--primary-500), var(--primary-500));
--button-primary-border-color: var(--primary-500);
--button-primary-border-color-hover: var(--button-primary-border-color);
--button-primary-text-color: white;
--button-primary-text-color-hover: var(--button-primary-text-color);
--button-secondary-background-fill: linear-gradient(to bottom right, var(--neutral-600), var(--neutral-700));
--button-secondary-background-fill-hover: linear-gradient(to bottom right, var(--neutral-600), var(--neutral-600));
--button-secondary-border-color: var(--neutral-600);
--button-secondary-border-color-hover: var(--button-secondary-border-color);
--button-secondary-text-color: white;
--button-secondary-text-color-hover: var(--button-secondary-text-color);
--block-border-width: 1px;
--block-label-border-width: 1px;
--form-gap-width: 1px;
--error-border-width: 1px;
--input-border-width: 1px;
}
/* SHARK theme */
/* display in full width for desktop devices */
@media (min-width: 1536px)
{
.gradio-container {
max-width: var(--size-full) !important;
}
}
.gradio-container .contain {
padding: 0 var(--size-4) !important;
}
.container {
background-color: black !important;
padding-top: var(--size-5) !important;
}
#ui_title {
padding: var(--size-2) 0 0 var(--size-1);
}
#top_logo {
background-color: transparent;
border-radius: 0 !important;
border: 0;
}
#demo_title_outer {
border-radius: 0;
}
#prompt_box_outer div:first-child {
border-radius: 0 !important
}
#prompt_box textarea, #negative_prompt_box textarea {
background-color: var(--background-fill-primary) !important;
}
#prompt_examples {
margin: 0 !important;
}
#prompt_examples svg {
display: none !important;
}
#ui_body {
padding: var(--size-2) !important;
border-radius: 0.5em !important;
}
#img_result+div {
display: none !important;
}
footer {
display: none !important;
}
#gallery + div {
border-radius: 0 !important;
}
/* Prevent progress bar to block gallery navigation while building images (Gradio V3.19.0) */
#gallery .wrap.default {
pointer-events: none;
}
/* Import Png info box */
#txt2img_prompt_image .fixed-height {
height: var(--size-32);
}
/* Hide "remove buttons" from ui dropdowns */
#custom_model .token-remove.remove-all,
#scheduler .token-remove.remove-all,
#device .token-remove.remove-all,
#stencil_model .token-remove.remove-all {
display: none;
}
/* Hide selected items from ui dropdowns */
#custom_model .options .item .inner-item,
#scheduler .options .item .inner-item,
#device .options .item .inner-item,
#stencil_model .options .item .inner-item {
display:none;
}
/* Hide the download icon from the nod logo */
#top_logo .download {
display: none;
}

View File

@@ -1,261 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import img2img_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_models,
cancel_sd,
)
with gr.Blocks(title="Image-to-Image") as img2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
img2img_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="Stencil Options", open=False):
with gr.Row():
use_stencil = gr.Dropdown(
elem_id="stencil_model",
label="Stencil model",
value="None",
choices=["None", "canny", "openpose", "scribble"],
)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path()})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files(),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
strength = gr.Slider(
0,
1,
value=args.strength,
step=0.01,
label="Denoising Strength",
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
img2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
img2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
img2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
img2img_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=img2img_inf,
inputs=[
prompt,
negative_prompt,
img2img_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
use_stencil,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
],
outputs=[img2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -1,263 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import inpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_paint_models,
cancel_sd,
)
with gr.Blocks(title="Inpainting") as inpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_paint_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
inpaint_init_image = gr.Image(
label="Masked Image",
source="upload",
tool="sketch",
type="pil",
).style(height=350)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path()})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files(),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
inpaint_full_res = gr.Radio(
choices=["Whole picture", "Only masked"],
type="index",
value="Whole picture",
label="Inpaint area",
)
inpaint_full_res_padding = gr.Slider(
minimum=0,
maximum=256,
step=4,
value=32,
label="Only masked padding, pixels",
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
inpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
inpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
inpaint_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
inpaint_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=inpaint_inf,
inputs=[
prompt,
negative_prompt,
inpaint_init_image,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
],
outputs=[inpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -1,205 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import lora_train
from apps.stable_diffusion.src import prompt_examples, args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list_txt2img,
predefined_models,
)
with gr.Blocks(title="Lora Training") as lora_train_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="image_dir_box_outer"):
training_images_dir = gr.Textbox(
label="ImageDirectory",
value=args.training_images_dir,
lines=1,
elem_id="prompt_box",
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value=args.scheduler,
choices=scheduler_list_txt2img,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1,
2000,
value=args.training_steps,
step=1,
label="Training Steps",
)
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Row():
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
with gr.Column(scale=3):
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=True,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
train_lora = gr.Button("Train LoRA")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
with gr.Column(scale=1, min_width=600):
with gr.Group():
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
lora_save_dir = (
args.lora_save_dir if args.lora_save_dir else Path.cwd()
)
lora_save_dir = Path(lora_save_dir, "lora")
output_loc = gr.Textbox(
label="Saving Lora at",
value=lora_save_dir,
)
kwargs = dict(
fn=lora_train,
inputs=[
prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
training_images_dir,
output_loc,
],
outputs=[std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
train_click = train_lora.click(**kwargs)
stop_batch.click(fn=None, cancels=[prompt_submit, train_click])

View File

@@ -1,283 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import outpaint_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_paint_models,
cancel_sd,
)
with gr.Blocks(title="Outpainting") as outpaint_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_paint_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: ghunkins/stable-diffusion-liberty-inpainting",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
outpaint_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path()})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files(),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="PNDM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
pixels = gr.Slider(
8,
256,
value=args.pixels,
step=8,
label="Pixels to expand",
)
mask_blur = gr.Slider(
0,
64,
value=args.mask_blur,
step=1,
label="Mask blur",
)
with gr.Row():
directions = gr.CheckboxGroup(
label="Outpainting direction",
choices=["left", "right", "up", "down"],
value=["left", "right", "up", "down"],
)
with gr.Row():
noise_q = gr.Slider(
0.0,
4.0,
value=1.0,
step=0.01,
label="Fall-off exponent (lower=higher detail)",
)
color_variation = gr.Slider(
0.0,
1.0,
value=0.05,
step=0.01,
label="Color variation",
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=20, step=1, label="Steps"
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
outpaint_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
outpaint_sendto_img2img = gr.Button(value="SendTo Img2Img")
outpaint_sendto_inpaint = gr.Button(value="SendTo Inpaint")
outpaint_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=outpaint_inf,
inputs=[
prompt,
negative_prompt,
outpaint_init_image,
pixels,
mask_blur,
directions,
noise_q,
color_variation,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
],
outputs=[outpaint_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -1,279 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import txt2img_inf
from apps.stable_diffusion.src import prompt_examples, args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list_txt2img,
predefined_models,
cancel_sd,
)
with gr.Blocks(title="Text-to-Image") as txt2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Column(scale=1, min_width=170):
png_info_img = gr.Image(
label="Import PNG info",
elem_id="txt2img_prompt_image",
type="pil",
tool="None",
visible=True,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
lora_weights = gr.Dropdown(
label=f"Standlone LoRA weights (Path: {get_custom_model_path()})",
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files(),
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standlone LoRA weights dropdown on the left if you want to use a standalone HuggingFace model ID for LoRA here e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value=args.scheduler,
choices=scheduler_list_txt2img,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
384, 768, value=args.height, step=8, label="Height"
)
width = gr.Slider(
384, 768, value=args.width, step=8, label="Width"
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=False,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Row():
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
with gr.Column(scale=3):
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=True,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Accordion(label="Prompt Examples!", open=False):
ex = gr.Examples(
examples=prompt_examples,
inputs=prompt,
cache_examples=False,
elem_id="prompt_examples",
)
with gr.Column(scale=1, min_width=600):
with gr.Group():
txt2img_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
txt2img_sendto_img2img = gr.Button(value="SendTo Img2Img")
txt2img_sendto_inpaint = gr.Button(value="SendTo Inpaint")
txt2img_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
txt2img_sendto_upscaler = gr.Button(
value="SendTo Upscaler"
)
kwargs = dict(
fn=txt2img_inf,
inputs=[
prompt,
negative_prompt,
height,
width,
steps,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
],
outputs=[txt2img_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)
from apps.stable_diffusion.web.utils.png_metadata import (
import_png_metadata,
)
png_info_img.change(
fn=import_png_metadata,
inputs=[
png_info_img,
],
outputs=[
png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
custom_model,
hf_model_id,
],
)

View File

@@ -1,239 +0,0 @@
from pathlib import Path
import os
import gradio as gr
from PIL import Image
from apps.stable_diffusion.scripts import upscaler_inf
from apps.stable_diffusion.src import args
from apps.stable_diffusion.web.ui.utils import (
available_devices,
nodlogo_loc,
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_upscaler_models,
)
with gr.Blocks(title="Upscaler") as upscaler_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
with gr.Column(scale=1, elem_id="demo_title_outer"):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
).style(width=150, height=50)
with gr.Row(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
with gr.Row():
custom_model = gr.Dropdown(
label=f"Models (Custom Model path: {get_custom_model_path()})",
elem_id="custom_model",
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "None",
choices=["None"]
+ get_custom_model_files()
+ predefined_upscaler_models,
)
hf_model_id = gr.Textbox(
elem_id="hf_model_id",
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=args.prompts[0],
lines=1,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
lines=1,
elem_id="negative_prompt_box",
)
upscaler_init_image = gr.Image(
label="Input Image", type="pil"
).style(height=300)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="DDIM",
choices=scheduler_list,
)
with gr.Group():
save_metadata_to_png = gr.Checkbox(
label="Save prompt information to PNG",
value=args.write_metadata_to_png,
interactive=True,
)
save_metadata_to_json = gr.Checkbox(
label="Save prompt information to JSON file",
value=args.save_metadata_to_json,
interactive=True,
)
with gr.Row():
height = gr.Slider(
128,
512,
value=args.height,
step=128,
label="Height",
)
width = gr.Slider(
128,
512,
value=args.width,
step=128,
label="Width",
)
precision = gr.Radio(
label="Precision",
value=args.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
choices=[
64,
77,
],
visible=False,
)
with gr.Row():
steps = gr.Slider(
1, 100, value=args.steps, step=1, label="Steps"
)
noise_level = gr.Slider(
0,
100,
value=args.noise_level,
step=1,
label="Noise Level",
)
with gr.Row():
with gr.Column(scale=3):
guidance_scale = gr.Slider(
0,
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Column(scale=3):
batch_count = gr.Slider(
1,
100,
value=args.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=args.batch_size,
step=1,
label="Batch Size",
interactive=False,
visible=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
seed = gr.Number(
value=args.seed, precision=0, label="Seed"
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=available_devices[0],
choices=available_devices,
)
with gr.Row():
with gr.Column(scale=2):
random_seed = gr.Button("Randomize Seed")
random_seed.click(
None,
inputs=[],
outputs=[seed],
_js="() => -1",
)
with gr.Column(scale=6):
stable_diffusion = gr.Button("Generate Image(s)")
with gr.Column(scale=1, min_width=600):
with gr.Group():
upscaler_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=[2])
std_output = gr.Textbox(
value="Nothing to show.",
lines=1,
show_label=False,
)
output_dir = args.output_dir if args.output_dir else Path.cwd()
output_dir = Path(output_dir, "generated_imgs")
output_loc = gr.Textbox(
label="Saving Images at",
value=output_dir,
interactive=False,
)
with gr.Row():
upscaler_sendto_img2img = gr.Button(value="SendTo Img2Img")
upscaler_sendto_inpaint = gr.Button(value="SendTo Inpaint")
upscaler_sendto_outpaint = gr.Button(
value="SendTo Outpaint"
)
kwargs = dict(
fn=upscaler_inf,
inputs=[
prompt,
negative_prompt,
upscaler_init_image,
height,
width,
steps,
noise_level,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
custom_model,
hf_model_id,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
],
outputs=[upscaler_gallery, std_output],
show_progress=args.progress_bar,
)
prompt_submit = prompt.submit(**kwargs)
neg_prompt_submit = negative_prompt.submit(**kwargs)
generate_click = stable_diffusion.click(**kwargs)
stop_batch.click(
fn=None, cancels=[prompt_submit, neg_prompt_submit, generate_click]
)

View File

@@ -1,105 +0,0 @@
import os
import sys
from apps.stable_diffusion.src import get_available_devices
import glob
from pathlib import Path
from apps.stable_diffusion.src import args
from dataclasses import dataclass
import apps.stable_diffusion.web.utils.global_obj as global_obj
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_CANCEL,
)
@dataclass
class Config:
mode: str
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
use_lora: str
use_stencil: str
custom_model_filetypes = (
"*.ckpt",
"*.safetensors",
) # the tuple of file types
scheduler_list = [
"DDIM",
"PNDM",
"DPMSolverMultistep",
"EulerAncestralDiscrete",
]
scheduler_list_txt2img = [
"DDIM",
"PNDM",
"LMSDiscrete",
"KDPM2Discrete",
"DPMSolverMultistep",
"EulerDiscrete",
"EulerAncestralDiscrete",
"SharkEulerDiscrete",
]
predefined_models = [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
]
predefined_paint_models = [
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]
predefined_upscaler_models = [
"stabilityai/stable-diffusion-x4-upscaler",
]
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
def get_custom_model_path():
return Path(args.ckpt_dir) if args.ckpt_dir else Path(Path.cwd(), "models")
def get_custom_model_pathfile(custom_model_name):
return os.path.join(get_custom_model_path(), custom_model_name)
def get_custom_model_files():
ckpt_files = []
for extn in custom_model_filetypes:
files = [
os.path.basename(x)
for x in glob.glob(os.path.join(get_custom_model_path(), extn))
]
ckpt_files.extend(files)
return sorted(ckpt_files, key=str.casefold)
def cancel_sd():
# Try catch it, as gc can delete global_obj.sd_obj while switching model
try:
global_obj.set_sd_status(SD_STATE_CANCEL)
except Exception:
pass
nodlogo_loc = resource_path("logos/nod-logo.png")
available_devices = get_available_devices()

View File

@@ -1,56 +0,0 @@
import gc
"""
The global objects include SD pipeline and config.
Maintaining the global objects would avoid creating extra pipeline objects when switching modes.
Also we could avoid memory leak when switching models by clearing the cache.
"""
def init():
global sd_obj
global config_obj
sd_obj = None
config_obj = None
def set_sd_obj(value):
global sd_obj
sd_obj = value
def set_cfg_obj(value):
global config_obj
config_obj = value
def set_schedulers(value):
global sd_obj
sd_obj.scheduler = value
def get_sd_obj():
return sd_obj
def get_cfg_obj():
return config_obj
def set_sd_status(value):
global sd_obj
sd_obj.status = value
def get_sd_status():
global sd_obj
return sd_obj.status
def clear_cache():
global sd_obj
global config_obj
del sd_obj
del config_obj
gc.collect()

View File

@@ -1,31 +0,0 @@
import os
import tempfile
import gradio
from os import listdir
gradio_tmp_imgs_folder = os.path.join(os.getcwd(), "shark_tmp/")
# Clear all gradio tmp images
def clear_gradio_tmp_imgs_folder():
if not os.path.exists(gradio_tmp_imgs_folder):
return
for fileName in listdir(gradio_tmp_imgs_folder):
# Delete tmp png files
if fileName.startswith("tmp") and fileName.endswith(".png"):
os.remove(gradio_tmp_imgs_folder + fileName)
# Overwrite save_pil_to_file from gradio to save tmp images generated by gradio into our own tmp folder
def save_pil_to_file(pil_image, dir=None):
if not os.path.exists(gradio_tmp_imgs_folder):
os.mkdir(gradio_tmp_imgs_folder)
file_obj = tempfile.NamedTemporaryFile(
delete=False, suffix=".png", dir=gradio_tmp_imgs_folder
)
pil_image.save(file_obj)
return file_obj
# Register save_pil_to_file override
gradio.processing_utils.save_pil_to_file = save_pil_to_file

View File

@@ -1,148 +0,0 @@
import re
from pathlib import Path
from apps.stable_diffusion.web.ui.txt2img_ui import (
png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
custom_model,
hf_model_id,
)
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
scheduler_list_txt2img,
predefined_models,
)
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
def parse_generation_parameters(x: str):
res = {}
prompt = ""
negative_prompt = ""
done_with_prompt = False
*lines, lastline = x.strip().split("\n")
if len(re_param.findall(lastline)) < 3:
lines.append(lastline)
lastline = ""
for i, line in enumerate(lines):
line = line.strip()
if line.startswith("Negative prompt:"):
done_with_prompt = True
line = line[16:].strip()
if done_with_prompt:
negative_prompt += ("" if negative_prompt == "" else "\n") + line
else:
prompt += ("" if prompt == "" else "\n") + line
res["Prompt"] = prompt
res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline):
v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v
m = re_imagesize.match(v)
if m is not None:
res[k + "-1"] = m.group(1)
res[k + "-2"] = m.group(2)
else:
res[k] = v
# Missing CLIP skip means it was set to 1 (the default)
if "Clip skip" not in res:
res["Clip skip"] = "1"
hypernet = res.get("Hypernet", None)
if hypernet is not None:
res[
"Prompt"
] += f"""<hypernet:{hypernet}:{res.get("Hypernet strength", "1.0")}>"""
if "Hires resize-1" not in res:
res["Hires resize-1"] = 0
res["Hires resize-2"] = 0
return res
def import_png_metadata(pil_data):
try:
png_info = pil_data.info["parameters"]
metadata = parse_generation_parameters(png_info)
png_hf_model_id = ""
png_custom_model = ""
if "Model" in metadata:
# Remove extension from model info
if metadata["Model"].endswith(".safetensors") or metadata[
"Model"
].endswith(".ckpt"):
metadata["Model"] = Path(metadata["Model"]).stem
# Check for the model name match with one of the local ckpt or safetensors files
if Path(
get_custom_model_pathfile(metadata["Model"] + ".ckpt")
).is_file():
png_custom_model = metadata["Model"] + ".ckpt"
if Path(
get_custom_model_pathfile(metadata["Model"] + ".safetensors")
).is_file():
png_custom_model = metadata["Model"] + ".safetensors"
# Check for a model match with one of the default model list (ex: "Linaqruf/anything-v3.0")
if metadata["Model"] in predefined_models:
png_custom_model = metadata["Model"]
# If nothing had matched, check vendor/hf_model_id
if not png_custom_model and metadata["Model"].count("/"):
png_hf_model_id = metadata["Model"]
# No matching model was found
if not png_custom_model and not png_hf_model_id:
print(
"Import PNG info: Unable to find a matching model for %s"
% metadata["Model"]
)
outputs = {
png_info_img: None,
negative_prompt: metadata["Negative prompt"],
steps: int(metadata["Steps"]),
guidance_scale: float(metadata["CFG scale"]),
seed: int(metadata["Seed"]),
width: float(metadata["Size-1"]),
height: float(metadata["Size-2"]),
}
if "Model" in metadata and png_custom_model:
outputs[custom_model] = png_custom_model
outputs[hf_model_id] = ""
if "Model" in metadata and png_hf_model_id:
outputs[custom_model] = "None"
outputs[hf_model_id] = png_hf_model_id
if "Prompt" in metadata:
outputs[prompt] = metadata["Prompt"]
if "Sampler" in metadata:
if metadata["Sampler"] in scheduler_list_txt2img:
outputs[scheduler] = metadata["Sampler"]
else:
print(
"Import PNG info: Unable to find a scheduler for %s"
% metadata["Sampler"]
)
return outputs
except Exception as ex:
if pil_data and pil_data.info.get("parameters"):
print("import_png_metadata failed with %s" % ex)
pass
return {
png_info_img: None,
}

View File

@@ -30,15 +30,9 @@ def compare_images(new_filename, golden_filename):
diff = np.abs(new - golden)
mean = np.mean(diff)
if mean > 0.1:
if os.name != "nt":
subprocess.run(
[
"gsutil",
"cp",
new_filename,
"gs://shark_tank/testdata/builder/",
]
)
subprocess.run(
["gsutil", "cp", new_filename, "gs://shark_tank/testdata/builder/"]
)
raise SystemExit("new and golden not close")
else:
print("SUCCESS")

View File

@@ -1,16 +1,13 @@
import os
from sys import executable
import subprocess
from apps.stable_diffusion.src.utils.resources import (
get_json_file,
)
from datetime import datetime as dt
from shark.shark_downloader import download_public_file
from image_comparison import compare_images
import argparse
from glob import glob
import shutil
import requests
model_config_dicts = get_json_file(
os.path.join(
@@ -20,179 +17,51 @@ model_config_dicts = get_json_file(
)
def parse_sd_out(filename, command, device, use_tune, model_name, import_mlir):
with open(filename, "r+") as f:
lines = f.readlines()
metrics = {}
vals_to_read = [
"Clip Inference time",
"Average step",
"VAE Inference time",
"Total image generation",
]
for line in lines:
for val in vals_to_read:
if val in line:
metrics[val] = line.split(" ")[-1].strip("\n")
metrics["Average step"] = metrics["Average step"].strip("ms/it")
metrics["Total image generation"] = metrics[
"Total image generation"
].strip("sec")
metrics["device"] = device
metrics["use_tune"] = use_tune
metrics["model_name"] = model_name
metrics["import_mlir"] = import_mlir
metrics["command"] = command
return metrics
def get_inpaint_inputs():
os.mkdir("./test_images/inputs")
img_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_image.png"
)
mask_url = (
"https://huggingface.co/datasets/diffusers/test-arrays/resolve"
"/main/stable_diffusion_inpaint/input_bench_mask.png"
)
img = requests.get(img_url)
mask = requests.get(mask_url)
open("./test_images/inputs/image.png", "wb").write(img.content)
open("./test_images/inputs/mask.png", "wb").write(mask.content)
def test_loop(device="vulkan", beta=False, extra_flags=[]):
# Get golden values from tank
shutil.rmtree("./test_images", ignore_errors=True)
model_metrics = []
os.mkdir("./test_images")
os.mkdir("./test_images/golden")
get_inpaint_inputs()
hf_model_names = model_config_dicts[0].values()
tuned_options = ["--no-use_tuned", "--use_tuned"]
import_options = ["--import_mlir", "--no-import_mlir"]
prompt_text = "--prompt=cyberpunk forest by Salvador Dali"
inpaint_prompt_text = "--prompt=Face of a yellow cat, high resolution, sitting on a park bench"
if os.name == "nt":
prompt_text = '--prompt="cyberpunk forest by Salvador Dali"'
inpaint_prompt_text = '--prompt="Face of a yellow cat, high resolution, sitting on a park bench"'
tuned_options = ["--no-use_tuned", "use_tuned"]
if beta:
extra_flags.append("--beta_models=True")
extra_flags.append("--no-progress_bar")
to_skip = [
"Linaqruf/anything-v3.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
]
for import_opt in import_options:
for model_name in hf_model_names:
if model_name in to_skip:
continue
for use_tune in tuned_options:
command = (
[
executable, # executable is the python from the venv used to run this
"apps/stable_diffusion/scripts/txt2img.py",
"--device=" + device,
prompt_text,
"--negative_prompts=" + '""',
"--seed=42",
import_opt,
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
if "inpainting" not in model_name
else [
executable,
"apps/stable_diffusion/scripts/inpaint.py",
"--device=" + device,
inpaint_prompt_text,
"--negative_prompts=" + '""',
"--img_path=./test_images/inputs/image.png",
"--mask_path=./test_images/inputs/mask.png",
"--seed=42",
"--import_mlir",
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
)
command += extra_flags
if os.name == "nt":
command = " ".join(command)
dumpfile_name = "_".join(model_name.split("/")) + ".txt"
dumpfile_name = os.path.join(os.getcwd(), dumpfile_name)
with open(dumpfile_name, "w+") as f:
generated_image = not subprocess.call(
command,
stdout=f,
stderr=f,
)
if os.name != "nt":
command = " ".join(command)
if generated_image:
model_metrics.append(
parse_sd_out(
dumpfile_name,
command,
device,
use_tune,
model_name,
import_opt,
)
)
print(command)
print("Successfully generated image")
os.makedirs(
"./test_images/golden/" + model_name, exist_ok=True
)
download_public_file(
"gs://shark_tank/testdata/golden/" + model_name,
"./test_images/golden/" + model_name,
)
test_file_path = os.path.join(
os.getcwd(),
"test_images",
model_name,
"generated_imgs",
dt.now().strftime("%Y%m%d"),
"*.png",
)
test_file = glob(test_file_path)[0]
golden_path = (
"./test_images/golden/" + model_name + "/*.png"
)
golden_file = glob(golden_path)[0]
compare_images(test_file, golden_file)
else:
print(command)
print("failed to generate image for this configuration")
if "2_1_base" in model_name:
print("failed a known successful model.")
exit(1)
with open(os.path.join(os.getcwd(), "sd_testing_metrics.csv"), "w+") as f:
header = "model_name;device;use_tune;import_opt;Clip Inference time(ms);Average Step (ms/it);VAE Inference time(ms);total image generation(s);command\n"
f.write(header)
for metric in model_metrics:
output = [
metric["model_name"],
metric["device"],
metric["use_tune"],
metric["import_mlir"],
metric["Clip Inference time"],
metric["Average step"],
metric["VAE Inference time"],
metric["Total image generation"],
metric["command"],
for model_name in hf_model_names:
for use_tune in tuned_options:
command = [
"python",
"apps/stable_diffusion/scripts/txt2img.py",
"--device=" + device,
"--prompt=cyberpunk forest by Salvador Dali",
"--output_dir="
+ os.path.join(os.getcwd(), "test_images", model_name),
"--hf_model_id=" + model_name,
use_tune,
]
f.write(";".join(output) + "\n")
command += extra_flags
generated_image = not subprocess.call(
command, stdout=subprocess.DEVNULL
)
if generated_image:
print(" ".join(command))
print("Successfully generated image")
os.makedirs(
"./test_images/golden/" + model_name, exist_ok=True
)
download_public_file(
"gs://shark_tank/testdata/golden/" + model_name,
"./test_images/golden/" + model_name,
)
test_file_path = os.path.join(
os.getcwd(), "test_images", model_name, "generated_imgs"
)
test_file = glob(test_file_path + "/*.png")[0]
golden_path = "./test_images/golden/" + model_name + "/*.png"
golden_file = glob(golden_path)[0]
compare_images(test_file, golden_file)
else:
print(" ".join(command))
print("failed to generate image for this configuration")
parser = argparse.ArgumentParser()

View File

@@ -60,13 +60,3 @@ def pytest_addoption(parser):
default="gs://shark_tank/latest",
help="URL to bucket from which to download SHARK tank artifacts. Default is gs://shark_tank/latest",
)
parser.addoption(
"--benchmark_dispatches",
default=None,
help="Benchmark individual dispatch kernels produced by IREE compiler. Use 'All' for all, or specific dispatches e.g. '0 1 2 10'",
)
parser.addoption(
"--dispatch_benchmarks_dir",
default="./temp_dispatch_benchmarks",
help="Directory in which dispatch benchmarks are saved.",
)

View File

@@ -40,7 +40,7 @@ cmake --build build/
*Prepare the model*
```bash
wget https://storage.googleapis.com/shark_tank/latest/resnet50_tf/resnet50_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --iree-llvmcpu-embedded-linker-path=`python3 -c 'import sysconfig; print(sysconfig.get_paths()["purelib"])'`/iree/compiler/tools/../_mlir_libs/iree-lld --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --mlir-pass-pipeline-crash-reproducer=ist/core-reproducer.mlir --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 resnet50_tf.mlir -o resnet50_tf.vmfb
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --iree-llvm-embedded-linker-path=`python3 -c 'import sysconfig; print(sysconfig.get_paths()["purelib"])'`/iree/compiler/tools/../_mlir_libs/iree-lld --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --mlir-pass-pipeline-crash-reproducer=ist/core-reproducer.mlir --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 resnet50_tf.mlir -o resnet50_tf.vmfb
```
*Prepare the input*
@@ -65,18 +65,18 @@ A tool for benchmarking other models is built and can be invoked with a command
see `./build/vulkan_gui/iree-vulkan-gui --help` for an explanation on the function input. For example, stable diffusion unet can be tested with the following commands:
```bash
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/stable_diff_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 stable_diff_tf.mlir -o stable_diff_tf.vmfb
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 stable_diff_tf.mlir -o stable_diff_tf.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=2x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32
```
VAE and Autoencoder are also available
```bash
# VAE
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/vae_tf/vae.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 vae.mlir -o vae.vmfb
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 vae.mlir -o vae.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x4x64x64xf32
# CLIP Autoencoder
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/clip_tf/clip_autoencoder.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvmcpu-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 clip_autoencoder.mlir -o clip_autoencoder.vmfb
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 clip_autoencoder.mlir -o clip_autoencoder.vmfb
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x77xi32 --function_input=1x77xi32
```

View File

@@ -1,118 +0,0 @@
# Overview
This document is intended to provide a starting point for profiling with SHARK/IREE. At it's core
[SHARK](https://github.com/nod-ai/SHARK/tree/main/tank) is a python API that links the MLIR lowerings from various
frameworks + frontends (e.g. PyTorch -> Torch-MLIR) with the compiler + runtime offered by IREE. More information
on model coverage and framework support can be found [here](https://github.com/nod-ai/SHARK/tree/main/tank). The intended
use case for SHARK is for compilation and deployment of performant state of the art AI models.
![image](https://user-images.githubusercontent.com/22101546/217151219-9bb184a3-cfb9-4788-bb7e-5b502953525c.png)
## Benchmarking with SHARK
TODO: Expand this section.
SHARK offers native benchmarking support, although because it is model focused, fine grain profiling is
hidden when compared against the common "model benchmarking suite" use case SHARK is good at.
### SharkBenchmarkRunner
SharkBenchmarkRunner is a class designed for benchmarking models against other runtimes.
TODO: List supported runtimes for comparison + example on how to benchmark with it.
## Directly profiling IREE
A number of excellent developer resources on profiling with IREE can be
found [here](https://github.com/iree-org/iree/tree/main/docs/developers/developing_iree). As a result this section will
focus on the bridging the gap between the two.
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_with_tracy.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_vulkan_gpu.md
- https://github.com/iree-org/iree/blob/main/docs/developers/developing_iree/profiling_cpu_events.md
Internally, SHARK builds a pair of IREE commands to compile + run a model. At a high level the flow starts with the
model represented with a high level dialect (commonly Linalg) and is compiled to a flatbuffer (.vmfb) that
the runtime is capable of ingesting. At this point (with potentially a few runtime flags) the compiled model is then run
through the IREE runtime. This is all facilitated with the IREE python bindings, which offers a convenient method
to capture the compile command SHARK comes up with. This is done by setting the environment variable
`IREE_SAVE_TEMPS` to point to a directory of choice, e.g. for stable diffusion
```
# Linux
$ export IREE_SAVE_TEMPS=/path/to/some/directory
# Windows
$ $env:IREE_SAVE_TEMPS="C:\path\to\some\directory"
$ python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse" --save_vmfb
```
NOTE: Currently this will only save the compile command + input MLIR for a single model if run in a pipeline.
In the case of stable diffusion this (should) be UNet so to get examples for other models in the pipeline they
need to be extracted and tested individually.
The save temps directory should contain three files: `core-command-line.txt`, `core-input.mlir`, and `core-output.bin`.
The command line for compilation will start something like this, where the `-` needs to be replaced with the path to `core-input.mlir`.
```
/home/quinn/nod/iree-build/compiler/bindings/python/iree/compiler/tools/../_mlir_libs/iree-compile - --iree-input-type=none ...
```
The `-o output_filename.vmfb` flag can be used to specify the location to save the compiled vmfb. Note that a dump of the
dispatches that can be compiled + run in isolation can be generated by adding `--iree-hal-dump-executable-benchmarks-to=/some/directory`. Say, if they are in the `benchmarks` directory, the following compile/run commands would work for Vulkan on RDNA3.
```
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna3-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.mlir -o benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb
iree-benchmark-module --module=benchmarks/module_forward_dispatch_${NUM}_vulkan_spirv_fb.vmfb --function=forward --device=vulkan
```
Where `${NUM}` is the dispatch number that you want to benchmark/profile in isolation.
### Enabling Tracy for Vulkan profiling
To begin profiling with Tracy, a build of IREE runtime with tracing enabled is needed. SHARK-Runtime builds an
instrumented version alongside the normal version nightly (.whls typically found [here](https://github.com/nod-ai/SHARK-Runtime/releases)), however this is only available for Linux. For Windows, tracing can be enabled by enabling a CMake flag.
```
$env:IREE_ENABLE_RUNTIME_TRACING="ON"
```
Getting a trace can then be done by setting environment variable `TRACY_NO_EXIT=1` and running the program that is to be
traced. Then, to actually capture the trace, use the `iree-tracy-capture` tool in a different terminal. Note that to get
the capture and profiler tools the `IREE_BUILD_TRACY=ON` CMake flag needs to be set.
```
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# (in another terminal, either on the same machine or through ssh with a tunnel through port 8086)
iree-tracy-capture -o trace_filename.tracy
```
To do it over ssh, the flow looks like this
```
# From terminal 1 on local machine
ssh -L 8086:localhost:8086 <remote_server_name>
TRACY_NO_EXIT=1 python apps/stable_diffusion/scripts/txt2img.py -p "a photograph of an astronaut riding a horse"
# From terminal 2 on local machine. Requires having built IREE with the CMake flag `IREE_BUILD_TRACY=ON` to build the required tooling.
iree-tracy-capture -o /path/to/trace.tracy
```
The trace can then be viewed with
```
iree-tracy-profiler /path/to/trace.tracy
```
Capturing a runtime trace will work with any IREE tooling that uses the runtime. For example, `iree-benchmark-module`
can be used for benchmarking an individual module. Importantly this means that any SHARK script can be profiled with tracy.
NOTE: Not all backends have the same tracy support. This writeup is focused on CPU/Vulkan backends but there is recently added support for tracing on CUDA (requires the `--cuda_tracing` flag).
## Experimental RGP support
TODO: This section is temporary until proper RGP support is added.
Currently, for stable diffusion there is a flag for enabling UNet to be visible to RGP with `--enable_rgp`. To get a proper capture though, the `DevModeSqttPrepareFrameCount=1` flag needs to be set for the driver (done with `VkPanel` on Windows).
With these two settings, a single iteration of UNet can be captured.
(AMD only) To get a dump of the pipelines (result of compiled SPIR-V) the `EnablePipelineDump=1` driver flag can be set. The
files will typically be dumped to a directory called `spvPipeline` (on Linux `/var/tmp/spvPipeline`. The dumped files will
include header information that can be used to map back to the source dispatch/SPIR-V, e.g.
```
[Version]
version = 57
[CsSpvFile]
fileName = Shader_0x946C08DFD0C10D9A.spv
[CsInfo]
entryPoint = forward_dispatch_193_matmul_256x65536x2304
```

View File

@@ -52,7 +52,7 @@ def save_torch_model(torch_model_list):
tracing_required = False if tracing_required == "False" else True
is_dynamic = False if is_dynamic == "False" else True
print("generating artifacts for: " + torch_model_name)
model = None
input = None
if model_type == "stable_diffusion":
@@ -105,6 +105,12 @@ def save_torch_model(torch_model_list):
dir=torch_model_dir,
model_name=torch_model_name,
)
mlir_hash = create_hash(
os.path.join(
torch_model_dir, torch_model_name + "_torch" + ".mlir"
)
)
np.save(os.path.join(torch_model_dir, "hash"), np.array(mlir_hash))
# Generate torch dynamic models.
if is_dynamic:
mlir_importer.import_debug(
@@ -156,13 +162,13 @@ def save_tf_model(tf_model_list):
tf_model_name = tf_model_name.replace("/", "_")
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
os.makedirs(tf_model_dir, exist_ok=True)
mlir_importer = SharkImporter(
model,
inputs=input,
input,
frontend="tf",
)
mlir_importer.import_debug(
is_dynamic=False,
dir=tf_model_dir,
model_name=tf_model_name,
)
@@ -270,9 +276,6 @@ if __name__ == "__main__":
os.path.dirname(__file__), "tank", "tflite", "tflite_model_list.csv"
)
save_torch_model(
os.path.join(os.path.dirname(__file__), "tank", "torch_sd_list.csv")
)
save_torch_model(torch_model_csv)
save_tf_model(tf_model_csv)
save_tflite_model(tflite_model_csv)

View File

@@ -1,78 +0,0 @@
# This script will toggle the comment/uncommenting aspect for dealing
# with __file__ AttributeError arising in case of a few modules in
# `torch/_dynamo/skipfiles.py` (within shark.venv)
from distutils.sysconfig import get_python_lib
import fileinput
from pathlib import Path
# Diffusers 0.13.1 fails with transformers __init.py errros in BLIP. So remove it for now until we fork it
pix2pix_init = Path(get_python_lib() + "/diffusers/__init__.py")
for line in fileinput.input(pix2pix_init, inplace=True):
if "Pix2Pix" in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
else:
print(line, end="")
pix2pix_init = Path(get_python_lib() + "/diffusers/pipelines/__init__.py")
for line in fileinput.input(pix2pix_init, inplace=True):
if "Pix2Pix" in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
else:
print(line, end="")
pix2pix_init = Path(
get_python_lib() + "/diffusers/pipelines/stable_diffusion/__init__.py"
)
for line in fileinput.input(pix2pix_init, inplace=True):
if "StableDiffusionPix2PixZeroPipeline" in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
else:
print(line, end="")
path_to_skipfiles = Path(get_python_lib() + "/torch/_dynamo/skipfiles.py")
modules_to_comment = ["abc,", "os,", "posixpath,", "_collections_abc,"]
startMonitoring = 0
for line in fileinput.input(path_to_skipfiles, inplace=True):
if "SKIP_DIRS = " in line:
startMonitoring = 1
print(line, end="")
elif startMonitoring in [1, 2]:
if "]" in line:
startMonitoring += 1
print(line, end="")
else:
flag = True
for module in modules_to_comment:
if module in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
flag = False
break
if flag:
print(line, end="")
else:
print(line, end="")
# For getting around scikit-image's packaging, laze_loader has had a patch merged but yet to be released.
# Refer: https://github.com/scientific-python/lazy_loader
path_to_lazy_loader = Path(get_python_lib() + "/lazy_loader/__init__.py")
for line in fileinput.input(path_to_lazy_loader, inplace=True):
if 'stubfile = filename if filename.endswith("i")' in line:
print(
' stubfile = (filename if filename.endswith("i") else f"{os.path.splitext(filename)[0]}.pyi")',
end="",
)
else:
print(line, end="")

View File

@@ -10,8 +10,3 @@ requires = [
"iree-runtime>=20221022.190",
]
build-backend = "setuptools.build_meta"
[tool.black]
line-length = 79
include = '\.pyi?$'

View File

@@ -1,7 +1,7 @@
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
--pre
numpy>1.22.4
numpy==1.22.4
torchvision
pytorch-triton
tabulate
@@ -15,8 +15,8 @@ iree-tools-tf
# TensorFlow and JAX.
gin-config
tf-nightly
keras>=2.10
tensorflow==2.10.1
keras==2.10
#tf-models-nightly
#tensorflow-text-nightly
transformers

View File

@@ -23,9 +23,6 @@ gradio
altair
omegaconf
safetensors
opencv-python
scikit-image
pytorch_lightning # for runwayml models
# Keep PyInstaller at the end. Sometimes Windows Defender flags it but most folks can continue even if it errors
pefile

View File

@@ -1,54 +1,19 @@
<#
.SYNOPSIS
A script to update and install the SHARK runtime and its dependencies.
.DESCRIPTION
This script updates and installs the SHARK runtime and its dependencies.
It checks the Python version installed and installs any required build
dependencies into a Python virtual environment.
If that environment does not exist, it creates it.
.PARAMETER update-src
git pulls latest version
.PARAMETER force
removes and recreates venv to force update of all dependencies
.EXAMPLE
.\setup_venv.ps1 --force
.EXAMPLE
.\setup_venv.ps1 --update-src
.INPUTS
None
.OUTPUTS
None
#>
param([string]$arguments)
if ($arguments -eq "--update-src"){
git pull
}
if ($arguments -eq "--force"){
if (Test-Path env:VIRTUAL_ENV) {
Write-Host "deactivating..."
Deactivate
}
if (Test-Path .\shark.venv\) {
Write-Host "removing and recreating venv..."
Remove-Item .\shark.venv -Force -Recurse
if (Test-Path .\shark.venv\) {
Write-Host 'could not remove .\shark-venv - please try running ".\setup_venv.ps1 --force" again!'
break
}
}
}
#Write-Host "Installing python"
#Start-Process winget install Python.Python.3.10 '/quiet InstallAllUsers=1 PrependPath=1' -wait -NoNewWindow
#Write-Host "python installation completed successfully"
#Write-Host "Reload environment variables"
#$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
#Write-Host "Reloaded environment variables"
# redirect stderr into stdout
$p = &{python -V} 2>&1
@@ -60,36 +25,19 @@ $version = if($p -is [System.Management.Automation.ErrorRecord])
}
else
{
# otherwise return complete Python list
$ErrorActionPreference = 'SilentlyContinue'
$PyVer = py --list
# otherwise return as is
$p
}
# deactivate any activated venvs
if ($PyVer -like "*venv*")
{
deactivate # make sure we don't update the wrong venv
$PyVer = py --list # update list
}
Write-Host "Python version found is"
Write-Host $p
Write-Host "Python versions found are"
Write-Host ($PyVer | Out-String) # formatted output with line breaks
if (!($PyVer.length -ne 0)) {$p} # return Python --version String if py.exe is unavailable
if (!($PyVer -like "*3.11*") -and !($p -like "*3.11*")) # if 3.11 is not in any list
{
Write-Host "Please install Python 3.11 and try again"
break
}
Write-Host "Installing Build Dependencies"
# make sure we really use 3.11 from list, even if it's not the default.
if (!($PyVer.length -ne 0)) {py -3.11 -m venv .\shark.venv\}
else {python -m venv .\shark.venv\}
python -m venv .\shark.venv\
.\shark.venv\Scripts\activate
python -m pip install --upgrade pip
pip install wheel
pip install -r requirements.txt
pip install --pre torch-mlir torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --pre torch-mlir torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --upgrade -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html iree-compiler iree-runtime
Write-Host "Building SHARK..."
pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html

View File

@@ -42,7 +42,7 @@ Green=`tput setaf 2`
Yellow=`tput setaf 3`
# Assume no binary torch-mlir.
# Currently available for macOS m1&intel (3.11) and Linux(3.8,3.10,3.11)
# Currently available for macOS m1&intel (3.10) and Linux(3.7,3.8,3.9,3.10)
torch_mlir_bin=false
if [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}Apple macOS detected"
@@ -60,12 +60,12 @@ if [[ $(uname -s) = 'Darwin' ]]; then
fi
echo "${Yellow}Run the following commands to setup your SSL certs for your Python version if you see SSL errors with tests"
echo "${Yellow}/Applications/Python\ 3.XX/Install\ Certificates.command"
if [ "$PYTHON_VERSION_X_Y" == "3.11" ]; then
if [ "$PYTHON_VERSION_X_Y" == "3.10" ]; then
torch_mlir_bin=true
fi
elif [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected"
if [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] || [ "$PYTHON_VERSION_X_Y" == "3.11" ] ; then
if [ "$PYTHON_VERSION_X_Y" == "3.7" ] || [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.9" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] ; then
torch_mlir_bin=true
fi
else
@@ -78,7 +78,7 @@ $PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
if [ "$torch_mlir_bin" = true ]; then
if [[ $(uname -s) = 'Darwin' ]]; then
echo "MacOS detected. Installing torch-mlir from .whl, to avoid dependency problems with torch."
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
else
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
@@ -89,7 +89,7 @@ if [ "$torch_mlir_bin" = true ]; then
fi
else
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
echo "${Yello}Python 3.11 supported on macOS and 3.8,3.10 and 3.11 on Linux"
echo "${Yello}Python 3.10 supported on macOS and 3.7,3.8,3.9 and 3.10 on Linux"
echo "${Red}Please build torch-mlir from source in your environment"
exit 1
fi
@@ -98,11 +98,11 @@ if [[ -z "${USE_IREE}" ]]; then
RUNTIME="https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html"
else
touch ./.use-iree
RUNTIME="https://openxla.github.io/iree/pip-release-links.html"
RUNTIME="https://iree-org.github.io/iree/pip-release-links.html"
fi
if [[ -z "${NO_BACKEND}" ]]; then
echo "Installing ${RUNTIME}..."
$PYTHON -m pip install --pre --upgrade --find-links ${RUNTIME} iree-compiler iree-runtime
$PYTHON -m pip install --upgrade --find-links ${RUNTIME} iree-compiler iree-runtime
else
echo "Not installing a backend, please make sure to add your backend to PYTHONPATH"
fi
@@ -112,7 +112,7 @@ if [[ ! -z "${IMPORTER}" ]]; then
if [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected.. installing Linux importer tools"
#Always get the importer tools from upstream IREE
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://openxla.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://iree-org.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
elif [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}macOS detected.. installing macOS importer tools"
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
@@ -129,7 +129,7 @@ if [[ $(uname -s) = 'Linux' && ! -z "${BENCHMARK}" ]]; then
TV_VERSION=${TV_VER:9:18}
$PYTHON -m pip uninstall -y torch torchvision
$PYTHON -m pip install -U --pre --no-warn-conflicts triton
$PYTHON -m pip install --no-deps https://download.pytorch.org/whl/nightly/cu117/torch-${TORCH_VERSION}%2Bcu117-cp311-cp311-linux_x86_64.whl https://download.pytorch.org/whl/nightly/cu117/torchvision-${TV_VERSION}%2Bcu117-cp311-cp311-linux_x86_64.whl
$PYTHON -m pip install --no-deps https://download.pytorch.org/whl/nightly/cu117/torch-${TORCH_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/nightly/cu117/torchvision-${TV_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl
if [ $? -eq 0 ];then
echo "Successfully Installed torch + cu117."
else

View File

@@ -1,18 +0,0 @@
# SHARK LLaMA
## TORCH-MLIR Version
```
https://github.com/nod-ai/torch-mlir.git
```
Then check out the `complex` branch and `git submodule update --init` and then build with `.\build_tools\python_deploy\build_windows.ps1`
### Setup & Run
```
git clone https://github.com/nod-ai/llama.git
```
Then in this repository
```
pip install -e .
python llama/shark_model.py
```

View File

@@ -1,843 +0,0 @@
####################################################################################
# Please make sure you have transformers 4.21.2 installed before running this demo
#
# -p --model_path: the directory in which you want to store the bloom files.
# -dl --device_list: the list of device indices you want to use. if you want to only use the first device, or you are running on cpu leave this blank.
# Otherwise, please give this argument in this format: "[0, 1, 2]"
# -de --device: the device you want to run bloom on. E.G. cpu, cuda
# -c, --recompile: set to true if you want to recompile to vmfb.
# -d, --download: set to true if you want to redownload the mlir files
# -cm, --create_mlirs: set to true if you want to create the mlir files from scratch. please make sure you have transformers 4.21.2 before using this option
# -t --token_count: the number of tokens you want to generate
# -pr --prompt: the prompt you want to feed to the model
# -m --model_name: the name of the model, e.g. bloom-560m
#
# If you don't specify a prompt when you run this example, you will be able to give prompts through the terminal. Run the
# example in this way if you want to run multiple examples without reinitializing the model
#####################################################################################
import os
import io
import torch
import torch.nn as nn
from collections import OrderedDict
import torch_mlir
from torch_mlir import TensorPlaceholder
import re
from transformers.models.bloom.configuration_bloom import BloomConfig
import json
import sys
import argparse
import json
import urllib.request
import subprocess
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_public_file
from transformers import (
BloomTokenizerFast,
BloomForSequenceClassification,
BloomForCausalLM,
)
from transformers.models.bloom.modeling_bloom import (
BloomBlock,
build_alibi_tensor,
)
IS_CUDA = False
class ShardedBloom:
def __init__(self, src_folder):
f = open(f"{src_folder}/config.json")
config = json.load(f)
f.close()
self.layers_initialized = False
self.src_folder = src_folder
try:
self.n_embed = config["n_embed"]
except KeyError:
self.n_embed = config["hidden_size"]
self.vocab_size = config["vocab_size"]
self.n_layer = config["n_layer"]
try:
self.n_head = config["num_attention_heads"]
except KeyError:
self.n_head = config["n_head"]
def _init_layer(self, layer_name, device, replace, device_idx):
if replace or not os.path.exists(
f"{self.src_folder}/{layer_name}.vmfb"
):
f_ = open(f"{self.src_folder}/{layer_name}.mlir", encoding="utf-8")
module = f_.read()
f_.close()
module = bytes(module, "utf-8")
shark_module = SharkInference(
module,
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
)
shark_module.save_module(
module_name=f"{self.src_folder}/{layer_name}",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
else:
shark_module = SharkInference(
"",
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
)
return shark_module
def init_layers(self, device, replace=False, device_idx=[0]):
if device_idx is not None:
n_devices = len(device_idx)
self.word_embeddings_module = self._init_layer(
"word_embeddings",
device,
replace,
device_idx if device_idx is None else device_idx[0 % n_devices],
)
self.word_embeddings_layernorm_module = self._init_layer(
"word_embeddings_layernorm",
device,
replace,
device_idx if device_idx is None else device_idx[1 % n_devices],
)
self.ln_f_module = self._init_layer(
"ln_f",
device,
replace,
device_idx if device_idx is None else device_idx[2 % n_devices],
)
self.lm_head_module = self._init_layer(
"lm_head",
device,
replace,
device_idx if device_idx is None else device_idx[3 % n_devices],
)
self.block_modules = [
self._init_layer(
f"bloom_block_{i}",
device,
replace,
device_idx
if device_idx is None
else device_idx[(i + 4) % n_devices],
)
for i in range(self.n_layer)
]
self.layers_initialized = True
def load_layers(self):
assert self.layers_initialized
self.word_embeddings_module.load_module(
f"{self.src_folder}/word_embeddings.vmfb"
)
self.word_embeddings_layernorm_module.load_module(
f"{self.src_folder}/word_embeddings_layernorm.vmfb"
)
for block_module, i in zip(self.block_modules, range(self.n_layer)):
block_module.load_module(f"{self.src_folder}/bloom_block_{i}.vmfb")
self.ln_f_module.load_module(f"{self.src_folder}/ln_f.vmfb")
self.lm_head_module.load_module(f"{self.src_folder}/lm_head.vmfb")
def forward_pass(self, input_ids, device):
if IS_CUDA:
cudaSetDevice(self.word_embeddings_module.device_idx)
input_embeds = self.word_embeddings_module(
inputs=(input_ids,), function_name="forward"
)
input_embeds = torch.tensor(input_embeds).float()
if IS_CUDA:
cudaSetDevice(self.word_embeddings_layernorm_module.device_idx)
hidden_states = self.word_embeddings_layernorm_module(
inputs=(input_embeds,), function_name="forward"
)
hidden_states = torch.tensor(hidden_states).float()
attention_mask = torch.ones(
[hidden_states.shape[0], len(input_ids[0])]
)
alibi = build_alibi_tensor(
attention_mask,
self.n_head,
hidden_states.dtype,
hidden_states.device,
)
causal_mask = _prepare_attn_mask(
attention_mask, input_ids.size(), input_embeds, 0
)
causal_mask = torch.tensor(causal_mask).float()
presents = ()
all_hidden_states = tuple(hidden_states)
for block_module, i in zip(self.block_modules, range(self.n_layer)):
if IS_CUDA:
cudaSetDevice(block_module.device_idx)
output = block_module(
inputs=(
hidden_states.detach().numpy(),
alibi.detach().numpy(),
causal_mask.detach().numpy(),
),
function_name="forward",
)
hidden_states = torch.tensor(output[0]).float()
all_hidden_states = all_hidden_states + (hidden_states,)
presents = presents + (
tuple(
(
output[1],
output[2],
)
),
)
if IS_CUDA:
cudaSetDevice(self.ln_f_module.device_idx)
hidden_states = self.ln_f_module(
inputs=(hidden_states,), function_name="forward"
)
if IS_CUDA:
cudaSetDevice(self.lm_head_module.device_idx)
logits = self.lm_head_module(
inputs=(hidden_states,), function_name="forward"
)
logits = torch.tensor(logits).float()
return torch.argmax(logits[:, -1, :], dim=-1)
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.full((target_length, target_length), torch.finfo(dtype).min)
mask_cond = torch.arange(mask.size(-1))
intermediate_mask = mask_cond < (mask_cond + 1).view(mask.size(-1), 1)
mask.masked_fill_(intermediate_mask, 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
target_length, past_key_values_length, dtype=dtype
),
mask,
],
dim=-1,
)
expanded_mask = mask[None, None, :, :].expand(
batch_size, 1, target_length, target_length + past_key_values_length
)
return expanded_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: int = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
batch_size, source_length = mask.size()
tgt_len = tgt_len if tgt_len is not None else source_length
expanded_mask = (
mask[:, None, None, :]
.expand(batch_size, 1, tgt_len, source_length)
.to(dtype)
)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
def _prepare_attn_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
past_key_values_length=past_key_values_length,
).to(attention_mask.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def download_model(destination_folder, model_name):
if model_name == "bloom":
subprocess.run(["gsutil", "cp", "-r", "gs://shark_tank/sharded_bloom/bloom/", f"{destination_folder}"])
else:
download_public_file(
f"gs://shark_tank/sharded_bloom/{model_name}/", destination_folder
)
def compile_embeddings(embeddings_layer, input_ids, path):
input_ids_placeholder = torch_mlir.TensorPlaceholder.like(
input_ids, dynamic_axes=[1]
)
module = torch_mlir.compile(
embeddings_layer,
(input_ids_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_word_embeddings_layernorm(
embeddings_layer_layernorm, embeds, path
):
embeds_placeholder = torch_mlir.TensorPlaceholder.like(
embeds, dynamic_axes=[1]
)
module = torch_mlir.compile(
embeddings_layer_layernorm,
(embeds_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
def compile_to_mlir(
bblock,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
use_cache=None,
output_attentions=False,
alibi=None,
block_index=0,
path=".",
):
fx_g = make_fx(
bblock,
decomposition_table=get_decompositions(
[
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
tracing_mode="real",
_allow_non_fake_inputs=False,
)(hidden_states, alibi, attention_mask)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
strip_overloads(fx_g)
hidden_states_placeholder = TensorPlaceholder.like(
hidden_states, dynamic_axes=[1]
)
attention_mask_placeholder = TensorPlaceholder.like(
attention_mask, dynamic_axes=[2, 3]
)
alibi_placeholder = TensorPlaceholder.like(alibi, dynamic_axes=[2])
ts_g = torch.jit.script(fx_g)
module = torch_mlir.compile(
ts_g,
(
hidden_states_placeholder,
alibi_placeholder,
attention_mask_placeholder,
),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
module_placeholder = module
module_context = module_placeholder.context
def check_valid_line(line, line_n, mlir_file_len):
if "private" in line:
return False
if "attributes" in line:
return False
if mlir_file_len - line_n == 2:
return False
return True
mlir_file_len = len(str(module).split("\n"))
def remove_constant_dim(line):
if "17x" in line:
line = re.sub("17x", "?x", line)
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
if "tensor.empty" in line and "?x?" in line:
line = re.sub(
"tensor.empty\(%dim\)", "tensor.empty(%dim, %dim)", line
)
if "arith.cmpi eq" in line:
line = re.sub("c17", "dim", line)
if " 17," in line:
line = re.sub(" 17,", " %dim,", line)
return line
module = "\n".join(
[
remove_constant_dim(line)
for line, line_n in zip(
str(module).split("\n"), range(mlir_file_len)
)
if check_valid_line(line, line_n, mlir_file_len)
]
)
module = module_placeholder.parse(module, context=module_context)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_ln_f(ln_f, hidden_layers, path):
hidden_layers_placeholder = torch_mlir.TensorPlaceholder.like(
hidden_layers, dynamic_axes=[1]
)
module = torch_mlir.compile(
ln_f,
(hidden_layers_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def compile_lm_head(lm_head, hidden_layers, path):
hidden_layers_placeholder = torch_mlir.TensorPlaceholder.like(
hidden_layers, dynamic_axes=[1]
)
module = torch_mlir.compile(
lm_head,
(hidden_layers_placeholder),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = io.BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(path, "w+")
f_.write(str(module))
f_.close()
return
def create_mlirs(destination_folder, model_name):
model_config = "bigscience/" + model_name
sample_input_ids = torch.ones([1, 17], dtype=torch.int64)
urllib.request.urlretrieve(
f"https://huggingface.co/bigscience/{model_name}/resolve/main/config.json",
filename=f"{destination_folder}/config.json",
)
urllib.request.urlretrieve(
f"https://huggingface.co/bigscience/bloom/resolve/main/tokenizer.json",
filename=f"{destination_folder}/tokenizer.json",
)
class HuggingFaceLanguage(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = BloomForCausalLM.from_pretrained(model_config)
def forward(self, tokens):
return self.model.forward(tokens)[0]
class HuggingFaceBlock(torch.nn.Module):
def __init__(self, block):
super().__init__()
self.model = block
def forward(self, tokens, alibi, attention_mask):
output = self.model(
hidden_states=tokens,
alibi=alibi,
attention_mask=attention_mask,
use_cache=True,
output_attentions=False,
)
return (output[0], output[1][0], output[1][1])
model = HuggingFaceLanguage()
compile_embeddings(
model.model.transformer.word_embeddings,
sample_input_ids,
f"{destination_folder}/word_embeddings.mlir",
)
inputs_embeds = model.model.transformer.word_embeddings(sample_input_ids)
compile_word_embeddings_layernorm(
model.model.transformer.word_embeddings_layernorm,
inputs_embeds,
f"{destination_folder}/word_embeddings_layernorm.mlir",
)
hidden_states = model.model.transformer.word_embeddings_layernorm(
inputs_embeds
)
input_shape = sample_input_ids.size()
current_sequence_length = hidden_states.shape[1]
past_key_values_length = 0
past_key_values = tuple([None] * len(model.model.transformer.h))
attention_mask = torch.ones(
(hidden_states.shape[0], current_sequence_length), device="cpu"
)
alibi = build_alibi_tensor(
attention_mask,
model.model.transformer.n_head,
hidden_states.dtype,
"cpu",
)
causal_mask = _prepare_attn_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
head_mask = model.model.transformer.get_head_mask(
None, model.model.transformer.config.n_layer
)
output_attentions = model.model.transformer.config.output_attentions
all_hidden_states = ()
for i, (block, layer_past) in enumerate(
zip(model.model.transformer.h, past_key_values)
):
all_hidden_states = all_hidden_states + (hidden_states,)
proxy_model = HuggingFaceBlock(block)
compile_to_mlir(
proxy_model,
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=True,
output_attentions=output_attentions,
alibi=alibi,
block_index=i,
path=f"{destination_folder}/bloom_block_{i}.mlir",
)
compile_ln_f(
model.model.transformer.ln_f,
hidden_states,
f"{destination_folder}/ln_f.mlir",
)
hidden_states = model.model.transformer.ln_f(hidden_states)
compile_lm_head(
model.model.lm_head,
hidden_states,
f"{destination_folder}/lm_head.mlir",
)
def run_large_model(
token_count,
recompile,
model_path,
prompt,
device_list,
script_path,
device,
):
f = open(f"{model_path}/prompt.txt", "w+")
f.write(prompt)
f.close()
for i in range(token_count):
if i == 0:
will_compile = recompile
else:
will_compile = False
f = open(f"{model_path}/prompt.txt", "r")
prompt = f.read()
f.close()
subprocess.run(
[
"python",
script_path,
model_path,
"start",
str(will_compile),
"cpu",
"None",
prompt,
]
)
for i in range(config["n_layer"]):
if device_list is not None:
device_idx = str(device_list[i % len(device_list)])
else:
device_idx = "None"
subprocess.run(
[
"python",
script_path,
model_path,
str(i),
str(will_compile),
device,
device_idx,
prompt,
]
)
subprocess.run(
[
"python",
script_path,
model_path,
"end",
str(will_compile),
"cpu",
"None",
prompt,
]
)
f = open(f"{model_path}/prompt.txt", "r")
output = f.read()
f.close()
print(output)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog="Bloom-560m")
parser.add_argument("-p", "--model_path")
parser.add_argument("-dl", "--device_list", default=None)
parser.add_argument("-de", "--device", default="cpu")
parser.add_argument("-c", "--recompile", default=False, type=bool)
parser.add_argument("-d", "--download", default=False, type=bool)
parser.add_argument("-t", "--token_count", default=10, type=int)
parser.add_argument("-m", "--model_name", default="bloom-560m")
parser.add_argument("-cm", "--create_mlirs", default=False, type=bool)
parser.add_argument(
"-lm", "--large_model_memory_efficient", default=False, type=bool
)
parser.add_argument(
"-pr",
"--prompt",
default=None,
)
args = parser.parse_args()
if not os.path.isdir(args.model_path):
os.mkdir(args.model_path)
if args.device_list is not None:
args.device_list = json.loads(args.device_list)
if args.device == "cuda" and args.device_list is not None:
IS_CUDA = True
from cuda.cudart import cudaSetDevice
if args.download and args.create_mlirs:
print(
"WARNING: It is not advised to turn on both download and create_mlirs"
)
if args.model_name == "bloom" and (args.create_mlirs or args.download):
urllib.request.urlretrieve("https://huggingface.co/bigscience/bloom/resolve/main/pytorch_model_00001-of-00072.bin", f"{args.model_path}/pytorch_model_00001-of-00072.bin")
if args.download:
download_model(args.model_path, args.model_name)
if args.create_mlirs:
create_mlirs(args.model_path, args.model_name)
from transformers import AutoTokenizer, AutoModelForCausalLM, BloomConfig
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
if args.prompt is not None:
input_ids = tokenizer.encode(args.prompt, return_tensors="pt")
if args.large_model_memory_efficient:
f = open(f"{args.model_path}/config.json")
config = json.load(f)
f.close()
self_path = os.path.dirname(os.path.abspath(__file__))
script_path = os.path.join(self_path, "sharded_bloom_large_models.py")
if args.prompt is not None:
run_large_model(
args.token_count,
args.recompile,
args.model_path,
args.prompt,
args.device_list,
script_path,
args.device,
)
else:
while True:
prompt = input("Enter Prompt: ")
try:
token_count = int(
input("Enter number of tokens you want to generate: ")
)
except:
print(
"Invalid integer entered. Using default value of 10"
)
token_count = 10
run_large_model(
token_count,
args.recompile,
args.model_path,
prompt,
args.device_list,
script_path,
args.device,
)
else:
shardedbloom = ShardedBloom(args.model_path)
shardedbloom.init_layers(
device=args.device,
replace=args.recompile,
device_idx=args.device_list,
)
shardedbloom.load_layers()
if args.prompt is not None:
for _ in range(args.token_count):
next_token = shardedbloom.forward_pass(
torch.tensor(input_ids), device=args.device
)
input_ids = torch.cat(
[input_ids, next_token.unsqueeze(-1)], dim=-1
)
print(tokenizer.decode(input_ids.squeeze()))
else:
while True:
prompt = input("Enter Prompt: ")
try:
token_count = int(
input("Enter number of tokens you want to generate: ")
)
except:
print(
"Invalid integer entered. Using default value of 10"
)
token_count = 10
input_ids = tokenizer.encode(prompt, return_tensors="pt")
for _ in range(token_count):
next_token = shardedbloom.forward_pass(
torch.tensor(input_ids), device=args.device
)
input_ids = torch.cat(
[input_ids, next_token.unsqueeze(-1)], dim=-1
)
print(tokenizer.decode(input_ids.squeeze()))

View File

@@ -1,381 +0,0 @@
import sys
import os
from transformers import AutoTokenizer, AutoModelForCausalLM, BloomConfig
import re
from shark.shark_inference import SharkInference
import torch
import torch.nn as nn
from collections import OrderedDict
from transformers.models.bloom.modeling_bloom import (
BloomBlock,
build_alibi_tensor,
)
import time
import json
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: int = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
batch_size, source_length = mask.size()
tgt_len = tgt_len if tgt_len is not None else source_length
expanded_mask = (
mask[:, None, None, :]
.expand(batch_size, 1, tgt_len, source_length)
.to(dtype)
)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
def _prepare_attn_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
past_key_values_length=past_key_values_length,
).to(attention_mask.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.full((target_length, target_length), torch.finfo(dtype).min)
mask_cond = torch.arange(mask.size(-1))
intermediate_mask = mask_cond < (mask_cond + 1).view(mask.size(-1), 1)
mask.masked_fill_(intermediate_mask, 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
target_length, past_key_values_length, dtype=dtype
),
mask,
],
dim=-1,
)
expanded_mask = mask[None, None, :, :].expand(
batch_size, 1, target_length, target_length + past_key_values_length
)
return expanded_mask
if __name__ == "__main__":
working_dir = sys.argv[1]
layer_name = sys.argv[2]
will_compile = sys.argv[3]
device = sys.argv[4]
device_idx = sys.argv[5]
prompt = sys.argv[6]
if device_idx.lower().strip() == "none":
device_idx = None
else:
device_idx = int(device_idx)
if will_compile.lower().strip() == "true":
will_compile = True
else:
will_compile = False
f = open(f"{working_dir}/config.json")
config = json.load(f)
f.close()
layers_initialized = False
try:
n_embed = config["n_embed"]
except KeyError:
n_embed = config["hidden_size"]
vocab_size = config["vocab_size"]
n_layer = config["n_layer"]
try:
n_head = config["num_attention_heads"]
except KeyError:
n_head = config["n_head"]
if not os.path.isdir(working_dir):
os.mkdir(working_dir)
if layer_name == "start":
tokenizer = AutoTokenizer.from_pretrained(working_dir)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
mlir_str = ""
if will_compile:
f = open(f"{working_dir}/word_embeddings.mlir", encoding="utf-8")
mlir_str = f.read()
f.close()
mlir_str = bytes(mlir_str, "utf-8")
shark_module = SharkInference(
mlir_str,
device="cpu",
mlir_dialect="tm_tensor",
device_idx=None,
)
if will_compile:
shark_module.save_module(
module_name=f"{working_dir}/word_embeddings",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
shark_module.load_module(f"{working_dir}/word_embeddings.vmfb")
input_embeds = shark_module(
inputs=(input_ids,), function_name="forward"
)
input_embeds = torch.tensor(input_embeds).float()
mlir_str = ""
if will_compile:
f = open(
f"{working_dir}/word_embeddings_layernorm.mlir",
encoding="utf-8",
)
mlir_str = f.read()
f.close()
shark_module = SharkInference(
mlir_str,
device="cpu",
mlir_dialect="tm_tensor",
device_idx=None,
)
if will_compile:
shark_module.save_module(
module_name=f"{working_dir}/word_embeddings_layernorm",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
shark_module.load_module(
f"{working_dir}/word_embeddings_layernorm.vmfb"
)
hidden_states = shark_module(
inputs=(input_embeds,), function_name="forward"
)
hidden_states = torch.tensor(hidden_states).float()
torch.save(hidden_states, f"{working_dir}/hidden_states_0.pt")
attention_mask = torch.ones(
[hidden_states.shape[0], len(input_ids[0])]
)
attention_mask = torch.tensor(attention_mask).float()
alibi = build_alibi_tensor(
attention_mask,
n_head,
hidden_states.dtype,
device="cpu",
)
torch.save(alibi, f"{working_dir}/alibi.pt")
causal_mask = _prepare_attn_mask(
attention_mask, input_ids.size(), input_embeds, 0
)
causal_mask = torch.tensor(causal_mask).float()
torch.save(causal_mask, f"{working_dir}/causal_mask.pt")
elif layer_name in [str(x) for x in range(n_layer)]:
hidden_states = torch.load(
f"{working_dir}/hidden_states_{layer_name}.pt"
)
alibi = torch.load(f"{working_dir}/alibi.pt")
causal_mask = torch.load(f"{working_dir}/causal_mask.pt")
mlir_str = ""
if will_compile:
f = open(
f"{working_dir}/bloom_block_{layer_name}.mlir",
encoding="utf-8",
)
mlir_str = f.read()
f.close()
mlir_str = bytes(mlir_str, "utf-8")
shark_module = SharkInference(
mlir_str,
device=device,
mlir_dialect="tm_tensor",
device_idx=device_idx,
)
if will_compile:
shark_module.save_module(
module_name=f"{working_dir}/bloom_block_{layer_name}",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
shark_module.load_module(
f"{working_dir}/bloom_block_{layer_name}.vmfb"
)
output = shark_module(
inputs=(
hidden_states.detach().numpy(),
alibi.detach().numpy(),
causal_mask.detach().numpy(),
),
function_name="forward",
)
hidden_states = torch.tensor(output[0]).float()
torch.save(
hidden_states,
f"{working_dir}/hidden_states_{int(layer_name) + 1}.pt",
)
elif layer_name == "end":
mlir_str = ""
if will_compile:
f = open(f"{working_dir}/ln_f.mlir", encoding="utf-8")
mlir_str = f.read()
f.close()
mlir_str = bytes(mlir_str, "utf-8")
shark_module = SharkInference(
mlir_str,
device="cpu",
mlir_dialect="tm_tensor",
device_idx=None,
)
if will_compile:
shark_module.save_module(
module_name=f"{working_dir}/ln_f",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
shark_module.load_module(f"{working_dir}/ln_f.vmfb")
hidden_states = torch.load(f"{working_dir}/hidden_states_{n_layer}.pt")
hidden_states = shark_module(
inputs=(hidden_states,), function_name="forward"
)
mlir_str = ""
if will_compile:
f = open(f"{working_dir}/lm_head.mlir", encoding="utf-8")
mlir_str = f.read()
f.close()
mlir_str = bytes(mlir_str, "utf-8")
if "n_embed" in config.keys() and config["n_embed"] == 14336:
def get_state_dict():
d = torch.load(
f"{working_dir}/pytorch_model_00001-of-00072.bin"
)
return OrderedDict(
(k.replace("word_embeddings.", ""), v)
for k, v in d.items()
)
def load_causal_lm_head():
linear = nn.utils.skip_init(
nn.Linear, 14336, 250880, bias=False, dtype=torch.float
)
linear.load_state_dict(get_state_dict(), strict=False)
return linear.float()
lm_head = load_causal_lm_head()
logits = lm_head(torch.tensor(hidden_states).float())
else:
shark_module = SharkInference(
mlir_str,
device="cpu",
mlir_dialect="tm_tensor",
device_idx=None,
)
if will_compile:
shark_module.save_module(
module_name=f"{working_dir}/lm_head",
extra_args=[
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-stream-resource-max-allocation-size=1000000000",
"--iree-codegen-check-ir-before-llvm-conversion=false",
],
)
shark_module.load_module(f"{working_dir}/lm_head.vmfb")
logits = shark_module(
inputs=(hidden_states,), function_name="forward"
)
logits = torch.tensor(logits).float()
tokenizer = AutoTokenizer.from_pretrained(working_dir)
next_token = tokenizer.decode(torch.argmax(logits[:, -1, :], dim=-1))
f = open(f"{working_dir}/prompt.txt", "w+")
f.write(prompt + next_token)
f.close()

View File

@@ -1,43 +0,0 @@
# Stable Diffusion Fine Tuning
## Installation (Linux)
### Activate shark.venv Virtual Environment
```shell
source shark.venv/bin/activate
# Some older pip installs may not be able to handle the recent PyTorch deps
python -m pip install --upgrade pip
```
## Install dependencies
### Run the following installation commands:
```
pip install -U git+https://github.com/huggingface/diffusers.git
pip install accelerate transformers ftfy
```
### Build torch-mlir with the following branch:
Please cherry-pick this branch of torch-mlir: https://github.com/vivekkhandelwal1/torch-mlir/tree/sd-ops
and build it locally. You can find the instructions for using locally build Torch-MLIR,
here: https://github.com/nod-ai/SHARK#how-to-use-your-locally-built-iree--torch-mlir-with-shark
## Run the Stable diffusion fine tuning
To run the model with the default set of images and params, run:
```shell
python stable_diffusion_fine_tuning.py
```
By default the training is run through the PyTorch path. If you want to train the model using the Torchdynamo path of Torch-MLIR, you need to specify `--use_torchdynamo=True`.
The default number of training steps are `2000`, which would take many hours to complete based on your system config. You can pass the smaller value with the arg `--training_steps`. You can specify the number of images to be sampled for the result with the `--num_inference_samples` arg. For the number of inference steps you can use `--inference_steps` flag.
For example, you can run the training for a limited set of steps via the dynamo path by using the following command:
```
python stable_diffusion_fine_tuning.py --training_steps=1 --inference_steps=1 --num_inference_samples=1 --train_batch_size=1 --use_torchdynamo=True
```
You can also specify the device to be used via the flag `--device`. The default value is `cpu`, for GPU execution you can specify `--device="cuda"`.

View File

@@ -1,914 +0,0 @@
# Install the required libs
# pip install -U git+https://github.com/huggingface/diffusers.git
# pip install accelerate transformers ftfy
# Import required libraries
import argparse
import itertools
import math
import os
from typing import List
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
import logging
import torch_mlir
from torch_mlir.dynamo import make_simple_dynamo_backend
import torch._dynamo as dynamo
from torch.fx.experimental.proxy_tensor import make_fx
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
from shark.shark_inference import SharkInference
torch._dynamo.config.verbose = True
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import (
StableDiffusionSafetyChecker,
)
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import (
CLIPFeatureExtractor,
CLIPTextModel,
CLIPTokenizer,
)
# Enter your HuggingFace Token
# Note: You can comment this prompt and just set your token instead of passing it through cli for every execution.
hf_token = input("Please enter your huggingface token here: ")
YOUR_TOKEN = hf_token
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
# `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use
# Options: 1.) "stabilityai/stable-diffusion-2"
# 2.) "stabilityai/stable-diffusion-2-base"
# 3.) "CompVis/stable-diffusion-v1-4"
# 4.) "runwayml/stable-diffusion-v1-5"
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2"
# Add here the URLs to the images of the concept you are adding. 3-5 should be fine
urls = [
"https://huggingface.co/datasets/valhalla/images/resolve/main/2.jpeg",
"https://huggingface.co/datasets/valhalla/images/resolve/main/3.jpeg",
"https://huggingface.co/datasets/valhalla/images/resolve/main/5.jpeg",
"https://huggingface.co/datasets/valhalla/images/resolve/main/6.jpeg",
## You can add additional images here
]
# Downloading Images
import requests
import glob
from io import BytesIO
def download_image(url):
try:
response = requests.get(url)
except:
return None
return Image.open(BytesIO(response.content)).convert("RGB")
images = list(filter(None, [download_image(url) for url in urls]))
save_path = "./my_concept"
if not os.path.exists(save_path):
os.mkdir(save_path)
[image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)]
p = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
p.add_argument(
"--input_dir",
type=str,
default="my_concept/",
help="the directory contains the images used for fine tuning",
)
p.add_argument(
"--output_dir",
type=str,
default="sd_result",
help="the directory contains the images used for fine tuning",
)
p.add_argument(
"--training_steps",
type=int,
default=2000,
help="the maximum number of training steps",
)
p.add_argument(
"--train_batch_size",
type=int,
default=4,
help="The batch size for training",
)
p.add_argument(
"--save_steps",
type=int,
default=250,
help="the number of steps after which to save the learned concept",
)
p.add_argument("--seed", type=int, default=42, help="the random seed")
p.add_argument(
"--what_to_teach",
type=str,
choices=["object", "style"],
default="object",
help="what is it that you are teaching?",
)
p.add_argument(
"--placeholder_token",
type=str,
default="<cat-toy>",
help="It is the token you are going to use to represent your new concept",
)
p.add_argument(
"--initializer_token",
type=str,
default="toy",
help="It is a word that can summarise what is your new concept",
)
p.add_argument(
"--inference_steps",
type=int,
default=50,
help="the number of steps for inference",
)
p.add_argument(
"--num_inference_samples",
type=int,
default=4,
help="the number of samples for inference",
)
p.add_argument(
"--prompt",
type=str,
default="a grafitti in a wall with a *s on it",
help="the text prompt to use",
)
p.add_argument(
"--device",
type=str,
default="cpu",
help="The device to use",
)
p.add_argument(
"--use_torchdynamo",
type=bool,
default=False,
help="This flag is used to determine whether the training has to be done through the torchdynamo path or not.",
)
args = p.parse_args()
torch.manual_seed(args.seed)
if "*s" not in args.prompt:
raise ValueError(
f'The prompt should have a "*s" which will be replaced by a placeholder token.'
)
prompt1, prompt2 = args.prompt.split("*s")
args.prompt = prompt1 + args.placeholder_token + prompt2
# `images_path` is a path to directory containing the training images.
images_path = args.input_dir
while not os.path.exists(str(images_path)):
print(
"The images_path specified does not exist, use the colab file explorer to copy the path :"
)
images_path = input("")
save_path = images_path
# Setup and check the images you have just added
images = []
for file_path in os.listdir(save_path):
try:
image_path = os.path.join(save_path, file_path)
images.append(Image.open(image_path).resize((512, 512)))
except:
print(
f"{image_path} is not a valid image, please make sure to remove this file from the directory otherwise the training could fail."
)
image_grid(images, 1, len(images))
########### Create Dataset ##########
# Setup the prompt templates for training
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
# Setup the dataset
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.templates = (
imagenet_style_templates_small
if learnable_property == "style"
else imagenet_templates_small
)
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
image = Image.fromarray(img)
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
########## Setting up the model ##########
# Load the tokenizer and add the placeholder token as a additional special token.
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
)
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Get token ids for our placeholder and initializer token.
# This code block will complain if initializer string is not a single token
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load the Stable Diffusion model
# Load models and create wrapper for stable diffusion
# pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path)
# del pipeline
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path, subfolder="vae"
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet"
)
# We have added the placeholder_token in the tokenizer so we resize the token embeddings here
# this will a new embedding vector in the token embeddings for our placeholder_token
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# In Textual-Inversion we only train the newly added embedding vector
# so lets freeze rest of the model parameters here
def freeze_params(params):
for param in params:
param.requires_grad = False
# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
# Move vae and unet to device
# For the dynamo path default compilation device is `cpu`, since torch-mlir
# supports only that. Therefore, convert to device only for PyTorch path.
if not args.use_torchdynamo:
vae.to(args.device)
unet.to(args.device)
# Keep vae in eval mode as we don't train it
vae.eval()
# Keep unet in train mode to enable gradient checkpointing
unet.train()
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = vae
def forward(self, input):
x = self.vae.encode(input, return_dict=False)[0]
return x
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = unet
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
shark_vae = VaeModel()
shark_unet = UnetModel()
####### Creating our training data ########
# Let's create the Dataset and Dataloader
train_dataset = TextualInversionDataset(
data_root=save_path,
tokenizer=tokenizer,
size=vae.sample_size,
placeholder_token=args.placeholder_token,
repeats=100,
learnable_property=args.what_to_teach, # Option selected above between object and style
center_crop=False,
set="train",
)
def create_dataloader(train_batch_size=1):
return torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Create noise_scheduler for training
noise_scheduler = DDPMScheduler.from_config(
pretrained_model_name_or_path, subfolder="scheduler"
)
######## Training ###########
# Define hyperparameters for our training. If you are not happy with your results,
# you can tune the `learning_rate` and the `max_train_steps`
# Setting up all training args
hyperparameters = {
"learning_rate": 5e-04,
"scale_lr": True,
"max_train_steps": args.training_steps,
"save_steps": args.save_steps,
"train_batch_size": args.train_batch_size,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"mixed_precision": "fp16",
"seed": 42,
"output_dir": "sd-concept-output",
}
# creating output directory
cwd = os.getcwd()
out_dir = os.path.join(cwd, hyperparameters["output_dir"])
while not os.path.exists(str(out_dir)):
try:
os.mkdir(out_dir)
except OSError as error:
print("Output directory not created")
###### Torch-MLIR Compilation ######
def _remove_nones(fx_g: torch.fx.GraphModule) -> List[int]:
removed_indexes = []
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, (list, tuple)):
node_arg = list(node_arg)
node_args_len = len(node_arg)
for i in range(node_args_len):
curr_index = node_args_len - (i + 1)
if node_arg[curr_index] is None:
removed_indexes.append(curr_index)
node_arg.pop(curr_index)
node.args = (tuple(node_arg),)
break
if len(removed_indexes) > 0:
fx_g.graph.lint()
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
removed_indexes.sort()
return removed_indexes
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule) -> bool:
"""
Replace tuple with tuple element in functions that return one-element tuples.
Returns true if an unwrapping took place, and false otherwise.
"""
unwrapped_tuple = False
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
if len(node_arg) == 1:
node.args = (node_arg[0],)
unwrapped_tuple = True
break
if unwrapped_tuple:
fx_g.graph.lint()
fx_g.recompile()
return unwrapped_tuple
def _returns_nothing(fx_g: torch.fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
return len(node_arg) == 0
return False
def transform_fx(fx_g):
for node in fx_g.graph.nodes:
if node.op == "call_function":
if node.target in [
torch.ops.aten.empty,
]:
# aten.empty should be filled with zeros.
if node.target in [torch.ops.aten.empty]:
with fx_g.graph.inserting_after(node):
new_node = fx_g.graph.call_function(
torch.ops.aten.zero_,
args=(node,),
)
node.append(new_node)
node.replace_all_uses_with(new_node)
new_node.args = (node,)
fx_g.graph.lint()
@make_simple_dynamo_backend
def refbackend_torchdynamo_backend(
fx_graph: torch.fx.GraphModule, example_inputs: List[torch.Tensor]
):
# handling usage of empty tensor without initializing
transform_fx(fx_graph)
fx_graph.recompile()
if _returns_nothing(fx_graph):
return fx_graph
removed_none_indexes = _remove_nones(fx_graph)
was_unwrapped = _unwrap_single_tuple_return(fx_graph)
mlir_module = torch_mlir.compile(
fx_graph, example_inputs, output_type="linalg-on-tensors"
)
bytecode_stream = BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
shark_module = SharkInference(
mlir_module=bytecode, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
def compiled_callable(*inputs):
inputs = [x.numpy() for x in inputs]
result = shark_module("forward", inputs)
if was_unwrapped:
result = [
result,
]
if not isinstance(result, list):
result = torch.from_numpy(result)
else:
result = tuple(torch.from_numpy(x) for x in result)
result = list(result)
for removed_index in removed_none_indexes:
result.insert(removed_index, None)
result = tuple(result)
return result
return compiled_callable
def predictions(torch_func, jit_func, batchA, batchB):
res = jit_func(batchA.numpy(), batchB.numpy())
if res is not None:
prediction = res
else:
prediction = None
return prediction
logger = logging.getLogger(__name__)
# def save_progress(text_encoder, placeholder_token_id, accelerator, save_path):
def save_progress(text_encoder, placeholder_token_id, save_path):
logger.info("Saving embeddings")
learned_embeds = (
# accelerator.unwrap_model(text_encoder)
text_encoder.get_input_embeddings().weight[placeholder_token_id]
)
learned_embeds_dict = {
args.placeholder_token: learned_embeds.detach().cpu()
}
torch.save(learned_embeds_dict, save_path)
train_batch_size = hyperparameters["train_batch_size"]
gradient_accumulation_steps = hyperparameters["gradient_accumulation_steps"]
learning_rate = hyperparameters["learning_rate"]
if hyperparameters["scale_lr"]:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
# * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
lr=learning_rate,
)
# Training function
def train_func(batch_pixel_values, batch_input_ids):
# Convert images to latent space
latents = shark_vae(batch_pixel_values).sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch_input_ids)[0]
# Predict the noise residual
noise_pred = shark_unet(
noisy_latents,
timesteps,
encoder_hidden_states,
)
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = (
F.mse_loss(noise_pred, target, reduction="none").mean([1, 2, 3]).mean()
)
loss.backward()
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
grads = text_encoder.get_input_embeddings().weight.grad
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
grads.data[index_grads_to_zero, :] = grads.data[
index_grads_to_zero, :
].fill_(0)
optimizer.step()
optimizer.zero_grad()
return loss
def training_function():
max_train_steps = hyperparameters["max_train_steps"]
output_dir = hyperparameters["output_dir"]
gradient_checkpointing = hyperparameters["gradient_checkpointing"]
train_dataloader = create_dataloader(train_batch_size)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = (
train_batch_size
* gradient_accumulation_steps
# train_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
# range(max_train_steps), disable=not accelerator.is_local_main_process
range(max_train_steps)
)
progress_bar.set_description("Steps")
global_step = 0
params_ = [i for i in text_encoder.get_input_embeddings().parameters()]
if args.use_torchdynamo:
print("******** TRAINING STARTED - TORCHYDNAMO PATH ********")
else:
print("******** TRAINING STARTED - PYTORCH PATH ********")
print("Initial weights:")
print(params_, params_[0].shape)
for epoch in range(num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
if args.use_torchdynamo:
dynamo_callable = dynamo.optimize(
refbackend_torchdynamo_backend
)(train_func)
lam_func = lambda x, y: dynamo_callable(
torch.from_numpy(x), torch.from_numpy(y)
)
loss = predictions(
train_func,
lam_func,
batch["pixel_values"],
batch["input_ids"],
# params[0].detach(),
)
else:
loss = train_func(batch["pixel_values"], batch["input_ids"])
print(loss)
# Checks if the accelerator has performed an optimization step behind the scenes
progress_bar.update(1)
global_step += 1
if global_step % hyperparameters["save_steps"] == 0:
save_path = os.path.join(
output_dir,
f"learned_embeds-step-{global_step}.bin",
)
save_progress(
text_encoder,
placeholder_token_id,
save_path,
)
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
params__ = [i for i in text_encoder.get_input_embeddings().parameters()]
print("******** TRAINING PROCESS FINISHED ********")
print("Updated weights:")
print(params__, params__[0].shape)
pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
# text_encoder=accelerator.unwrap_model(text_encoder),
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae,
unet=unet,
)
pipeline.save_pretrained(output_dir)
# Also save the newly trained embeddings
save_path = os.path.join(output_dir, f"learned_embeds.bin")
save_progress(text_encoder, placeholder_token_id, save_path)
training_function()
for param in itertools.chain(unet.parameters(), text_encoder.parameters()):
if param.grad is not None:
del param.grad # free some memory
torch.cuda.empty_cache()
# Set up the pipeline
from diffusers import DPMSolverMultistepScheduler
pipe = StableDiffusionPipeline.from_pretrained(
hyperparameters["output_dir"],
scheduler=DPMSolverMultistepScheduler.from_pretrained(
hyperparameters["output_dir"], subfolder="scheduler"
),
)
if not args.use_torchdynamo:
pipe.to(args.device)
# Run the Stable Diffusion pipeline
# Don't forget to use the placeholder token in your prompt
all_images = []
for _ in range(args.num_inference_samples):
images = pipe(
[args.prompt],
num_inference_steps=args.inference_steps,
guidance_scale=7.5,
).images
all_images.extend(images)
output_path = os.path.abspath(os.path.join(os.getcwd(), args.output_dir))
if not os.path.isdir(args.output_dir):
os.mkdir(args.output_dir)
[
image.save(f"{args.output_dir}/{i}.jpeg")
for i, image in enumerate(all_images)
]

View File

@@ -19,14 +19,10 @@ import sys
import subprocess
def run_cmd(cmd, debug=False):
def run_cmd(cmd):
"""
Inputs: cli command string.
"""
if debug:
print("IREE run command: \n\n")
print(cmd)
print("\n\n")
try:
result = subprocess.run(
cmd,

View File

@@ -139,14 +139,9 @@ def run_benchmark_module(benchmark_cl):
benchmark_path
), "Cannot find benchmark_module, Please contact SHARK maintainer on discord."
bench_result = run_cmd(" ".join(benchmark_cl))
try:
regex_split = re.compile("(\d+[.]*\d*)( *)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(3)
except AttributeError:
regex_split = re.compile("(\d+[.]*\d*)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(2)
print(bench_result)
regex_split = re.compile("(\d+[.]*\d*)( *)([a-zA-Z]+)")
match = regex_split.search(bench_result)
time = float(match.group(1))
unit = match.group(3)
return 1.0 / (time * 0.001)

View File

@@ -53,10 +53,10 @@ def get_iree_device_args(device, extra_args=[]):
# Get the iree-compiler arguments given frontend.
def get_iree_frontend_args(frontend):
if frontend in ["torch", "pytorch", "linalg"]:
return ["--iree-llvmcpu-target-cpu-features=host"]
return ["--iree-llvm-target-cpu-features=host"]
elif frontend in ["tensorflow", "tf", "mhlo"]:
return [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]
@@ -70,6 +70,7 @@ def get_iree_common_args():
return [
"--iree-stream-resource-index-bits=64",
"--iree-vm-target-index-bits=64",
"--iree-vm-bytecode-module-strip-source-map=true",
"--iree-util-zero-fill-elided-attrs",
]
@@ -293,8 +294,7 @@ def get_iree_module(flatbuffer_blob, device, device_idx=None):
haldriver = ireert.get_driver(device)
haldevice = haldriver.create_device(
haldriver.query_available_devices()[device_idx]["device_id"],
#allocators=shark_args.device_allocator,
haldriver.query_available_devices()[device_idx]["device_id"]
)
config = ireert.Config(device=haldevice)
else:
@@ -403,10 +403,5 @@ def get_results(
def get_iree_runtime_config(device):
device = iree_device_map(device)
haldriver = ireert.get_driver(device)
haldevice = haldriver.create_device_by_uri(
device,
#allocators=shark_args.device_allocator,
)
config = ireert.Config(device=haldevice)
config = ireert.Config(device=ireert.get_device(device))
return config

View File

@@ -44,4 +44,4 @@ def get_iree_cpu_args():
error_message = f"OS Type f{os_name} not supported and triple can't be determined, open issue to dSHARK team please :)"
raise Exception(error_message)
print(f"Target triple found:{target_triple}")
return [f"--iree-llvm-target-triple={target_triple}"]
return [f"-iree-llvm-target-triple={target_triple}"]

View File

@@ -22,7 +22,7 @@ from shark.parser import shark_args
# Get the default gpu args given the architecture.
def get_iree_gpu_args():
ireert.flags.FUNCTION_INPUT_VALIDATION = False
ireert.flags.parse_flags("--cuda_allow_inline_execution")
ireert.flags.parse_flags("--cuda_allow_inline_execution", "--device_allocator=caching")
# TODO: Give the user_interface to pass the sm_arch.
sm_arch = get_cuda_sm_cc()
if (

View File

@@ -139,9 +139,8 @@ def get_vulkan_triple_flag(device_name="", extra_args=[]):
def get_iree_vulkan_args(extra_args=[]):
# vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
res_vulkan_flag = ["--device_allocator=caching"]
res_vulkan_flag = []
vulkan_triple_flag = None
for arg in extra_args:
if "-iree-vulkan-target-triple=" in arg:

View File

@@ -108,14 +108,4 @@ parser.add_argument(
help="Enables the --iree-flow-enable-conv-winograd-transform flag.",
)
parser.add_argument(
"--device_allocator",
type=str,
nargs="*",
default=[],
help="Specifies one or more HAL device allocator specs "
"to augment the base device allocator",
choices=["debug", "caching"],
)
shark_args, unknown = parser.parse_known_args()

View File

@@ -118,11 +118,10 @@ class SharkBenchmarkRunner(SharkRunner):
)
HFmodel, input = get_torch_model(modelname)[:2]
frontend_model = HFmodel.model
# frontend_model = dynamo.optimize("inductor")(frontend_model)
frontend_model.to(torch_device)
input.to(torch_device)
# frontend_model = torch.compile(frontend_model, mode="max-autotune", backend="inductor")
for i in range(shark_args.num_warmup_iterations):
frontend_model.forward(input)

View File

@@ -99,7 +99,6 @@ else:
print(
f"shark_tank local cache is located at {WORKDIR} . You may change this by setting the --local_tank_cache= flag"
)
os.makedirs(WORKDIR, exist_ok=True)
# Checks whether the directory and files exists.
@@ -150,14 +149,10 @@ def download_model(
if not check_dir_exists(
model_dir_name, frontend=frontend, dynamic=dyn_str
):
print(
f"Force-updating artifacts for model {model_name} from: {full_gs_url}"
)
print(f"Downloading artifacts for model {model_name}...")
download_public_file(full_gs_url, model_dir)
elif shark_args.force_update_tank == True:
print(
f"Force-updating artifacts for model {model_name} from: {full_gs_url}"
)
print(f"Force-updating artifacts for model {model_name}...")
download_public_file(full_gs_url, model_dir)
else:
if not _internet_connected():

View File

@@ -4,17 +4,6 @@
import sys
import tempfile
import os
import hashlib
def create_hash(file_name):
with open(file_name, "rb") as f:
file_hash = hashlib.blake2b()
while chunk := f.read(2**20):
file_hash.update(chunk)
return file_hash.hexdigest()
# List of the supported frontends.
supported_frontends = {
@@ -151,7 +140,6 @@ class SharkImporter:
outputs_name = "golden_out.npz"
func_file_name = "function_name"
model_name_mlir = model_name + "_" + self.frontend + ".mlir"
print(f"saving {model_name_mlir} to {dir}")
try:
inputs = [x.cpu().detach() for x in inputs]
except AttributeError:
@@ -162,11 +150,11 @@ class SharkImporter:
np.savez(os.path.join(dir, inputs_name), *inputs)
np.savez(os.path.join(dir, outputs_name), *outputs)
np.save(os.path.join(dir, func_file_name), np.array(func_name))
if self.frontend == "torch":
with open(os.path.join(dir, model_name_mlir), "wb") as mlir_file:
mlir_file.write(mlir_data)
mlir_hash = create_hash(os.path.join(dir, model_name_mlir))
np.save(os.path.join(dir, "hash"), np.array(mlir_hash))
return
def import_debug(
@@ -389,10 +377,7 @@ def import_with_fx(
golden_values = None
if debug:
try:
golden_values = model(*inputs)
except:
golden_values = None
golden_values = model(*inputs)
# TODO: Control the decompositions.
fx_g = make_fx(
model,

View File

@@ -1,29 +1,28 @@
resnet50,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
albert-base-v2,mhlo,tf,1e-2,1e-2,default,None,False,False,False,"",""
roberta-base,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,True,True,True,"","macos"
bert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"","enabled_windows"
camembert-base,mhlo,tf,1e-2,1e-3,default,None,True,True,True,"",""
roberta-base,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
bert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
camembert-base,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
dbmdz/convbert-base-turkish-cased,mhlo,tf,1e-2,1e-3,default,nhcw-nhwc,True,True,False,"https://github.com/iree-org/iree/issues/9971",""
distilbert-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
facebook/convnext-tiny-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,True,True,False,"https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342","macos"
facebook/convnext-tiny-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,True,True,False,"https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342",""
funnel-transformer/small,mhlo,tf,1e-2,1e-3,default,None,True,True,False,"https://github.com/nod-ai/SHARK/issues/201",""
google/electra-small-discriminator,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
google/mobilebert-uncased,mhlo,tf,1e-2,1e-3,default,None,True,False,False,"Fails during iree-compile",""
google/vit-base-patch16-224,mhlo,tf,1e-2,1e-3,tf_vit,nhcw-nhwc,False,False,False,"",""
microsoft/MiniLM-L12-H384-uncased,mhlo,tf,1e-2,1e-3,tf_hf,None,True,False,False,"Fails during iree-compile.",""
microsoft/layoutlm-base-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
microsoft/mpnet-base,mhlo,tf,1e-2,1e-2,default,None,True,True,True,"",""
microsoft/mpnet-base,mhlo,tf,1e-2,1e-2,default,None,False,False,False,"",""
albert-base-v2,linalg,torch,1e-2,1e-3,default,None,True,True,True,"issue with aten.tanh in torch-mlir",""
alexnet,linalg,torch,1e-2,1e-3,default,None,True,True,False,"https://github.com/nod-ai/SHARK/issues/879",""
bert-base-cased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-base-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-base-uncased_fp16,linalg,torch,1e-1,1e-1,default,None,True,False,True,"",""
bert-large-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-large-uncased,mhlo,tf,1e-2,1e-3,default,None,False,False,False,"",""
facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"Fails during iree-compile.",""
google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/311",""
microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/390",""
microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
microsoft/resnet-50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,False,False,False,"","macos"
google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"https://github.com/nod-ai/SHARK/issues/344",""
mobilenet_v3_small,linalg,torch,1e-1,1e-2,default,nhcw-nhwc,False,True,False,"https://github.com/nod-ai/SHARK/issues/388","macos"
nvidia/mit-b0,linalg,torch,1e-2,1e-3,default,None,True,True,False,"https://github.com/nod-ai/SHARK/issues/343","macos"
@@ -34,4 +33,4 @@ resnet50_fp16,linalg,torch,1e-2,1e-2,default,nhcw-nhwc/img2col,True,False,True,"
squeezenet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
wide_resnet50_2,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,False,False,False,"","macos"
efficientnet-v2-s,mhlo,tf,1e-02,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"","macos"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
1 resnet50 mhlo tf 1e-2 1e-3 default nhcw-nhwc False False False macos
2 albert-base-v2 mhlo tf 1e-2 1e-2 default None False False False
3 roberta-base mhlo tf 1e-02 1e-3 default nhcw-nhwc True False True False True False macos
4 bert-base-uncased mhlo tf 1e-2 1e-3 default None False False False enabled_windows
5 camembert-base mhlo tf 1e-2 1e-3 default None True False True False True False
6 dbmdz/convbert-base-turkish-cased mhlo tf 1e-2 1e-3 default nhcw-nhwc True True False https://github.com/iree-org/iree/issues/9971
7 distilbert-base-uncased mhlo tf 1e-2 1e-3 default None False False False
8 facebook/convnext-tiny-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc True True False https://github.com/nod-ai/SHARK/issues/311 & https://github.com/nod-ai/SHARK/issues/342 macos
9 funnel-transformer/small mhlo tf 1e-2 1e-3 default None True True False https://github.com/nod-ai/SHARK/issues/201
10 google/electra-small-discriminator mhlo tf 1e-2 1e-3 default None False False False
11 google/mobilebert-uncased mhlo tf 1e-2 1e-3 default None True False False Fails during iree-compile
12 google/vit-base-patch16-224 mhlo tf 1e-2 1e-3 tf_vit nhcw-nhwc False False False
13 microsoft/MiniLM-L12-H384-uncased mhlo tf 1e-2 1e-3 tf_hf None True False False Fails during iree-compile.
14 microsoft/layoutlm-base-uncased mhlo tf 1e-2 1e-3 default None False False False
15 microsoft/mpnet-base mhlo tf 1e-2 1e-2 default None True False True False True False
16 albert-base-v2 linalg torch 1e-2 1e-3 default None True True True issue with aten.tanh in torch-mlir
17 alexnet linalg torch 1e-2 1e-3 default None True True False https://github.com/nod-ai/SHARK/issues/879
18 bert-base-cased linalg torch 1e-2 1e-3 default None False False False
19 bert-base-uncased linalg torch 1e-2 1e-3 default None False False False
20 bert-base-uncased_fp16 linalg torch 1e-1 1e-1 default None True False True
bert-large-uncased linalg torch 1e-2 1e-3 default None False False False
bert-large-uncased mhlo tf 1e-2 1e-3 default None False False False
21 facebook/deit-small-distilled-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False Fails during iree-compile.
22 google/vit-base-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/311
23 microsoft/beit-base-patch16-224-pt22k-ft22k linalg torch 1e-2 1e-3 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/390
24 microsoft/MiniLM-L12-H384-uncased linalg torch 1e-2 1e-3 default None False False False
25 microsoft/resnet-50 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col False False False macos
26 google/mobilebert-uncased linalg torch 1e-2 1e-3 default None False False False https://github.com/nod-ai/SHARK/issues/344
27 mobilenet_v3_small linalg torch 1e-1 1e-2 default nhcw-nhwc False True False https://github.com/nod-ai/SHARK/issues/388 macos
28 nvidia/mit-b0 linalg torch 1e-2 1e-3 default None True True False https://github.com/nod-ai/SHARK/issues/343 macos
33 squeezenet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False macos
34 wide_resnet50_2 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col False False False macos
35 efficientnet-v2-s mhlo tf 1e-02 1e-3 default nhcw-nhwc False False False macos
36 mnasnet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc True False True False True False macos

View File

@@ -63,7 +63,7 @@ if __name__ == "__main__":
# Compile the model using IREE
backend = "dylib-llvm-aot"
args = [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]

View File

@@ -136,7 +136,7 @@ if __name__ == "__main__":
backend = "dylib-llvm-aot"
if backend == "dylib-llvm-aot":
args = [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]

View File

@@ -83,7 +83,7 @@ if __name__ == "__main__":
# Compile the model using IREE
backend = "dylib-llvm-aot"
args = [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-stream-resource-index-bits=64",
"--iree-vm-target-index-bits=64",

View File

@@ -79,7 +79,7 @@ if __name__ == "__main__":
# Compile the model using IREE
backend = "dylib-llvm-aot"
args = [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]

View File

@@ -31,4 +31,3 @@ xlm-roberta-base,False,False,-,-,-
facebook/convnext-tiny-224,False,False,-,-,-
efficientnet-v2-s,False,False,22M,"image-classification,cnn","Includes MBConv and Fused-MBConv"
mnasnet1_0,False,True,-,"cnn, torchvision, mobile, architecture-search","Outperforms other mobile CNNs on Accuracy vs. Latency"
bert-large-uncased,True,hf,True,330M,"nlp;bert-variant;transformer-encoder","24 layers, 1024 hidden units, 16 attention heads"
1 model_name use_tracing dynamic param_count tags notes
31 facebook/convnext-tiny-224 False False - - -
32 efficientnet-v2-s False False 22M image-classification,cnn Includes MBConv and Fused-MBConv
33 mnasnet1_0 False True - cnn, torchvision, mobile, architecture-search Outperforms other mobile CNNs on Accuracy vs. Latency
bert-large-uncased True hf True 330M nlp;bert-variant;transformer-encoder

View File

@@ -15,7 +15,6 @@ keras_models = ["resnet50", "efficientnet-v2-s"]
maskedlm_models = [
"albert-base-v2",
"bert-base-uncased",
"bert-large-uncased",
"camembert-base",
"dbmdz/convbert-base-turkish-cased",
"deberta-base",

View File

@@ -137,19 +137,6 @@ class SharkModuleTester:
def create_and_check_module(self, dynamic, device):
shark_args.local_tank_cache = self.local_tank_cache
shark_args.force_update_tank = self.update_tank
shark_args.dispatch_benchmarks = self.benchmark_dispatches
if self.benchmark_dispatches is not None:
_m = self.config["model_name"].split("/")
_m.extend([self.config["framework"], str(dynamic), device])
_m = "_".join(_m)
shark_args.dispatch_benchmarks_dir = os.path.join(
self.dispatch_benchmarks_dir,
_m,
)
if not os.path.exists(self.dispatch_benchmarks_dir):
os.mkdir(self.dispatch_benchmarks_dir)
if not os.path.exists(shark_args.dispatch_benchmarks_dir):
os.mkdir(shark_args.dispatch_benchmarks_dir)
if "nhcw-nhwc" in self.config["flags"] and not os.path.isfile(
".use-iree"
):
@@ -291,12 +278,6 @@ class SharkModuleTest(unittest.TestCase):
"update_tank"
)
self.module_tester.tank_url = self.pytestconfig.getoption("tank_url")
self.module_tester.benchmark_dispatches = self.pytestconfig.getoption(
"benchmark_dispatches"
)
self.module_tester.dispatch_benchmarks_dir = (
self.pytestconfig.getoption("dispatch_benchmarks_dir")
)
if config["xfail_cpu"] == "True" and device == "cpu":
pytest.xfail(reason=config["xfail_reason"])
@@ -307,9 +288,6 @@ class SharkModuleTest(unittest.TestCase):
if config["xfail_vkm"] == "True" and device in ["metal", "vulkan"]:
pytest.xfail(reason=config["xfail_reason"])
if os.name == "nt" and "enabled_windows" not in config["xfail_other"]:
pytest.xfail(reason="this model skipped on windows")
# Special cases that need to be marked.
if "macos" in config["xfail_other"] and device in [
"metal",

View File

@@ -18,4 +18,3 @@ microsoft/mpnet-base,hf
facebook/convnext-tiny-224,img
google/vit-base-patch16-224,img
efficientnet-v2-s,keras
bert-large-uncased,hf
1 model_name model_type
18 facebook/convnext-tiny-224 img
19 google/vit-base-patch16-224 img
20 efficientnet-v2-s keras
bert-large-uncased hf

Some files were not shown because too many files have changed in this diff Show More