Compare commits

..

1 Commits

Author SHA1 Message Date
Anush Elangovan
6d6a9dcae8 Revert "Revert "Enable --device_allocator=caching""
This reverts commit 41ee65b377.
2023-02-09 23:00:32 -08:00
225 changed files with 4573 additions and 47128 deletions

View File

@@ -1,5 +0,0 @@
[flake8]
count = 1
show-source = 1
select = E9,F63,F7,F82
exclude = lit.cfg.py, apps/language_models/scripts/vicuna.py, apps/language_models/src/pipelines/minigpt4_pipeline.py, apps/language_models/langchain/h2oai_pipeline.py

View File

@@ -14,7 +14,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v2
@@ -44,19 +44,31 @@ jobs:
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: true
prerelease: false
- name: Build Package
shell: powershell
run: |
./setup_venv.ps1
$env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
mv ./dist/nodai_shark_studio.exe ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /fd certHash /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
pyinstaller .\apps\stable_diffusion\shark_sd_cli.spec
mv ./dist/shark_sd_cli.exe ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
# GHA windows VM OOMs so disable for now
#- name: Build and validate the SHARK Runtime package
# shell: powershell
# run: |
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
- uses: actions/upload-artifact@v2
with:
path: dist/*
- name: Upload Release Assets
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
@@ -64,8 +76,7 @@ jobs:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./dist/nodai*
#asset_content_type: application/vnd.microsoft.portable-executable
assets_path: ./dist/*
- name: Publish Release
id: publish_release
@@ -81,7 +92,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
backend: [IREE, SHARK]
steps:
@@ -104,7 +115,7 @@ jobs:
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
python -m pip install --upgrade pip
python -m pip install flake8 pytest toml
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html; fi
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
@@ -120,7 +131,7 @@ jobs:
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://iree-org.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
@@ -144,7 +155,7 @@ jobs:
source shark.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models

View File

@@ -31,12 +31,10 @@ jobs:
matrix:
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
suite: [cpu,cuda,vulkan]
python-version: ["3.11"]
python-version: ["3.10"]
include:
- os: ubuntu-latest
suite: lint
- os: MacStudio
suite: metal
exclude:
- os: ubuntu-latest
suite: vulkan
@@ -48,8 +46,6 @@ jobs:
suite: cuda
- os: MacStudio
suite: cpu
- os: MacStudio
suite: vulkan
- os: icelake
suite: vulkan
- os: icelake
@@ -65,6 +61,7 @@ jobs:
steps:
- uses: actions/checkout@v3
if: matrix.os != '7950x'
- name: Set Environment Variables
if: matrix.os != '7950x'
@@ -87,6 +84,9 @@ jobs:
#cache-dependency-path: |
# **/requirements-importer.txt
# **/requirements.txt
- uses: actions/checkout@v2
if: matrix.os == '7950x'
- name: Install dependencies
if: matrix.suite == 'lint'
@@ -99,12 +99,11 @@ jobs:
run: |
# black format check
black --version
black --check .
black --line-length 79 --check .
# stop the build if there are Python syntax errors or undefined names
flake8 . --statistics
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude lit.cfg.py
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --isolated --count --exit-zero --max-complexity=10 --max-line-length=127 \
--statistics --exclude lit.cfg.py
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude lit.cfg.py
- name: Validate Models on CPU
if: matrix.suite == 'cpu'
@@ -112,32 +111,32 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cpu
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cpu
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
python build_tools/vicuna_testing.py
- name: Validate Models on NVIDIA GPU
if: matrix.suite == 'cuda'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark=native --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k cuda
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cuda
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
# Disabled due to black image bug
# python build_tools/stable_diffusion_testing.py --device=cuda
- name: Validate Vulkan Models (MacOS)
if: matrix.suite == 'metal' && matrix.os == 'MacStudio'
if: matrix.suite == 'vulkan' && matrix.os == 'MacStudio'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
export DYLD_LIBRARY_PATH=/usr/local/lib/
echo $PATH
pip list | grep -E "torch|iree"
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" --tank_url="gs://shark_tank/nightly/" -k metal
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" -k vulkan --update_tank
- name: Validate Vulkan Models (a100)
if: matrix.suite == 'vulkan' && matrix.os == 'a100'
@@ -145,19 +144,19 @@ jobs:
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
source shark.venv/bin/activate
pytest --forked --benchmark="native" --ci --ci_sha=${SHORT_SHA} --update_tank --tank_url="gs://shark_tank/nightly/" -k vulkan
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k vulkan
python build_tools/stable_diffusion_testing.py --device=vulkan
- name: Validate Vulkan Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
pytest -k vulkan -s --ci
pytest --benchmark -k vulkan -s
type bench_results.csv
- name: Validate Stable Diffusion Models (Windows)
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
run: |
./setup_venv.ps1
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
./shark.venv/Scripts/activate
python build_tools/stable_diffusion_testing.py --device=vulkan

19
.gitignore vendored
View File

@@ -2,8 +2,6 @@
__pycache__/
*.py[cod]
*$py.class
*.mlir
*.vmfb
# C extensions
*.so
@@ -159,7 +157,7 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
#.idea/
# vscode related
.vscode
@@ -170,8 +168,6 @@ shark_tmp/
*.vmfb
.use-iree
tank/dict_configs.py
*.csv
reproducers/
# ORT related artefacts
cache_models/
@@ -186,16 +182,3 @@ models/
# models folder
apps/stable_diffusion/web/models/
# Stencil annotators.
stencil_annotator/
# For DocuChat
apps/language_models/langchain/user_path/
db_dir_UserData
# Embeded browser cache and other
apps/stable_diffusion/web/EBWebView/
# Llama2 tokenizer configs
llama2_tokenizer_configs/

2
.gitmodules vendored
View File

@@ -1,4 +1,4 @@
[submodule "inference/thirdparty/shark-runtime"]
path = inference/thirdparty/shark-runtime
url =https://github.com/nod-ai/SRT.git
url =https://github.com/nod-ai/SHARK-Runtime.git
branch = shark-06032022

3
.style.yapf Normal file
View File

@@ -0,0 +1,3 @@
[style]
based_on_style = google
column_limit = 80

View File

@@ -10,7 +10,7 @@ High Performance Machine Learning Distribution
<summary>Prerequisites - Drivers </summary>
#### Install your Windows hardware drivers
* [AMD RDNA Users] Download the latest driver (23.2.1 is the oldest supported) [here](https://www.amd.com/en/support).
* [AMD RDNA Users] Download this specific driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mril-iree). Latest drivers may not work.
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
@@ -25,32 +25,18 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Install Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
Download the [stable release](https://github.com/nod-ai/shark/releases/latest)
Download the latest .exe https://github.com/nod-ai/SHARK/releases.
Double click the .exe and you should have the [UI](http://localhost:8080/) in the browser.
Double click the .exe and you should have the [UI]( http://localhost:8080/?__theme=dark) in the browser.
If you have custom models put them in a `models/` directory where the .exe is.
If you have custom models (ckpt, safetensors) put in a `models/` directory where the .exe is.
Enjoy.
<details>
<summary>More installation notes</summary>
* We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`
Some known AMD Driver quirks and fixes with cursors are documented [here](https://github.com/nod-ai/SHARK/blob/main/apps/stable_diffusion/stable_diffusion_amd.md ).
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE)
* The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
</details>
<details>
<summary>Advanced Installation (Only for developers)</summary>
@@ -68,7 +54,7 @@ cd SHARK
### Windows 10/11 Users
* Install the latest Python 3.11.x version from [here](https://www.python.org/downloads/windows/)
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
* Install Git for Windows from [here](https://git-scm.com/download/win)
@@ -114,20 +100,21 @@ source shark.venv/bin/activate
#### Windows 10/11 Users
```powershell
(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\txt2img.py --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
```
#### Linux / macOS Users
```shell
python3.11 apps/stable_diffusion/scripts/main.py --app=txt2img --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
python3.10 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
```
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
</details>
The output on a AMD 7900XTX would look something like:
The output on a 7900XTX would like:
```shell
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
@@ -153,7 +140,7 @@ Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any
This step sets up a new VirtualEnv for Python
```shell
python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
python --version #Check you have 3.10 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
@@ -167,10 +154,10 @@ python -m pip install --upgrade pip
### Install SHARK
This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
```shell
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
```
### Run shark tank model tests.
@@ -202,10 +189,10 @@ python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
<details>
<summary>Development, Testing and Benchmarks</summary>
If you want to use Python3.11 and with TF Import tools you can use the environment variables like:
If you want to use Python3.10 and with TF Import tools you can use the environment variables like:
Set `USE_IREE=1` to use upstream IREE
```
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
```
### Run any of the hundreds of SHARK tank models via the test framework
@@ -215,14 +202,14 @@ python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use g
pytest tank/test_models.py -k "MiniLM"
```
### How to use your locally built IREE / Torch-MLIR with SHARK
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
How to use your locally built Torch-MLIR with SHARK:
### How to use your locally built Torch-MLIR with SHARK
```shell
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
@@ -240,15 +227,9 @@ Now the SHARK will use your locally build Torch-MLIR repo.
## Benchmarking Dispatches
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your pytest command line argument.
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
For example, to generate and run dispatch benchmarks for MiniLM on CUDA:
```
pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks
```
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
```
@@ -272,7 +253,7 @@ Output will include:
- A .txt file containing benchmark output
See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.
See tank/README.md for instructions on how to run model tests and benchmarks from the SHARK tank.
</details>

View File

@@ -1,16 +0,0 @@
## CodeGen Setup using SHARK-server
### Setup Server
- clone SHARK and setup the venv
- host the server using `python apps/stable_diffusion/web/index.py --api --server_port=<PORT>`
- default server address is `http://0.0.0.0:8080`
### Setup Client
1. fauxpilot-vscode (VSCode Extension):
- Code for the extension can be found [here](https://github.com/Venthe/vscode-fauxpilot)
- PreReq: VSCode extension (will need [`nodejs` and `npm`](https://nodejs.org/en/download) to compile and run the extension)
- Compile and Run the extension on VSCode (press F5 on VSCode), this opens a new VSCode window with the extension running
- Open VSCode settings, search for fauxpilot in settings and modify `server : http://<IP>:<PORT>`, `Model : codegen` , `Max Lines : 30`
2. Others (REST API curl, OpenAI Python bindings) as shown [here](https://github.com/fauxpilot/fauxpilot/blob/main/documentation/client.md)
- using Github Copilot VSCode extension with SHARK-server needs more work to be functional.

View File

@@ -1,18 +0,0 @@
# Langchain
## How to run the model
1.) Install all the dependencies by running:
```shell
pip install -r apps/language_models/langchain/langchain_requirements.txt
sudo apt-get install -y libmagic-dev poppler-utils tesseract-ocr libtesseract-dev libreoffice
```
2.) Create a folder named `user_path` in `apps/language_models/langchain/` directory.
Now, you are ready to use the model.
3.) To run the model, run the following command:
```shell
python apps/language_models/langchain/gen.py --cli=True
```

View File

@@ -1,186 +0,0 @@
import copy
import torch
from evaluate_params import eval_func_param_names
from gen import Langchain
from prompter import non_hf_types
from utils import clear_torch_cache, NullContext, get_kwargs
def run_cli( # for local function:
base_model=None,
lora_weights=None,
inference_server=None,
debug=None,
chat_context=None,
examples=None,
memory_restriction_level=None,
# for get_model:
score_model=None,
load_8bit=None,
load_4bit=None,
load_half=None,
load_gptq=None,
use_safetensors=None,
infer_devices=None,
tokenizer_base_model=None,
gpu_id=None,
local_files_only=None,
resume_download=None,
use_auth_token=None,
trust_remote_code=None,
offload_folder=None,
compile_model=None,
# for some evaluate args
stream_output=None,
prompt_type=None,
prompt_dict=None,
temperature=None,
top_p=None,
top_k=None,
num_beams=None,
max_new_tokens=None,
min_new_tokens=None,
early_stopping=None,
max_time=None,
repetition_penalty=None,
num_return_sequences=None,
do_sample=None,
chat=None,
langchain_mode=None,
langchain_action=None,
document_choice=None,
top_k_docs=None,
chunk=None,
chunk_size=None,
# for evaluate kwargs
src_lang=None,
tgt_lang=None,
concurrency_count=None,
save_dir=None,
sanitize_bot_response=None,
model_state0=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None,
load_db_if_exists=None,
dbs=None,
user_path=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None,
use_openai_model=None,
hf_embedding_model=None,
db_type=None,
n_jobs=None,
first_para=None,
text_limit=None,
verbose=None,
cli=None,
reverse_docs=None,
use_cache=None,
auto_reduce_chunks=None,
max_chunks=None,
model_lock=None,
force_langchain_evaluate=None,
model_state_none=None,
# unique to this function:
cli_loop=None,
):
Langchain.check_locals(**locals())
score_model = "" # FIXME: For now, so user doesn't have to pass
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
device = "cpu" if n_gpus == 0 else "cuda"
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
with context_class(device):
from functools import partial
# get score model
smodel, stokenizer, sdevice = Langchain.get_score_model(
reward_type=True,
**get_kwargs(
Langchain.get_score_model,
exclude_names=["reward_type"],
**locals()
)
)
model, tokenizer, device = Langchain.get_model(
reward_type=False,
**get_kwargs(
Langchain.get_model, exclude_names=["reward_type"], **locals()
)
)
model_dict = dict(
base_model=base_model,
tokenizer_base_model=tokenizer_base_model,
lora_weights=lora_weights,
inference_server=inference_server,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
)
model_state = dict(model=model, tokenizer=tokenizer, device=device)
model_state.update(model_dict)
my_db_state = [None]
fun = partial(
Langchain.evaluate,
model_state,
my_db_state,
**get_kwargs(
Langchain.evaluate,
exclude_names=["model_state", "my_db_state"]
+ eval_func_param_names,
**locals()
)
)
example1 = examples[-1] # pick reference example
all_generations = []
while True:
clear_torch_cache()
instruction = input("\nEnter an instruction: ")
if instruction == "exit":
break
eval_vars = copy.deepcopy(example1)
eval_vars[eval_func_param_names.index("instruction")] = eval_vars[
eval_func_param_names.index("instruction_nochat")
] = instruction
eval_vars[eval_func_param_names.index("iinput")] = eval_vars[
eval_func_param_names.index("iinput_nochat")
] = "" # no input yet
eval_vars[
eval_func_param_names.index("context")
] = "" # no context yet
# grab other parameters, like langchain_mode
for k in eval_func_param_names:
if k in locals():
eval_vars[eval_func_param_names.index(k)] = locals()[k]
gener = fun(*tuple(eval_vars))
outr = ""
res_old = ""
for gen_output in gener:
res = gen_output["response"]
extra = gen_output["sources"]
if base_model not in non_hf_types or base_model in ["llama"]:
if not stream_output:
print(res)
else:
# then stream output for gradio that has full output each generation, so need here to show only new chars
diff = res[len(res_old) :]
print(diff, end="", flush=True)
res_old = res
outr = res # don't accumulate
else:
outr += res # just is one thing
if extra:
# show sources at end after model itself had streamed to std rest of response
print(extra, flush=True)
all_generations.append(outr + "\n")
if not cli_loop:
break
return all_generations

File diff suppressed because it is too large Load Diff

View File

@@ -1,103 +0,0 @@
from enum import Enum
class PromptType(Enum):
custom = -1
plain = 0
instruct = 1
quality = 2
human_bot = 3
dai_faq = 4
summarize = 5
simple_instruct = 6
instruct_vicuna = 7
instruct_with_end = 8
human_bot_orig = 9
prompt_answer = 10
open_assistant = 11
wizard_lm = 12
wizard_mega = 13
instruct_vicuna2 = 14
instruct_vicuna3 = 15
wizard2 = 16
wizard3 = 17
instruct_simple = 18
wizard_vicuna = 19
openai = 20
openai_chat = 21
gptj = 22
prompt_answer_openllama = 23
vicuna11 = 24
mptinstruct = 25
mptchat = 26
falcon = 27
class DocumentChoices(Enum):
All_Relevant = 0
All_Relevant_Only_Sources = 1
Only_All_Sources = 2
Just_LLM = 3
non_query_commands = [
DocumentChoices.All_Relevant_Only_Sources.name,
DocumentChoices.Only_All_Sources.name,
]
class LangChainMode(Enum):
"""LangChain mode"""
DISABLED = "Disabled"
CHAT_LLM = "ChatLLM"
LLM = "LLM"
ALL = "All"
WIKI = "wiki"
WIKI_FULL = "wiki_full"
USER_DATA = "UserData"
MY_DATA = "MyData"
GITHUB_H2OGPT = "github h2oGPT"
H2O_DAI_DOCS = "DriverlessAI docs"
class LangChainAction(Enum):
"""LangChain action"""
QUERY = "Query"
# WIP:
# SUMMARIZE_MAP = "Summarize_map_reduce"
SUMMARIZE_MAP = "Summarize"
SUMMARIZE_ALL = "Summarize_all"
SUMMARIZE_REFINE = "Summarize_refine"
no_server_str = no_lora_str = no_model_str = "[None/Remove]"
# from site-packages/langchain/llms/openai.py
# but needed since ChatOpenAI doesn't have this information
model_token_mapping = {
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-32k": 32768,
"gpt-4-32k-0314": 32768,
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-16k": 16 * 1024,
"gpt-3.5-turbo-0301": 4096,
"text-ada-001": 2049,
"ada": 2049,
"text-babbage-001": 2040,
"babbage": 2049,
"text-curie-001": 2049,
"curie": 2049,
"davinci": 2049,
"text-davinci-003": 4097,
"text-davinci-002": 4097,
"code-davinci-002": 8001,
"code-davinci-001": 8001,
"code-cushman-002": 2048,
"code-cushman-001": 2048,
}
source_prefix = "Sources [Score | Link]:"
source_postfix = "End Sources<p>"

View File

@@ -1,53 +0,0 @@
no_default_param_names = [
"instruction",
"iinput",
"context",
"instruction_nochat",
"iinput_nochat",
]
gen_hyper = [
"temperature",
"top_p",
"top_k",
"num_beams",
"max_new_tokens",
"min_new_tokens",
"early_stopping",
"max_time",
"repetition_penalty",
"num_return_sequences",
"do_sample",
]
eval_func_param_names = (
[
"instruction",
"iinput",
"context",
"stream_output",
"prompt_type",
"prompt_dict",
]
+ gen_hyper
+ [
"chat",
"instruction_nochat",
"iinput_nochat",
"langchain_mode",
"langchain_action",
"top_k_docs",
"chunk",
"chunk_size",
"document_choice",
]
)
# form evaluate defaults for submit_nochat_api
eval_func_param_names_defaults = eval_func_param_names.copy()
for k in no_default_param_names:
if k in eval_func_param_names_defaults:
eval_func_param_names_defaults.remove(k)
eval_extra_columns = ["prompt", "response", "score"]

View File

@@ -1,846 +0,0 @@
from __future__ import annotations
from typing import (
Any,
Mapping,
Optional,
Dict,
List,
Sequence,
Tuple,
Union,
Protocol,
)
import inspect
import json
import warnings
from pathlib import Path
import yaml
from abc import ABC, abstractmethod
import langchain
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.question_answering import stuff_prompt
from langchain.prompts.base import BasePromptTemplate
from langchain.docstore.document import Document
from langchain.callbacks.manager import (
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.load.serializable import Serializable
from langchain.schema import RUN_KEY, BaseMemory, RunInfo
from langchain.input import get_colored_text
from langchain.load.dump import dumpd
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import LLMResult, PromptValue
from pydantic import Extra, Field, root_validator, validator
def _get_verbosity() -> bool:
return langchain.verbose
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
"""Format a document into a string based on a prompt template."""
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
missing_metadata = set(prompt.input_variables).difference(base_info)
if len(missing_metadata) > 0:
required_metadata = [
iv for iv in prompt.input_variables if iv != "page_content"
]
raise ValueError(
f"Document prompt requires documents to have metadata variables: "
f"{required_metadata}. Received document with missing metadata: "
f"{list(missing_metadata)}."
)
document_info = {k: base_info[k] for k in prompt.input_variables}
return prompt.format(**document_info)
class Chain(Serializable, ABC):
"""Base interface that all chains should implement."""
memory: Optional[BaseMemory] = None
callbacks: Callbacks = Field(default=None, exclude=True)
callback_manager: Optional[BaseCallbackManager] = Field(
default=None, exclude=True
)
verbose: bool = Field(
default_factory=_get_verbosity
) # Whether to print the response text
tags: Optional[List[str]] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@property
def _chain_type(self) -> str:
raise NotImplementedError("Saving not supported for this chain type.")
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get("callback_manager") is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
values["callbacks"] = values.pop("callback_manager", None)
return values
@validator("verbose", pre=True, always=True)
def set_verbose(cls, verbose: Optional[bool]) -> bool:
"""If verbose is None, set it.
This allows users to pass in None as verbose to access the global setting.
"""
if verbose is None:
return _get_verbosity()
else:
return verbose
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Input keys this chain expects."""
@property
@abstractmethod
def output_keys(self) -> List[str]:
"""Output keys this chain expects."""
def _validate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Check that all inputs are present."""
missing_keys = set(self.input_keys).difference(inputs)
if missing_keys:
raise ValueError(f"Missing some input keys: {missing_keys}")
def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
missing_keys = set(self.output_keys).difference(outputs)
if missing_keys:
raise ValueError(f"Missing some output keys: {missing_keys}")
@abstractmethod
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run the logic of this chain and return the output."""
def __call__(
self,
inputs: Union[Dict[str, Any], Any],
return_only_outputs: bool = False,
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
include_run_info: bool = False,
) -> Dict[str, Any]:
"""Run the logic of this chain and add to output if desired.
Args:
inputs: Dictionary of inputs, or single input if chain expects
only one param.
return_only_outputs: boolean for whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks: Callbacks to use for this chain run. If not provided, will
use the callbacks provided to the chain.
include_run_info: Whether to include run info in the response. Defaults
to False.
"""
input_docs = inputs["input_documents"]
missing_keys = set(self.input_keys).difference(inputs)
if missing_keys:
raise ValueError(f"Missing some input keys: {missing_keys}")
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose, tags, self.tags
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
inputs,
)
if "is_first" in inputs.keys() and not inputs["is_first"]:
run_manager_ = run_manager
input_list = [inputs]
stop = None
prompts = []
for inputs in input_list:
selected_inputs = {
k: inputs[k] for k in self.prompt.input_variables
}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager_:
run_manager_.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
prompt_strings = [p.to_string() for p in prompts]
prompts = prompt_strings
callbacks = run_manager_.get_child() if run_manager_ else None
tags = None
"""Run the LLM on the given prompt and input."""
# If string is passed in directly no errors will be raised but outputs will
# not make sense.
if not isinstance(prompts, list):
raise ValueError(
"Argument 'prompts' is expected to be of type List[str], received"
f" argument of type {type(prompts)}."
)
params = self.llm.dict()
params["stop"] = stop
options = {"stop": stop}
disregard_cache = self.llm.cache is not None and not self.llm.cache
callback_manager = CallbackManager.configure(
callbacks,
self.llm.callbacks,
self.llm.verbose,
tags,
self.llm.tags,
)
if langchain.llm_cache is None or disregard_cache:
# This happens when langchain.cache is None, but self.cache is True
if self.llm.cache is not None and self.cache:
raise ValueError(
"Asked to cache, but no cache found at `langchain.cache`."
)
run_manager_ = callback_manager.on_llm_start(
dumpd(self),
prompts,
invocation_params=params,
options=options,
)
generations = []
for prompt in prompts:
inputs_ = prompt
num_workers = None
batch_size = None
if num_workers is None:
if self.llm.pipeline._num_workers is None:
num_workers = 0
else:
num_workers = self.llm.pipeline._num_workers
if batch_size is None:
if self.llm.pipeline._batch_size is None:
batch_size = 1
else:
batch_size = self.llm.pipeline._batch_size
preprocess_params = {}
generate_kwargs = {}
preprocess_params.update(generate_kwargs)
forward_params = generate_kwargs
postprocess_params = {}
# Fuse __init__ params and __call__ params without modifying the __init__ ones.
preprocess_params = {
**self.llm.pipeline._preprocess_params,
**preprocess_params,
}
forward_params = {
**self.llm.pipeline._forward_params,
**forward_params,
}
postprocess_params = {
**self.llm.pipeline._postprocess_params,
**postprocess_params,
}
self.llm.pipeline.call_count += 1
if (
self.llm.pipeline.call_count > 10
and self.llm.pipeline.framework == "pt"
and self.llm.pipeline.device.type == "cuda"
):
warnings.warn(
"You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a"
" dataset",
UserWarning,
)
model_inputs = self.llm.pipeline.preprocess(
inputs_, **preprocess_params
)
model_outputs = self.llm.pipeline.forward(
model_inputs, **forward_params
)
model_outputs["process"] = False
return model_outputs
output = LLMResult(generations=generations)
run_manager_.on_llm_end(output)
if run_manager_:
output.run = RunInfo(run_id=run_manager_.run_id)
response = output
outputs = [
# Get the text of the top generated string.
{self.output_key: generation[0].text}
for generation in response.generations
][0]
run_manager.on_chain_end(outputs)
final_outputs: Dict[str, Any] = self.prep_outputs(
inputs, outputs, return_only_outputs
)
if include_run_info:
final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
return final_outputs
else:
_run_manager = (
run_manager or CallbackManagerForChainRun.get_noop_manager()
)
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {
k: v for k, v in inputs.items() if k != self.input_key
}
doc_strings = [
format_document(doc, self.document_prompt) for doc in docs
]
# Join the documents together to put them in the prompt.
inputs = {
k: v
for k, v in other_keys.items()
if k in self.llm_chain.prompt.input_variables
}
inputs[self.document_variable_name] = self.document_separator.join(
doc_strings
)
inputs["is_first"] = False
inputs["input_documents"] = input_docs
# Call predict on the LLM.
output = self.llm_chain(inputs, callbacks=_run_manager.get_child())
if "process" in output.keys() and not output["process"]:
return output
output = output[self.llm_chain.output_key]
extra_return_dict = {}
extra_return_dict[self.output_key] = output
outputs = extra_return_dict
run_manager.on_chain_end(outputs)
final_outputs: Dict[str, Any] = self.prep_outputs(
inputs, outputs, return_only_outputs
)
if include_run_info:
final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
return final_outputs
def prep_outputs(
self,
inputs: Dict[str, str],
outputs: Dict[str, str],
return_only_outputs: bool = False,
) -> Dict[str, str]:
"""Validate and prep outputs."""
self._validate_outputs(outputs)
if self.memory is not None:
self.memory.save_context(inputs, outputs)
if return_only_outputs:
return outputs
else:
return {**inputs, **outputs}
def prep_inputs(
self, inputs: Union[Dict[str, Any], Any]
) -> Dict[str, str]:
"""Validate and prep inputs."""
if not isinstance(inputs, dict):
_input_keys = set(self.input_keys)
if self.memory is not None:
# If there are multiple input keys, but some get set by memory so that
# only one is not set, we can still figure out which key it is.
_input_keys = _input_keys.difference(
self.memory.memory_variables
)
if len(_input_keys) != 1:
raise ValueError(
f"A single string input was passed in, but this chain expects "
f"multiple inputs ({_input_keys}). When a chain expects "
f"multiple inputs, please call it by passing in a dictionary, "
"eg `chain({'foo': 1, 'bar': 2})`"
)
inputs = {list(_input_keys)[0]: inputs}
if self.memory is not None:
external_context = self.memory.load_memory_variables(inputs)
inputs = dict(inputs, **external_context)
self._validate_inputs(inputs)
return inputs
def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Call the chain on all inputs in the list."""
return [self(inputs, callbacks=callbacks) for inputs in input_list]
def run(
self,
*args: Any,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> str:
"""Run the chain as text in, text out or multiple variables, text out."""
if len(self.output_keys) != 1:
raise ValueError(
f"`run` not supported when there is not exactly "
f"one output key. Got {self.output_keys}."
)
if args and not kwargs:
if len(args) != 1:
raise ValueError(
"`run` supports only one positional argument."
)
return self(args[0], callbacks=callbacks, tags=tags)[
self.output_keys[0]
]
if kwargs and not args:
return self(kwargs, callbacks=callbacks, tags=tags)[
self.output_keys[0]
]
if not kwargs and not args:
raise ValueError(
"`run` supported with either positional arguments or keyword arguments,"
" but none were provided."
)
raise ValueError(
f"`run` supported with either positional arguments or keyword arguments"
f" but not both. Got args: {args} and kwargs: {kwargs}."
)
def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of chain."""
if self.memory is not None:
raise ValueError("Saving of memory is not yet supported.")
_dict = super().dict()
_dict["_type"] = self._chain_type
return _dict
def save(self, file_path: Union[Path, str]) -> None:
"""Save the chain.
Args:
file_path: Path to file to save the chain to.
Example:
.. code-block:: python
chain.save(file_path="path/chain.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
chain_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(chain_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(chain_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
class BaseCombineDocumentsChain(Chain, ABC):
"""Base interface for chains combining documents."""
input_key: str = "input_documents" #: :meta private:
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def prompt_length(
self, docs: List[Document], **kwargs: Any
) -> Optional[int]:
"""Return the prompt length given the documents passed in.
Returns None if the method does not depend on the prompt length.
"""
return None
def _call(
self,
inputs: Dict[str, List[Document]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = (
run_manager or CallbackManagerForChainRun.get_noop_manager()
)
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
doc_strings = [
format_document(doc, self.document_prompt) for doc in docs
]
# Join the documents together to put them in the prompt.
inputs = {
k: v
for k, v in other_keys.items()
if k in self.llm_chain.prompt.input_variables
}
inputs[self.document_variable_name] = self.document_separator.join(
doc_strings
)
# Call predict on the LLM.
output, extra_return_dict = (
self.llm_chain(inputs, callbacks=_run_manager.get_child())[
self.llm_chain.output_key
],
{},
)
extra_return_dict[self.output_key] = output
return extra_return_dict
from pydantic import BaseModel
class Generation(Serializable):
"""Output of a single generation."""
text: str
"""Generated text output."""
generation_info: Optional[Dict[str, Any]] = None
"""Raw generation info response from the provider"""
"""May include things like reason for finishing (e.g. in OpenAI)"""
# TODO: add log probs
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
@property
def lc_serializable(self) -> bool:
return True
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
prompts, stop = self.prep_prompts([inputs], run_manager=run_manager)
response = self.llm.generate_prompt(
prompts,
stop,
callbacks=run_manager.get_child() if run_manager else None,
)
return self.create_outputs(response)[0]
def prep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {
k: inputs[k] for k in self.prompt.input_variables
}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]:
"""Create outputs from response."""
return [
# Get the text of the top generated string.
{self.output_key: generation[0].text}
for generation in response.generations
]
def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = self.apply(input_list, callbacks=callbacks)
return self._parse_result(result)
def _parse_result(
self, result: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key])
for res in result
]
else:
return result
@property
def _chain_type(self) -> str:
return "llm_chain"
@classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
def _get_default_document_prompt() -> PromptTemplate:
return PromptTemplate(
input_variables=["page_content"], template="{page_content}"
)
class StuffDocumentsChain(BaseCombineDocumentsChain):
"""Chain that combines documents by stuffing into context."""
llm_chain: LLMChain
"""LLM wrapper to use after formatting documents."""
document_prompt: BasePromptTemplate = Field(
default_factory=_get_default_document_prompt
)
"""Prompt to use to format each document."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
document_separator: str = "\n\n"
"""The string with which to join the formatted documents"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def get_default_document_variable_name(cls, values: Dict) -> Dict:
"""Get default document variable name, if not provided."""
llm_chain_variables = values["llm_chain"].prompt.input_variables
if "document_variable_name" not in values:
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain_variables"
)
else:
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict:
# Format each document according to the prompt
doc_strings = [
format_document(doc, self.document_prompt) for doc in docs
]
# Join the documents together to put them in the prompt.
inputs = {
k: v
for k, v in kwargs.items()
if k in self.llm_chain.prompt.input_variables
}
inputs[self.document_variable_name] = self.document_separator.join(
doc_strings
)
return inputs
def prompt_length(
self, docs: List[Document], **kwargs: Any
) -> Optional[int]:
"""Get the prompt length by formatting the prompt."""
inputs = self._get_inputs(docs, **kwargs)
prompt = self.llm_chain.prompt.format(**inputs)
return self.llm_chain.llm.get_num_tokens(prompt)
@property
def _chain_type(self) -> str:
return "stuff_documents_chain"
class LoadingCallable(Protocol):
"""Interface for loading the combine documents chain."""
def __call__(
self, llm: BaseLanguageModel, **kwargs: Any
) -> BaseCombineDocumentsChain:
"""Callable to load the combine documents chain."""
def _load_stuff_chain(
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
document_variable_name: str = "context",
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> StuffDocumentsChain:
_prompt = prompt or stuff_prompt.PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(
llm=llm,
prompt=_prompt,
verbose=verbose,
callback_manager=callback_manager,
callbacks=callbacks,
)
# TODO: document prompt
return StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name=document_variable_name,
verbose=verbose,
callback_manager=callback_manager,
**kwargs,
)
def load_qa_chain(
llm: BaseLanguageModel,
chain_type: str = "stuff",
verbose: Optional[bool] = None,
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> BaseCombineDocumentsChain:
"""Load question answering chain.
Args:
llm: Language Model to use in the chain.
chain_type: Type of document combining chain to use. Should be one of "stuff",
"map_reduce", "map_rerank", and "refine".
verbose: Whether chains should be run in verbose mode or not. Note that this
applies to all chains that make up the final chain.
callback_manager: Callback manager to use for the chain.
Returns:
A chain to use for question answering.
"""
loader_mapping: Mapping[str, LoadingCallable] = {
"stuff": _load_stuff_chain,
}
if chain_type not in loader_mapping:
raise ValueError(
f"Got unsupported chain type: {chain_type}. "
f"Should be one of {loader_mapping.keys()}"
)
return loader_mapping[chain_type](
llm, verbose=verbose, callback_manager=callback_manager, **kwargs
)

File diff suppressed because it is too large Load Diff

View File

@@ -1,380 +0,0 @@
import inspect
import os
from functools import partial
from typing import Dict, Any, Optional, List
from langchain.callbacks.manager import CallbackManagerForLLMRun
from pydantic import root_validator
from langchain.llms import gpt4all
from dotenv import dotenv_values
from utils import FakeTokenizer
def get_model_tokenizer_gpt4all(base_model, **kwargs):
# defaults (some of these are generation parameters, so need to be passed in at generation time)
model_kwargs = dict(
n_threads=os.cpu_count() // 2,
temp=kwargs.get("temperature", 0.2),
top_p=kwargs.get("top_p", 0.75),
top_k=kwargs.get("top_k", 40),
n_ctx=2048 - 256,
)
env_gpt4all_file = ".env_gpt4all"
model_kwargs.update(dotenv_values(env_gpt4all_file))
# make int or float if can to satisfy types for class
for k, v in model_kwargs.items():
try:
if float(v) == int(v):
model_kwargs[k] = int(v)
else:
model_kwargs[k] = float(v)
except:
pass
if base_model == "llama":
if "model_path_llama" not in model_kwargs:
raise ValueError("No model_path_llama in %s" % env_gpt4all_file)
model_path = model_kwargs.pop("model_path_llama")
# FIXME: GPT4All version of llama doesn't handle new quantization, so use llama_cpp_python
from llama_cpp import Llama
# llama sets some things at init model time, not generation time
func_names = list(inspect.signature(Llama.__init__).parameters)
model_kwargs = {
k: v for k, v in model_kwargs.items() if k in func_names
}
model_kwargs["n_ctx"] = int(model_kwargs["n_ctx"])
model = Llama(model_path=model_path, **model_kwargs)
elif base_model in "gpt4all_llama":
if (
"model_name_gpt4all_llama" not in model_kwargs
and "model_path_gpt4all_llama" not in model_kwargs
):
raise ValueError(
"No model_name_gpt4all_llama or model_path_gpt4all_llama in %s"
% env_gpt4all_file
)
model_name = model_kwargs.pop("model_name_gpt4all_llama")
model_type = "llama"
from gpt4all import GPT4All as GPT4AllModel
model = GPT4AllModel(model_name=model_name, model_type=model_type)
elif base_model in "gptj":
if (
"model_name_gptj" not in model_kwargs
and "model_path_gptj" not in model_kwargs
):
raise ValueError(
"No model_name_gpt4j or model_path_gpt4j in %s"
% env_gpt4all_file
)
model_name = model_kwargs.pop("model_name_gptj")
model_type = "gptj"
from gpt4all import GPT4All as GPT4AllModel
model = GPT4AllModel(model_name=model_name, model_type=model_type)
else:
raise ValueError("No such base_model %s" % base_model)
return model, FakeTokenizer(), "cpu"
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
# streaming to std already occurs without this
# sys.stdout.write(token)
# sys.stdout.flush()
pass
def get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=[]):
# default from class
model_kwargs = {
k: v.default
for k, v in dict(inspect.signature(cls).parameters).items()
if k not in exclude_list
}
# from our defaults
model_kwargs.update(default_kwargs)
# from user defaults
model_kwargs.update(env_kwargs)
# ensure only valid keys
func_names = list(inspect.signature(cls).parameters)
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names}
return model_kwargs
def get_llm_gpt4all(
model_name,
model=None,
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
streaming=False,
callbacks=None,
prompter=None,
verbose=False,
):
assert prompter is not None
env_gpt4all_file = ".env_gpt4all"
env_kwargs = dotenv_values(env_gpt4all_file)
n_ctx = env_kwargs.pop("n_ctx", 2048 - max_new_tokens)
default_kwargs = dict(
context_erase=0.5,
n_batch=1,
n_ctx=n_ctx,
n_predict=max_new_tokens,
repeat_last_n=64 if repetition_penalty != 1.0 else 0,
repeat_penalty=repetition_penalty,
temp=temperature,
temperature=temperature,
top_k=top_k,
top_p=top_p,
use_mlock=True,
verbose=verbose,
)
if model_name == "llama":
cls = H2OLlamaCpp
model_path = (
env_kwargs.pop("model_path_llama") if model is None else model
)
model_kwargs = get_model_kwargs(
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
)
model_kwargs.update(
dict(
model_path=model_path,
callbacks=callbacks,
streaming=streaming,
prompter=prompter,
)
)
llm = cls(**model_kwargs)
llm.client.verbose = verbose
elif model_name == "gpt4all_llama":
cls = H2OGPT4All
model_path = (
env_kwargs.pop("model_path_gpt4all_llama")
if model is None
else model
)
model_kwargs = get_model_kwargs(
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
)
model_kwargs.update(
dict(
model=model_path,
backend="llama",
callbacks=callbacks,
streaming=streaming,
prompter=prompter,
)
)
llm = cls(**model_kwargs)
elif model_name == "gptj":
cls = H2OGPT4All
model_path = (
env_kwargs.pop("model_path_gptj") if model is None else model
)
model_kwargs = get_model_kwargs(
env_kwargs, default_kwargs, cls, exclude_list=["lc_kwargs"]
)
model_kwargs.update(
dict(
model=model_path,
backend="gptj",
callbacks=callbacks,
streaming=streaming,
prompter=prompter,
)
)
llm = cls(**model_kwargs)
else:
raise RuntimeError("No such model_name %s" % model_name)
return llm
class H2OGPT4All(gpt4all.GPT4All):
model: Any
prompter: Any
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
if isinstance(values["model"], str):
from gpt4all import GPT4All as GPT4AllModel
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter
values["client"] = GPT4AllModel(
model_name=model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=False,
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(
values["n_threads"]
)
else:
values["client"] = values["model"]
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
except ImportError:
raise ValueError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
# Roughly 4 chars per token if natural language
prompt = prompt[-self.n_ctx * 4 :]
# use instruct prompting
data_point = dict(context="", instruction=prompt, input="")
prompt = self.prompter.generate_prompt(data_point)
verbose = False
if verbose:
print("_call prompt: %s" % prompt, flush=True)
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout
return super()._call(prompt, stop=stop, run_manager=run_manager)
from langchain.llms import LlamaCpp
class H2OLlamaCpp(LlamaCpp):
model_path: Any
prompter: Any
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
if isinstance(values["model_path"], str):
model_path = values["model_path"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
from llama_cpp import Llama
values["client"] = Llama(model_path, **model_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
else:
values["client"] = values["model_path"]
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
verbose = False
# tokenize twice, just to count tokens, since llama cpp python wrapper has no way to truncate
# still have to avoid crazy sizes, else hit llama_tokenize: too many tokens -- might still hit, not fatal
prompt = prompt[-self.n_ctx * 4 :]
prompt_tokens = self.client.tokenize(b" " + prompt.encode("utf-8"))
num_prompt_tokens = len(prompt_tokens)
if num_prompt_tokens > self.n_ctx:
# conservative by using int()
chars_per_token = int(len(prompt) / num_prompt_tokens)
prompt = prompt[-self.n_ctx * chars_per_token :]
if verbose:
print(
"reducing tokens, assuming average of %s chars/token: %s"
% chars_per_token,
flush=True,
)
prompt_tokens2 = self.client.tokenize(
b" " + prompt.encode("utf-8")
)
num_prompt_tokens2 = len(prompt_tokens2)
print(
"reduced tokens from %d -> %d"
% (num_prompt_tokens, num_prompt_tokens2),
flush=True,
)
# use instruct prompting
data_point = dict(context="", instruction=prompt, input="")
prompt = self.prompter.generate_prompt(data_point)
if verbose:
print("_call prompt: %s" % prompt, flush=True)
if self.streaming:
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
if text_callback:
text_callback(prompt)
text = ""
for token in self.stream(
prompt=prompt, stop=stop, run_manager=run_manager
):
text_chunk = token["choices"][0]["text"]
# self.stream already calls text_callback
# if text_callback:
# text_callback(text_chunk)
text += text_chunk
return text
else:
params = self._get_parameters(stop)
params = {**params, **kwargs}
result = self.client(prompt=prompt, **params)
return result["choices"][0]["text"]

File diff suppressed because it is too large Load Diff

View File

@@ -1,93 +0,0 @@
import traceback
from typing import Callable
import os
from gradio_client.client import Job
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
from gradio_client import Client
class GradioClient(Client):
"""
Parent class of gradio client
To handle automatically refreshing client if detect gradio server changed
"""
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
super().__init__(*args, **kwargs)
self.server_hash = self.get_server_hash()
def get_server_hash(self):
"""
Get server hash using super without any refresh action triggered
Returns: git hash of gradio server
"""
return super().submit(api_name="/system_hash").result()
def refresh_client_if_should(self):
# get current hash in order to update api_name -> fn_index map in case gradio server changed
# FIXME: Could add cli api as hash
server_hash = self.get_server_hash()
if self.server_hash != server_hash:
self.refresh_client()
self.server_hash = server_hash
else:
self.reset_session()
def refresh_client(self):
"""
Ensure every client call is independent
Also ensure map between api_name and fn_index is updated in case server changed (e.g. restarted with new code)
Returns:
"""
# need session hash to be new every time, to avoid "generator already executing"
self.reset_session()
client = Client(*self.args, **self.kwargs)
for k, v in client.__dict__.items():
setattr(self, k, v)
def submit(
self,
*args,
api_name: str | None = None,
fn_index: int | None = None,
result_callbacks: Callable | list[Callable] | None = None,
) -> Job:
# Note predict calls submit
try:
self.refresh_client_if_should()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
except Exception as e:
print("Hit e=%s" % str(e), flush=True)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
# see if immediately failed
e = job.future._exception
if e is not None:
print(
"GR job failed: %s %s"
% (str(e), "".join(traceback.format_tb(e.__traceback__))),
flush=True,
)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
e2 = job.future._exception
if e2 is not None:
print(
"GR job failed again: %s\n%s"
% (
str(e2),
"".join(traceback.format_tb(e2.__traceback__)),
),
flush=True,
)
return job

View File

@@ -1,765 +0,0 @@
import os
from apps.stable_diffusion.src.utils.utils import _compile_module
from io import BytesIO
import torch_mlir
from stopping import get_stopping
from prompter import Prompter, PromptType
from transformers import TextGenerationPipeline
from transformers.pipelines.text_generation import ReturnType
from transformers.generation import (
GenerationConfig,
LogitsProcessorList,
StoppingCriteriaList,
)
import copy
import torch
from transformers import AutoConfig, AutoModelForCausalLM
import gc
from pathlib import Path
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_public_file
from shark.shark_importer import import_with_fx, save_mlir
from apps.stable_diffusion.src import args
# Brevitas
from typing import List, Tuple
from brevitas_examples.llm.llm_quant.quantize import quantize_model
from brevitas_examples.llm.llm_quant.run_utils import get_model_impl
# fmt: off
def quantmatmul_rhs_group_quant〡shape(lhs: List[int], rhs: List[int], rhs_scale: List[int], rhs_zero_point: List[int], rhs_bit_width: int, rhs_group_size: int) -> List[int]:
if len(lhs) == 3 and len(rhs) == 2:
return [lhs[0], lhs[1], rhs[0]]
elif len(lhs) == 2 and len(rhs) == 2:
return [lhs[0], rhs[0]]
else:
raise ValueError("Input shapes not supported.")
def quantmatmul_rhs_group_quant〡dtype(lhs_rank_dtype: Tuple[int, int], rhs_rank_dtype: Tuple[int, int], rhs_scale_rank_dtype: Tuple[int, int], rhs_zero_point_rank_dtype: Tuple[int, int], rhs_bit_width: int, rhs_group_size: int) -> int:
# output dtype is the dtype of the lhs float input
lhs_rank, lhs_dtype = lhs_rank_dtype
return lhs_dtype
def quantmatmul_rhs_group_quant〡has_value_semantics(lhs, rhs, rhs_scale, rhs_zero_point, rhs_bit_width, rhs_group_size) -> None:
return
brevitas_matmul_rhs_group_quant_library = [
quantmatmul_rhs_group_quant〡shape,
quantmatmul_rhs_group_quant〡dtype,
quantmatmul_rhs_group_quant〡has_value_semantics]
# fmt: on
global_device = "cuda"
global_precision = "fp16"
if not args.run_docuchat_web:
args.device = global_device
args.precision = global_precision
tensor_device = "cpu" if args.device == "cpu" else "cuda"
class H2OGPTModel(torch.nn.Module):
def __init__(self, device, precision):
super().__init__()
torch_dtype = (
torch.float32
if precision == "fp32" or device == "cpu"
else torch.float16
)
device_map = {"": "cpu"} if device == "cpu" else {"": 0}
model_kwargs = {
"local_files_only": False,
"torch_dtype": torch_dtype,
"resume_download": True,
"use_auth_token": False,
"trust_remote_code": True,
"offload_folder": "offline_folder",
"device_map": device_map,
}
config = AutoConfig.from_pretrained(
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
use_auth_token=False,
trust_remote_code=True,
offload_folder="offline_folder",
)
self.model = AutoModelForCausalLM.from_pretrained(
"h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
config=config,
**model_kwargs,
)
if precision in ["int4", "int8"]:
print("Applying weight quantization..")
weight_bit_width = 4 if precision == "int4" else 8
quantize_model(
self.model.transformer.h,
dtype=torch.float32,
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float",
weight_quant_type="asym",
weight_quant_granularity="per_group",
weight_group_size=128,
quantize_weight_zero_point=False,
)
print("Weight quantization applied.")
def forward(self, input_ids, attention_mask):
input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": None,
"use_cache": True,
}
output = self.model(
**input_dict,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
return output.logits[:, -1, :]
class H2OGPTSHARKModel(torch.nn.Module):
def __init__(self):
super().__init__()
model_name = "h2ogpt_falcon_7b"
extended_model_name = (
model_name + "_" + args.precision + "_" + args.device
)
vmfb_path = Path(extended_model_name + ".vmfb")
mlir_path = Path(model_name + "_" + args.precision + ".mlir")
shark_module = None
need_to_compile = False
if not vmfb_path.exists():
need_to_compile = True
# Downloading VMFB from shark_tank
print("Trying to download pre-compiled vmfb from shark tank.")
download_public_file(
"gs://shark_tank/langchain/" + str(vmfb_path),
vmfb_path.absolute(),
single_file=True,
)
if vmfb_path.exists():
print(
"Pre-compiled vmfb downloaded from shark tank successfully."
)
need_to_compile = False
if need_to_compile:
if not mlir_path.exists():
print("Trying to download pre-generated mlir from shark tank.")
# Downloading MLIR from shark_tank
download_public_file(
"gs://shark_tank/langchain/" + str(mlir_path),
mlir_path.absolute(),
single_file=True,
)
if mlir_path.exists():
with open(mlir_path, "rb") as f:
bytecode = f.read()
else:
# Generating the mlir
bytecode = self.get_bytecode(tensor_device, args.precision)
shark_module = SharkInference(
mlir_module=bytecode,
device=args.device,
mlir_dialect="linalg",
)
print(f"[DEBUG] generating vmfb.")
shark_module = _compile_module(
shark_module, extended_model_name, []
)
print("Saved newly generated vmfb.")
if shark_module is None:
if vmfb_path.exists():
print("Compiled vmfb found. Loading it from: ", vmfb_path)
shark_module = SharkInference(
None, device=args.device, mlir_dialect="linalg"
)
shark_module.load_module(str(vmfb_path))
print("Compiled vmfb loaded successfully.")
else:
raise ValueError("Unable to download/generate a vmfb.")
self.model = shark_module
def get_bytecode(self, device, precision):
h2ogpt_model = H2OGPTModel(device, precision)
compilation_input_ids = torch.randint(
low=1, high=10000, size=(1, 400)
).to(device=device)
compilation_attention_mask = torch.ones(1, 400, dtype=torch.int64).to(
device=device
)
h2ogptCompileInput = (
compilation_input_ids,
compilation_attention_mask,
)
print(f"[DEBUG] generating torchscript graph")
ts_graph = import_with_fx(
h2ogpt_model,
h2ogptCompileInput,
is_f16=False,
precision=precision,
f16_input_mask=[False, False],
mlir_type="torchscript",
)
del h2ogpt_model
del self.src_model
print(f"[DEBUG] generating torch mlir")
if precision in ["int4", "int8"]:
from torch_mlir.compiler_utils import (
run_pipeline_with_repro_report,
)
module = torch_mlir.compile(
ts_graph,
[*h2ogptCompileInput],
output_type=torch_mlir.OutputType.TORCH,
backend_legal_ops=["quant.matmul_rhs_group_quant"],
extra_library=brevitas_matmul_rhs_group_quant_library,
use_tracing=False,
verbose=False,
)
print(f"[DEBUG] converting torch to linalg")
run_pipeline_with_repro_report(
module,
"builtin.module(func.func(torch-unpack-quant-tensor),func.func(torch-convert-custom-quant-op),torch-backend-to-linalg-on-tensors-backend-pipeline)",
description="Lowering Torch Backend IR -> Linalg-on-Tensors Backend IR",
)
else:
module = torch_mlir.compile(
ts_graph,
[*h2ogptCompileInput],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
del ts_graph
print(f"[DEBUG] converting to bytecode")
bytecode_stream = BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
del module
bytecode = save_mlir(
bytecode,
model_name=f"h2ogpt_{precision}",
frontend="torch",
)
return bytecode
def forward(self, input_ids, attention_mask):
result = torch.from_numpy(
self.model(
"forward",
(input_ids.to(device="cpu"), attention_mask.to(device="cpu")),
)
).to(device=tensor_device)
return result
def decode_tokens(tokenizer, res_tokens):
for i in range(len(res_tokens)):
if type(res_tokens[i]) != int:
res_tokens[i] = int(res_tokens[i][0])
res_str = tokenizer.decode(res_tokens, skip_special_tokens=True)
return res_str
def generate_token(h2ogpt_shark_model, model, tokenizer, **generate_kwargs):
del generate_kwargs["max_time"]
generate_kwargs["input_ids"] = generate_kwargs["input_ids"].to(
device=tensor_device
)
generate_kwargs["attention_mask"] = generate_kwargs["attention_mask"].to(
device=tensor_device
)
truncated_input_ids = []
stopping_criteria = generate_kwargs["stopping_criteria"]
generation_config_ = GenerationConfig.from_model_config(model.config)
generation_config = copy.deepcopy(generation_config_)
model_kwargs = generation_config.update(**generate_kwargs)
logits_processor = LogitsProcessorList()
stopping_criteria = (
stopping_criteria
if stopping_criteria is not None
else StoppingCriteriaList()
)
eos_token_id = generation_config.eos_token_id
generation_config.pad_token_id = eos_token_id
(
inputs_tensor,
model_input_name,
model_kwargs,
) = model._prepare_model_inputs(
None, generation_config.bos_token_id, model_kwargs
)
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs[
"output_hidden_states"
] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
input_ids = (
inputs_tensor
if model_input_name == "input_ids"
else model_kwargs.pop("input_ids")
)
input_ids_seq_length = input_ids.shape[-1]
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length
)
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
)
stopping_criteria = model._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria,
)
logits_warper = model._get_logits_warper(generation_config)
(
input_ids,
model_kwargs,
) = model._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences, # 1
is_encoder_decoder=model.config.is_encoder_decoder, # False
**model_kwargs,
)
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = (
torch.tensor(eos_token_id).to(device=tensor_device)
if eos_token_id is not None
else None
)
pad_token_id = generation_config.pad_token_id
eos_token_id = eos_token_id
output_scores = generation_config.output_scores # False
return_dict_in_generate = (
generation_config.return_dict_in_generate # False
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(
input_ids.shape[0],
dtype=torch.long,
device=input_ids.device,
)
timesRan = 0
import time
start = time.time()
print("\n")
res_tokens = []
while True:
model_inputs = model.prepare_inputs_for_generation(
input_ids, **model_kwargs
)
outputs = h2ogpt_shark_model.forward(
model_inputs["input_ids"], model_inputs["attention_mask"]
)
if args.precision == "fp16":
outputs = outputs.to(dtype=torch.float32)
next_token_logits = outputs
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError(
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
)
next_token = next_token * unfinished_sequences + pad_token_id * (
1 - unfinished_sequences
)
input_ids = torch.cat([input_ids, next_token[:, None]], dim=-1)
model_kwargs["past_key_values"] = None
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
truncated_input_ids.append(input_ids[:, 0])
input_ids = input_ids[:, 1:]
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, 1:]
new_word = tokenizer.decode(
next_token.cpu().numpy(),
add_special_tokens=False,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
res_tokens.append(next_token)
if new_word == "<0x0A>":
print("\n", end="", flush=True)
else:
print(f"{new_word}", end=" ", flush=True)
part_str = decode_tokens(tokenizer, res_tokens)
yield part_str
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_token.tile(eos_token_id_tensor.shape[0], 1)
.ne(eos_token_id_tensor.unsqueeze(1))
.prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0 or stopping_criteria(
input_ids, scores
):
break
timesRan = timesRan + 1
end = time.time()
print(
"\n\nTime taken is {:.2f} seconds/token\n".format(
(end - start) / timesRan
)
)
torch.cuda.empty_cache()
gc.collect()
res_str = decode_tokens(tokenizer, res_tokens)
yield res_str
def pad_or_truncate_inputs(
input_ids, attention_mask, max_padding_length=400, do_truncation=False
):
inp_shape = input_ids.shape
if inp_shape[1] < max_padding_length:
# do padding
num_add_token = max_padding_length - inp_shape[1]
padded_input_ids = torch.cat(
[
torch.tensor([[11] * num_add_token]).to(device=tensor_device),
input_ids,
],
dim=1,
)
padded_attention_mask = torch.cat(
[
torch.tensor([[0] * num_add_token]).to(device=tensor_device),
attention_mask,
],
dim=1,
)
return padded_input_ids, padded_attention_mask
elif inp_shape[1] > max_padding_length or do_truncation:
# do truncation
num_remove_token = inp_shape[1] - max_padding_length
truncated_input_ids = input_ids[:, num_remove_token:]
truncated_attention_mask = attention_mask[:, num_remove_token:]
return truncated_input_ids, truncated_attention_mask
else:
return input_ids, attention_mask
class H2OTextGenerationPipeline(TextGenerationPipeline):
def __init__(
self,
*args,
debug=False,
chat=False,
stream_output=False,
sanitize_bot_response=False,
use_prompter=True,
prompter=None,
prompt_type=None,
prompt_dict=None,
max_input_tokens=2048 - 256,
**kwargs,
):
"""
HF-like pipeline, but handle instruction prompting and stopping (for some models)
:param args:
:param debug:
:param chat:
:param stream_output:
:param sanitize_bot_response:
:param use_prompter: Whether to use prompter. If pass prompt_type, will make prompter
:param prompter: prompter, can pass if have already
:param prompt_type: prompt_type, e.g. human_bot. See prompt_type to model mapping in from prompter.py.
If use_prompter, then will make prompter and use it.
:param prompt_dict: dict of get_prompt(, return_dict=True) for prompt_type=custom
:param max_input_tokens:
:param kwargs:
"""
super().__init__(*args, **kwargs)
self.prompt_text = None
self.use_prompter = use_prompter
self.prompt_type = prompt_type
self.prompt_dict = prompt_dict
self.prompter = prompter
if self.use_prompter:
if self.prompter is not None:
assert self.prompter.prompt_type is not None
else:
self.prompter = Prompter(
self.prompt_type,
self.prompt_dict,
debug=debug,
chat=chat,
stream_output=stream_output,
)
self.human = self.prompter.humanstr
self.bot = self.prompter.botstr
self.can_stop = True
else:
self.prompter = None
self.human = None
self.bot = None
self.can_stop = False
self.sanitize_bot_response = sanitize_bot_response
self.max_input_tokens = (
max_input_tokens # not for generate, so ok that not kwargs
)
@staticmethod
def limit_prompt(prompt_text, tokenizer, max_prompt_length=None):
verbose = bool(int(os.getenv("VERBOSE_PIPELINE", "0")))
if hasattr(tokenizer, "model_max_length"):
# model_max_length only defined for generate.py, not raw use of h2oai_pipeline.py
model_max_length = tokenizer.model_max_length
if max_prompt_length is not None:
model_max_length = min(model_max_length, max_prompt_length)
# cut at some upper likely limit to avoid excessive tokenization etc
# upper bound of 10 chars/token, e.g. special chars sometimes are long
if len(prompt_text) > model_max_length * 10:
len0 = len(prompt_text)
prompt_text = prompt_text[-model_max_length * 10 :]
if verbose:
print(
"Cut of input: %s -> %s" % (len0, len(prompt_text)),
flush=True,
)
else:
# unknown
model_max_length = None
num_prompt_tokens = None
if model_max_length is not None:
# can't wait for "hole" if not plain prompt_type, since would lose prefix like <human>:
# For https://github.com/h2oai/h2ogpt/issues/192
for trial in range(0, 3):
prompt_tokens = tokenizer(prompt_text)["input_ids"]
num_prompt_tokens = len(prompt_tokens)
if num_prompt_tokens > model_max_length:
# conservative by using int()
chars_per_token = int(len(prompt_text) / num_prompt_tokens)
# keep tail, where question is if using langchain
prompt_text = prompt_text[
-model_max_length * chars_per_token :
]
if verbose:
print(
"reducing %s tokens, assuming average of %s chars/token for %s characters"
% (
num_prompt_tokens,
chars_per_token,
len(prompt_text),
),
flush=True,
)
else:
if verbose:
print(
"using %s tokens with %s chars"
% (num_prompt_tokens, len(prompt_text)),
flush=True,
)
break
return prompt_text, num_prompt_tokens
def preprocess(
self,
prompt_text,
prefix="",
handle_long_generation=None,
**generate_kwargs,
):
(
prompt_text,
num_prompt_tokens,
) = H2OTextGenerationPipeline.limit_prompt(prompt_text, self.tokenizer)
data_point = dict(context="", instruction=prompt_text, input="")
if self.prompter is not None:
prompt_text = self.prompter.generate_prompt(data_point)
self.prompt_text = prompt_text
if handle_long_generation is None:
# forces truncation of inputs to avoid critical failure
handle_long_generation = None # disable with new approaches
return super().preprocess(
prompt_text,
prefix=prefix,
handle_long_generation=handle_long_generation,
**generate_kwargs,
)
def postprocess(
self,
model_outputs,
return_type=ReturnType.FULL_TEXT,
clean_up_tokenization_spaces=True,
):
records = super().postprocess(
model_outputs,
return_type=return_type,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
for rec in records:
if self.use_prompter:
outputs = rec["generated_text"]
outputs = self.prompter.get_response(
outputs,
prompt=self.prompt_text,
sanitize_bot_response=self.sanitize_bot_response,
)
elif self.bot and self.human:
outputs = (
rec["generated_text"]
.split(self.bot)[1]
.split(self.human)[0]
)
else:
outputs = rec["generated_text"]
rec["generated_text"] = outputs
print(
"prompt: %s\noutputs: %s\n\n" % (self.prompt_text, outputs),
flush=True,
)
return records
def _forward(self, model_inputs, **generate_kwargs):
if self.can_stop:
stopping_criteria = get_stopping(
self.prompt_type,
self.prompt_dict,
self.tokenizer,
self.device,
human=self.human,
bot=self.bot,
model_max_length=self.tokenizer.model_max_length,
)
generate_kwargs["stopping_criteria"] = stopping_criteria
# return super()._forward(model_inputs, **generate_kwargs)
return self.__forward(model_inputs, **generate_kwargs)
# FIXME: Copy-paste of original _forward, but removed copy.deepcopy()
# FIXME: https://github.com/h2oai/h2ogpt/issues/172
def __forward(self, model_inputs, **generate_kwargs):
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
# Allow empty prompts
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
prompt_text = model_inputs.pop("prompt_text")
## If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
## generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
# generate_kwargs = copy.deepcopy(generate_kwargs)
prefix_length = generate_kwargs.pop("prefix_length", 0)
if prefix_length > 0:
has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].max_new_tokens
is not None
)
if not has_max_new_tokens:
generate_kwargs["max_length"] = (
generate_kwargs.get("max_length")
or self.model.config.max_length
)
generate_kwargs["max_length"] += prefix_length
has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].min_new_tokens
is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
# pad or truncate the input_ids and attention_mask
max_padding_length = 400
input_ids, attention_mask = pad_or_truncate_inputs(
input_ids, attention_mask, max_padding_length=max_padding_length
)
return_dict = {
"model": self.model,
"tokenizer": self.tokenizer,
"input_ids": input_ids,
"attention_mask": attention_mask,
"attention_mask": attention_mask,
}
return_dict = {**return_dict, **generate_kwargs}
return return_dict

View File

@@ -1,247 +0,0 @@
"""
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
But accepts preloaded model to avoid slowness in use and CUDA forking issues
Loader that loads image captions
By default, the loader utilizes the pre-trained BLIP image captioning model.
https://huggingface.co/Salesforce/blip-image-captioning-base
"""
from typing import List, Union, Any, Tuple
import requests
from langchain.docstore.document import Document
from langchain.document_loaders import ImageCaptionLoader
from utils import get_device, NullContext
import pkg_resources
try:
assert pkg_resources.get_distribution("bitsandbytes") is not None
have_bitsandbytes = True
except (pkg_resources.DistributionNotFound, AssertionError):
have_bitsandbytes = False
class H2OImageCaptionLoader(ImageCaptionLoader):
"""Loader that loads the captions of an image"""
def __init__(
self,
path_images: Union[str, List[str]] = None,
blip_processor: str = None,
blip_model: str = None,
caption_gpu=True,
load_in_8bit=True,
# True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8
load_half=False,
load_gptq="",
use_safetensors=False,
min_new_tokens=20,
max_tokens=50,
):
if blip_model is None or blip_model is None:
blip_processor = "Salesforce/blip-image-captioning-base"
blip_model = "Salesforce/blip-image-captioning-base"
super().__init__(path_images, blip_processor, blip_model)
self.blip_processor = blip_processor
self.blip_model = blip_model
self.processor = None
self.model = None
self.caption_gpu = caption_gpu
self.context_class = NullContext
self.device = "cpu"
self.load_in_8bit = (
load_in_8bit and have_bitsandbytes
) # only for blip2
self.load_half = load_half
self.load_gptq = load_gptq
self.use_safetensors = use_safetensors
self.gpu_id = "auto"
# default prompt
self.prompt = "image of"
self.min_new_tokens = min_new_tokens
self.max_tokens = max_tokens
def set_context(self):
if get_device() == "cuda" and self.caption_gpu:
import torch
n_gpus = (
torch.cuda.device_count() if torch.cuda.is_available else 0
)
if n_gpus > 0:
self.context_class = torch.device
self.device = "cuda"
def load_model(self):
try:
import transformers
except ImportError:
raise ValueError(
"`transformers` package not found, please install with "
"`pip install transformers`."
)
self.set_context()
if self.caption_gpu:
if self.gpu_id == "auto":
# blip2 has issues with multi-GPU. Error says need to somehow set language model in device map
# device_map = 'auto'
device_map = {"": 0}
else:
if self.device == "cuda":
device_map = {"": self.gpu_id}
else:
device_map = {"": "cpu"}
else:
device_map = {"": "cpu"}
import torch
with torch.no_grad():
with self.context_class(self.device):
context_class_cast = (
NullContext if self.device == "cpu" else torch.autocast
)
with context_class_cast(self.device):
if "blip2" in self.blip_processor.lower():
from transformers import (
Blip2Processor,
Blip2ForConditionalGeneration,
)
if self.load_half and not self.load_in_8bit:
self.processor = Blip2Processor.from_pretrained(
self.blip_processor, device_map=device_map
).half()
self.model = (
Blip2ForConditionalGeneration.from_pretrained(
self.blip_model, device_map=device_map
).half()
)
else:
self.processor = Blip2Processor.from_pretrained(
self.blip_processor,
load_in_8bit=self.load_in_8bit,
device_map=device_map,
)
self.model = (
Blip2ForConditionalGeneration.from_pretrained(
self.blip_model,
load_in_8bit=self.load_in_8bit,
device_map=device_map,
)
)
else:
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
)
self.load_half = False # not supported
if self.caption_gpu:
if device_map == "auto":
# Blip doesn't support device_map='auto'
if self.device == "cuda":
if self.gpu_id == "auto":
device_map = {"": 0}
else:
device_map = {"": self.gpu_id}
else:
device_map = {"": "cpu"}
else:
device_map = {"": "cpu"}
self.processor = BlipProcessor.from_pretrained(
self.blip_processor, device_map=device_map
)
self.model = (
BlipForConditionalGeneration.from_pretrained(
self.blip_model, device_map=device_map
)
)
return self
def set_image_paths(self, path_images: Union[str, List[str]]):
"""
Load from a list of image files
"""
if isinstance(path_images, str):
self.image_paths = [path_images]
else:
self.image_paths = path_images
def load(self, prompt=None) -> List[Document]:
if self.processor is None or self.model is None:
self.load_model()
results = []
for path_image in self.image_paths:
caption, metadata = self._get_captions_and_metadata(
model=self.model,
processor=self.processor,
path_image=path_image,
prompt=prompt,
)
doc = Document(page_content=caption, metadata=metadata)
results.append(doc)
return results
def _get_captions_and_metadata(
self, model: Any, processor: Any, path_image: str, prompt=None
) -> Tuple[str, dict]:
"""
Helper function for getting the captions and metadata of an image
"""
if prompt is None:
prompt = self.prompt
try:
from PIL import Image
except ImportError:
raise ValueError(
"`PIL` package not found, please install with `pip install pillow`"
)
try:
if path_image.startswith("http://") or path_image.startswith(
"https://"
):
image = Image.open(
requests.get(path_image, stream=True).raw
).convert("RGB")
else:
image = Image.open(path_image).convert("RGB")
except Exception:
raise ValueError(f"Could not get image data for {path_image}")
import torch
with torch.no_grad():
with self.context_class(self.device):
context_class_cast = (
NullContext if self.device == "cpu" else torch.autocast
)
with context_class_cast(self.device):
if self.load_half:
inputs = processor(
image, prompt, return_tensors="pt"
).half()
else:
inputs = processor(image, prompt, return_tensors="pt")
min_length = len(prompt) // 4 + self.min_new_tokens
self.max_tokens = max(self.max_tokens, min_length)
output = model.generate(
**inputs,
min_length=min_length,
max_length=self.max_tokens,
)
caption: str = processor.decode(
output[0], skip_special_tokens=True
)
prompti = caption.find(prompt)
if prompti >= 0:
caption = caption[prompti + len(prompt) :]
metadata: dict = {"image_path": path_image}
return caption, metadata

View File

@@ -1,120 +0,0 @@
# for generate (gradio server) and finetune
datasets==2.13.0
sentencepiece==0.1.99
huggingface_hub==0.16.4
appdirs==1.4.4
fire==0.5.0
docutils==0.20.1
evaluate==0.4.0
rouge_score==0.1.2
sacrebleu==2.3.1
scikit-learn==1.2.2
alt-profanity-check==1.2.2
better-profanity==0.7.0
numpy==1.24.3
pandas==2.0.2
matplotlib==3.7.1
loralib==0.1.1
bitsandbytes==0.39.0
accelerate==0.20.3
peft==0.4.0
# 4.31.0+ breaks load_in_8bit=True (https://github.com/huggingface/transformers/issues/25026)
transformers==4.30.2
tokenizers==0.13.3
APScheduler==3.10.1
# optional for generate
pynvml==11.5.0
psutil==5.9.5
boto3==1.26.101
botocore==1.29.101
# optional for finetune
tensorboard==2.13.0
neptune==1.2.0
# for gradio client
gradio_client==0.2.10
beautifulsoup4==4.12.2
markdown==3.4.3
# data and testing
pytest==7.2.2
pytest-xdist==3.2.1
nltk==3.8.1
textstat==0.7.3
# pandoc==2.3
pypandoc==1.11; sys_platform == "darwin" and platform_machine == "arm64"
pypandoc_binary==1.11; platform_machine == "x86_64"
pypandoc_binary==1.11; sys_platform == "win32"
openpyxl==3.1.2
lm_dataformat==0.0.20
bioc==2.0
# falcon
einops==0.6.1
instructorembedding==1.0.1
# for gpt4all .env file, but avoid worrying about imports
python-dotenv==1.0.0
text-generation==0.6.0
# for tokenization when don't have HF tokenizer
tiktoken==0.4.0
# optional: for OpenAI endpoint or embeddings (requires key)
openai==0.27.8
# optional for chat with PDF
langchain==0.0.202
pypdf==3.12.2
# avoid textract, requires old six
#textract==1.6.5
# for HF embeddings
sentence_transformers==2.2.2
# local vector db
chromadb==0.3.25
# server vector db
#pymilvus==2.2.8
# weak url support, if can't install opencv etc. If comment-in this one, then comment-out unstructured[local-inference]==0.6.6
# unstructured==0.8.1
# strong support for images
# Requires on Ubuntu: sudo apt-get install libmagic-dev poppler-utils tesseract-ocr libtesseract-dev libreoffice
unstructured[local-inference]==0.7.4
#pdf2image==1.16.3
#pytesseract==0.3.10
pillow
pdfminer.six==20221105
urllib3
requests_file
#pdf2image==1.16.3
#pytesseract==0.3.10
tabulate==0.9.0
# FYI pandoc already part of requirements.txt
# JSONLoader, but makes some trouble for some users
# jq==1.4.1
# to check licenses
# Run: pip-licenses|grep -v 'BSD\|Apache\|MIT'
pip-licenses==4.3.0
# weaviate vector db
weaviate-client==3.22.1
gpt4all==1.0.5
llama-cpp-python==0.1.73
arxiv==1.4.8
pymupdf==1.22.5 # AGPL license
# extract-msg==0.41.1 # GPL3
# sometimes unstructured fails, these work in those cases. See https://github.com/h2oai/h2ogpt/issues/320
playwright==1.36.0
# requires Chrome binary to be in path
selenium==4.10.0

View File

@@ -1,124 +0,0 @@
from typing import List, Optional, Tuple
import torch
import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
from einops import rearrange
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[
torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]
]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
assert past_key_value is None, "past_key_value is not supported"
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# [bsz, nh, t, hd]
assert not output_attentions, "output_attentions is not supported"
assert not use_cache, "use_cache is not supported"
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
if key_padding_mask is None:
qkv = rearrange(qkv, "b s ... -> (b s) ...")
max_s = q_len
cu_q_lens = torch.arange(
0,
(bsz + 1) * q_len,
step=q_len,
dtype=torch.int32,
device=qkv.device,
)
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
)
output_unpad = flash_attn_unpadded_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"),
indices,
bsz,
q_len,
),
"b s (h d) -> b s h d",
h=nheads,
)
return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, None
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
return attention_mask
def replace_llama_attn_with_flash_attn():
print(
"Replacing original LLaMa attention with flash attention", flush=True
)
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward

View File

@@ -1,109 +0,0 @@
import functools
def get_loaders(model_name, reward_type, llama_type=None, load_gptq=""):
# NOTE: Some models need specific new prompt_type
# E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".)
if load_gptq:
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
use_triton = False
functools.partial(
AutoGPTQForCausalLM.from_quantized,
quantize_config=None,
use_triton=use_triton,
)
return AutoGPTQForCausalLM.from_quantized, AutoTokenizer
if llama_type is None:
llama_type = "llama" in model_name.lower()
if llama_type:
from transformers import LlamaForCausalLM, LlamaTokenizer
return LlamaForCausalLM.from_pretrained, LlamaTokenizer
elif "distilgpt2" in model_name.lower():
from transformers import AutoModelForCausalLM, AutoTokenizer
return AutoModelForCausalLM.from_pretrained, AutoTokenizer
elif "gpt2" in model_name.lower():
from transformers import GPT2LMHeadModel, GPT2Tokenizer
return GPT2LMHeadModel.from_pretrained, GPT2Tokenizer
elif "mbart-" in model_name.lower():
from transformers import (
MBartForConditionalGeneration,
MBart50TokenizerFast,
)
return (
MBartForConditionalGeneration.from_pretrained,
MBart50TokenizerFast,
)
elif (
"t5" == model_name.lower()
or "t5-" in model_name.lower()
or "flan-" in model_name.lower()
):
from transformers import AutoTokenizer, T5ForConditionalGeneration
return T5ForConditionalGeneration.from_pretrained, AutoTokenizer
elif "bigbird" in model_name:
from transformers import (
BigBirdPegasusForConditionalGeneration,
AutoTokenizer,
)
return (
BigBirdPegasusForConditionalGeneration.from_pretrained,
AutoTokenizer,
)
elif (
"bart-large-cnn-samsum" in model_name
or "flan-t5-base-samsum" in model_name
):
from transformers import pipeline
return pipeline, "summarization"
elif (
reward_type
or "OpenAssistant/reward-model".lower() in model_name.lower()
):
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
return (
AutoModelForSequenceClassification.from_pretrained,
AutoTokenizer,
)
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_loader = AutoModelForCausalLM
tokenizer_loader = AutoTokenizer
return model_loader.from_pretrained, tokenizer_loader
def get_tokenizer(
tokenizer_loader,
tokenizer_base_model,
local_files_only,
resume_download,
use_auth_token,
):
tokenizer = tokenizer_loader.from_pretrained(
tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
padding_side="left",
)
tokenizer.pad_token_id = 0 # different from the eos token
# when generating, we will use the logits of right-most token to predict the next token
# so the padding should be on the left,
# e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
tokenizer.padding_side = "left" # Allow batched inference
return tokenizer

View File

@@ -1,203 +0,0 @@
import os
from gpt_langchain import (
path_to_docs,
get_some_dbs_from_hf,
all_db_zips,
some_db_zips,
create_or_update_db,
)
from utils import get_ngpus_vis
def glob_to_db(
user_path,
chunk=True,
chunk_size=512,
verbose=False,
fail_any_exception=False,
n_jobs=-1,
url=None,
enable_captions=True,
captions_model=None,
caption_loader=None,
enable_ocr=False,
):
sources1 = path_to_docs(
user_path,
verbose=verbose,
fail_any_exception=fail_any_exception,
n_jobs=n_jobs,
chunk=chunk,
chunk_size=chunk_size,
url=url,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
)
return sources1
def make_db_main(
use_openai_embedding: bool = False,
hf_embedding_model: str = None,
persist_directory: str = "db_dir_UserData",
user_path: str = "user_path",
url: str = None,
add_if_exists: bool = True,
collection_name: str = "UserData",
verbose: bool = False,
chunk: bool = True,
chunk_size: int = 512,
fail_any_exception: bool = False,
download_all: bool = False,
download_some: bool = False,
download_one: str = None,
download_dest: str = "./",
n_jobs: int = -1,
enable_captions: bool = True,
captions_model: str = "Salesforce/blip-image-captioning-base",
pre_load_caption_model: bool = False,
caption_gpu: bool = True,
enable_ocr: bool = False,
db_type: str = "chroma",
):
"""
# To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
python make_db.py
# once db is made, can use in generate.py like:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --langchain_mode=UserData
or zip-up the db_dir_UserData and share:
zip -r db_dir_UserData.zip db_dir_UserData
# To get all db files (except large wiki_full) do:
python make_db.py --download_some=True
# To get a single db file from HF:
python make_db.py --download_one=db_dir_DriverlessAI_docs.zip
:param use_openai_embedding: Whether to use OpenAI embedding
:param hf_embedding_model: HF embedding model to use. Like generate.py, uses 'hkunlp/instructor-large' if have GPUs, else "sentence-transformers/all-MiniLM-L6-v2"
:param persist_directory: where to persist db
:param user_path: where to pull documents from (None means url is not None. If url is not None, this is ignored.)
:param url: url to generate documents from (None means user_path is not None)
:param add_if_exists: Add to db if already exists, but will not add duplicate sources
:param collection_name: Collection name for new db if not adding
:param verbose: whether to show verbose messages
:param chunk: whether to chunk data
:param chunk_size: chunk size for chunking
:param fail_any_exception: whether to fail if any exception hit during ingestion of files
:param download_all: whether to download all (including 23GB Wikipedia) example databases from h2o.ai HF
:param download_some: whether to download some small example databases from h2o.ai HF
:param download_one: whether to download one chosen example databases from h2o.ai HF
:param download_dest: Destination for downloads
:param n_jobs: Number of cores to use for ingesting multiple files
:param enable_captions: Whether to enable captions on images
:param captions_model: See generate.py
:param pre_load_caption_model: See generate.py
:param caption_gpu: Caption images on GPU if present
:param enable_ocr: Whether to enable OCR on images
:param db_type: Type of db to create. Currently only 'chroma' and 'weaviate' is supported.
:return: None
"""
db = None
# match behavior of main() in generate.py for non-HF case
n_gpus = get_ngpus_vis()
if n_gpus == 0:
if hf_embedding_model is None:
# if no GPUs, use simpler embedding model to avoid cost in time
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
else:
if hf_embedding_model is None:
# if still None, then set default
hf_embedding_model = "hkunlp/instructor-large"
if download_all:
print("Downloading all (and unzipping): %s" % all_db_zips, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=all_db_zips)
if verbose:
print("DONE", flush=True)
return db, collection_name
elif download_some:
print(
"Downloading some (and unzipping): %s" % some_db_zips, flush=True
)
get_some_dbs_from_hf(download_dest, db_zips=some_db_zips)
if verbose:
print("DONE", flush=True)
return db, collection_name
elif download_one:
print("Downloading %s (and unzipping)" % download_one, flush=True)
get_some_dbs_from_hf(
download_dest, db_zips=[[download_one, "", "Unknown License"]]
)
if verbose:
print("DONE", flush=True)
return db, collection_name
if enable_captions and pre_load_caption_model:
# preload, else can be too slow or if on GPU have cuda context issues
# Inside ingestion, this will disable parallel loading of multiple other kinds of docs
# However, if have many images, all those images will be handled more quickly by preloaded model on GPU
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(
None,
blip_model=captions_model,
blip_processor=captions_model,
caption_gpu=caption_gpu,
).load_model()
else:
if enable_captions:
caption_loader = "gpu" if caption_gpu else "cpu"
else:
caption_loader = False
if verbose:
print("Getting sources", flush=True)
assert (
user_path is not None or url is not None
), "Can't have both user_path and url as None"
if not url:
assert os.path.isdir(user_path), (
"user_path=%s does not exist" % user_path
)
sources = glob_to_db(
user_path,
chunk=chunk,
chunk_size=chunk_size,
verbose=verbose,
fail_any_exception=fail_any_exception,
n_jobs=n_jobs,
url=url,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
)
exceptions = [x for x in sources if x.metadata.get("exception")]
print("Exceptions: %s" % exceptions, flush=True)
sources = [x for x in sources if "exception" not in x.metadata]
assert len(sources) > 0, "No sources found"
db = create_or_update_db(
db_type,
persist_directory,
collection_name,
sources,
use_openai_embedding,
add_if_exists,
verbose,
hf_embedding_model,
)
assert db is not None
if verbose:
print("DONE", flush=True)
return db, collection_name

File diff suppressed because it is too large Load Diff

View File

@@ -1,403 +0,0 @@
"""Load Data from a MediaWiki dump xml."""
import ast
import glob
import pickle
import uuid
from typing import List, Optional
import os
import bz2
import csv
import numpy as np
import pandas as pd
import pytest
from matplotlib import pyplot as plt
from langchain.docstore.document import Document
from langchain.document_loaders import MWDumpLoader
# path where downloaded wiki files exist, to be processed
root_path = "/data/jon/h2o-llm"
def unescape(x):
try:
x = ast.literal_eval(x)
except:
try:
x = x.encode("ascii", "ignore").decode("unicode_escape")
except:
pass
return x
def get_views():
# views = pd.read_csv('wiki_page_views_more_1000month.csv')
views = pd.read_csv("wiki_page_views_more_5000month.csv")
views.index = views["title"]
views = views["views"]
views = views.to_dict()
views = {str(unescape(str(k))): v for k, v in views.items()}
views2 = {k.replace("_", " "): v for k, v in views.items()}
# views has _ but pages has " "
views.update(views2)
return views
class MWDumpDirectLoader(MWDumpLoader):
def __init__(
self,
data: str,
encoding: Optional[str] = "utf8",
title_words_limit=None,
use_views=True,
verbose=True,
):
"""Initialize with file path."""
self.data = data
self.encoding = encoding
self.title_words_limit = title_words_limit
self.verbose = verbose
if use_views:
# self.views = get_views()
# faster to use global shared values
self.views = global_views
else:
self.views = None
def load(self) -> List[Document]:
"""Load from file path."""
import mwparserfromhell
import mwxml
dump = mwxml.Dump.from_page_xml(self.data)
docs = []
for page in dump.pages:
if self.views is not None and page.title not in self.views:
if self.verbose:
print("Skipped %s low views" % page.title, flush=True)
continue
for revision in page:
if self.title_words_limit is not None:
num_words = len(" ".join(page.title.split("_")).split(" "))
if num_words > self.title_words_limit:
if self.verbose:
print("Skipped %s" % page.title, flush=True)
continue
if self.verbose:
if self.views is not None:
print(
"Kept %s views: %s"
% (page.title, self.views[page.title]),
flush=True,
)
else:
print("Kept %s" % page.title, flush=True)
code = mwparserfromhell.parse(revision.text)
text = code.strip_code(
normalize=True, collapse=True, keep_template_params=False
)
title_url = str(page.title).replace(" ", "_")
metadata = dict(
title=page.title,
source="https://en.wikipedia.org/wiki/" + title_url,
id=page.id,
redirect=page.redirect,
views=self.views[page.title]
if self.views is not None
else -1,
)
metadata = {k: v for k, v in metadata.items() if v is not None}
docs.append(Document(page_content=text, metadata=metadata))
return docs
def search_index(search_term, index_filename):
byte_flag = False
data_length = start_byte = 0
index_file = open(index_filename, "r")
csv_reader = csv.reader(index_file, delimiter=":")
for line in csv_reader:
if not byte_flag and search_term == line[2]:
start_byte = int(line[0])
byte_flag = True
elif byte_flag and int(line[0]) != start_byte:
data_length = int(line[0]) - start_byte
break
index_file.close()
return start_byte, data_length
def get_start_bytes(index_filename):
index_file = open(index_filename, "r")
csv_reader = csv.reader(index_file, delimiter=":")
start_bytes = set()
for line in csv_reader:
start_bytes.add(int(line[0]))
index_file.close()
return sorted(start_bytes)
def get_wiki_filenames():
# requires
# wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2
base_path = os.path.join(
root_path, "enwiki-20230401-pages-articles-multistream"
)
index_file = "enwiki-20230401-pages-articles-multistream-index.txt"
index_filename = os.path.join(base_path, index_file)
wiki_filename = os.path.join(
base_path, "enwiki-20230401-pages-articles-multistream.xml.bz2"
)
return index_filename, wiki_filename
def get_documents_by_search_term(search_term):
index_filename, wiki_filename = get_wiki_filenames()
start_byte, data_length = search_index(search_term, index_filename)
with open(wiki_filename, "rb") as wiki_file:
wiki_file.seek(start_byte)
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
loader = MWDumpDirectLoader(data.decode())
documents = loader.load()
return documents
def get_one_chunk(
wiki_filename,
start_byte,
end_byte,
return_file=True,
title_words_limit=None,
use_views=True,
):
data_length = end_byte - start_byte
with open(wiki_filename, "rb") as wiki_file:
wiki_file.seek(start_byte)
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
loader = MWDumpDirectLoader(
data.decode(), title_words_limit=title_words_limit, use_views=use_views
)
documents1 = loader.load()
if return_file:
base_tmp = "temp_wiki"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
with open(filename, "wb") as f:
pickle.dump(documents1, f)
return filename
return documents1
from joblib import Parallel, delayed
global_views = get_views()
def get_all_documents(small_test=2, n_jobs=None, use_views=True):
print("DO get all wiki docs: %s" % small_test, flush=True)
index_filename, wiki_filename = get_wiki_filenames()
start_bytes = get_start_bytes(index_filename)
end_bytes = start_bytes[1:]
start_bytes = start_bytes[:-1]
if small_test:
start_bytes = start_bytes[:small_test]
end_bytes = end_bytes[:small_test]
if n_jobs is None:
n_jobs = 5
else:
if n_jobs is None:
n_jobs = os.cpu_count() // 4
# default loky backend leads to name space conflict problems
return_file = True # large return from joblib hangs
documents = Parallel(n_jobs=n_jobs, verbose=10, backend="multiprocessing")(
delayed(get_one_chunk)(
wiki_filename,
start_byte,
end_byte,
return_file=return_file,
use_views=use_views,
)
for start_byte, end_byte in zip(start_bytes, end_bytes)
)
if return_file:
# then documents really are files
files = documents.copy()
documents = []
for fil in files:
with open(fil, "rb") as f:
documents.extend(pickle.load(f))
os.remove(fil)
else:
from functools import reduce
from operator import concat
documents = reduce(concat, documents)
assert isinstance(documents, list)
print("DONE get all wiki docs", flush=True)
return documents
def test_by_search_term():
search_term = "Apollo"
assert len(get_documents_by_search_term(search_term)) == 100
search_term = "Abstract (law)"
assert len(get_documents_by_search_term(search_term)) == 100
search_term = "Artificial languages"
assert len(get_documents_by_search_term(search_term)) == 100
def test_start_bytes():
index_filename, wiki_filename = get_wiki_filenames()
assert len(get_start_bytes(index_filename)) == 227850
def test_get_all_documents():
small_test = 20 # 227850
n_jobs = os.cpu_count() // 4
assert (
len(
get_all_documents(
small_test=small_test, n_jobs=n_jobs, use_views=False
)
)
== small_test * 100
)
assert (
len(
get_all_documents(
small_test=small_test, n_jobs=n_jobs, use_views=True
)
)
== 429
)
def get_one_pageviews(fil):
df1 = pd.read_csv(
fil,
sep=" ",
header=None,
names=["region", "title", "views", "foo"],
quoting=csv.QUOTE_NONE,
)
df1.index = df1["title"]
df1 = df1[df1["region"] == "en"]
df1 = df1.drop("region", axis=1)
df1 = df1.drop("foo", axis=1)
df1 = df1.drop("title", axis=1) # already index
base_tmp = "temp_wiki_pageviews"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.csv")
df1.to_csv(filename, index=True)
return filename
def test_agg_pageviews(gen_files=False):
if gen_files:
path = os.path.join(
root_path,
"wiki_pageviews/dumps.wikimedia.org/other/pageviews/2023/2023-04",
)
files = glob.glob(os.path.join(path, "pageviews*.gz"))
# files = files[:2] # test
n_jobs = os.cpu_count() // 2
csv_files = Parallel(
n_jobs=n_jobs, verbose=10, backend="multiprocessing"
)(delayed(get_one_pageviews)(fil) for fil in files)
else:
# to continue without redoing above
csv_files = glob.glob(
os.path.join(root_path, "temp_wiki_pageviews/*.csv")
)
df_list = []
for csv_file in csv_files:
print(csv_file)
df1 = pd.read_csv(csv_file)
df_list.append(df1)
df = pd.concat(df_list, axis=0)
df = df.groupby("title")["views"].sum().reset_index()
df.to_csv("wiki_page_views.csv", index=True)
def test_reduce_pageview():
filename = "wiki_page_views.csv"
df = pd.read_csv(filename)
df = df[df["views"] < 1e7]
#
plt.hist(df["views"], bins=100, log=True)
views_avg = np.mean(df["views"])
views_median = np.median(df["views"])
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
plt.savefig(filename.replace(".csv", ".png"))
plt.close()
#
views_limit = 5000
df = df[df["views"] > views_limit]
filename = "wiki_page_views_more_5000month.csv"
df.to_csv(filename, index=True)
#
plt.hist(df["views"], bins=100, log=True)
views_avg = np.mean(df["views"])
views_median = np.median(df["views"])
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
plt.savefig(filename.replace(".csv", ".png"))
plt.close()
@pytest.mark.skip("Only if doing full processing again, some manual steps")
def test_do_wiki_full_all():
# Install other requirements for wiki specific conversion:
# pip install -r reqs_optional/requirements_optional_wikiprocessing.txt
# Use "Transmission" in Ubuntu to get wiki dump using torrent:
# See: https://meta.wikimedia.org/wiki/Data_dump_torrents
# E.g. magnet:?xt=urn:btih:b2c74af2b1531d0b63f1166d2011116f44a8fed0&dn=enwiki-20230401-pages-articles-multistream.xml.bz2&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337
# Get index
os.system(
"wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2"
)
# Test that can use LangChain to get docs from subset of wiki as sampled out of full wiki directly using bzip multistream
test_get_all_documents()
# Check can search wiki multistream
test_by_search_term()
# Test can get all start bytes in index
test_start_bytes()
# Get page views, e.g. for entire month of April 2023
os.system(
"wget -b -m -k -o wget.log -e robots=off https://dumps.wikimedia.org/other/pageviews/2023/2023-04/"
)
# Aggregate page views from many files into single file
test_agg_pageviews(gen_files=True)
# Reduce page views to some limit, so processing of full wiki is not too large
test_reduce_pageview()
# Start generate.py with requesting wiki_full in prep. This will use page views as referenced in get_views.
# Note get_views as global() function done once is required to avoid very slow processing
# WARNING: Requires alot of memory to handle, used up to 300GB system RAM at peak
"""
python generate.py --langchain_mode='wiki_full' --visible_langchain_modes="['wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs']" &> lc_out.log
"""

View File

@@ -1,121 +0,0 @@
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
from enums import PromptType
class StoppingCriteriaSub(StoppingCriteria):
def __init__(
self, stops=[], encounters=[], device="cuda", model_max_length=None
):
super().__init__()
assert (
len(stops) % len(encounters) == 0
), "Number of stops and encounters must match"
self.encounters = encounters
self.stops = [stop.to(device) for stop in stops]
self.num_stops = [0] * len(stops)
self.model_max_length = model_max_length
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
for stopi, stop in enumerate(self.stops):
if torch.all((stop == input_ids[0][-len(stop) :])).item():
self.num_stops[stopi] += 1
if (
self.num_stops[stopi]
>= self.encounters[stopi % len(self.encounters)]
):
# print("Stopped", flush=True)
return True
if (
self.model_max_length is not None
and input_ids[0].shape[0] >= self.model_max_length
):
# critical limit
return True
# print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
# print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
return False
def get_stopping(
prompt_type,
prompt_dict,
tokenizer,
device,
human="<human>:",
bot="<bot>:",
model_max_length=None,
):
# FIXME: prompt_dict unused currently
if prompt_type in [
PromptType.human_bot.name,
PromptType.instruct_vicuna.name,
PromptType.instruct_with_end.name,
]:
if prompt_type == PromptType.human_bot.name:
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
# stopping only starts once output is beyond prompt
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
stop_words = [human, bot, "\n" + human, "\n" + bot]
encounters = [1, 2]
elif prompt_type == PromptType.instruct_vicuna.name:
# even below is not enough, generic strings and many ways to encode
stop_words = [
"### Human:",
"""
### Human:""",
"""
### Human:
""",
"### Assistant:",
"""
### Assistant:""",
"""
### Assistant:
""",
]
encounters = [1, 2]
else:
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
stop_words = ["### End"]
encounters = [1]
stop_words_ids = [
tokenizer(stop_word, return_tensors="pt")["input_ids"].squeeze()
for stop_word in stop_words
]
# handle single token case
stop_words_ids = [
x if len(x.shape) > 0 else torch.tensor([x])
for x in stop_words_ids
]
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
# avoid padding in front of tokens
if (
tokenizer._pad_token
): # use hidden variable to avoid annoying properly logger bug
stop_words_ids = [
x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x
for x in stop_words_ids
]
# handle fake \n added
stop_words_ids = [
x[1:] if y[0] == "\n" else x
for x, y in zip(stop_words_ids, stop_words)
]
# build stopper
stopping_criteria = StoppingCriteriaList(
[
StoppingCriteriaSub(
stops=stop_words_ids,
encounters=encounters,
device=device,
model_max_length=model_max_length,
)
]
)
else:
stopping_criteria = StoppingCriteriaList()
return stopping_criteria

File diff suppressed because it is too large Load Diff

View File

@@ -1,69 +0,0 @@
from typing import Any, Dict, List, Union, Optional
import time
import queue
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
class StreamingGradioCallbackHandler(BaseCallbackHandler):
"""
Similar to H2OTextIteratorStreamer that is for HF backend, but here LangChain backend
"""
def __init__(self, timeout: Optional[float] = None, block=True):
super().__init__()
self.text_queue = queue.SimpleQueue()
self.stop_signal = None
self.do_stop = False
self.timeout = timeout
self.block = block
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts running. Clean the queue."""
while not self.text_queue.empty():
try:
self.text_queue.get(block=False)
except queue.Empty:
continue
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.text_queue.put(token)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.text_queue.put(self.stop_signal)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.text_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
while True:
try:
value = (
self.stop_signal
) # value looks unused in pycharm, not true
if self.do_stop:
print("hit stop", flush=True)
# could raise or break, maybe best to raise and make parent see if any exception in thread
raise StopIteration()
# break
value = self.text_queue.get(
block=self.block, timeout=self.timeout
)
break
except queue.Empty:
time.sleep(0.01)
if value == self.stop_signal:
raise StopIteration()
else:
return value

View File

@@ -1,442 +0,0 @@
from pathlib import Path
import argparse
from argparse import RawTextHelpFormatter
import re, gc
"""
This script can be used as a standalone utility to convert IRs to dynamic + combine them.
Following are the various ways this script can be used :-
a. To convert a single Linalg IR to dynamic IR:
--dynamic --first_ir_path=<PATH TO FIRST IR>
b. To convert two Linalg IRs to dynamic IR:
--dynamic --first_ir_path=<PATH TO SECOND IR> --first_ir_path=<PATH TO SECOND IR>
c. To combine two Linalg IRs into one:
--combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>
d. To convert both IRs into dynamic as well as combine the IRs:
--dynamic --combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>
NOTE: For dynamic you'll also need to provide the following set of flags:-
i. For First Llama : --dynamic_input_size (DEFAULT: 19)
ii. For Second Llama: --model_name (DEFAULT: llama2_7b)
--precision (DEFAULT: 'int4')
You may use --save_dynamic to also save the dynamic IR in option d above.
Else for option a. and b. the dynamic IR(s) will get saved by default.
"""
def combine_mlir_scripts(
first_vicuna_mlir,
second_vicuna_mlir,
output_name,
return_ir=True,
):
print(f"[DEBUG] combining first and second mlir")
print(f"[DEBUG] output_name = {output_name}")
maps1 = []
maps2 = []
constants = set()
f1 = []
f2 = []
print(f"[DEBUG] processing first vicuna mlir")
first_vicuna_mlir = first_vicuna_mlir.splitlines()
while first_vicuna_mlir:
line = first_vicuna_mlir.pop(0)
if re.search("#map\d*\s*=", line):
maps1.append(line)
elif re.search("arith.constant", line):
constants.add(line)
elif not re.search("module", line):
line = re.sub("forward", "first_vicuna_forward", line)
f1.append(line)
f1 = f1[:-1]
del first_vicuna_mlir
gc.collect()
for i, map_line in enumerate(maps1):
map_var = map_line.split(" ")[0]
map_line = re.sub(f"{map_var}(?!\d)", map_var + "_0", map_line)
maps1[i] = map_line
f1 = [
re.sub(f"{map_var}(?!\d)", map_var + "_0", func_line)
for func_line in f1
]
print(f"[DEBUG] processing second vicuna mlir")
second_vicuna_mlir = second_vicuna_mlir.splitlines()
while second_vicuna_mlir:
line = second_vicuna_mlir.pop(0)
if re.search("#map\d*\s*=", line):
maps2.append(line)
elif "global_seed" in line:
continue
elif re.search("arith.constant", line):
constants.add(line)
elif not re.search("module", line):
line = re.sub("forward", "second_vicuna_forward", line)
f2.append(line)
f2 = f2[:-1]
del second_vicuna_mlir
gc.collect()
for i, map_line in enumerate(maps2):
map_var = map_line.split(" ")[0]
map_line = re.sub(f"{map_var}(?!\d)", map_var + "_1", map_line)
maps2[i] = map_line
f2 = [
re.sub(f"{map_var}(?!\d)", map_var + "_1", func_line)
for func_line in f2
]
module_start = 'module attributes {torch.debug_module_name = "_lambda"} {'
module_end = "}"
global_vars = []
vnames = []
global_var_loading1 = []
global_var_loading2 = []
print(f"[DEBUG] processing constants")
counter = 0
constants = list(constants)
while constants:
constant = constants.pop(0)
vname, vbody = constant.split("=")
vname = re.sub("%", "", vname)
vname = vname.strip()
vbody = re.sub("arith.constant", "", vbody)
vbody = vbody.strip()
if len(vbody.split(":")) < 2:
print(constant)
vdtype = vbody.split(":")[-1].strip()
fixed_vdtype = vdtype
if "c1_i64" in vname:
print(constant)
counter += 1
if counter == 2:
counter = 0
print("detected duplicate")
continue
vnames.append(vname)
if "true" not in vname:
global_vars.append(
f"ml_program.global private @{vname}({vbody}) : {fixed_vdtype}"
)
global_var_loading1.append(
f"\t\t%{vname} = ml_program.global_load_const @{vname} : {fixed_vdtype}"
)
global_var_loading2.append(
f"\t\t%{vname} = ml_program.global_load_const @{vname} : {fixed_vdtype}"
)
else:
global_vars.append(
f"ml_program.global private @{vname}({vbody}) : i1"
)
global_var_loading1.append(
f"\t\t%{vname} = ml_program.global_load_const @{vname} : i1"
)
global_var_loading2.append(
f"\t\t%{vname} = ml_program.global_load_const @{vname} : i1"
)
new_f1, new_f2 = [], []
print(f"[DEBUG] processing f1")
for line in f1:
if "func.func" in line:
new_f1.append(line)
for global_var in global_var_loading1:
new_f1.append(global_var)
else:
new_f1.append(line)
print(f"[DEBUG] processing f2")
for line in f2:
if "func.func" in line:
new_f2.append(line)
for global_var in global_var_loading2:
if (
"c20_i64 = arith.addi %dim_i64, %c1_i64 : i64"
in global_var
):
print(global_var)
new_f2.append(global_var)
else:
new_f2.append(line)
f1 = new_f1
f2 = new_f2
del new_f1
del new_f2
gc.collect()
print(
[
"c20_i64 = arith.addi %dim_i64, %c1_i64 : i64" in x
for x in [maps1, maps2, global_vars, f1, f2]
]
)
# doing it this way rather than assembling the whole string
# to prevent OOM with 64GiB RAM when encoding the file.
print(f"[DEBUG] Saving mlir to {output_name}")
with open(output_name, "w+") as f_:
f_.writelines(line + "\n" for line in maps1)
f_.writelines(line + "\n" for line in maps2)
f_.writelines(line + "\n" for line in [module_start])
f_.writelines(line + "\n" for line in global_vars)
f_.writelines(line + "\n" for line in f1)
f_.writelines(line + "\n" for line in f2)
f_.writelines(line + "\n" for line in [module_end])
del maps1
del maps2
del module_start
del global_vars
del f1
del f2
del module_end
gc.collect()
if return_ir:
print(f"[DEBUG] Reading combined mlir back in")
with open(output_name, "rb") as f:
return f.read()
def write_in_dynamic_inputs0(module, dynamic_input_size):
print("[DEBUG] writing dynamic inputs to first vicuna")
# Current solution for ensuring mlir files support dynamic inputs
# TODO: find a more elegant way to implement this
new_lines = []
module = module.splitlines()
while module:
line = module.pop(0)
line = re.sub(f"{dynamic_input_size}x", "?x", line)
if "?x" in line:
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
line = re.sub(f" {dynamic_input_size},", " %dim,", line)
if "tensor.empty" in line and "?x?" in line:
line = re.sub(
"tensor.empty\(%dim\)", "tensor.empty(%dim, %dim)", line
)
if "arith.cmpi" in line:
line = re.sub(f"c{dynamic_input_size}", "dim", line)
if "%0 = tensor.empty(%dim) : tensor<?xi64>" in line:
new_lines.append("%dim = tensor.dim %arg0, %c1 : tensor<1x?xi64>")
if "%dim = tensor.dim %arg0, %c1 : tensor<1x?xi64>" in line:
continue
new_lines.append(line)
return "\n".join(new_lines)
def write_in_dynamic_inputs1(module, model_name, precision):
print("[DEBUG] writing dynamic inputs to second vicuna")
def remove_constant_dim(line):
if "c19_i64" in line:
line = re.sub("c19_i64", "dim_i64", line)
if "19x" in line:
line = re.sub("19x", "?x", line)
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
if "tensor.empty" in line and "?x?" in line:
line = re.sub(
"tensor.empty\(%dim\)",
"tensor.empty(%dim, %dim)",
line,
)
if "arith.cmpi" in line:
line = re.sub("c19", "dim", line)
if " 19," in line:
line = re.sub(" 19,", " %dim,", line)
if "x20x" in line or "<20x" in line:
line = re.sub("20x", "?x", line)
line = re.sub("tensor.empty\(\)", "tensor.empty(%dimp1)", line)
if " 20," in line:
line = re.sub(" 20,", " %dimp1,", line)
return line
module = module.splitlines()
new_lines = []
# Using a while loop and the pop method to avoid creating a copy of module
if "llama2_13b" in model_name:
pkv_tensor_shape = "tensor<1x40x?x128x"
elif "llama2_70b" in model_name:
pkv_tensor_shape = "tensor<1x8x?x128x"
else:
pkv_tensor_shape = "tensor<1x32x?x128x"
if precision in ["fp16", "int4", "int8"]:
pkv_tensor_shape += "f16>"
else:
pkv_tensor_shape += "f32>"
while module:
line = module.pop(0)
if "%c19_i64 = arith.constant 19 : i64" in line:
new_lines.append("%c2 = arith.constant 2 : index")
new_lines.append(
f"%dim_4_int = tensor.dim %arg1, %c2 : {pkv_tensor_shape}"
)
new_lines.append(
"%dim_i64 = arith.index_cast %dim_4_int : index to i64"
)
continue
if "%c2 = arith.constant 2 : index" in line:
continue
if "%c20_i64 = arith.constant 20 : i64" in line:
new_lines.append("%c1_i64 = arith.constant 1 : i64")
new_lines.append("%c20_i64 = arith.addi %dim_i64, %c1_i64 : i64")
new_lines.append(
"%dimp1 = arith.index_cast %c20_i64 : i64 to index"
)
continue
line = remove_constant_dim(line)
new_lines.append(line)
return "\n".join(new_lines)
def save_dynamic_ir(ir_to_save, output_file):
if not ir_to_save:
return
# We only get string output from the dynamic conversion utility.
from contextlib import redirect_stdout
with open(output_file, "w") as f:
with redirect_stdout(f):
print(ir_to_save)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="llama ir utility",
description="\tThis script can be used as a standalone utility to convert IRs to dynamic + combine them.\n"
+ "\tFollowing are the various ways this script can be used :-\n"
+ "\t\ta. To convert a single Linalg IR to dynamic IR:\n"
+ "\t\t\t--dynamic --first_ir_path=<PATH TO FIRST IR>\n"
+ "\t\tb. To convert two Linalg IRs to dynamic IR:\n"
+ "\t\t\t--dynamic --first_ir_path=<PATH TO SECOND IR> --first_ir_path=<PATH TO SECOND IR>\n"
+ "\t\tc. To combine two Linalg IRs into one:\n"
+ "\t\t\t--combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>\n"
+ "\t\td. To convert both IRs into dynamic as well as combine the IRs:\n"
+ "\t\t\t--dynamic --combine --first_ir_path=<PATH TO FIRST IR> --second_ir_path=<PATH TO SECOND IR>\n\n"
+ "\tNOTE: For dynamic you'll also need to provide the following set of flags:-\n"
+ "\t\t i. For First Llama : --dynamic_input_size (DEFAULT: 19)\n"
+ "\t\tii. For Second Llama: --model_name (DEFAULT: llama2_7b)\n"
+ "\t\t\t--precision (DEFAULT: 'int4')\n"
+ "\t You may use --save_dynamic to also save the dynamic IR in option d above.\n"
+ "\t Else for option a. and b. the dynamic IR(s) will get saved by default.\n",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument(
"--precision",
"-p",
default="int4",
choices=["fp32", "fp16", "int8", "int4"],
help="Precision of the concerned IR",
)
parser.add_argument(
"--model_name",
type=str,
default="llama2_7b",
choices=["vicuna", "llama2_7b", "llama2_13b", "llama2_70b"],
help="Specify which model to run.",
)
parser.add_argument(
"--first_ir_path",
default=None,
help="path to first llama mlir file",
)
parser.add_argument(
"--second_ir_path",
default=None,
help="path to second llama mlir file",
)
parser.add_argument(
"--dynamic_input_size",
type=int,
default=19,
help="Specify the static input size to replace with dynamic dim.",
)
parser.add_argument(
"--dynamic",
default=False,
action=argparse.BooleanOptionalAction,
help="Converts the IR(s) to dynamic",
)
parser.add_argument(
"--save_dynamic",
default=False,
action=argparse.BooleanOptionalAction,
help="Save the individual IR(s) after converting to dynamic",
)
parser.add_argument(
"--combine",
default=False,
action=argparse.BooleanOptionalAction,
help="Converts the IR(s) to dynamic",
)
args, unknown = parser.parse_known_args()
dynamic = args.dynamic
combine = args.combine
assert (
dynamic or combine
), "neither `dynamic` nor `combine` flag is turned on"
first_ir_path = args.first_ir_path
second_ir_path = args.second_ir_path
assert first_ir_path or second_ir_path, "no input ir has been provided"
if combine:
assert (
first_ir_path and second_ir_path
), "you will need to provide both IRs to combine"
precision = args.precision
model_name = args.model_name
dynamic_input_size = args.dynamic_input_size
save_dynamic = args.save_dynamic
print(f"Dynamic conversion utility is turned {'ON' if dynamic else 'OFF'}")
print(f"Combining IR utility is turned {'ON' if combine else 'OFF'}")
if dynamic and not combine:
save_dynamic = True
first_ir = None
first_dynamic_ir_name = None
second_ir = None
second_dynamic_ir_name = None
if first_ir_path:
first_dynamic_ir_name = f"{Path(first_ir_path).stem}_dynamic"
with open(first_ir_path, "r") as f:
first_ir = f.read()
if second_ir_path:
second_dynamic_ir_name = f"{Path(second_ir_path).stem}_dynamic"
with open(second_ir_path, "r") as f:
second_ir = f.read()
if dynamic:
first_ir = (
write_in_dynamic_inputs0(first_ir, dynamic_input_size)
if first_ir
else None
)
second_ir = (
write_in_dynamic_inputs1(second_ir, model_name, precision)
if second_ir
else None
)
if save_dynamic:
save_dynamic_ir(first_ir, f"{first_dynamic_ir_name}.mlir")
save_dynamic_ir(second_ir, f"{second_dynamic_ir_name}.mlir")
if combine:
combine_mlir_scripts(
first_ir,
second_ir,
f"{model_name}_{precision}.mlir",
return_ir=False,
)

View File

@@ -1,211 +0,0 @@
import torch
import torch_mlir
from transformers import (
AutoTokenizer,
StoppingCriteria,
)
from io import BytesIO
from pathlib import Path
from apps.language_models.utils import (
get_torch_mlir_module_bytecode,
get_vmfb_from_path,
)
class StopOnTokens(StoppingCriteria):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def shouldStop(tokens):
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if tokens[0][-1] == stop_id:
return True
return False
MAX_SEQUENCE_LENGTH = 256
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def compile_stableLM(
model,
model_inputs,
model_name,
model_vmfb_name,
device="cuda",
precision="fp32",
debug=False,
):
from shark.shark_inference import SharkInference
# device = "cuda" # "cpu"
# TODO: vmfb and mlir name should include precision and device
vmfb_path = (
Path(model_name + f"_{device}.vmfb")
if model_vmfb_name is None
else Path(model_vmfb_name)
)
shark_module = get_vmfb_from_path(
vmfb_path, device, mlir_dialect="tm_tensor"
)
if shark_module is not None:
return shark_module
mlir_path = Path(model_name + ".mlir")
print(
f"[DEBUG] mlir path {mlir_path} {'exists' if mlir_path.exists() else 'does not exist'}"
)
if mlir_path.exists():
with open(mlir_path, "rb") as f:
bytecode = f.read()
else:
ts_graph = get_torch_mlir_module_bytecode(model, model_inputs)
module = torch_mlir.compile(
ts_graph,
[*model_inputs],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(model_name + ".mlir", "wb")
f_.write(bytecode)
print("Saved mlir")
f_.close()
shark_module = SharkInference(
mlir_module=bytecode, device=device, mlir_dialect="tm_tensor"
)
shark_module.compile()
path = shark_module.save_module(
vmfb_path.parent.absolute(), vmfb_path.stem, debug=debug
)
print("Saved vmfb at ", str(path))
return shark_module
class StableLMModel(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids, attention_mask):
combine_input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
output = self.model(**combine_input_dict)
return output.logits
# Initialize a StopOnTokens object
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
- StableLM will refuse to participate in anything that could harm a human.
"""
def get_tokenizer():
model_path = "stabilityai/stablelm-tuned-alpha-3b"
tok = AutoTokenizer.from_pretrained(model_path)
tok.add_special_tokens({"pad_token": "<PAD>"})
print("Sucessfully loaded the tokenizer to the memory")
return tok
# sharkStableLM = compile_stableLM
# (
# None,
# tuple([input_ids, attention_mask]),
# "stableLM_linalg_f32_seqLen256",
# "/home/shark/vivek/stableLM_shark_f32_seqLen256"
# )
def generate(
new_text,
max_new_tokens,
sharkStableLM,
tokenizer=None,
):
if tokenizer is None:
tokenizer = get_tokenizer()
# Construct the input message string for the model by
# concatenating the current system message and conversation history
# Tokenize the messages string
# sharkStableLM = compile_stableLM
# (
# None,
# tuple([input_ids, attention_mask]),
# "stableLM_linalg_f32_seqLen256",
# "/home/shark/vivek/stableLM_shark_f32_seqLen256"
# )
words_list = []
for i in range(max_new_tokens):
# numWords = len(new_text.split())
# if(numWords>220):
# break
params = {
"new_text": new_text,
}
generated_token_op = generate_new_token(
sharkStableLM, tokenizer, params
)
detok = generated_token_op["detok"]
stop_generation = generated_token_op["stop_generation"]
if stop_generation:
break
print(detok, end="", flush=True)
words_list.append(detok)
if detok == "":
break
new_text = new_text + detok
return words_list
def generate_new_token(shark_model, tokenizer, params):
new_text = params["new_text"]
model_inputs = tokenizer(
[new_text],
padding="max_length",
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
return_tensors="pt",
)
sum_attentionmask = torch.sum(model_inputs.attention_mask)
# sharkStableLM = compile_stableLM(None, tuple([input_ids, attention_mask]), "stableLM_linalg_f32_seqLen256", "/home/shark/vivek/stableLM_shark_f32_seqLen256")
output = shark_model(
"forward", [model_inputs.input_ids, model_inputs.attention_mask]
)
output = torch.from_numpy(output)
next_toks = torch.topk(output, 1)
stop_generation = False
if shouldStop(next_toks.indices):
stop_generation = True
new_token = next_toks.indices[0][int(sum_attentionmask) - 1]
detok = tokenizer.decode(
new_token,
skip_special_tokens=True,
)
ret_dict = {
"new_token": new_token,
"detok": detok,
"stop_generation": stop_generation,
}
return ret_dict

File diff suppressed because it is too large Load Diff

View File

@@ -1,94 +0,0 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import collect_submodules
from PyInstaller.utils.hooks import copy_metadata
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
datas = []
datas += collect_data_files('torch')
datas += copy_metadata('torch')
datas += copy_metadata('tqdm')
datas += copy_metadata('regex')
datas += copy_metadata('requests')
datas += copy_metadata('packaging')
datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += copy_metadata('huggingface-hub')
datas += copy_metadata('sentencepiece')
datas += copy_metadata("pyyaml")
datas += collect_data_files("tokenizers")
datas += collect_data_files("tiktoken")
datas += collect_data_files("accelerate")
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('gradio_client')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
datas += collect_data_files('py-cpuinfo')
datas += collect_data_files("shark", include_py_files=True)
datas += collect_data_files("timm", include_py_files=True)
datas += collect_data_files("tqdm")
datas += collect_data_files("tkinter")
datas += collect_data_files("webview")
datas += collect_data_files("sentencepiece")
datas += collect_data_files("jsonschema")
datas += collect_data_files("jsonschema_specifications")
datas += collect_data_files("cpuinfo")
datas += collect_data_files("langchain")
binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
a = Analysis(
['scripts/vicuna.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
[],
name='shark_llama_cli',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
)

View File

@@ -1,22 +0,0 @@
import torch
class FalconModel(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids, attention_mask):
input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": None,
"use_cache": True,
}
output = self.model(
**input_dict,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)[0]
return output[:, -1, :]

View File

@@ -1,503 +0,0 @@
import torch
import dataclasses
from enum import auto, Enum
from typing import List, Any
from transformers import StoppingCriteria
from brevitas_examples.llm.llm_quant.quantize import quantize_model
from brevitas_examples.llm.llm_quant.run_utils import get_model_impl
class LayerNorm(torch.nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class VisionModel(torch.nn.Module):
def __init__(
self,
ln_vision,
visual_encoder,
precision="fp32",
weight_group_size=128,
):
super().__init__()
self.ln_vision = ln_vision
self.visual_encoder = visual_encoder
if precision in ["int4", "int8"]:
print("Vision Model applying weight quantization to ln_vision")
weight_bit_width = 4 if precision == "int4" else 8
quantize_model(
self.ln_vision,
dtype=torch.float32,
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float",
weight_quant_type="asym",
weight_quant_granularity="per_group",
weight_group_size=weight_group_size,
quantize_weight_zero_point=False,
)
print("Weight quantization applied.")
print(
"Vision Model applying weight quantization to visual_encoder"
)
quantize_model(
self.visual_encoder,
dtype=torch.float32,
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float",
weight_quant_type="asym",
weight_quant_granularity="per_group",
weight_group_size=weight_group_size,
quantize_weight_zero_point=False,
)
print("Weight quantization applied.")
def forward(self, image):
image_embeds = self.ln_vision(self.visual_encoder(image))
return image_embeds
class QformerBertModel(torch.nn.Module):
def __init__(self, qformer_bert):
super().__init__()
self.qformer_bert = qformer_bert
def forward(self, query_tokens, image_embeds, image_atts):
query_output = self.qformer_bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state
class FirstLlamaModel(torch.nn.Module):
def __init__(self, model, precision="fp32", weight_group_size=128):
super().__init__()
self.model = model
print("SHARK: Loading LLAMA Done")
if precision in ["int4", "int8"]:
print("First Llama applying weight quantization")
weight_bit_width = 4 if precision == "int4" else 8
quantize_model(
self.model,
dtype=torch.float32,
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float",
weight_quant_type="asym",
weight_quant_granularity="per_group",
weight_group_size=weight_group_size,
quantize_weight_zero_point=False,
)
print("Weight quantization applied.")
def forward(self, inputs_embeds, position_ids, attention_mask):
print("************************************")
print(
"inputs_embeds: ",
inputs_embeds.shape,
" dtype: ",
inputs_embeds.dtype,
)
print(
"position_ids: ",
position_ids.shape,
" dtype: ",
position_ids.dtype,
)
print(
"attention_mask: ",
attention_mask.shape,
" dtype: ",
attention_mask.dtype,
)
print("************************************")
config = {
"inputs_embeds": inputs_embeds,
"position_ids": position_ids,
"past_key_values": None,
"use_cache": True,
"attention_mask": attention_mask,
}
output = self.model(
**config,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
return_vals = []
return_vals.append(output.logits)
temp_past_key_values = output.past_key_values
for item in temp_past_key_values:
return_vals.append(item[0])
return_vals.append(item[1])
return tuple(return_vals)
class SecondLlamaModel(torch.nn.Module):
def __init__(self, model, precision="fp32", weight_group_size=128):
super().__init__()
self.model = model
print("SHARK: Loading LLAMA Done")
if precision in ["int4", "int8"]:
print("Second Llama applying weight quantization")
weight_bit_width = 4 if precision == "int4" else 8
quantize_model(
self.model,
dtype=torch.float32,
weight_bit_width=weight_bit_width,
weight_param_method="stats",
weight_scale_precision="float",
weight_quant_type="asym",
weight_quant_granularity="per_group",
weight_group_size=weight_group_size,
quantize_weight_zero_point=False,
)
print("Weight quantization applied.")
def forward(
self,
input_ids,
position_ids,
attention_mask,
i1,
i2,
i3,
i4,
i5,
i6,
i7,
i8,
i9,
i10,
i11,
i12,
i13,
i14,
i15,
i16,
i17,
i18,
i19,
i20,
i21,
i22,
i23,
i24,
i25,
i26,
i27,
i28,
i29,
i30,
i31,
i32,
i33,
i34,
i35,
i36,
i37,
i38,
i39,
i40,
i41,
i42,
i43,
i44,
i45,
i46,
i47,
i48,
i49,
i50,
i51,
i52,
i53,
i54,
i55,
i56,
i57,
i58,
i59,
i60,
i61,
i62,
i63,
i64,
):
print("************************************")
print("input_ids: ", input_ids.shape, " dtype: ", input_ids.dtype)
print(
"position_ids: ",
position_ids.shape,
" dtype: ",
position_ids.dtype,
)
print(
"attention_mask: ",
attention_mask.shape,
" dtype: ",
attention_mask.dtype,
)
print("past_key_values: ", i1.shape, i2.shape, i63.shape, i64.shape)
print("past_key_values dtype: ", i1.dtype)
print("************************************")
config = {
"input_ids": input_ids,
"position_ids": position_ids,
"past_key_values": (
(i1, i2),
(
i3,
i4,
),
(
i5,
i6,
),
(
i7,
i8,
),
(
i9,
i10,
),
(
i11,
i12,
),
(
i13,
i14,
),
(
i15,
i16,
),
(
i17,
i18,
),
(
i19,
i20,
),
(
i21,
i22,
),
(
i23,
i24,
),
(
i25,
i26,
),
(
i27,
i28,
),
(
i29,
i30,
),
(
i31,
i32,
),
(
i33,
i34,
),
(
i35,
i36,
),
(
i37,
i38,
),
(
i39,
i40,
),
(
i41,
i42,
),
(
i43,
i44,
),
(
i45,
i46,
),
(
i47,
i48,
),
(
i49,
i50,
),
(
i51,
i52,
),
(
i53,
i54,
),
(
i55,
i56,
),
(
i57,
i58,
),
(
i59,
i60,
),
(
i61,
i62,
),
(
i63,
i64,
),
),
"use_cache": True,
"attention_mask": attention_mask,
}
output = self.model(
**config,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
return_vals = []
return_vals.append(output.logits)
temp_past_key_values = output.past_key_values
for item in temp_past_key_values:
return_vals.append(item[0])
return_vals.append(item[1])
return tuple(return_vals)
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
conv_id=self.conv_id,
)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
CONV_VISION = Conversation(
system="Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions.",
roles=("Human", "Assistant"),
messages=[],
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)

View File

@@ -1,15 +0,0 @@
import torch
class StableLMModel(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids, attention_mask):
combine_input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
output = self.model(**combine_input_dict)
return output.logits

View File

@@ -1,876 +0,0 @@
import argparse
import json
import re
from io import BytesIO
from pathlib import Path
from tqdm import tqdm
from typing import List, Optional, Tuple, Union
import numpy as np
import iree.runtime
import itertools
import subprocess
import torch
import torch_mlir
from torch_mlir import TensorPlaceholder
from torch_mlir.compiler_utils import run_pipeline_with_repro_report
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaPreTrainedModel,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
from apps.language_models.src.model_wrappers.vicuna_sharded_model import (
FirstVicunaLayer,
SecondVicunaLayer,
CompiledVicunaLayer,
ShardedVicunaModel,
LMHead,
LMHeadCompiled,
VicunaEmbedding,
VicunaEmbeddingCompiled,
VicunaNorm,
VicunaNormCompiled,
)
from apps.language_models.src.model_wrappers.vicuna_model import (
FirstVicuna,
SecondVicuna7B,
)
from apps.language_models.utils import (
get_vmfb_from_path,
)
from shark.shark_downloader import download_public_file
from shark.shark_importer import get_f16_inputs
from shark.shark_inference import SharkInference
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer,
LlamaRMSNorm,
_make_causal_mask,
_expand_mask,
)
from torch import nn
from time import time
class LlamaModel(LlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: LlamaConfig
"""
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
LlamaDecoderLayer(config)
for _ in range(config.num_hidden_layers)
]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self,
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
t1 = time()
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = (
use_cache if use_cache is not None else self.config.use_cache
)
return_dict = (
return_dict
if return_dict is not None
else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = (
seq_length_with_past + past_key_values_length
)
if position_ids is None:
device = (
input_ids.device
if input_ids is not None
else inputs_embeds.device
)
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.compressedlayers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[8 * idx : 8 * (idx + 1)]
if past_key_values is not None
else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer.forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1:],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
try:
hidden_states = np.asarray(hidden_states, hidden_states.dtype)
except:
_ = 10
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
next_cache = tuple(itertools.chain.from_iterable(next_cache))
print(f"Token generated in {time() - t1} seconds")
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attns,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class EightLayerLayerSV(torch.nn.Module):
def __init__(self, layers):
super().__init__()
assert len(layers) == 8
self.layers = layers
def forward(
self,
hidden_states,
attention_mask,
position_ids,
pkv00,
pkv01,
pkv10,
pkv11,
pkv20,
pkv21,
pkv30,
pkv31,
pkv40,
pkv41,
pkv50,
pkv51,
pkv60,
pkv61,
pkv70,
pkv71,
):
pkvs = [
(pkv00, pkv01),
(pkv10, pkv11),
(pkv20, pkv21),
(pkv30, pkv31),
(pkv40, pkv41),
(pkv50, pkv51),
(pkv60, pkv61),
(pkv70, pkv71),
]
new_pkvs = []
for layer, pkv in zip(self.layers, pkvs):
outputs = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=(
pkv[0],
pkv[1],
),
use_cache=True,
)
hidden_states = outputs[0]
new_pkvs.append(
(
outputs[-1][0],
outputs[-1][1],
)
)
(
(new_pkv00, new_pkv01),
(new_pkv10, new_pkv11),
(new_pkv20, new_pkv21),
(new_pkv30, new_pkv31),
(new_pkv40, new_pkv41),
(new_pkv50, new_pkv51),
(new_pkv60, new_pkv61),
(new_pkv70, new_pkv71),
) = new_pkvs
return (
hidden_states,
new_pkv00,
new_pkv01,
new_pkv10,
new_pkv11,
new_pkv20,
new_pkv21,
new_pkv30,
new_pkv31,
new_pkv40,
new_pkv41,
new_pkv50,
new_pkv51,
new_pkv60,
new_pkv61,
new_pkv70,
new_pkv71,
)
class EightLayerLayerFV(torch.nn.Module):
def __init__(self, layers):
super().__init__()
assert len(layers) == 8
self.layers = layers
def forward(self, hidden_states, attention_mask, position_ids):
new_pkvs = []
for layer in self.layers:
outputs = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
use_cache=True,
)
hidden_states = outputs[0]
new_pkvs.append(
(
outputs[-1][0],
outputs[-1][1],
)
)
(
(new_pkv00, new_pkv01),
(new_pkv10, new_pkv11),
(new_pkv20, new_pkv21),
(new_pkv30, new_pkv31),
(new_pkv40, new_pkv41),
(new_pkv50, new_pkv51),
(new_pkv60, new_pkv61),
(new_pkv70, new_pkv71),
) = new_pkvs
return (
hidden_states,
new_pkv00,
new_pkv01,
new_pkv10,
new_pkv11,
new_pkv20,
new_pkv21,
new_pkv30,
new_pkv31,
new_pkv40,
new_pkv41,
new_pkv50,
new_pkv51,
new_pkv60,
new_pkv61,
new_pkv70,
new_pkv71,
)
class CompiledEightLayerLayerSV(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions=False,
use_cache=True,
):
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
(
(pkv00, pkv01),
(pkv10, pkv11),
(pkv20, pkv21),
(pkv30, pkv31),
(pkv40, pkv41),
(pkv50, pkv51),
(pkv60, pkv61),
(pkv70, pkv71),
) = past_key_value
pkv00 = pkv00.detatch()
pkv01 = pkv01.detatch()
pkv10 = pkv10.detatch()
pkv11 = pkv11.detatch()
pkv20 = pkv20.detatch()
pkv21 = pkv21.detatch()
pkv30 = pkv30.detatch()
pkv31 = pkv31.detatch()
pkv40 = pkv40.detatch()
pkv41 = pkv41.detatch()
pkv50 = pkv50.detatch()
pkv51 = pkv51.detatch()
pkv60 = pkv60.detatch()
pkv61 = pkv61.detatch()
pkv70 = pkv70.detatch()
pkv71 = pkv71.detatch()
output = self.model(
"forward",
(
hidden_states,
attention_mask,
position_ids,
pkv00,
pkv01,
pkv10,
pkv11,
pkv20,
pkv21,
pkv30,
pkv31,
pkv40,
pkv41,
pkv50,
pkv51,
pkv60,
pkv61,
pkv70,
pkv71,
),
send_to_host=False,
)
return (
output[0],
(output[1][0], output[1][1]),
(output[2][0], output[2][1]),
(output[3][0], output[3][1]),
(output[4][0], output[4][1]),
(output[5][0], output[5][1]),
(output[6][0], output[6][1]),
(output[7][0], output[7][1]),
(output[8][0], output[8][1]),
)
def forward_compressed(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = (
input_ids.device if input_ids is not None else inputs_embeds.device
)
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.compressedlayers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[8 * idx : 8 * (idx + 1)]
if past_key_values is not None
else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (
layer_outputs[2 if output_attentions else 1],
)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attns,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class CompiledEightLayerLayer(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value=None,
output_attentions=False,
use_cache=True,
):
t2 = time()
if past_key_value is None:
try:
hidden_states = np.asarray(hidden_states, hidden_states.dtype)
except:
pass
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
t1 = time()
output = self.model(
"first_vicuna_forward",
(hidden_states, attention_mask, position_ids),
send_to_host=False,
)
output2 = (
output[0],
(
output[1],
output[2],
),
(
output[3],
output[4],
),
(
output[5],
output[6],
),
(
output[7],
output[8],
),
(
output[9],
output[10],
),
(
output[11],
output[12],
),
(
output[13],
output[14],
),
(
output[15],
output[16],
),
)
return output2
else:
(
(pkv00, pkv01),
(pkv10, pkv11),
(pkv20, pkv21),
(pkv30, pkv31),
(pkv40, pkv41),
(pkv50, pkv51),
(pkv60, pkv61),
(pkv70, pkv71),
) = past_key_value
try:
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
pkv00 = pkv00.detach()
pkv01 = pkv01.detach()
pkv10 = pkv10.detach()
pkv11 = pkv11.detach()
pkv20 = pkv20.detach()
pkv21 = pkv21.detach()
pkv30 = pkv30.detach()
pkv31 = pkv31.detach()
pkv40 = pkv40.detach()
pkv41 = pkv41.detach()
pkv50 = pkv50.detach()
pkv51 = pkv51.detach()
pkv60 = pkv60.detach()
pkv61 = pkv61.detach()
pkv70 = pkv70.detach()
pkv71 = pkv71.detach()
except:
x = 10
t1 = time()
if type(hidden_states) == iree.runtime.array_interop.DeviceArray:
hidden_states = np.array(hidden_states, hidden_states.dtype)
hidden_states = torch.tensor(hidden_states)
hidden_states = hidden_states.detach()
output = self.model(
"second_vicuna_forward",
(
hidden_states,
attention_mask,
position_ids,
pkv00,
pkv01,
pkv10,
pkv11,
pkv20,
pkv21,
pkv30,
pkv31,
pkv40,
pkv41,
pkv50,
pkv51,
pkv60,
pkv61,
pkv70,
pkv71,
),
send_to_host=False,
)
print(f"{time() - t1}")
del pkv00
del pkv01
del pkv10
del pkv11
del pkv20
del pkv21
del pkv30
del pkv31
del pkv40
del pkv41
del pkv50
del pkv51
del pkv60
del pkv61
del pkv70
del pkv71
output2 = (
output[0],
(
output[1],
output[2],
),
(
output[3],
output[4],
),
(
output[5],
output[6],
),
(
output[7],
output[8],
),
(
output[9],
output[10],
),
(
output[11],
output[12],
),
(
output[13],
output[14],
),
(
output[15],
output[16],
),
)
return output2

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,231 +0,0 @@
import torch
class FirstVicunaLayer(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, hidden_states, attention_mask, position_ids):
outputs = self.model(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True,
)
next_hidden_states = outputs[0]
past_key_value_out0, past_key_value_out1 = (
outputs[-1][0],
outputs[-1][1],
)
return (
next_hidden_states,
past_key_value_out0,
past_key_value_out1,
)
class SecondVicunaLayer(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value0,
past_key_value1,
):
outputs = self.model(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=(
past_key_value0,
past_key_value1,
),
use_cache=True,
)
next_hidden_states = outputs[0]
past_key_value_out0, past_key_value_out1 = (
outputs[-1][0],
outputs[-1][1],
)
return (
next_hidden_states,
past_key_value_out0,
past_key_value_out1,
)
class ShardedVicunaModel(torch.nn.Module):
def __init__(self, model, layers, lmhead, embedding, norm):
super().__init__()
self.model = model
# assert len(layers) == len(model.model.layers)
self.model.model.config.use_cache = True
self.model.model.config.output_attentions = False
self.layers = layers
self.norm = norm
self.embedding = embedding
self.lmhead = lmhead
self.model.model.norm = self.norm
self.model.model.embed_tokens = self.embedding
self.model.lm_head = self.lmhead
self.model.model.layers = torch.nn.modules.container.ModuleList(
self.layers
)
def forward(
self,
input_ids,
is_first=True,
past_key_values=None,
attention_mask=None,
):
return self.model.forward(
input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
)
class LMHead(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, hidden_states):
output = self.model(hidden_states)
return output
class LMHeadCompiled(torch.nn.Module):
def __init__(self, shark_module):
super().__init__()
self.model = shark_module
def forward(self, hidden_states):
hidden_states = hidden_states.detach()
output = self.model("forward", (hidden_states,))
output = torch.tensor(output)
return output
class VicunaNorm(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, hidden_states):
output = self.model(hidden_states)
return output
class VicunaNormCompiled(torch.nn.Module):
def __init__(self, shark_module):
super().__init__()
self.model = shark_module
def forward(self, hidden_states):
try:
hidden_states.detach()
except:
pass
output = self.model("forward", (hidden_states,))
output = torch.tensor(output)
return output
class VicunaEmbedding(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids):
output = self.model(input_ids)
return output
class VicunaEmbeddingCompiled(torch.nn.Module):
def __init__(self, shark_module):
super().__init__()
self.model = shark_module
def forward(self, input_ids):
input_ids.detach()
output = self.model("forward", (input_ids,))
output = torch.tensor(output)
return output
class CompiledVicunaLayer(torch.nn.Module):
def __init__(self, shark_module):
super().__init__()
self.model = shark_module
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value=None,
output_attentions=False,
use_cache=True,
):
if past_key_value is None:
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
output = self.model(
"first_vicuna_forward",
(
hidden_states,
attention_mask,
position_ids,
),
)
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
return (
output0,
(
output1,
output2,
),
)
else:
hidden_states = hidden_states.detach()
attention_mask = attention_mask.detach()
position_ids = position_ids.detach()
pkv0 = past_key_value[0].detach()
pkv1 = past_key_value[1].detach()
output = self.model(
"second_vicuna_forward",
(
hidden_states,
attention_mask,
position_ids,
pkv0,
pkv1,
),
)
output0 = torch.tensor(output[0])
output1 = torch.tensor(output[1])
output2 = torch.tensor(output[2])
return (
output0,
(
output1,
output2,
),
)

View File

@@ -1,44 +0,0 @@
from abc import ABC, abstractmethod
class SharkLLMBase(ABC):
def __init__(
self,
model_name,
hf_model_path=None,
max_num_tokens=512,
) -> None:
self.model_name = model_name
self.hf_model_path = hf_model_path
self.max_num_tokens = max_num_tokens
self.shark_model = None
self.device = "cpu"
self.precision = "fp32"
@classmethod
@abstractmethod
def compile(self):
pass
@classmethod
@abstractmethod
def generate(self, prompt):
pass
@classmethod
@abstractmethod
def generate_new_token(self, params):
pass
@classmethod
@abstractmethod
def get_tokenizer(self):
pass
@classmethod
@abstractmethod
def get_src_model(self):
pass
def load_init_from_config(self):
pass

View File

@@ -1,567 +0,0 @@
from apps.language_models.src.model_wrappers.falcon_model import FalconModel
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
from apps.language_models.utils import (
get_vmfb_from_path,
)
from io import BytesIO
from pathlib import Path
from contextlib import redirect_stdout
from shark.shark_downloader import download_public_file
from shark.shark_importer import import_with_fx, save_mlir
from shark.shark_inference import SharkInference
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTQConfig
from transformers.generation import (
GenerationConfig,
LogitsProcessorList,
StoppingCriteriaList,
)
import copy
import re
import torch
import torch_mlir
import os
import argparse
parser = argparse.ArgumentParser(
prog="falcon runner",
description="runs a falcon model",
)
parser.add_argument(
"--falcon_variant_to_use", default="7b", help="7b, 40b, 180b"
)
parser.add_argument(
"--precision", "-p", default="fp16", choices=["fp32", "fp16", "int4"]
)
parser.add_argument("--device", "-d", default="cuda", help="vulkan, cpu, cuda")
parser.add_argument(
"--falcon_vmfb_path", default=None, help="path to falcon's vmfb"
)
parser.add_argument(
"--falcon_mlir_path",
default=None,
help="path to falcon's mlir file",
)
parser.add_argument(
"--use_precompiled_model",
default=True,
action=argparse.BooleanOptionalAction,
help="use the precompiled vmfb",
)
parser.add_argument(
"--load_mlir_from_shark_tank",
default=True,
action=argparse.BooleanOptionalAction,
help="download precompile mlir from shark tank",
)
parser.add_argument(
"--cli",
default=True,
action=argparse.BooleanOptionalAction,
help="Run model in cli mode",
)
parser.add_argument(
"--hf_auth_token",
type=str,
default=None,
help="Specify your own huggingface authentication token for falcon-180B model.",
)
class Falcon(SharkLLMBase):
def __init__(
self,
model_name,
hf_model_path="tiiuae/falcon-7b-instruct",
hf_auth_token: str = None,
max_num_tokens=150,
device="cuda",
precision="fp32",
falcon_mlir_path=None,
falcon_vmfb_path=None,
debug=False,
) -> None:
super().__init__(model_name, hf_model_path, max_num_tokens)
print("hf_model_path: ", self.hf_model_path)
if "180b" in self.model_name and hf_auth_token == None:
raise ValueError(
""" HF auth token required for falcon-180b. Pass it using
--hf_auth_token flag. You can ask for the access to the model
here: https://huggingface.co/tiiuae/falcon-180B-chat."""
)
self.hf_auth_token = hf_auth_token
self.max_padding_length = 100
self.device = device
self.precision = precision
self.falcon_vmfb_path = falcon_vmfb_path
self.falcon_mlir_path = falcon_mlir_path
self.debug = debug
self.tokenizer = self.get_tokenizer()
self.src_model = self.get_src_model()
self.shark_model = self.compile()
def get_tokenizer(self):
tokenizer = AutoTokenizer.from_pretrained(
self.hf_model_path,
trust_remote_code=True,
token=self.hf_auth_token,
)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = 11
return tokenizer
def get_src_model(self):
print("Loading src model: ", self.model_name)
kwargs = {
"torch_dtype": torch.float,
"trust_remote_code": True,
"token": self.hf_auth_token,
}
if self.precision == "int4":
quantization_config = GPTQConfig(bits=4, disable_exllama=True)
kwargs["quantization_config"] = quantization_config
kwargs["load_gptq_on_cpu"] = True
kwargs["device_map"] = "cpu" if self.device == "cpu" else "cuda:0"
falcon_model = AutoModelForCausalLM.from_pretrained(
self.hf_model_path, **kwargs
)
if self.precision == "int4":
falcon_model = falcon_model.to(torch.float32)
return falcon_model
def compile(self):
if args.use_precompiled_model:
if not self.falcon_vmfb_path.exists():
# Downloading VMFB from shark_tank
download_public_file(
"gs://shark_tank/falcon/"
+ "falcon_"
+ args.falcon_variant_to_use
+ "_"
+ self.precision
+ "_"
+ self.device
+ ".vmfb",
self.falcon_vmfb_path.absolute(),
single_file=True,
)
vmfb = get_vmfb_from_path(
self.falcon_vmfb_path, self.device, "linalg"
)
if vmfb is not None:
return vmfb
print(f"[DEBUG] vmfb not found at {self.falcon_vmfb_path.absolute()}")
if self.falcon_mlir_path.exists():
print(f"[DEBUG] mlir found at {self.falcon_mlir_path.absolute()}")
with open(self.falcon_mlir_path, "rb") as f:
bytecode = f.read()
else:
mlir_generated = False
print(
f"[DEBUG] mlir not found at {self.falcon_mlir_path.absolute()}"
)
if args.load_mlir_from_shark_tank:
# Downloading MLIR from shark_tank
print(f"[DEBUG] Trying to download mlir from shark_tank")
download_public_file(
"gs://shark_tank/falcon/"
+ "falcon_"
+ args.falcon_variant_to_use
+ "_"
+ self.precision
+ ".mlir",
self.falcon_mlir_path.absolute(),
single_file=True,
)
if self.falcon_mlir_path.exists():
print(
f"[DEBUG] mlir found at {self.falcon_mlir_path.absolute()}"
)
mlir_generated = True
if not mlir_generated:
print(f"[DEBUG] generating MLIR locally")
compilation_input_ids = torch.randint(
low=1, high=10000, size=(1, 100)
)
compilation_attention_mask = torch.ones(
1, 100, dtype=torch.int64
)
falconCompileInput = (
compilation_input_ids,
compilation_attention_mask,
)
model = FalconModel(self.src_model)
print(f"[DEBUG] generating torchscript graph")
ts_graph = import_with_fx(
model,
falconCompileInput,
is_f16=self.precision in ["fp16", "int4"],
f16_input_mask=[False, False],
mlir_type="torchscript",
is_gptq=self.precision == "int4",
)
del model
print(f"[DEBUG] generating torch mlir")
module = torch_mlir.compile(
ts_graph,
[*falconCompileInput],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
del ts_graph
print(f"[DEBUG] converting to bytecode")
bytecode_stream = BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
del module
f_ = open(self.falcon_mlir_path, "wb")
f_.write(bytecode)
print("Saved falcon mlir at ", str(self.falcon_mlir_path))
f_.close()
del bytecode
shark_module = SharkInference(
mlir_module=self.falcon_mlir_path,
device=self.device,
mlir_dialect="linalg",
)
path = shark_module.save_module(
self.falcon_vmfb_path.parent.absolute(),
self.falcon_vmfb_path.stem,
extra_args=[
"--iree-vm-target-truncate-unsupported-floats",
"--iree-codegen-check-ir-before-llvm-conversion=false",
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
]
+ [
"--iree-llvmcpu-use-fast-min-max-ops",
]
if self.precision == "int4"
else [],
debug=self.debug,
)
print("Saved falcon vmfb at ", str(path))
shark_module.load_module(path)
return shark_module
def generate(self, prompt):
model_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.max_padding_length,
add_special_tokens=False,
return_tensors="pt",
)
model_inputs["prompt_text"] = prompt
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
# Allow empty prompts
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
generate_kwargs = {
"max_length": self.max_num_tokens,
"do_sample": True,
"top_k": 10,
"num_return_sequences": 1,
"eos_token_id": 11,
}
generate_kwargs["input_ids"] = input_ids
generate_kwargs["attention_mask"] = attention_mask
generation_config_ = GenerationConfig.from_model_config(
self.src_model.config
)
generation_config = copy.deepcopy(generation_config_)
model_kwargs = generation_config.update(**generate_kwargs)
logits_processor = LogitsProcessorList()
stopping_criteria = StoppingCriteriaList()
eos_token_id = generation_config.eos_token_id
generation_config.pad_token_id = eos_token_id
(
inputs_tensor,
model_input_name,
model_kwargs,
) = self.src_model._prepare_model_inputs(
None, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs[
"output_hidden_states"
] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
input_ids = (
inputs_tensor
if model_input_name == "input_ids"
else model_kwargs.pop("input_ids")
)
self.logits_processor = self.src_model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids.shape[-1],
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
)
self.stopping_criteria = self.src_model._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria,
)
self.logits_warper = self.src_model._get_logits_warper(
generation_config
)
(
self.input_ids,
self.model_kwargs,
) = self.src_model._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences, # 1
is_encoder_decoder=self.src_model.config.is_encoder_decoder, # False
**model_kwargs,
)
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id_tensor = (
torch.tensor(eos_token_id) if eos_token_id is not None else None
)
self.pad_token_id = generation_config.pad_token_id
self.eos_token_id = eos_token_id
output_scores = generation_config.output_scores # False
output_attentions = generation_config.output_attentions # False
output_hidden_states = generation_config.output_hidden_states # False
return_dict_in_generate = (
generation_config.return_dict_in_generate # False
)
# init attention / hidden states / scores tuples
self.scores = (
() if (return_dict_in_generate and output_scores) else None
)
decoder_attentions = (
() if (return_dict_in_generate and output_attentions) else None
)
cross_attentions = (
() if (return_dict_in_generate and output_attentions) else None
)
decoder_hidden_states = (
() if (return_dict_in_generate and output_hidden_states) else None
)
# keep track of which sequences are already finished
self.unfinished_sequences = torch.ones(
input_ids.shape[0], dtype=torch.long, device=input_ids.device
)
all_text = prompt
for i in range(self.max_num_tokens - 1):
next_token = self.generate_new_token()
new_word = self.tokenizer.decode(
next_token.cpu().numpy(),
add_special_tokens=False,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
all_text = all_text + new_word
print(f"{new_word}", end="", flush=True)
# if eos_token was found in one sentence, set sentence to finished
if self.eos_token_id_tensor is not None:
self.unfinished_sequences = self.unfinished_sequences.mul(
next_token.tile(self.eos_token_id_tensor.shape[0], 1)
.ne(self.eos_token_id_tensor.unsqueeze(1))
.prod(dim=0)
)
# stop when each sentence is finished
if (
self.unfinished_sequences.max() == 0
or self.stopping_criteria(input_ids, self.scores)
):
break
torch.cuda.empty_cache()
gc.collect()
return all_text
def generate_new_token(self):
model_inputs = self.src_model.prepare_inputs_for_generation(
self.input_ids, **self.model_kwargs
)
outputs = torch.from_numpy(
self.shark_model(
"forward",
(model_inputs["input_ids"], model_inputs["attention_mask"]),
)
)
if self.precision in ["fp16", "int4"]:
outputs = outputs.to(dtype=torch.float32)
next_token_logits = outputs
# pre-process distribution
next_token_scores = self.logits_processor(
self.input_ids, next_token_logits
)
next_token_scores = self.logits_warper(
self.input_ids, next_token_scores
)
# sample
probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if self.eos_token_id is not None:
if self.pad_token_id is None:
raise ValueError(
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
)
next_token = (
next_token * self.unfinished_sequences
+ self.pad_token_id * (1 - self.unfinished_sequences)
)
self.input_ids = torch.cat(
[self.input_ids, next_token[:, None]], dim=-1
)
self.model_kwargs["past_key_values"] = None
if "attention_mask" in self.model_kwargs:
attention_mask = self.model_kwargs["attention_mask"]
self.model_kwargs["attention_mask"] = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
self.input_ids = self.input_ids[:, 1:]
self.model_kwargs["attention_mask"] = self.model_kwargs[
"attention_mask"
][:, 1:]
return next_token
if __name__ == "__main__":
args = parser.parse_args()
falcon_mlir_path = (
Path(
"falcon_"
+ args.falcon_variant_to_use
+ "_"
+ args.precision
+ ".mlir"
)
if args.falcon_mlir_path is None
else Path(args.falcon_mlir_path)
)
falcon_vmfb_path = (
Path(
"falcon_"
+ args.falcon_variant_to_use
+ "_"
+ args.precision
+ "_"
+ args.device
+ ".vmfb"
)
if args.falcon_vmfb_path is None
else Path(args.falcon_vmfb_path)
)
if args.precision == "int4":
if args.falcon_variant_to_use == "180b":
hf_model_path_value = "TheBloke/Falcon-180B-Chat-GPTQ"
else:
hf_model_path_value = (
"TheBloke/falcon-"
+ args.falcon_variant_to_use
+ "-instruct-GPTQ"
)
else:
if args.falcon_variant_to_use == "180b":
hf_model_path_value = "tiiuae/falcon-180B-chat"
else:
hf_model_path_value = (
"tiiuae/falcon-" + args.falcon_variant_to_use + "-instruct"
)
falcon = Falcon(
model_name="falcon_" + args.falcon_variant_to_use,
hf_model_path=hf_model_path_value,
device=args.device,
precision=args.precision,
falcon_mlir_path=falcon_mlir_path,
falcon_vmfb_path=falcon_vmfb_path,
)
import gc
default_prompt_text = "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:"
continue_execution = True
print("\n-----\nScript executing for the following config: \n")
print("Falcon Model: ", falcon.model_name)
print("Precision: ", args.precision)
print("Device: ", args.device)
while continue_execution:
use_default_prompt = input(
"\nDo you wish to use the default prompt text? Y/N ?: "
)
if use_default_prompt in ["Y", "y"]:
prompt = default_prompt_text
else:
prompt = input("Please enter the prompt text: ")
print("\nPrompt Text: ", prompt)
prompt_template = f"""A helpful assistant who helps the user with any questions asked.
User: {prompt}
Assistant:"""
res_str = falcon.generate(prompt_template)
torch.cuda.empty_cache()
gc.collect()
print(
"\n\n-----\nHere's the complete formatted result: \n\n",
res_str,
)
continue_execution = input(
"\nDo you wish to run script one more time? Y/N ?: "
)
continue_execution = (
True if continue_execution in ["Y", "y"] else False
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,68 +0,0 @@
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
class BaseProcessor:
def __init__(self):
self.transform = lambda x: x
return
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
return cls()
def build(self, **kwargs):
cfg = OmegaConf.create(kwargs)
return self.from_config(cfg)
class BlipImageBaseProcessor(BaseProcessor):
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
def __init__(self, image_size=224, mean=None, std=None):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(
(image_size, image_size),
interpolation=InterpolationMode.BICUBIC,
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 224)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(image_size=image_size, mean=mean, std=std)

View File

@@ -1,5 +0,0 @@
datasets:
cc_sbu_align:
data_type: images
build_info:
storage: /path/to/cc_sbu_align/

View File

@@ -1,33 +0,0 @@
model:
arch: mini_gpt4
# vit encoder
image_size: 224
drop_path_rate: 0
use_grad_checkpoint: False
vit_precision: "fp16"
freeze_vit: True
freeze_qformer: True
# Q-Former
num_query_token: 32
# Vicuna
llama_model: "lmsys/vicuna-7b-v1.3"
# generation configs
prompt: ""
preprocess:
vis_processor:
train:
name: "blip2_image_train"
image_size: 224
eval:
name: "blip2_image_eval"
image_size: 224
text_processor:
train:
name: "blip_caption"
eval:
name: "blip_caption"

View File

@@ -1,25 +0,0 @@
model:
arch: mini_gpt4
model_type: pretrain_vicuna
freeze_vit: True
freeze_qformer: True
max_txt_len: 160
end_sym: "###"
low_resource: False
prompt_path: "apps/language_models/src/pipelines/minigpt4_utils/prompts/alignment.txt"
prompt_template: '###Human: {} ###Assistant: '
ckpt: 'prerained_minigpt4_7b.pth'
datasets:
cc_sbu_align:
vis_processor:
train:
name: "blip2_image_eval"
image_size: 224
text_processor:
train:
name: "blip_caption"
run:
task: image_text_pretrain

View File

@@ -1,629 +0,0 @@
# Based on EVA, BEIT, timm and DeiT code bases
# https://github.com/baaivision/EVA
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import math
import requests
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": (0.5, 0.5, 0.5),
"std": (0.5, 0.5, 0.5),
**kwargs,
}
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(
torch.meshgrid([coords_h, coords_w])
) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += (
window_size[0] - 1
) # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2,
dtype=relative_coords.dtype,
)
relative_position_index[1:, 1:] = relative_coords.sum(
-1
) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer(
"relative_position_index", relative_position_index
)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if init_values is not None and init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is None:
x = x + self.drop_path(
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
)
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(
self.gamma_1
* self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (
img_size[0] // patch_size[0]
)
self.patch_shape = (
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1
) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2,
dtype=relative_coords.dtype,
)
relative_position_index[1:, 1:] = relative_coords.sum(
-1
) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer(
"relative_position_index", relative_position_index
)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self):
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
class VisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
use_mean_pooling=True,
init_scale=0.001,
use_checkpoint=False,
):
super().__init__()
self.image_size = img_size
self.num_classes = num_classes
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim)
)
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.patch_shape, num_heads=num_heads
)
else:
self.rel_pos_bias = None
self.use_checkpoint = use_checkpoint
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape
if use_rel_pos_bias
else None,
)
for i in range(depth)
]
)
# self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
# self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
# self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
# trunc_normal_(self.mask_token, std=.02)
# if isinstance(self.head, nn.Linear):
# trunc_normal_(self.head.weight, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
# if isinstance(self.head, nn.Linear):
# self.head.weight.data.mul_(init_scale)
# self.head.bias.data.mul_(init_scale)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes)
if num_classes > 0
else nn.Identity()
)
def forward_features(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = (
self.rel_pos_bias() if self.rel_pos_bias is not None else None
)
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
else:
x = blk(x, rel_pos_bias)
return x
# x = self.norm(x)
# if self.fc_norm is not None:
# t = x[:, 1:, :]
# return self.fc_norm(t.mean(1))
# else:
# return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
def get_intermediate_layers(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(
batch_size, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
features = []
rel_pos_bias = (
self.rel_pos_bias() if self.rel_pos_bias is not None else None
)
for blk in self.blocks:
x = blk(x, rel_pos_bias)
features.append(x)
return features
def interpolate_pos_embed(model, checkpoint_model):
if "pos_embed" in checkpoint_model:
pos_embed_checkpoint = checkpoint_model["pos_embed"].float()
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int(
(pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5
)
# height (== width) for the new position embedding
new_size = int(num_patches**0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print(
"Position interpolate from %dx%d to %dx%d"
% (orig_size, orig_size, new_size, new_size)
)
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(
-1, orig_size, orig_size, embedding_size
).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens,
size=(new_size, new_size),
mode="bicubic",
align_corners=False,
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model["pos_embed"] = new_pos_embed
def convert_weights_to_fp16(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
# l.weight.data = l.weight.data.half()
l.weight.data = l.weight.data
if l.bias is not None:
# l.bias.data = l.bias.data.half()
l.bias.data = l.bias.data
# if isinstance(l, (nn.MultiheadAttention, Attention)):
# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
# tensor = getattr(l, attr)
# if tensor is not None:
# tensor.data = tensor.data.half()
model.apply(_convert_weights_to_fp16)
def create_eva_vit_g(
img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision="fp16"
):
model = VisionTransformer(
img_size=img_size,
patch_size=14,
use_mean_pooling=False,
embed_dim=1408,
depth=39,
num_heads=1408 // 88,
mlp_ratio=4.3637,
qkv_bias=True,
drop_path_rate=drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
use_checkpoint=use_checkpoint,
)
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth"
local_filename = "eva_vit_g.pth"
response = requests.get(url)
if response.status_code == 200:
with open(local_filename, "wb") as f:
f.write(response.content)
print("File downloaded successfully.")
state_dict = torch.load(local_filename, map_location="cpu")
interpolate_pos_embed(model, state_dict)
incompatible_keys = model.load_state_dict(state_dict, strict=False)
if precision == "fp16":
# model.to("cuda")
convert_weights_to_fp16(model)
return model

View File

@@ -1,4 +0,0 @@
<Img><ImageHere></Img> Describe this image in detail.
<Img><ImageHere></Img> Take a look at this image and describe what you notice.
<Img><ImageHere></Img> Please provide a detailed description of the picture.
<Img><ImageHere></Img> Could you describe the contents of this image for me?

View File

@@ -1,187 +0,0 @@
import torch
import torch_mlir
from transformers import AutoTokenizer, StoppingCriteria, AutoModelForCausalLM
from io import BytesIO
from pathlib import Path
from apps.language_models.utils import (
get_torch_mlir_module_bytecode,
get_vmfb_from_path,
)
from apps.language_models.src.pipelines.SharkLLMBase import SharkLLMBase
from apps.language_models.src.model_wrappers.stablelm_model import (
StableLMModel,
)
class StopOnTokens(StoppingCriteria):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
class SharkStableLM(SharkLLMBase):
def __init__(
self,
model_name,
hf_model_path="stabilityai/stablelm-tuned-alpha-3b",
max_num_tokens=512,
device="cuda",
precision="fp32",
debug="False",
) -> None:
super().__init__(model_name, hf_model_path, max_num_tokens)
self.max_sequence_len = 256
self.device = device
self.precision = precision
self.debug = debug
self.tokenizer = self.get_tokenizer()
self.shark_model = self.compile()
def shouldStop(self, tokens):
stop_ids = [50278, 50279, 50277, 1, 0]
for stop_id in stop_ids:
if tokens[0][-1] == stop_id:
return True
return False
def get_src_model(self):
model = AutoModelForCausalLM.from_pretrained(
self.hf_model_path, torch_dtype=torch.float32
)
return model
def get_model_inputs(self):
input_ids = torch.randint(3, (1, self.max_sequence_len))
attention_mask = torch.randint(3, (1, self.max_sequence_len))
return input_ids, attention_mask
def compile(self):
tmp_model_name = (
f"stableLM_linalg_{self.precision}_seqLen{self.max_sequence_len}"
)
# device = "cuda" # "cpu"
# TODO: vmfb and mlir name should include precision and device
model_vmfb_name = None
vmfb_path = (
Path(tmp_model_name + f"_{self.device}.vmfb")
if model_vmfb_name is None
else Path(model_vmfb_name)
)
shark_module = get_vmfb_from_path(
vmfb_path, self.device, mlir_dialect="tm_tensor"
)
if shark_module is not None:
return shark_module
mlir_path = Path(tmp_model_name + ".mlir")
print(
f"[DEBUG] mlir path {mlir_path} {'exists' if mlir_path.exists() else 'does not exist'}"
)
if mlir_path.exists():
with open(mlir_path, "rb") as f:
bytecode = f.read()
else:
model = StableLMModel(self.get_src_model())
model_inputs = self.get_model_inputs()
ts_graph = get_torch_mlir_module_bytecode(model, model_inputs)
module = torch_mlir.compile(
ts_graph,
[*model_inputs],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
bytecode_stream = BytesIO()
module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
f_ = open(tmp_model_name + ".mlir", "wb")
f_.write(bytecode)
print("Saved mlir")
f_.close()
from shark.shark_inference import SharkInference
shark_module = SharkInference(
mlir_module=bytecode, device=self.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
path = shark_module.save_module(
vmfb_path.parent.absolute(), vmfb_path.stem, debug=self.debug
)
print("Saved vmfb at ", str(path))
return shark_module
def get_tokenizer(self):
tok = AutoTokenizer.from_pretrained(self.hf_model_path)
tok.add_special_tokens({"pad_token": "<PAD>"})
# print("[DEBUG] Sucessfully loaded the tokenizer to the memory")
return tok
def generate(self, prompt):
words_list = []
for i in range(self.max_num_tokens):
params = {
"new_text": prompt,
}
generated_token_op = self.generate_new_token(params)
detok = generated_token_op["detok"]
stop_generation = generated_token_op["stop_generation"]
if stop_generation:
break
print(detok, end="", flush=True) # this is for CLI and DEBUG
words_list.append(detok)
if detok == "":
break
prompt = prompt + detok
return words_list
def generate_new_token(self, params):
new_text = params["new_text"]
model_inputs = self.tokenizer(
[new_text],
padding="max_length",
max_length=self.max_sequence_len,
truncation=True,
return_tensors="pt",
)
sum_attentionmask = torch.sum(model_inputs.attention_mask)
output = self.shark_model(
"forward", [model_inputs.input_ids, model_inputs.attention_mask]
)
output = torch.from_numpy(output)
next_toks = torch.topk(output, 1)
stop_generation = False
if self.shouldStop(next_toks.indices):
stop_generation = True
new_token = next_toks.indices[0][int(sum_attentionmask) - 1]
detok = self.tokenizer.decode(
new_token,
skip_special_tokens=True,
)
ret_dict = {
"new_token": new_token,
"detok": detok,
"stop_generation": stop_generation,
}
return ret_dict
# Initialize a StopOnTokens object
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
- StableLM will refuse to participate in anything that could harm a human.
"""

View File

@@ -1,48 +0,0 @@
import torch
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
from typing import List
from pathlib import Path
from shark.shark_downloader import download_public_file
# expects a Path / str as arg
# returns None if path not found or SharkInference module
def get_vmfb_from_path(vmfb_path, device, mlir_dialect, device_id=None):
if not isinstance(vmfb_path, Path):
vmfb_path = Path(vmfb_path)
from shark.shark_inference import SharkInference
if not vmfb_path.exists():
return None
print("Loading vmfb from: ", vmfb_path)
print("Device from get_vmfb_from_path - ", device)
shark_module = SharkInference(
None, device=device, mlir_dialect=mlir_dialect, device_idx=device_id
)
shark_module.load_module(vmfb_path)
print("Successfully loaded vmfb")
return shark_module
def get_vmfb_from_config(
shark_container,
model,
precision,
device,
vmfb_path,
padding=None,
device_id=None,
):
vmfb_url = (
f"gs://shark_tank/{shark_container}/{model}_{precision}_{device}"
)
if padding:
vmfb_url = vmfb_url + f"_{padding}"
vmfb_url = vmfb_url + ".vmfb"
download_public_file(vmfb_url, vmfb_path.absolute(), single_file=True)
return get_vmfb_from_path(
vmfb_path, device, "tm_tensor", device_id=device_id
)

View File

@@ -7,16 +7,16 @@ Compile Commands FP32/FP16:
```shell
Vulkan AMD:
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux /path/to/input/mlir -o /path/to/output/vmfb
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
# add --mlir-print-debuginfo --mlir-print-op-on-diagnostic=true for debug
# use iree-input-type=auto or "mhlo_legacy" or "stablehlo" for TF models
# use iree-input-type=mhlo for tf models
CUDA NVIDIA:
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda /path/to/input/mlir -o /path/to/output/vmfb
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
CPU:
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu /path/to/input/mlir -o /path/to/output/vmfb
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
```

View File

@@ -1 +1 @@
from apps.stable_diffusion.scripts.train_lora_word import lora_train
from apps.stable_diffusion.scripts.txt2img import txt2img_inf

View File

@@ -1,127 +0,0 @@
import sys
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
Image2ImagePipeline,
StencilPipeline,
resize_stencil,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
image = Image.open(args.img_path).convert("RGB")
# When the models get uploaded, it should be default to False.
args.import_mlir = True
use_stencil = args.use_stencil
if use_stencil:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
image, args.width, args.height = resize_stencil(image)
elif "Shark" in args.scheduler:
print(
f"Shark schedulers are not supported. Switching to EulerDiscrete scheduler"
)
args.scheduler = "EulerDiscrete"
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
if use_stencil:
img2img_obj = StencilPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_stencil=use_stencil,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
else:
img2img_obj = Image2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
start_time = time.time()
generated_imgs = img2img_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.strength,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
args.max_embeddings_multiples,
use_stencil=use_stencil,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, strength={args.strength}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += img2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"STRENGTH": args.strength}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -1,105 +0,0 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
InpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
from apps.stable_diffusion.src.utils import get_generation_text_info
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
if args.mask_path is None:
print("Flag --mask_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
mask_image = Image.open(args.mask_path)
inpaint_obj = InpaintPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
custom_vae=args.custom_vae,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
seeds = utils.batch_seeds(seed, args.batch_count, args.repeatable_seeds)
for current_batch in range(args.batch_count):
start_time = time.time()
generated_imgs = inpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
mask_image,
args.batch_size,
args.height,
args.width,
args.inpaint_full_res,
args.inpaint_full_res_padding,
args.steps,
args.guidance_scale,
seeds[current_batch],
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
args.max_embeddings_multiples,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += (
f"\nsteps={args.steps}, guidance_scale={args.guidance_scale},"
)
text_output += f"seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += inpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -1,19 +0,0 @@
from apps.stable_diffusion.src import args
from apps.stable_diffusion.scripts import (
img2img,
txt2img,
# inpaint,
# outpaint,
)
if __name__ == "__main__":
if args.app == "txt2img":
txt2img.main()
elif args.app == "img2img":
img2img.main()
# elif args.app == "inpaint":
# inpaint.main()
# elif args.app == "outpaint":
# outpaint.main()
else:
print(f"args.app value is {args.app} but this isn't supported")

View File

@@ -1,120 +0,0 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
OutpaintPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
def main():
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
model_id = (
args.hf_model_id
if "inpaint" in args.hf_model_id
else "stabilityai/stable-diffusion-2-inpainting"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
image = Image.open(args.img_path)
outpaint_obj = OutpaintPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
use_lora=args.use_lora,
ondemand=args.ondemand,
)
seeds = utils.batch_seeds(seed, args.batch_count, args.repeatable_seeds)
for current_batch in range(args.batch_count):
start_time = time.time()
generated_imgs = outpaint_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.pixels,
args.mask_blur,
args.left,
args.right,
args.top,
args.bottom,
args.noise_q,
args.color_variation,
args.batch_size,
args.height,
args.width,
args.steps,
args.guidance_scale,
seeds[current_batch],
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
args.max_embeddings_multiples,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += (
f"\nsteps={args.steps}, guidance_scale={args.guidance_scale},"
)
text_output += f"seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += outpaint_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
# save this information as metadata of output generated image.
directions = []
if args.left:
directions.append("left")
if args.right:
directions.append("right")
if args.top:
directions.append("up")
if args.bottom:
directions.append("down")
extra_info = {
"PIXELS": args.pixels,
"MASK_BLUR": args.mask_blur,
"DIRECTIONS": directions,
"NOISE_Q": args.noise_q,
"COLOR_VARIATION": args.color_variation,
}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -1,693 +0,0 @@
# Install the required libs
# pip install -U git+https://github.com/huggingface/diffusers.git
# pip install accelerate transformers ftfy
# HuggingFace Token
# YOUR_TOKEN = "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"
# Import required libraries
import itertools
import math
import os
from typing import List
import random
import torch_mlir
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
import logging
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import LoRAXFormersAttnProcessor
import torch_mlir
from torch_mlir.dynamo import make_simple_dynamo_backend
import torch._dynamo as dynamo
from torch.fx.experimental.proxy_tensor import make_fx
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
from shark.shark_inference import SharkInference
torch._dynamo.config.verbose = True
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import (
StableDiffusionSafetyChecker,
)
from PIL import Image
from tqdm.auto import tqdm
from transformers import (
CLIPFeatureExtractor,
CLIPTextModel,
CLIPTokenizer,
)
from io import BytesIO
from dataclasses import dataclass
from apps.stable_diffusion.src import (
args,
get_schedulers,
set_init_device_flags,
clear_all,
)
from apps.stable_diffusion.src.utils import update_lora_weight
# Setup the dataset
class LoraDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
size=512,
repeats=100,
interpolation="bicubic",
set="train",
prompt="myloraprompt",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.size = size
self.center_crop = center_crop
self.prompt = prompt
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
example["input_ids"] = self.tokenizer(
self.prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
image = Image.fromarray(img)
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
def torch_device(device):
device_tokens = device.split("=>")
if len(device_tokens) == 1:
device_str = device_tokens[0].strip()
else:
device_str = device_tokens[1].strip()
device_type_tokens = device_str.split("://")
if device_type_tokens[0] == "metal":
device_type_tokens[0] = "vulkan"
if len(device_type_tokens) > 1:
return device_type_tokens[0] + ":" + device_type_tokens[1]
else:
return device_type_tokens[0]
########## Setting up the model ##########
def lora_train(
prompt: str,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
training_images_dir: str,
lora_save_dir: str,
use_lora: str,
):
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
Config,
)
import apps.stable_diffusion.web.utils.global_obj as global_obj
print(
"Note LoRA training is not compatible with the latest torch-mlir branch"
)
print(
"To run LoRA training you'll need this to follow this guide for the torch-mlir branch: https://github.com/nod-ai/SHARK/tree/main/shark/examples/shark_training/stable_diffusion"
)
torch.manual_seed(seed)
args.prompts = [prompt]
args.steps = steps
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be "
"empty.",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.training_images_dir = training_images_dir
args.lora_save_dir = lora_save_dir
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = torch_device(device)
args.use_lora = use_lora
# Load the Stable Diffusion model
text_encoder = CLIPTextModel.from_pretrained(
args.hf_model_id, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(args.hf_model_id, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
args.hf_model_id, subfolder="unet"
)
def freeze_params(params):
for param in params:
param.requires_grad = False
# Freeze everything but LoRA
freeze_params(vae.parameters())
freeze_params(unet.parameters())
freeze_params(text_encoder.parameters())
# Move vae and unet to device
vae.to(args.device)
unet.to(args.device)
text_encoder.to(args.device)
if use_lora != "":
update_lora_weight(unet, args.use_lora, "unet")
else:
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAXFormersAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = vae
def forward(self, input):
x = self.vae.encode(input, return_dict=False)[0]
return x
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = unet
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
shark_vae = VaeModel()
shark_unet = UnetModel()
####### Creating our training data ########
tokenizer = CLIPTokenizer.from_pretrained(
args.hf_model_id,
subfolder="tokenizer",
)
# Let's create the Dataset and Dataloader
train_dataset = LoraDataset(
data_root=args.training_images_dir,
tokenizer=tokenizer,
size=vae.sample_size,
prompt=args.prompts[0],
repeats=100,
center_crop=False,
set="train",
)
def create_dataloader(train_batch_size=1):
return torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Create noise_scheduler for training
noise_scheduler = DDPMScheduler.from_config(
args.hf_model_id, subfolder="scheduler"
)
######## Training ###########
# Define hyperparameters for our training. If you are not happy with your results,
# you can tune the `learning_rate` and the `max_train_steps`
# Setting up all training args
hyperparameters = {
"learning_rate": 5e-04,
"scale_lr": True,
"max_train_steps": steps,
"train_batch_size": batch_size,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"mixed_precision": "fp16",
"seed": 42,
"output_dir": "sd-concept-output",
}
# creating output directory
cwd = os.getcwd()
out_dir = os.path.join(cwd, hyperparameters["output_dir"])
while not os.path.exists(str(out_dir)):
try:
os.mkdir(out_dir)
except OSError as error:
print("Output directory not created")
###### Torch-MLIR Compilation ######
def _remove_nones(fx_g: torch.fx.GraphModule) -> List[int]:
removed_indexes = []
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, (list, tuple)):
node_arg = list(node_arg)
node_args_len = len(node_arg)
for i in range(node_args_len):
curr_index = node_args_len - (i + 1)
if node_arg[curr_index] is None:
removed_indexes.append(curr_index)
node_arg.pop(curr_index)
node.args = (tuple(node_arg),)
break
if len(removed_indexes) > 0:
fx_g.graph.lint()
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
removed_indexes.sort()
return removed_indexes
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule) -> bool:
"""
Replace tuple with tuple element in functions that return one-element tuples.
Returns true if an unwrapping took place, and false otherwise.
"""
unwrapped_tuple = False
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
if len(node_arg) == 1:
node.args = (node_arg[0],)
unwrapped_tuple = True
break
if unwrapped_tuple:
fx_g.graph.lint()
fx_g.recompile()
return unwrapped_tuple
def _returns_nothing(fx_g: torch.fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
return len(node_arg) == 0
return False
def transform_fx(fx_g):
for node in fx_g.graph.nodes:
if node.op == "call_function":
if node.target in [
torch.ops.aten.empty,
]:
# aten.empty should be filled with zeros.
if node.target in [torch.ops.aten.empty]:
with fx_g.graph.inserting_after(node):
new_node = fx_g.graph.call_function(
torch.ops.aten.zero_,
args=(node,),
)
node.append(new_node)
node.replace_all_uses_with(new_node)
new_node.args = (node,)
fx_g.graph.lint()
@make_simple_dynamo_backend
def refbackend_torchdynamo_backend(
fx_graph: torch.fx.GraphModule, example_inputs: List[torch.Tensor]
):
# handling usage of empty tensor without initializing
transform_fx(fx_graph)
fx_graph.recompile()
if _returns_nothing(fx_graph):
return fx_graph
removed_none_indexes = _remove_nones(fx_graph)
was_unwrapped = _unwrap_single_tuple_return(fx_graph)
mlir_module = torch_mlir.compile(
fx_graph, example_inputs, output_type="linalg-on-tensors"
)
bytecode_stream = BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
shark_module = SharkInference(
mlir_module=bytecode, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
def compiled_callable(*inputs):
inputs = [x.numpy() for x in inputs]
result = shark_module("forward", inputs)
if was_unwrapped:
result = [
result,
]
if not isinstance(result, list):
result = torch.from_numpy(result)
else:
result = tuple(torch.from_numpy(x) for x in result)
result = list(result)
for removed_index in removed_none_indexes:
result.insert(removed_index, None)
result = tuple(result)
return result
return compiled_callable
def predictions(torch_func, jit_func, batchA, batchB):
res = jit_func(batchA.numpy(), batchB.numpy())
if res is not None:
# prediction = torch.from_numpy(res)
prediction = res
else:
prediction = None
return prediction
logger = logging.getLogger(__name__)
train_batch_size = hyperparameters["train_batch_size"]
gradient_accumulation_steps = hyperparameters[
"gradient_accumulation_steps"
]
learning_rate = hyperparameters["learning_rate"]
if hyperparameters["scale_lr"]:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
# * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
lora_layers.parameters(), # only optimize the embeddings
lr=learning_rate,
)
# Training function
def train_func(batch_pixel_values, batch_input_ids):
# Convert images to latent space
latents = shark_vae(batch_pixel_values).sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch_input_ids)[0]
# Predict the noise residual
noise_pred = shark_unet(
noisy_latents,
timesteps,
encoder_hidden_states,
)
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = (
F.mse_loss(noise_pred, target, reduction="none")
.mean([1, 2, 3])
.mean()
)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return loss
def training_function():
max_train_steps = hyperparameters["max_train_steps"]
output_dir = hyperparameters["output_dir"]
gradient_checkpointing = hyperparameters["gradient_checkpointing"]
train_dataloader = create_dataloader(train_batch_size)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
num_train_epochs = math.ceil(
max_train_steps / num_update_steps_per_epoch
)
# Train!
total_batch_size = (
train_batch_size
* gradient_accumulation_steps
# train_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(
f" Instantaneous batch size per device = {train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
# range(max_train_steps), disable=not accelerator.is_local_main_process
range(max_train_steps)
)
progress_bar.set_description("Steps")
global_step = 0
params__ = [
i for i in text_encoder.get_input_embeddings().parameters()
]
for epoch in range(num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
dynamo_callable = dynamo.optimize(
refbackend_torchdynamo_backend
)(train_func)
lam_func = lambda x, y: dynamo_callable(
torch.from_numpy(x), torch.from_numpy(y)
)
loss = predictions(
train_func,
lam_func,
batch["pixel_values"],
batch["input_ids"],
)
# Checks if the accelerator has performed an optimization step behind the scenes
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
training_function()
# Save the lora weights
unet.save_attn_procs(args.lora_save_dir)
for param in itertools.chain(unet.parameters(), text_encoder.parameters()):
if param.grad is not None:
del param.grad # free some memory
torch.cuda.empty_cache()
if __name__ == "__main__":
if args.clear_all:
clear_all()
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
if len(args.prompts) != 1:
print("Need exactly one prompt for the LoRA word")
lora_train(
args.prompts[0],
args.height,
args.width,
args.training_steps,
args.guidance_scale,
args.seed,
args.batch_count,
args.batch_size,
args.scheduler,
"None",
args.hf_model_id,
args.precision,
args.device,
args.max_length,
args.training_images_dir,
args.lora_save_dir,
args.use_lora,
)

View File

@@ -1,131 +0,0 @@
import os
from pathlib import Path
from shark_tuner.codegen_tuner import SharkCodegenTuner
from shark_tuner.iree_utils import (
dump_dispatches,
create_context,
export_module_to_mlir_file,
)
from shark_tuner.model_annotation import model_annotation
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.utils import set_init_device_flags
from apps.stable_diffusion.src.utils.sd_annotation import (
get_device_args,
load_winograd_configs,
)
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
def load_mlir_module():
if "upscaler" in args.hf_model_id:
is_upscaler = True
else:
is_upscaler = False
sd_model = SharkifyStableDiffusionModel(
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
max_len=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
is_upscaler=is_upscaler,
use_tuned=False,
low_cpu_mem_usage=args.low_cpu_mem_usage,
return_mlir=True,
)
if args.annotation_model == "unet":
mlir_module = sd_model.unet()
model_name = sd_model.model_name["unet"]
elif args.annotation_model == "vae":
mlir_module = sd_model.vae()
model_name = sd_model.model_name["vae"]
else:
raise ValueError(
f"{args.annotation_model} is not supported for tuning."
)
return mlir_module, model_name
def main():
args.use_tuned = False
set_init_device_flags()
mlir_module, model_name = load_mlir_module()
# Get device and device specific arguments
device, device_spec_args = get_device_args()
device_spec = ""
vulkan_target_triple = ""
if device_spec_args:
device_spec = device_spec_args[-1].split("=")[-1].strip()
if device == "vulkan":
vulkan_target_triple = device_spec
device_spec = device_spec.split("-")[0]
# Add winograd annotation for vulkan device
use_winograd = (
True
if device == "vulkan" and args.annotation_model in ["unet", "vae"]
else False
)
winograd_config = (
load_winograd_configs()
if device == "vulkan" and args.annotation_model in ["unet", "vae"]
else ""
)
with create_context() as ctx:
input_module = model_annotation(
ctx,
input_contents=mlir_module,
config_path=winograd_config,
search_op="conv",
winograd=use_winograd,
)
# Dump model dispatches
generates_dir = Path.home() / "tmp"
if not os.path.exists(generates_dir):
os.makedirs(generates_dir)
dump_mlir = generates_dir / "temp.mlir"
dispatch_dir = generates_dir / f"{model_name}_{device_spec}_dispatches"
export_module_to_mlir_file(input_module, dump_mlir)
dump_dispatches(
dump_mlir,
device,
dispatch_dir,
vulkan_target_triple,
use_winograd=use_winograd,
)
# Tune each dispatch
dtype = "f16" if args.precision == "fp16" else "f32"
config_filename = f"{model_name}_{device_spec}_configs.json"
for f_path in os.listdir(dispatch_dir):
if not f_path.endswith(".mlir"):
continue
model_dir = os.path.join(dispatch_dir, f_path)
tuner = SharkCodegenTuner(
model_dir,
device,
"random",
args.num_iters,
args.tuned_config_dir,
dtype,
args.search_op,
batch_size=1,
config_filename=config_filename,
use_dispatch=True,
vulkan_target_triple=vulkan_target_triple,
)
tuner.tune()
if __name__ == "__main__":
main()

View File

@@ -1,49 +1,302 @@
import os
if "AMD_ENABLE_LLPC" not in os.environ:
os.environ["AMD_ENABLE_LLPC"] = "1"
import sys
import json
import torch
import transformers
import re
import time
from pathlib import Path
from PIL import PngImagePlugin
from datetime import datetime as dt
from dataclasses import dataclass
from csv import DictWriter
from apps.stable_diffusion.src import (
args,
Text2ImagePipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
def main():
if args.clear_all:
clear_all()
@dataclass
class Config:
model_id: str
ckpt_loc: str
precision: str
batch_size: int
max_length: int
height: int
width: int
device: str
# This has to come before importing cache objects
if args.clear_all:
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed):
output_path = args.output_dir if args.output_dir else Path.cwd()
generated_imgs_path = Path(output_path, "generated_imgs")
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = (
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
)
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = os.path.basename(args.ckpt_loc)
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not supported yet."
"Image saved as png instead. Supported formats: png / jpg"
)
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
}
with open(csv_path, "a") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
txt2img_obj = None
config_obj = None
schedulers = None
# Exposed to UI.
def txt2img_inf(
prompt: str,
negative_prompt: str,
height: int,
width: int,
steps: int,
guidance_scale: float,
seed: int,
batch_count: int,
batch_size: int,
scheduler: str,
custom_model: str,
hf_model_id: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
):
global txt2img_obj
global config_obj
global schedulers
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
args.steps = steps
args.scheduler = scheduler
# set ckpt_loc and hf_model_id.
types = (
".ckpt",
".safetensors",
) # the tuple of file types
args.ckpt_loc = ""
args.hf_model_id = ""
if custom_model == "None":
if not hf_model_id:
return (
None,
"Please provide either custom model or huggingface model ID, both must not be empty",
)
args.hf_model_id = hf_model_id
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
args.ckpt_loc = custom_model
else:
args.hf_model_id = custom_model
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
new_config_obj = Config(
args.hf_model_id,
args.ckpt_loc,
precision,
batch_size,
max_length,
height,
width,
device,
)
if config_obj != new_config_obj:
config_obj = new_config_obj
args.precision = precision
args.batch_size = batch_size
args.max_length = max_length
args.height = height
args.width = width
args.device = device.split("=>", 1)[1].strip()
args.use_tuned = True
args.import_mlir = False
set_init_device_flags()
model_id = (
args.hf_model_id
if args.hf_model_id
else "stabilityai/stable-diffusion-2-1-base"
)
schedulers = get_schedulers(model_id)
scheduler_obj = schedulers[scheduler]
txt2img_obj = Text2ImagePipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
if not txt2img_obj:
sys.exit("text to image pipeline must not return a null value")
txt2img_obj.scheduler = schedulers[scheduler]
start_time = time.time()
txt2img_obj.log = ""
generated_imgs = []
seeds = []
img_seed = utils.sanitize_seed(seed)
for i in range(batch_count):
if i > 0:
img_seed = utils.sanitize_seed(-1)
out_imgs = txt2img_obj.generate_images(
prompt,
negative_prompt,
batch_size,
height,
width,
steps,
guidance_scale,
img_seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
)
save_output_img(out_imgs[0], img_seed)
generated_imgs.extend(out_imgs)
seeds.append(img_seed)
txt2img_obj.log += "\n"
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={device}"
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
return generated_imgs, text_output
if __name__ == "__main__":
dtype = torch.float32 if args.precision == "fp32" else torch.half
cpu_scheduling = not args.scheduler.startswith("Shark")
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
seed = args.seed
txt2img_obj = Text2ImagePipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=args.precision,
max_length=args.max_length,
batch_size=args.batch_size,
height=args.height,
width=args.width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
use_quantize=args.use_quantize,
ondemand=args.ondemand,
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
)
seeds = utils.batch_seeds(seed, args.batch_count, args.repeatable_seeds)
for current_batch in range(args.batch_count):
for run in range(args.runs):
if run > 0:
seed = -1
seed = utils.sanitize_seed(seed)
start_time = time.time()
generated_imgs = txt2img_obj.generate_images(
args.prompts,
@@ -53,12 +306,11 @@ def main():
args.width,
args.steps,
args.guidance_scale,
seeds[current_batch],
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
args.max_embeddings_multiples,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
@@ -67,22 +319,13 @@ def main():
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += (
f"\nsteps={args.steps}, guidance_scale={args.guidance_scale},"
)
text_output += (
f"seed={seeds[current_batch]}, size={args.height}x{args.width}"
)
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
# TODO: if using --runs=x txt2img_obj.log will output on each display every iteration infos from the start
text_output += txt2img_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
save_output_img(generated_imgs[0], seed)
print(text_output)
if __name__ == "__main__":
main()

View File

@@ -1,92 +0,0 @@
import torch
import time
from PIL import Image
import transformers
from apps.stable_diffusion.src import (
args,
UpscalerPipeline,
get_schedulers,
set_init_device_flags,
utils,
clear_all,
save_output_img,
)
if __name__ == "__main__":
if args.clear_all:
clear_all()
if args.img_path is None:
print("Flag --img_path is required.")
exit()
# When the models get uploaded, it should be defaulted to False.
args.import_mlir = True
cpu_scheduling = not args.scheduler.startswith("Shark")
dtype = torch.float32 if args.precision == "fp32" else torch.half
set_init_device_flags()
schedulers = get_schedulers(args.hf_model_id)
scheduler_obj = schedulers[args.scheduler]
image = (
Image.open(args.img_path)
.convert("RGB")
.resize((args.height, args.width))
)
seed = utils.sanitize_seed(args.seed)
# Adjust for height and width based on model
upscaler_obj = UpscalerPipeline.from_pretrained(
scheduler_obj,
args.import_mlir,
args.hf_model_id,
args.ckpt_loc,
args.custom_vae,
args.precision,
args.max_length,
args.batch_size,
args.height,
args.width,
args.use_base_vae,
args.use_tuned,
low_cpu_mem_usage=args.low_cpu_mem_usage,
use_lora=args.use_lora,
ddpm_scheduler=schedulers["DDPM"],
ondemand=args.ondemand,
)
start_time = time.time()
generated_imgs = upscaler_obj.generate_images(
args.prompts,
args.negative_prompts,
image,
args.batch_size,
args.height,
args.width,
args.steps,
args.noise_level,
args.guidance_scale,
seed,
args.max_length,
dtype,
args.use_base_vae,
cpu_scheduling,
args.max_embeddings_multiples,
)
total_time = time.time() - start_time
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
text_output += f"\nsteps={args.steps}, noise_level={args.noise_level}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
text_output += (
f", batch size={args.batch_size}, max_length={args.max_length}"
)
text_output += upscaler_obj.log
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
extra_info = {"NOISE LEVEL": args.noise_level}
save_output_img(generated_imgs[0], seed, extra_info)
print(text_output)

View File

@@ -1,16 +1,50 @@
# -*- mode: python ; coding: utf-8 -*-
from apps.stable_diffusion.shark_studio_imports import pathex, datas, hiddenimports
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import copy_metadata
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
datas = []
datas += collect_data_files('torch')
datas += copy_metadata('torch')
datas += copy_metadata('tqdm')
datas += copy_metadata('regex')
datas += copy_metadata('requests')
datas += copy_metadata('packaging')
datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('gradio')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
datas += collect_data_files('shark')
datas += [
( 'src/utils/resources/prompts.json', 'resources' ),
( 'src/utils/resources/model_db.json', 'resources' ),
( 'src/utils/resources/opt_flags.json', 'resources' ),
( 'src/utils/resources/base_model.json', 'resources' ),
( 'web/css/*', 'css' ),
( 'web/logos/*', 'logos' )
]
binaries = []
block_cipher = None
a = Analysis(
['web/index.py'],
pathex=pathex,
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],
@@ -29,11 +63,11 @@ exe = EXE(
a.zipfiles,
a.datas,
[],
name='nodai_shark_studio',
name='shark_sd',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
upx=True,
upx_exclude=[],
runtime_tmpdir=None,
console=True,

View File

@@ -1,6 +1,5 @@
# -*- mode: python ; coding: utf-8 -*-
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import collect_submodules
from PyInstaller.utils.hooks import copy_metadata
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
@@ -16,20 +15,16 @@ datas += copy_metadata('filelock')
datas += copy_metadata('numpy')
datas += copy_metadata('tokenizers')
datas += copy_metadata('importlib_metadata')
datas += copy_metadata('torchvision')
datas += copy_metadata('torch-mlir')
datas += copy_metadata('diffusers')
datas += copy_metadata('transformers')
datas += copy_metadata('omegaconf')
datas += copy_metadata('safetensors')
datas += collect_data_files('diffusers')
datas += collect_data_files('transformers')
datas += collect_data_files('opencv-python')
datas += collect_data_files('pytorch_lightning')
datas += collect_data_files('skimage')
datas += collect_data_files('gradio')
datas += collect_data_files('gradio_client')
datas += collect_data_files('iree')
datas += collect_data_files('google-cloud-storage')
datas += collect_data_files('shark')
datas += collect_data_files('py-cpuinfo')
datas += [
( 'src/utils/resources/prompts.json', 'resources' ),
( 'src/utils/resources/model_db.json', 'resources' ),
@@ -41,16 +36,13 @@ binaries = []
block_cipher = None
hiddenimports = ['shark', 'shark.shark_inference', 'apps']
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
a = Analysis(
['scripts/main.py'],
['scripts/txt2img.py'],
pathex=['.'],
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
hookspath=[],
hooksconfig={},
runtime_hooks=[],

View File

@@ -1,87 +0,0 @@
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import copy_metadata
from PyInstaller.utils.hooks import collect_submodules
import sys
sys.setrecursionlimit(sys.getrecursionlimit() * 5)
# python path for pyinstaller
pathex = [
".",
"./apps/language_models/langchain",
"./apps/language_models/src/pipelines/minigpt4_utils",
]
# datafiles for pyinstaller
datas = []
datas += copy_metadata("torch")
datas += copy_metadata("tokenizers")
datas += copy_metadata("tqdm")
datas += copy_metadata("regex")
datas += copy_metadata("requests")
datas += copy_metadata("packaging")
datas += copy_metadata("filelock")
datas += copy_metadata("numpy")
datas += copy_metadata("importlib_metadata")
datas += copy_metadata("torch-mlir")
datas += copy_metadata("omegaconf")
datas += copy_metadata("safetensors")
datas += copy_metadata("Pillow")
datas += copy_metadata("sentencepiece")
datas += copy_metadata("pyyaml")
datas += copy_metadata("huggingface-hub")
datas += collect_data_files("torch")
datas += collect_data_files("tokenizers")
datas += collect_data_files("tiktoken")
datas += collect_data_files("accelerate")
datas += collect_data_files("diffusers")
datas += collect_data_files("transformers")
datas += collect_data_files("pytorch_lightning")
datas += collect_data_files("skimage")
datas += collect_data_files("gradio")
datas += collect_data_files("gradio_client")
datas += collect_data_files("iree")
datas += collect_data_files("shark", include_py_files=True)
datas += collect_data_files("timm", include_py_files=True)
datas += collect_data_files("tqdm")
datas += collect_data_files("tkinter")
datas += collect_data_files("webview")
datas += collect_data_files("sentencepiece")
datas += collect_data_files("jsonschema")
datas += collect_data_files("jsonschema_specifications")
datas += collect_data_files("cpuinfo")
datas += collect_data_files("langchain")
datas += collect_data_files("cv2")
datas += [
("src/utils/resources/prompts.json", "resources"),
("src/utils/resources/model_db.json", "resources"),
("src/utils/resources/opt_flags.json", "resources"),
("src/utils/resources/base_model.json", "resources"),
("web/ui/css/*", "ui/css"),
("web/ui/logos/*", "logos"),
(
"../language_models/src/pipelines/minigpt4_utils/configs/*",
"minigpt4_utils/configs",
),
(
"../language_models/src/pipelines/minigpt4_utils/prompts/*",
"minigpt4_utils/prompts",
),
]
# hidden imports for pyinstaller
hiddenimports = ["shark", "shark.shark_inference", "apps"]
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
hiddenimports += [
x for x in collect_submodules("diffusers") if "tests" not in x
]
blacklist = ["tests", "convert"]
hiddenimports += [
x
for x in collect_submodules("transformers")
if not any(kw in x for kw in blacklist)
]
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
hiddenimports += ["iree._runtime", "iree.compiler._mlir_libs._mlir.ir"]

View File

@@ -3,16 +3,6 @@ from apps.stable_diffusion.src.utils import (
set_init_device_flags,
prompt_examples,
get_available_devices,
clear_all,
save_output_img,
resize_stencil,
)
from apps.stable_diffusion.src.pipelines import (
Text2ImagePipeline,
Image2ImagePipeline,
InpaintPipeline,
OutpaintPipeline,
StencilPipeline,
UpscalerPipeline,
)
from apps.stable_diffusion.src.pipelines import Text2ImagePipeline
from apps.stable_diffusion.src.schedulers import get_schedulers

View File

@@ -2,7 +2,6 @@ from apps.stable_diffusion.src.models.model_wrappers import (
SharkifyStableDiffusionModel,
)
from apps.stable_diffusion.src.models.opt_params import (
get_vae_encode,
get_vae,
get_unet,
get_clip,

File diff suppressed because it is too large Load Diff

View File

@@ -9,34 +9,16 @@ from apps.stable_diffusion.src.utils import (
hf_model_variant_map = {
"Linaqruf/anything-v3.0": ["anythingv3", "v1_4"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v1_4"],
"prompthero/openjourney": ["openjourney", "v1_4"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v1_4"],
"Linaqruf/anything-v3.0": ["anythingv3", "v2_1base"],
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v2_1base"],
"prompthero/openjourney": ["openjourney", "v2_1base"],
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1": ["stablediffusion", "v2_1base"],
"stabilityai/stable-diffusion-2-1-base": ["stablediffusion", "v2_1base"],
"CompVis/stable-diffusion-v1-4": ["stablediffusion", "v1_4"],
"runwayml/stable-diffusion-inpainting": ["stablediffusion", "inpaint_v1"],
"stabilityai/stable-diffusion-2-inpainting": [
"stablediffusion",
"inpaint_v2",
],
}
# TODO: Add the quantized model as a part model_db.json.
# This is currently in experimental phase.
def get_quantize_model():
bucket_key = "gs://shark_tank/prashant_nod"
model_key = "unet_int8"
iree_flags = get_opt_flags("unet", precision="fp16")
if args.height != 512 and args.width != 512 and args.max_length != 77:
sys.exit(
"The int8 quantized model currently requires the height and width to be 512, and max_length to be 77"
)
return bucket_key, model_key, iree_flags
def get_variant_version(hf_model_id):
return hf_model_variant_map[hf_model_id]
@@ -57,12 +39,6 @@ def get_unet():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
# TODO: Get the quantize model from model_db.json
if args.use_quantize == "int8":
bk, mk, flags = get_quantize_model()
return get_shark_model(bk, mk, flags)
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/{is_tuned}/{args.device}"
@@ -76,23 +52,6 @@ def get_unet():
return get_shark_model(bucket, model_name, iree_flags)
def get_vae_encode():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.
is_tuned = "tuned" if args.use_tuned else "untuned"
if "vulkan" not in args.device and args.use_tuned:
bucket_key = f"{variant}/{is_tuned}/{args.device}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}/{args.device}"
else:
bucket_key = f"{variant}/{is_tuned}"
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}"
bucket, model_name, iree_flags = get_params(
bucket_key, model_key, "vae", is_tuned, args.precision
)
return get_shark_model(bucket, model_name, iree_flags)
def get_vae():
variant, version = get_variant_version(args.hf_model_id)
# Tuned model is present only for `fp16` precision.

View File

@@ -1,18 +1,3 @@
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
Text2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
Image2ImagePipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_inpaint import (
InpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_outpaint import (
OutpaintPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_stencil import (
StencilPipeline,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_upscaler import (
UpscalerPipeline,
)

View File

@@ -1,238 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class Image2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_image_latents(
self,
image,
batch_size,
height,
width,
generator,
num_inference_steps,
strength,
dtype,
resample_type,
):
# Pre process image -> get image encoded -> process latents
# TODO: process with variable HxW combos
# Pre-process image
if resample_type == "Lanczos":
resample_type = Image.LANCZOS
elif resample_type == "Nearest Neighbor":
resample_type = Image.NEAREST
elif resample_type == "Bilinear":
resample_type = Image.BILINEAR
elif resample_type == "Bicubic":
resample_type = Image.BICUBIC
elif resample_type == "Adaptive":
resample_type = Image.ADAPTIVE
elif resample_type == "Antialias":
resample_type = Image.ANTIALIAS
elif resample_type == "Box":
resample_type = Image.BOX
elif resample_type == "Affine":
resample_type = Image.AFFINE
elif resample_type == "Cubic":
resample_type = Image.CUBIC
else: # Fallback to Lanczos
resample_type = Image.LANCZOS
image = image.resize((width, height), resample=resample_type)
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
image_arr = image_arr / 255.0
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(dtype)
image_arr = 2 * (image_arr - 0.5)
# set scheduler steps
self.scheduler.set_timesteps(num_inference_steps)
init_timestep = min(
int(num_inference_steps * strength), num_inference_steps
)
t_start = max(num_inference_steps - init_timestep, 0)
# timesteps reduced as per strength
timesteps = self.scheduler.timesteps[t_start:]
# new number of steps to be used as per strength will be
# num_inference_steps = num_inference_steps - t_start
# image encode
latents = self.encode_image((image_arr,))
latents = torch.from_numpy(latents).to(dtype)
# add noise to data
noise = torch.randn(latents.shape, generator=generator, dtype=dtype)
latents = self.scheduler.add_noise(
latents, noise, timesteps[0].repeat(1)
)
return latents, timesteps
def encode_image(self, input_image):
self.load_vae_encode()
vae_encode_start = time.time()
latents = self.vae_encode("forward", input_image)
vae_inf_time = (time.time() - vae_encode_start) * 1000
if self.ondemand:
self.unload_vae_encode()
self.log += f"\nVAE Encode Inference time (ms): {vae_inf_time:.3f}"
return latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
use_stencil,
resample_type,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare input image latent
image_latents, final_timesteps = self.prepare_image_latents(
image=image,
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
strength=strength,
dtype=dtype,
resample_type=resample_type,
)
# Get Image latents
latents = self.produce_img_latents(
latents=image_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -1,487 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageOps
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class InpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_crop_region(self, mask, pad=0):
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left - pad, 0)),
int(max(crop_top - pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h)),
)
def expand_crop_region(
self,
crop_region,
processing_width,
processing_height,
image_width,
image_height,
):
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2 - y1))
y1 -= desired_height_diff // 2
y2 += desired_height_diff - desired_height_diff // 2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2 - x1))
x1 -= desired_width_diff // 2
x2 += desired_width_diff - desired_width_diff // 2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
def resize_image(self, resize_mode, im, width, height):
"""
resize_mode:
0: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
1: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
"""
if resize_mode == 0:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio > src_ratio else im.width * height // im.height
)
src_h = (
height if ratio <= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = (
width if ratio < src_ratio else im.width * height // im.height
)
src_h = (
height if ratio >= src_ratio else im.height * width // im.width
)
resized = im.resize((src_w, src_h), resample=Image.LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(
resized,
box=(width // 2 - src_w // 2, height // 2 - src_h // 2),
)
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(
resized.resize((width, fill_height), box=(0, 0, width, 0)),
box=(0, 0),
)
res.paste(
resized.resize(
(width, fill_height),
box=(0, resized.height, width, resized.height),
),
box=(0, fill_height + src_h),
)
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(
resized.resize(
(fill_width, height), box=(0, 0, 0, height)
),
box=(0, 0),
)
res.paste(
resized.resize(
(fill_width, height),
box=(resized.width, 0, resized.width, height),
),
box=(fill_width + src_w, 0),
)
return res
def prepare_mask_and_masked_image(
self,
image,
mask,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
):
# preprocess image
image = image.resize((width, height))
mask = mask.resize((width, height))
paste_to = ()
overlay_image = None
if inpaint_full_res:
# prepare overlay image
overlay_image = Image.new("RGB", (image.width, image.height))
overlay_image.paste(
image.convert("RGB"),
mask=ImageOps.invert(mask.convert("L")),
)
# prepare mask
mask = mask.convert("L")
crop_region = self.get_crop_region(
np.array(mask), inpaint_full_res_padding
)
crop_region = self.expand_crop_region(
crop_region, width, height, mask.width, mask.height
)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
mask = self.resize_image(1, mask, width, height)
paste_to = (x1, y1, x2 - x1, y2 - y1)
# prepare image
image = image.crop(crop_region)
image = self.resize_image(1, image, width, height)
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image, paste_to, overlay_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
self.load_vae_encode()
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
if self.ondemand:
self.unload_vae_encode()
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def apply_overlay(self, image, paste_loc, overlay):
x, y, w, h = paste_loc
image = self.resize_image(0, image, w, h)
overlay.paste(image, (x, y))
return overlay
def generate_images(
self,
prompts,
neg_prompts,
image,
mask_image,
batch_size,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Preprocess mask and image
(
mask,
masked_image,
paste_to,
overlay_image,
) = self.prepare_mask_and_masked_image(
image,
mask_image,
height,
width,
inpaint_full_res,
inpaint_full_res_padding,
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
if inpaint_full_res:
output_image = self.apply_overlay(
all_imgs[0], paste_to, overlay_image
)
return [output_image]
return all_imgs

View File

@@ -1,581 +0,0 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from PIL import Image, ImageDraw, ImageFilter
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
import math
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae_encode,
)
class OutpaintPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.vae_encode = None
def load_vae_encode(self):
if self.vae_encode is not None:
return
if self.import_mlir or self.use_lora:
self.vae_encode = self.sd_model.vae_encode()
else:
try:
self.vae_encode = get_vae_encode()
except:
print("download pipeline failed, falling back to import_mlir")
self.vae_encode = self.sd_model.vae_encode()
def unload_vae_encode(self):
del self.vae_encode
self.vae_encode = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_and_masked_image(
self, image, mask, mask_blur, width, height
):
if mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(mask_blur))
image = image.resize((width, height))
mask = mask.resize((width, height))
# preprocess image
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate(
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
):
mask = torch.nn.functional.interpolate(
mask, size=(height // 8, width // 8)
)
mask = mask.to(dtype)
self.load_vae_encode()
masked_image = masked_image.to(dtype)
masked_image_latents = self.vae_encode("forward", (masked_image,))
masked_image_latents = torch.from_numpy(masked_image_latents)
if self.ondemand:
self.unload_vae_encode()
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
)
return mask, masked_image_latents
def get_matched_noise(
self, _np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05
):
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_fft[:, :, c] = np.fft.fft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
else: # one channel
out_fft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_fft[:, :] = np.fft.fft2(
np.fft.fftshift(data), norm="ortho"
)
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros(
(data.shape[0], data.shape[1], data.shape[2]),
dtype=np.complex128,
)
for c in range(data.shape[2]):
c_data = data[:, :, c]
out_ifft[:, :, c] = np.fft.ifft2(
np.fft.fftshift(c_data), norm="ortho"
)
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
else: # one channel
out_ifft = np.zeros(
(data.shape[0], data.shape[1]), dtype=np.complex128
)
out_ifft[:, :] = np.fft.ifft2(
np.fft.fftshift(data), norm="ortho"
)
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
for y in range(height):
fy = (y / height * 2.0 - 1.0) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2 + fy**2) * std)
else:
window[:, y] = (
1 / ((x**2 + 1.0) * (fy**2 + 1.0))
) ** (std / 3.14)
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.0):
np_mask_rgb = np.zeros(
(np_mask_grey.shape[0], np_mask_grey.shape[1], 3)
)
if hardness != 1.0:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:, :, c] = hardened[:]
return np_mask_rgb
def _match_cumulative_cdf(source, template):
src_values, src_unique_indices, src_counts = np.unique(
source.ravel(), return_inverse=True, return_counts=True
)
tmpl_values, tmpl_counts = np.unique(
template.ravel(), return_counts=True
)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(
src_quantiles, tmpl_quantiles, tmpl_values
)
return interp_a_values[src_unique_indices].reshape(source.shape)
def _match_histograms(image, reference):
if image.ndim != reference.ndim:
raise ValueError(
"Image and reference must have the same number of channels."
)
if image.shape[-1] != reference.shape[-1]:
raise ValueError(
"Number of channels in the input image and reference image must match!"
)
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(
image[..., channel], reference[..., channel]
)
matched[..., channel] = matched_channel
matched = matched.astype(np.float64, copy=False)
return matched
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1.0 - np_mask_rgb)
np_mask_grey = np.sum(np_mask_rgb, axis=2) / 3.0
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
# rather than leave the masked area black, we get better results from fft by filling the average unmasked color
windowed_image = _np_src_image * (
1.0 - _get_masked_window_rgb(np_mask_grey)
)
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb
src_fft = _fft2(
windowed_image
) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
# create a generator with a static seed to make outpainting deterministic / only follow global seed
rng = np.random.default_rng(0)
noise_window = _get_gaussian_window(
width, height, mode=1
) # start with simple gaussian noise
noise_rgb = rng.random((width, height, num_channels))
noise_grey = np.sum(noise_rgb, axis=2) / 3.0
# the colorfulness of the starting noise is blended to greyscale with a parameter
noise_rgb *= color_variation
for c in range(num_channels):
noise_rgb[:, :, c] += (1.0 - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:, :, c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:, :, :] = (
np.absolute(shaped_noise_fft[:, :, :]) ** 2
* (src_dist**noise_q)
* src_phase
) # perform the actual shaping
# color_variation
brightness_variation = 0.0
contrast_adjusted_np_src = (
_np_src_image[:] * (brightness_variation + 1.0)
- brightness_variation * 2.0
)
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask, :] = _match_histograms(
shaped_noise[img_mask, :] ** 1.0,
contrast_adjusted_np_src[ref_mask, :],
)
shaped_noise = (
_np_src_image[:] * (1.0 - np_mask_rgb) + shaped_noise * np_mask_rgb
)
matched_noise = shaped_noise[:]
return np.clip(matched_noise, 0.0, 1.0)
def generate_images(
self,
prompts,
neg_prompts,
image,
pixels,
mask_blur,
is_left,
is_right,
is_top,
is_bottom,
noise_q,
color_variation,
batch_size,
height,
width,
num_inference_steps,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
process_width = width
process_height = height
left = pixels if is_left else 0
right = pixels if is_right else 0
up = pixels if is_top else 0
down = pixels if is_bottom else 0
target_w = math.ceil((image.width + left + right) / 64) * 64
target_h = math.ceil((image.height + up + down) / 64) * 64
if left > 0:
left = left * (target_w - image.width) // (left + right)
if right > 0:
right = target_w - image.width - left
if up > 0:
up = up * (target_h - image.height) // (up + down)
if down > 0:
down = target_h - image.height - up
def expand(
init_img,
expand_pixels,
is_left=False,
is_right=False,
is_top=False,
is_bottom=False,
):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
res_w = init_img.width + pixels_horiz
res_h = init_img.height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(
init_img,
(pixels_horiz if is_left else 0, pixels_vert if is_top else 0),
)
msk = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(msk)
draw.rectangle(
(
expand_pixels + mask_blur if is_left else 0,
expand_pixels + mask_blur if is_top else 0,
msk.width - expand_pixels - mask_blur
if is_right
else res_w,
msk.height - expand_pixels - mask_blur
if is_bottom
else res_h,
),
fill="black",
)
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(msk) / 255.0).astype(np.float64)
noised = self.get_matched_noise(
np_image, np_mask, noise_q, color_variation
)
output_image = Image.fromarray(
np.clip(noised * 255.0, 0.0, 255.0).astype(np.uint8),
mode="RGB",
)
target_width = (
min(width, init_img.width + pixels_horiz)
if is_horiz
else img.width
)
target_height = (
min(height, init_img.height + pixels_vert)
if is_vert
else img.height
)
crop_region = (
0 if is_left else output_image.width - target_width,
0 if is_top else output_image.height - target_height,
target_width if is_left else output_image.width,
target_height if is_top else output_image.height,
)
mask_to_process = msk.crop(crop_region)
image_to_process = output_image.crop(crop_region)
# Preprocess mask and image
mask, masked_image = self.prepare_mask_and_masked_image(
image_to_process, mask_to_process, mask_blur, width, height
)
# Prepare mask latent variables
mask, masked_image_latents = self.prepare_mask_latents(
mask=mask,
masked_image=masked_image,
batch_size=batch_size,
height=height,
width=width,
dtype=dtype,
)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
mask=mask,
masked_image_latents=masked_image_latents,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
res_img = all_imgs[0].resize(
(image_to_process.width, image_to_process.height)
)
output_image.paste(
res_img,
(
0 if is_left else output_image.width - res_img.width,
0 if is_top else output_image.height - res_img.height,
),
)
output_image = output_image.crop((0, 0, res_w, res_h))
return output_image
img = image.resize((width, height))
if left > 0:
img = expand(img, left, is_left=True)
if right > 0:
img = expand(img, right, is_right=True)
if up > 0:
img = expand(img, up, is_top=True)
if down > 0:
img = expand(img, down, is_bottom=True)
return [img]

View File

@@ -1,346 +0,0 @@
import torch
import time
import numpy as np
from tqdm.auto import tqdm
from random import randint
from PIL import Image
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import controlnet_hint_conversion
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
class StencilPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
DDPMScheduler,
KDPM2DiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.controlnet = None
self.controlnet_512 = None
def load_controlnet(self):
if self.controlnet is not None:
return
self.controlnet = self.sd_model.controlnet()
def unload_controlnet(self):
del self.controlnet
self.controlnet = None
def load_controlnet_512(self):
if self.controlnet_512 is not None:
return
self.controlnet_512 = self.sd_model.controlnet(use_large=True)
def unload_controlnet_512(self):
del self.controlnet_512
self.controlnet_512 = None
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height // 8,
width // 8,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def produce_stencil_latents(
self,
latents,
text_embeddings,
guidance_scale,
total_timesteps,
dtype,
cpu_scheduling,
controlnet_hint=None,
controlnet_conditioning_scale: float = 1.0,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
if text_embeddings.shape[1] <= self.model_max_length:
self.load_unet()
self.load_controlnet()
else:
self.load_unet_512()
self.load_controlnet_512()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype)
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
if not torch.is_tensor(latent_model_input):
latent_model_input_1 = torch.from_numpy(
np.asarray(latent_model_input)
).to(dtype)
else:
latent_model_input_1 = latent_model_input
if text_embeddings.shape[1] <= self.model_max_length:
control = self.controlnet(
"forward",
(
latent_model_input_1,
timestep,
text_embeddings,
controlnet_hint,
),
send_to_host=False,
)
else:
control = self.controlnet_512(
"forward",
(
latent_model_input_1,
timestep,
text_embeddings,
controlnet_hint,
),
send_to_host=False,
)
timestep = timestep.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
# TODO: Pass `control` as it is to Unet. Same as TODO mentioned in model_wrappers.py.
if text_embeddings.shape[1] <= self.model_max_length:
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
control[0],
control[1],
control[2],
control[3],
control[4],
control[5],
control[6],
control[7],
control[8],
control[9],
control[10],
control[11],
control[12],
),
send_to_host=False,
)
else:
print(self.unet_512)
noise_pred = self.unet_512(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
control[0],
control[1],
control[2],
control[3],
control[4],
control[5],
control[6],
control[7],
control[8],
control[9],
control[10],
control[11],
control[12],
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
noise_pred = torch.from_numpy(noise_pred.to_host())
latents = self.scheduler.step(
noise_pred, t, latents
).prev_sample
else:
latents = self.scheduler.step(noise_pred, t, latents)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
if self.ondemand:
self.unload_unet()
self.unload_unet_512()
self.unload_controlnet()
self.unload_controlnet_512()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
strength,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
use_stencil,
resample_type,
):
# Control Embedding check & conversion
# TODO: 1. Change `num_images_per_prompt`.
controlnet_hint = controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
)
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Prepare initial latent.
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
final_timesteps = self.scheduler.timesteps
# Get Image latents
latents = self.produce_stencil_latents(
latents=init_latents,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
total_timesteps=final_timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
controlnet_hint=controlnet_hint,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -1,4 +1,5 @@
import torch
from tqdm.auto import tqdm
import numpy as np
from random import randint
from transformers import CLIPTokenizer
@@ -8,47 +9,34 @@ from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
class Text2ImagePipeline(StableDiffusionPipeline):
def __init__(
self,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
def prepare_latents(
self,
@@ -89,7 +77,6 @@ class Text2ImagePipeline(StableDiffusionPipeline):
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
@@ -119,13 +106,8 @@ class Text2ImagePipeline(StableDiffusionPipeline):
dtype=dtype,
)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# Get text embeddings from prompts
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
# guidance scale as a float32 tensor.
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
@@ -142,15 +124,12 @@ class Text2ImagePipeline(StableDiffusionPipeline):
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in range(0, latents.shape[0], batch_size):
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -1,357 +0,0 @@
import inspect
import torch
import time
from tqdm.auto import tqdm
import numpy as np
from random import randint
from transformers import CLIPTokenizer
from typing import Union
from shark.shark_inference import SharkInference
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
SD_STATE_IDLE,
SD_STATE_CANCEL,
StableDiffusionPipeline,
)
from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
from PIL import Image
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
def preprocess(image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, Image.Image):
image = [image]
if isinstance(image[0], Image.Image):
w, h = image[0].size
w, h = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = [np.array(i.resize((w, h)))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
class UpscalerPipeline(StableDiffusionPipeline):
def __init__(
self,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
],
low_res_scheduler: Union[
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.low_res_scheduler = low_res_scheduler
self.status = SD_STATE_IDLE
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def decode_latents(self, latents, use_base_vae, cpu_scheduling):
latents = 1 / 0.08333 * (latents.float())
latents_numpy = latents
if cpu_scheduling:
latents_numpy = latents.detach().numpy()
profile_device = start_profiling(file_path="vae.rdc")
vae_start = time.time()
images = self.vae("forward", (latents_numpy,))
vae_inf_time = (time.time() - vae_start) * 1000
end_profiling(profile_device)
self.log += f"\nVAE Inference time (ms): {vae_inf_time:.3f}"
images = torch.from_numpy(images)
images = (images.detach().cpu() * 255.0).numpy()
images = images.round()
images = torch.from_numpy(images).to(torch.uint8).permute(0, 2, 3, 1)
pil_images = [Image.fromarray(image) for image in images.numpy()]
return pil_images
def prepare_latents(
self,
batch_size,
height,
width,
generator,
num_inference_steps,
dtype,
):
latents = torch.randn(
(
batch_size,
4,
height,
width,
),
generator=generator,
dtype=torch.float32,
).to(dtype)
self.scheduler.set_timesteps(num_inference_steps)
self.scheduler.is_scale_input_called = True
latents = latents * self.scheduler.init_noise_sigma
return latents
def produce_img_latents(
self,
latents,
image,
text_embeddings,
guidance_scale,
noise_level,
total_timesteps,
dtype,
cpu_scheduling,
extra_step_kwargs,
return_all_latents=False,
):
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
self.status = SD_STATE_IDLE
if text_embeddings.shape[1] <= self.model_max_length:
self.load_unet()
else:
self.load_unet_512()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
latent_model_input = torch.cat([latent_model_input, image], dim=1)
timestep = torch.tensor([t]).to(dtype).detach().numpy()
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
if text_embeddings.shape[1] <= self.model_max_length:
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
noise_level,
),
)
else:
noise_pred = self.unet_512(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
noise_level,
),
)
end_profiling(profile_device)
noise_pred = torch.from_numpy(noise_pred)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if cpu_scheduling:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
else:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
)
latent_history.append(latents)
step_time = (time.time() - step_start_time) * 1000
# self.log += (
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
# )
step_time_sum += step_time
if self.status == SD_STATE_CANCEL:
break
if self.ondemand:
self.unload_unet()
self.unload_unet_512()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
if not return_all_latents:
return latents
all_latents = torch.cat(latent_history, dim=0)
return all_latents
def generate_images(
self,
prompts,
neg_prompts,
image,
batch_size,
height,
width,
num_inference_steps,
noise_level,
guidance_scale,
seed,
max_length,
dtype,
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(neg_prompts, str):
neg_prompts = [neg_prompts]
prompts = prompts * batch_size
neg_prompts = neg_prompts * batch_size
# seed generator to create the inital latent noise. Also handle out of range seeds.
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
generator = torch.manual_seed(seed)
# Get text embeddings with weight emphasis from prompts
text_embeddings = self.encode_prompts_weight(
prompts,
neg_prompts,
max_length,
max_embeddings_multiples=max_embeddings_multiples,
)
# 4. Preprocess image
image = preprocess(image).to(dtype)
# 5. Add noise to image
noise_level = torch.tensor([noise_level], dtype=torch.long)
noise = torch.randn(
image.shape,
generator=generator,
).to(dtype)
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
image = torch.cat([image] * 2)
noise_level = torch.cat([noise_level] * image.shape[0])
height, width = image.shape[2:]
# Get initial latents
init_latents = self.prepare_latents(
batch_size=batch_size,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
dtype=dtype,
)
eta = 0.0
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# guidance scale as a float32 tensor.
# guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
# Get Image latents
latents = self.produce_img_latents(
latents=init_latents,
image=image,
text_embeddings=text_embeddings,
guidance_scale=guidance_scale,
noise_level=noise_level,
total_timesteps=self.scheduler.timesteps,
dtype=dtype,
cpu_scheduling=cpu_scheduling,
extra_step_kwargs=extra_step_kwargs,
)
# Img latents -> PIL images
all_imgs = []
self.load_vae()
for i in tqdm(range(0, latents.shape[0], batch_size)):
imgs = self.decode_latents(
latents=latents[i : i + batch_size],
use_base_vae=use_base_vae,
cpu_scheduling=cpu_scheduling,
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()
return all_imgs

View File

@@ -1,5 +1,4 @@
import torch
import numpy as np
from transformers import CLIPTokenizer
from PIL import Image
from tqdm.auto import tqdm
@@ -7,17 +6,11 @@ import time
from typing import Union
from diffusers import (
DDIMScheduler,
DDPMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from shark.shark_inference import SharkInference
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
@@ -32,133 +25,32 @@ from apps.stable_diffusion.src.utils import (
start_profiling,
end_profiling,
)
import sys
SD_STATE_IDLE = "idle"
SD_STATE_CANCEL = "cancel"
class StableDiffusionPipeline:
def __init__(
self,
vae: SharkInference,
text_encoder: SharkInference,
tokenizer: CLIPTokenizer,
unet: SharkInference,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
],
sd_model: SharkifyStableDiffusionModel,
import_mlir: bool,
use_lora: str,
ondemand: bool,
):
self.vae = None
self.text_encoder = None
self.unet = None
self.unet_512 = None
self.model_max_length = 77
self.vae = vae
self.text_encoder = text_encoder
self.tokenizer = tokenizer
self.unet = unet
self.scheduler = scheduler
# TODO: Implement using logging python utility.
self.log = ""
self.status = SD_STATE_IDLE
self.sd_model = sd_model
self.import_mlir = import_mlir
self.use_lora = use_lora
self.ondemand = ondemand
# TODO: Find a better workaround for fetching base_model_id early
# enough for CLIPTokenizer.
try:
self.tokenizer = get_tokenizer()
except:
self.load_unet()
self.unload_unet()
self.tokenizer = get_tokenizer()
def load_clip(self):
if self.text_encoder is not None:
return
if self.import_mlir or self.use_lora:
if not self.import_mlir:
print(
"Warning: LoRA provided but import_mlir not specified. "
"Importing MLIR anyways."
)
self.text_encoder = self.sd_model.clip()
else:
try:
self.text_encoder = get_clip()
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.text_encoder = self.sd_model.clip()
def unload_clip(self):
del self.text_encoder
self.text_encoder = None
def load_unet(self):
if self.unet is not None:
return
if self.import_mlir or self.use_lora:
self.unet = self.sd_model.unet()
else:
try:
self.unet = get_unet()
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.unet = self.sd_model.unet()
def unload_unet(self):
del self.unet
self.unet = None
def load_unet_512(self):
if self.unet_512 is not None:
return
if self.import_mlir or self.use_lora:
self.unet_512 = self.sd_model.unet(use_large=True)
else:
try:
self.unet_512 = get_unet(use_large=True)
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.unet_512 = self.sd_model.unet(use_large=True)
def unload_unet_512(self):
del self.unet_512
self.unet_512 = None
def load_vae(self):
if self.vae is not None:
return
if self.import_mlir or self.use_lora:
self.vae = self.sd_model.vae()
else:
try:
self.vae = get_vae()
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.vae = self.sd_model.vae()
def unload_vae(self):
del self.vae
self.vae = None
def encode_prompts(self, prompts, neg_prompts, max_length):
# Tokenize text and get embeddings
@@ -178,14 +70,12 @@ class StableDiffusionPipeline:
truncation=True,
return_tensors="pt",
)
text_input = torch.cat([uncond_input.input_ids, text_input.input_ids])
self.load_clip()
clip_inf_start = time.time()
text_embeddings = self.text_encoder("forward", (text_input,))
clip_inf_time = (time.time() - clip_inf_start) * 1000
if self.ondemand:
self.unload_clip()
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
return text_embeddings
@@ -222,59 +112,31 @@ class StableDiffusionPipeline:
total_timesteps,
dtype,
cpu_scheduling,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
self.status = SD_STATE_IDLE
step_time_sum = 0
latent_history = [latents]
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
text_embeddings_numpy = text_embeddings.detach().numpy()
if text_embeddings.shape[1] <= self.model_max_length:
self.load_unet()
else:
self.load_unet_512()
for i, t in tqdm(enumerate(total_timesteps)):
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype).detach().numpy()
latent_model_input = self.scheduler.scale_model_input(latents, t)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
if cpu_scheduling:
latent_model_input = latent_model_input.detach().numpy()
# Profiling Unet.
profile_device = start_profiling(file_path="unet.rdc")
if text_embeddings.shape[1] <= self.model_max_length:
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
),
send_to_host=False,
)
else:
noise_pred = self.unet_512(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
),
send_to_host=False,
)
noise_pred = self.unet(
"forward",
(
latent_model_input,
timestep,
text_embeddings_numpy,
guidance_scale,
),
send_to_host=False,
)
end_profiling(profile_device)
if cpu_scheduling:
@@ -292,12 +154,6 @@ class StableDiffusionPipeline:
# )
step_time_sum += step_time
if self.status == SD_STATE_CANCEL:
break
if self.ondemand:
self.unload_unet()
self.unload_unet_512()
avg_step_time = step_time_sum / len(total_timesteps)
self.log += f"\nAverage step time: {avg_step_time}ms/it"
@@ -313,21 +169,14 @@ class StableDiffusionPipeline:
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
],
import_mlir: bool,
model_id: str,
ckpt_loc: str,
custom_vae: str,
precision: str,
max_length: int,
batch_size: int,
@@ -335,605 +184,23 @@ class StableDiffusionPipeline:
width: int,
use_base_vae: bool,
use_tuned: bool,
ondemand: bool,
low_cpu_mem_usage: bool = False,
debug: bool = False,
use_stencil: str = None,
use_lora: str = "",
ddpm_scheduler: DDPMScheduler = None,
use_quantize=None,
):
if (
not import_mlir
and not use_lora
and cls.__name__ == "StencilPipeline"
):
sys.exit("StencilPipeline not supported with SharkTank currently.")
is_inpaint = cls.__name__ in [
"InpaintPipeline",
"OutpaintPipeline",
]
is_upscaler = cls.__name__ in ["UpscalerPipeline"]
sd_model = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
custom_vae,
precision,
max_len=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
low_cpu_mem_usage=low_cpu_mem_usage,
debug=debug,
is_inpaint=is_inpaint,
is_upscaler=is_upscaler,
use_stencil=use_stencil,
use_lora=use_lora,
use_quantize=use_quantize,
)
if cls.__name__ in ["UpscalerPipeline"]:
return cls(
scheduler,
ddpm_scheduler,
sd_model,
import_mlir,
use_lora,
ondemand,
if import_mlir:
# TODO: Delet this when on-the-fly tuning of models work.
use_tuned = False
mlir_import = SharkifyStableDiffusionModel(
model_id,
ckpt_loc,
precision,
max_len=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=use_base_vae,
use_tuned=use_tuned,
)
return cls(scheduler, sd_model, import_mlir, use_lora, ondemand)
# #####################################################
# Implements text embeddings with weights from prompts
# https://huggingface.co/AlanB/lpw_stable_diffusion_mod
# #####################################################
def encode_prompts_weight(
self,
prompt,
negative_prompt,
model_max_length,
do_classifier_free_guidance=True,
max_embeddings_multiples=1,
num_images_per_prompt=1,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation.
Ignored when not using guidance
(i.e., ignored if `guidance_scale` is less than `1`).
model_max_length (int):
SHARK: pass the max length instead of relying on
pipe.tokenizer.model_max_length
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not,
SHARK: must be set to True as we always expect neg embeddings
(defaulted to True)
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the
max output length of text encoder.
SHARK: max_embeddings_multiples>1 produce a tensor shape error
(defaulted to 1)
num_images_per_prompt (`int`):
number of images that should be generated per prompt
SHARK: num_images_per_prompt is not used (defaulted to 1)
"""
# SHARK: Save model_max_length, load the clip and init inference time
self.model_max_length = model_max_length
self.load_clip()
clip_inf_start = time.time()
batch_size = len(prompt) if isinstance(prompt, list) else 1
if negative_prompt is None:
negative_prompt = [""] * batch_size
elif isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * batch_size
if batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: "
f"{negative_prompt} has batch size {len(negative_prompt)}, "
f"but `prompt`: {prompt} has batch size {batch_size}. "
f"Please make sure that passed `negative_prompt` matches "
"the batch size of `prompt`."
)
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
uncond_prompt=negative_prompt
if do_classifier_free_guidance
else None,
max_embeddings_multiples=max_embeddings_multiples,
clip, unet, vae = mlir_import()
return cls(vae, clip, get_tokenizer(), unet, scheduler)
return cls(
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
)
# SHARK: we are not using num_images_per_prompt
# bs_embed, seq_len, _ = text_embeddings.shape
# text_embeddings = text_embeddings.repeat(
# 1,
# num_images_per_prompt,
# 1
# )
# text_embeddings = (
# text_embeddings.view(
# bs_embed * num_images_per_prompt,
# seq_len,
# -1
# )
# )
if do_classifier_free_guidance:
# SHARK: we are not using num_images_per_prompt
# bs_embed, seq_len, _ = uncond_embeddings.shape
# uncond_embeddings = (
# uncond_embeddings.repeat(
# 1,
# num_images_per_prompt,
# 1
# )
# )
# uncond_embeddings = (
# uncond_embeddings.view(
# bs_embed * num_images_per_prompt,
# seq_len,
# -1
# )
# )
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
if text_embeddings.shape[1] > model_max_length:
pad = (0, 0) * (len(text_embeddings.shape) - 2)
pad = pad + (0, 512 - text_embeddings.shape[1])
text_embeddings = torch.nn.functional.pad(text_embeddings, pad)
# SHARK: Report clip inference time
clip_inf_time = (time.time() - clip_inf_start) * 1000
if self.ondemand:
self.unload_clip()
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
return text_embeddings.numpy()
from typing import List, Optional, Union
import re
re_attention = re.compile(
r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
re.X,
)
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs:
text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_with_weights(
pipe: StableDiffusionPipeline, prompt: List[str], max_length: int
):
r"""
Tokenize a list of prompts and return its tokens with weights of each token.
No padding, starting or ending token is included.
"""
tokens = []
weights = []
truncated = False
for text in prompt:
texts_and_weights = parse_prompt_attention(text)
text_token = []
text_weight = []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = pipe.tokenizer(word).input_ids[1:-1]
text_token += token
# copy the weight by length of token
text_weight += [weight] * len(token)
# stop if the text is too long (longer than truncation limit)
if len(text_token) > max_length:
truncated = True
break
# truncate
if len(text_token) > max_length:
truncated = True
text_token = text_token[:max_length]
text_weight = text_weight[:max_length]
tokens.append(text_token)
weights.append(text_weight)
if truncated:
print(
"Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples"
)
return tokens, weights
def pad_tokens_and_weights(
tokens,
weights,
max_length,
bos,
eos,
no_boseos_middle=True,
chunk_length=77,
):
r"""
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
"""
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
weights_length = (
max_length
if no_boseos_middle
else max_embeddings_multiples * chunk_length
)
for i in range(len(tokens)):
tokens[i] = (
[bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
)
if no_boseos_middle:
weights[i] = (
[1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
)
else:
w = []
if len(weights[i]) == 0:
w = [1.0] * weights_length
else:
for j in range(max_embeddings_multiples):
w.append(1.0) # weight for starting token in this chunk
w += weights[i][
j
* (chunk_length - 2) : min(
len(weights[i]), (j + 1) * (chunk_length - 2)
)
]
w.append(1.0) # weight for ending token in this chunk
w += [1.0] * (weights_length - len(w))
weights[i] = w[:]
return tokens, weights
def get_unweighted_text_embeddings(
pipe: StableDiffusionPipeline,
text_input: torch.Tensor,
chunk_length: int,
no_boseos_middle: Optional[bool] = True,
):
"""
When the length of tokens is a multiple of the capacity of the text encoder,
it should be split into chunks and sent to the text encoder individually.
"""
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
if max_embeddings_multiples > 1:
text_embeddings = []
for i in range(max_embeddings_multiples):
# extract the i-th chunk
text_input_chunk = text_input[
:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2
].clone()
# cover the head and the tail by the starting and the ending tokens
text_input_chunk[:, 0] = text_input[0, 0]
text_input_chunk[:, -1] = text_input[0, -1]
# text_embedding = pipe.text_encoder(text_input_chunk)[0]
# SHARK: deplicate the text_input as Shark runner expects tokens and neg tokens
formatted_text_input_chunk = torch.cat(
[text_input_chunk, text_input_chunk]
)
text_embedding = pipe.text_encoder(
"forward", (formatted_text_input_chunk,)
)[0]
if no_boseos_middle:
if i == 0:
# discard the ending token
text_embedding = text_embedding[:, :-1]
elif i == max_embeddings_multiples - 1:
# discard the starting token
text_embedding = text_embedding[:, 1:]
else:
# discard both starting and ending tokens
text_embedding = text_embedding[:, 1:-1]
text_embeddings.append(text_embedding)
# SHARK: Convert the result to tensor
# text_embeddings = torch.concat(text_embeddings, axis=1)
text_embeddings_np = np.concatenate(np.array(text_embeddings))
text_embeddings = torch.from_numpy(text_embeddings_np)[None, :]
else:
# SHARK: deplicate the text_input as Shark runner expects tokens and neg tokens
# Convert the result to tensor
# text_embeddings = pipe.text_encoder(text_input)[0]
formatted_text_input = torch.cat([text_input, text_input])
text_embeddings = pipe.text_encoder(
"forward", (formatted_text_input,)
)[0]
text_embeddings = torch.from_numpy(text_embeddings)[None, :]
return text_embeddings
# This function deals with NoneType values occuring in tokens after padding
# It switches out None with 49407 as truncating None values causes matrix dimension errors,
def filter_nonetype_tokens(tokens: List[List]):
return [[49407 if token is None else token for token in tokens[0]]]
def get_weighted_text_embeddings(
pipe: StableDiffusionPipeline,
prompt: Union[str, List[str]],
uncond_prompt: Optional[Union[str, List[str]]] = None,
max_embeddings_multiples: Optional[int] = 3,
no_boseos_middle: Optional[bool] = False,
skip_parsing: Optional[bool] = False,
skip_weighting: Optional[bool] = False,
):
r"""
Prompts can be assigned with local weights using brackets. For example,
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
Args:
pipe (`StableDiffusionPipeline`):
Pipe to provide access to the tokenizer and the text encoder.
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
uncond_prompt (`str` or `List[str]`):
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
is provided, the embeddings of prompt and uncond_prompt are concatenated.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
no_boseos_middle (`bool`, *optional*, defaults to `False`):
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
ending token in each of the chunk in the middle.
skip_parsing (`bool`, *optional*, defaults to `False`):
Skip the parsing of brackets.
skip_weighting (`bool`, *optional*, defaults to `False`):
Skip the weighting. When the parsing is skipped, it is forced True.
"""
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
if isinstance(prompt, str):
prompt = [prompt]
if not skip_parsing:
prompt_tokens, prompt_weights = get_prompts_with_weights(
pipe, prompt, max_length - 2
)
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens, uncond_weights = get_prompts_with_weights(
pipe, uncond_prompt, max_length - 2
)
else:
prompt_tokens = [
token[1:-1]
for token in pipe.tokenizer(
prompt, max_length=max_length, truncation=True
).input_ids
]
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens = [
token[1:-1]
for token in pipe.tokenizer(
uncond_prompt, max_length=max_length, truncation=True
).input_ids
]
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
# round up the longest length of tokens to a multiple of (model_max_length - 2)
max_length = max([len(token) for token in prompt_tokens])
if uncond_prompt is not None:
max_length = max(
max_length, max([len(token) for token in uncond_tokens])
)
max_embeddings_multiples = min(
max_embeddings_multiples,
(max_length - 1) // (pipe.model_max_length - 2) + 1,
)
max_embeddings_multiples = max(1, max_embeddings_multiples)
max_length = (pipe.model_max_length - 2) * max_embeddings_multiples + 2
# pad the length of tokens and weights
bos = pipe.tokenizer.bos_token_id
eos = pipe.tokenizer.eos_token_id
prompt_tokens, prompt_weights = pad_tokens_and_weights(
prompt_tokens,
prompt_weights,
max_length,
bos,
eos,
no_boseos_middle=no_boseos_middle,
chunk_length=pipe.model_max_length,
)
# FIXME: This is a hacky fix caused by tokenizer padding with None values
prompt_tokens = filter_nonetype_tokens(prompt_tokens)
# prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device="cpu")
if uncond_prompt is not None:
uncond_tokens, uncond_weights = pad_tokens_and_weights(
uncond_tokens,
uncond_weights,
max_length,
bos,
eos,
no_boseos_middle=no_boseos_middle,
chunk_length=pipe.model_max_length,
)
# FIXME: This is a hacky fix caused by tokenizer padding with None values
uncond_tokens = filter_nonetype_tokens(uncond_tokens)
# uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
uncond_tokens = torch.tensor(
uncond_tokens, dtype=torch.long, device="cpu"
)
# get the embeddings
text_embeddings = get_unweighted_text_embeddings(
pipe,
prompt_tokens,
pipe.model_max_length,
no_boseos_middle=no_boseos_middle,
)
# prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
prompt_weights = torch.tensor(
prompt_weights, dtype=torch.float, device="cpu"
)
if uncond_prompt is not None:
uncond_embeddings = get_unweighted_text_embeddings(
pipe,
uncond_tokens,
pipe.model_max_length,
no_boseos_middle=no_boseos_middle,
)
# uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
uncond_weights = torch.tensor(
uncond_weights, dtype=torch.float, device="cpu"
)
# assign weights to the prompts and normalize in the sense of mean
# TODO: should we normalize by chunk or in a whole (current implementation)?
if (not skip_parsing) and (not skip_weighting):
previous_mean = (
text_embeddings.float()
.mean(axis=[-2, -1])
.to(text_embeddings.dtype)
)
text_embeddings *= prompt_weights.unsqueeze(-1)
current_mean = (
text_embeddings.float()
.mean(axis=[-2, -1])
.to(text_embeddings.dtype)
)
text_embeddings *= (
(previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
)
if uncond_prompt is not None:
previous_mean = (
uncond_embeddings.float()
.mean(axis=[-2, -1])
.to(uncond_embeddings.dtype)
)
uncond_embeddings *= uncond_weights.unsqueeze(-1)
current_mean = (
uncond_embeddings.float()
.mean(axis=[-2, -1])
.to(uncond_embeddings.dtype)
)
uncond_embeddings *= (
(previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
)
if uncond_prompt is not None:
return text_embeddings, uncond_embeddings
return text_embeddings, None

View File

@@ -1,16 +1,10 @@
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDPMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
@@ -23,14 +17,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["DDPM"] = DDPMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
@@ -41,28 +27,9 @@ def get_schedulers(model_id):
)
schedulers[
"DPMSolverMultistep"
] = DPMSolverMultistepScheduler.from_pretrained(
model_id, subfolder="scheduler", algorithm_type="dpmsolver"
)
schedulers[
"DPMSolverMultistep++"
] = DPMSolverMultistepScheduler.from_pretrained(
model_id, subfolder="scheduler", algorithm_type="dpmsolver++"
)
schedulers[
"DPMSolverMultistepKarras"
] = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
use_karras_sigmas=True,
)
schedulers[
"DPMSolverMultistepKarras++"
] = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
schedulers["EulerDiscrete"] = EulerDiscreteScheduler.from_pretrained(
model_id,
@@ -74,31 +41,11 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"SharkEulerDiscrete"
] = SharkEulerDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"DPMSolverSinglestep"
] = DPMSolverSinglestepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"KDPM2AncestralDiscrete"
] = KDPM2AncestralDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["HeunDiscrete"] = HeunDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["SharkEulerDiscrete"].compile()
return schedulers

View File

@@ -40,7 +40,6 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
def compile(self):
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
BATCH_SIZE = args.batch_size
device = args.device.split(":", 1)[0].strip()
model_input = {
"euler": {
@@ -84,47 +83,37 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
def _import(self):
if args.import_mlir:
scaling_model = ScalingModel()
self.scaling_model, _ = compile_through_fx(
model=scaling_model,
inputs=(example_latent, example_sigma),
extended_model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
self.scaling_model = compile_through_fx(
scaling_model,
(example_latent, example_sigma),
model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}"
+ args.precision,
extra_args=iree_flags,
)
step_model = SchedulerStepModel()
self.step_model, _ = compile_through_fx(
self.step_model = compile_through_fx(
step_model,
(example_output, example_sigma, example_latent, example_dt),
extended_model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}"
+ args.precision,
extra_args=iree_flags,
)
if args.import_mlir:
_import(self)
else:
try:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_step_" + args.precision,
iree_flags,
)
except:
print(
"failed to download model, falling back and using import_mlir"
)
args.import_mlir = True
_import(self)
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET, "euler_step_" + args.precision, iree_flags
)
def scale_model_input(self, sample, timestep):
step_index = (self.timesteps == timestep).nonzero().item()

View File

@@ -11,10 +11,6 @@ from apps.stable_diffusion.src.utils.resources import (
)
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.stencils.stencil_utils import (
controlnet_hint_conversion,
get_stencil_model_id,
)
from apps.stable_diffusion.src.utils.utils import (
get_shark_model,
compile_through_fx,
@@ -24,20 +20,8 @@ from apps.stable_diffusion.src.utils.utils import (
get_available_devices,
get_opt_flags,
preprocessCKPT,
convert_original_vae,
fetch_or_delete_vmfbs,
fetch_and_update_base_model_id,
get_path_to_diffusers_checkpoint,
sanitize_seed,
parse_seed_input,
batch_seeds,
get_path_stem,
get_extended_name,
get_generated_imgs_path,
get_generated_imgs_todays_subdir,
clear_all,
save_output_img,
get_generation_text_info,
update_lora_weight,
resize_stencil,
_compile_module,
)

View File

@@ -3,9 +3,7 @@ from apps.stable_diffusion.src.utils.stable_args import args
# Helper function to profile the vulkan device.
def start_profiling(file_path="foo.rdc", profiling_mode="queue"):
from shark.parser import shark_args
if shark_args.vulkan_debug_utils and "vulkan" in args.device:
if args.vulkan_debug_utils and "vulkan" in args.device:
import iree
print(f"Profiling and saving to {file_path}.")

View File

@@ -1,22 +1,34 @@
{
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
},
"vae_encode": {
"image" : {
"shape" : [
"1*batch_size",3,"8*height","8*width"
],
"dtype":"f32"
}
},
"vae": {
"stabilityai/stable-diffusion-2-1": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae": {
"latents" : {
"shape" : [
@@ -25,272 +37,62 @@
"dtype":"f32"
}
},
"vae_upscaler": {
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len"
],
"dtype":"i64"
}
}
},
"CompVis/stable-diffusion-v1-4": {
"unet": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"vae": {
"latents" : {
"shape" : [
"1*batch_size",4,"8*height","8*width"
"1*batch_size",4,"height","width"
],
"dtype":"f32"
}
}
},
"unet": {
"stabilityai/stable-diffusion-2-1": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"CompVis/stable-diffusion-v1-4": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"clip": {
"token" : {
"shape" : [
"2*batch_size",
"max_len",
768
"max_len"
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"stabilityai/stable-diffusion-2-inpainting": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"runwayml/stable-diffusion-inpainting": {
"latents": {
"shape": [
"1*batch_size",
9,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
}
},
"stabilityai/stable-diffusion-x4-upscaler": {
"latents": {
"shape": [
"2*batch_size",
7,
"8*height",
"8*width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
1024
],
"dtype": "f32"
},
"noise_level": {
"shape": [2],
"dtype": "i64"
}
}
},
"stencil_adaptor": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"controlnet_hint": {
"shape": [1, 3, "8*height", "8*width"],
"dtype": "f32"
}
},
"stencil_unet": {
"CompVis/stable-diffusion-v1-4": {
"latents": {
"shape": [
"1*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"embedding": {
"shape": [
"2*batch_size",
"max_len",
768
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 2,
"dtype": "f32"
},
"control1": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control2": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control3": {
"shape": [2, 320, "height", "width"],
"dtype": "f32"
},
"control4": {
"shape": [2, 320, "height/2", "width/2"],
"dtype": "f32"
},
"control5": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control6": {
"shape": [2, 640, "height/2", "width/2"],
"dtype": "f32"
},
"control7": {
"shape": [2, 640, "height/4", "width/4"],
"dtype": "f32"
},
"control8": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control9": {
"shape": [2, 1280, "height/4", "width/4"],
"dtype": "f32"
},
"control10": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control11": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control12": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
},
"control13": {
"shape": [2, 1280, "height/8", "width/8"],
"dtype": "f32"
"dtype":"i64"
}
}
}
}
}

View File

@@ -3,8 +3,6 @@
"stablediffusion/v1_4":"CompVis/stable-diffusion-v1-4",
"stablediffusion/v2_1base":"stabilityai/stable-diffusion-2-1-base",
"stablediffusion/v2_1":"stabilityai/stable-diffusion-2-1",
"stablediffusion/inpaint_v1":"runwayml/stable-diffusion-inpainting",
"stablediffusion/inpaint_v2":"stabilityai/stable-diffusion-2-inpainting",
"anythingv3/v1_4":"Linaqruf/anything-v3.0",
"analogdiffusion/v1_4":"wavymulder/Analog-Diffusion",
"openjourney/v1_4":"prompthero/openjourney",

View File

@@ -1,19 +1,82 @@
[
{
"stablediffusion/untuned":"gs://shark_tank/nightly"
"stablediffusion/untuned":"gs://shark_tank/sd_untuned",
"stablediffusion/tuned":"gs://shark_tank/sd_tuned",
"stablediffusion/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
"anythingv3/untuned":"gs://shark_tank/sd_anythingv3",
"anythingv3/tuned":"gs://shark_tank/sd_tuned",
"anythingv3/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
"analogdiffusion/untuned":"gs://shark_tank/sd_analog_diffusion",
"analogdiffusion/tuned":"gs://shark_tank/sd_tuned",
"analogdiffusion/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
"openjourney/untuned":"gs://shark_tank/sd_openjourney",
"openjourney/tuned":"gs://shark_tank/sd_tuned",
"dreamlike/untuned":"gs://shark_tank/sd_dreamlike_diffusion"
},
{
"stablediffusion/v1_4/unet/fp16/length_64/untuned":"unet_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v1_4/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v1_4/vae/fp16/length_64/untuned":"vae_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v1_4/clip/fp32/length_64/untuned":"clip_1_64_512_512_fp16_stable-diffusion-v1-4_vulkan",
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/unet/fp16/length_64/untuned":"unet_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/clip/fp32/length_77/untuned":"clip_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1base/clip/fp32/length_64/untuned":"clip_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/unet/fp16/length_77/untuned":"unet_1_77_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan",
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip_1_64_512_512_fp16_stable-diffusion-2-1-base_vulkan"
"stablediffusion/v1_4/unet/fp16/length_77/untuned":"unet_8dec_fp16",
"stablediffusion/v1_4/unet/fp16/length_77/tuned":"unet_8dec_fp16_tuned",
"stablediffusion/v1_4/unet/fp16/length_77/tuned/cuda":"unet_8dec_fp16_cuda_tuned",
"stablediffusion/v1_4/unet/fp32/length_77/untuned":"unet_1dec_fp32",
"stablediffusion/v1_4/vae/fp16/length_77/untuned":"vae_19dec_fp16",
"stablediffusion/v1_4/vae/fp16/length_77/tuned":"vae_19dec_fp16_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/tuned/cuda":"vae_19dec_fp16_cuda_tuned",
"stablediffusion/v1_4/vae/fp16/length_77/untuned/base":"vae_8dec_fp16",
"stablediffusion/v1_4/vae/fp32/length_77/untuned":"vae_1dec_fp32",
"stablediffusion/v1_4/clip/fp32/length_77/untuned":"clip_18dec_fp32",
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned":"unet2base_8dec_fp16_tuned_v2",
"stablediffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"unet2base_8dec_fp16_cuda_tuned",
"stablediffusion/v2_1base/unet/fp16/length_64/untuned":"unet64_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/unet/fp16/length_64/tuned":"unet_19dec_v2p1base_fp16_64_tuned",
"stablediffusion/v2_1base/unet/fp16/length_64/tuned/cuda":"unet_19dec_v2p1base_fp16_64_cuda_tuned",
"stablediffusion/v2_1base/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/vae/fp16/length_77/tuned":"vae2base_19dec_fp16_tuned",
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"vae2base_19dec_fp16_cuda_tuned",
"stablediffusion/v2_1base/vae/fp16/length_77/untuned/base":"vae2base_8dec_fp16",
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/base":"vae2base_8dec_fp16_tuned",
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/base/cuda":"vae2base_8dec_fp16_cuda_tuned",
"stablediffusion/v2_1base/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1base/clip/fp32/length_64/untuned":"clip64_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"stablediffusion/v2_1/vae/fp16/length_77/untuned/base":"vae2_8dec_fp16",
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
"anythingv3/v2_1base/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
"anythingv3/v2_1base/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
"anythingv3/v2_1base/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
"anythingv3/v2_1base/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
"anythingv3/v2_1base/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
"anythingv3/v2_1base/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
"anythingv3/v2_1base/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
"anythingv3/v2_1base/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
"anythingv3/v2_1base/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
"analogdiffusion/v2_1base/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
"analogdiffusion/v2_1base/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
"openjourney/v2_1base/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
"openjourney/v2_1base/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
"openjourney/v2_1base/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
"openjourney/v2_1base/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
"openjourney/v2_1base/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
"openjourney/v2_1base/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
"openjourney/v2_1base/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
"dreamlike/v2_1base/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
"dreamlike/v2_1base/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
"dreamlike/v2_1base/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
"dreamlike/v2_1base/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
"dreamlike/v2_1base/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
"dreamlike/v2_1base/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
"dreamlike/v2_1base/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
}
]

View File

@@ -45,12 +45,12 @@
"untuned": {
"fp16": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
]
},
"fp32": {
"default_compilation_flags": [
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16},iree-linalg-ext-convert-conv2d-to-winograd))"
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
]
}
}

View File

@@ -5,7 +5,4 @@
["A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid colors"],
["Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k"],
["A beautiful mansion beside a waterfall in the woods, by josef thoma, matte painting, trending on artstation HQ"],
["portrait photo of a asia old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes"],
["A photo of a beach, sunset, calm, beautiful landscape, waves, water"],
["(a large body of water with snowy mountains in the background), (fog, foggy, rolling fog), (clouds, cloudy, rolling clouds), dramatic sky and landscape, extraordinary landscape, (beautiful snow capped mountain background), (forest, dirt path)"],
["a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smokes coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"]]
["portrait photo of a asia old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes"]]

View File

@@ -20,22 +20,6 @@ def get_device():
return device
def get_device_args():
device = get_device()
device_spec_args = []
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args.append(flag)
elif device == "vulkan":
device_spec_args.append(
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
return device, device_spec_args
# Download the model (Unet or VAE fp16) from shark_tank
def load_model_from_tank():
from apps.stable_diffusion.src.models import (
@@ -70,103 +54,42 @@ def load_winograd_configs():
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_name = f"{args.annotation_model}_winograd_{device}.json"
full_gs_url = config_bucket + config_name
if not os.path.exists(WORKDIR):
os.mkdir(WORKDIR)
winograd_config_dir = os.path.join(WORKDIR, "configs", config_name)
winograd_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading Winograd config file from ", winograd_config_dir)
download_public_file(full_gs_url, winograd_config_dir, True)
return winograd_config_dir
def load_lower_configs(base_model_id=None):
def load_lower_configs():
from apps.stable_diffusion.src.models import get_variant_version
from apps.stable_diffusion.src.utils.utils import (
fetch_and_update_base_model_id,
)
if not base_model_id:
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
variant, version = get_variant_version(base_model_id)
if version == "inpaint_v1":
version = "v1_4"
elif version == "inpaint_v2":
version = "v2_1base"
config_bucket = "gs://shark_tank/sd_tuned_configs/"
device, device_spec_args = get_device_args()
spec = ""
if device_spec_args:
spec = device_spec_args[-1].split("=")[-1].strip()
if device == "vulkan":
spec = spec.split("-")[0]
variant, version = get_variant_version(args.hf_model_id)
config_bucket = "gs://shark_tank/sd_tuned/configs/"
config_version = version
if variant in ["anythingv3", "analogdiffusion"]:
args.max_length = 77
config_version = "v1_4"
if args.annotation_model == "vae":
if not spec or spec in ["sm_80"]:
config_name = (
f"{args.annotation_model}_{args.precision}_{device}.json"
)
else:
config_name = f"{args.annotation_model}_{args.precision}_{device}_{spec}.json"
else:
if not spec or spec in ["sm_80"]:
if (
version in ["v2_1", "v2_1base"]
and args.height == 768
and args.width == 768
):
config_name = f"{args.annotation_model}_v2_1_768_{args.precision}_{device}.json"
else:
config_name = f"{args.annotation_model}_{version}_{args.precision}_{device}.json"
elif spec in ["rdna3"] and version in [
"v2_1",
"v2_1base",
"v1_4",
"v1_5",
]:
config_name = (
f"{args.annotation_model}_"
f"{version}_"
f"{args.max_length}_"
f"{args.precision}_"
f"{device}_"
f"{spec}_"
f"{args.width}x{args.height}.json"
)
elif spec in ["rdna2"] and version in ["v2_1", "v2_1base", "v1_4"]:
config_name = (
f"{args.annotation_model}_"
f"{version}_"
f"{args.precision}_"
f"{device}_"
f"{spec}_"
f"{args.width}x{args.height}.json"
)
else:
config_name = (
f"{args.annotation_model}_"
f"{version}_"
f"{args.precision}_"
f"{device}_"
f"{spec}.json"
)
lowering_config_dir = os.path.join(WORKDIR, "configs", config_name)
print("Loading lowering config file from ", lowering_config_dir)
args.max_length = 77
device = get_device()
config_name = f"{args.annotation_model}_{config_version}_{args.precision}_len{args.max_length}_{device}.json"
full_gs_url = config_bucket + config_name
lowering_config_dir = f"{WORKDIR}configs/" + config_name
print("Loading lowering config file from ", lowering_config_dir)
download_public_file(full_gs_url, lowering_config_dir, True)
return lowering_config_dir
# Annotate the model with Winograd attribute on selected conv ops
def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with create_context() as ctx:
winograd_model = model_annotation(
ctx,
@@ -180,54 +103,59 @@ def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
winograd_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = os.path.join(
args.annotation_output, model_name + "_tuned_torch.mlir"
)
else:
out_file_path = os.path.join(
args.annotation_output, model_name + "_torch.mlir"
)
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(winograd_model))
f.close()
return bytecode, out_file_path
def dump_after_mlir(input_mlir, use_winograd):
import iree.compiler as ireec
device, device_spec_args = get_device_args()
def dump_after_mlir(input_mlir, model_name, use_winograd):
if use_winograd:
dump_after = "iree-linalg-ext-convert-conv2d-to-winograd"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline=builtin.module"
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32},"
"iree-linalg-ext-convert-conv2d-to-winograd))"
"iree-linalg-ext-convert-conv2d-to-winograd))' "
)
else:
dump_after = "iree-preprocessing-pad-linalg-ops"
preprocess_flag = (
"--iree-preprocessing-pass-pipeline=builtin.module"
"--iree-preprocessing-pass-pipeline='builtin.module"
"(func.func(iree-flow-detach-elementwise-from-named-ops,"
"iree-flow-convert-1x1-filter-conv2d-to-matmul,"
"iree-preprocessing-convert-conv2d-to-img2col,"
"iree-preprocessing-pad-linalg-ops{pad-size=32}))"
"iree-preprocessing-pad-linalg-ops{pad-size=32}))' "
)
dump_module = ireec.compile_str(
input_mlir,
target_backends=[iree_target_map(device)],
extra_args=device_spec_args
+ [
preprocess_flag,
"--compile-to=preprocessing",
],
device_spec_args = ""
device = get_device()
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
gpu_flags = get_iree_gpu_args()
for flag in gpu_flags:
device_spec_args += flag + " "
elif device == "vulkan":
device_spec_args = (
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
)
print("Applying tuned configs on", model_name)
run_cmd(
f"iree-compile {input_mlir} "
"--iree-input-type=tm_tensor "
f"--iree-hal-target-backends={iree_target_map(device)} "
f"{device_spec_args}"
f"{preprocess_flag}"
"--iree-stream-resource-index-bits=64 "
"--iree-vm-target-index-bits=64 "
f"--mlir-print-ir-after={dump_after} "
"--compile-to=flow "
f"2>{args.annotation_output}/dump_after_winograd.mlir "
)
return dump_module
# For Unet annotate the model with tuned lowering configs
@@ -235,66 +163,72 @@ def annotate_with_lower_configs(
input_mlir, lowering_config_dir, model_name, use_winograd
):
# Dump IR after padding/img2col/winograd passes
dump_module = dump_after_mlir(input_mlir, use_winograd)
print("Applying tuned configs on", model_name)
dump_after_mlir(input_mlir, model_name, use_winograd)
# Annotate the model with lowering configs in the config file
with create_context() as ctx:
tuned_model = model_annotation(
ctx,
input_contents=dump_module,
input_contents=f"{args.annotation_output}/dump_after_winograd.mlir",
config_path=lowering_config_dir,
search_op="all",
)
# Remove the intermediate mlir and save the final annotated model
os.remove(f"{args.annotation_output}/dump_after_winograd.mlir")
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
bytecode_stream = io.BytesIO()
tuned_model.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
if args.save_annotation:
if model_name.split("_")[-1] != "tuned":
out_file_path = (
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
)
else:
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode
with open(out_file_path, "w") as f:
f.write(str(tuned_model))
f.close()
return bytecode, out_file_path
def sd_model_annotation(mlir_model, model_name, base_model_id=None):
def sd_model_annotation(mlir_model, model_name, model_from_tank=False):
device = get_device()
if args.annotation_model == "unet" and device == "vulkan":
use_winograd = True
winograd_config_dir = load_winograd_configs()
winograd_model = annotate_with_winograd(
winograd_model, model_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
lowering_config_dir = load_lower_configs(base_model_id)
tuned_model = annotate_with_lower_configs(
winograd_model, lowering_config_dir, model_name, use_winograd
lowering_config_dir = load_lower_configs()
tuned_model, output_path = annotate_with_lower_configs(
model_path, lowering_config_dir, model_name, use_winograd
)
elif args.annotation_model == "vae" and device == "vulkan":
if "rdna2" not in args.iree_vulkan_target_triple.split("-")[0]:
use_winograd = True
winograd_config_dir = load_winograd_configs()
tuned_model = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
else:
tuned_model = mlir_model
use_winograd = True
winograd_config_dir = load_winograd_configs()
tuned_model, output_path = annotate_with_winograd(
mlir_model, winograd_config_dir, model_name
)
else:
use_winograd = False
lowering_config_dir = load_lower_configs(base_model_id)
tuned_model = annotate_with_lower_configs(
if model_from_tank:
mlir_model = f"{WORKDIR}{model_name}_torch/{model_name}_torch.mlir"
else:
# Just use this function to convert bytecode to string
orig_model, model_path = annotate_with_winograd(
mlir_model, "", model_name
)
mlir_model = model_path
lowering_config_dir = load_lower_configs()
tuned_model, output_path = annotate_with_lower_configs(
mlir_model, lowering_config_dir, model_name, use_winograd
)
print(f"Saved the annotated mlir in {output_path}.")
return tuned_model
if __name__ == "__main__":
mlir_model, model_name = load_model_from_tank()
sd_model_annotation(mlir_model, model_name)
sd_model_annotation(mlir_model, model_name, model_from_tank=True)

View File

@@ -1,5 +1,4 @@
import argparse
import os
from pathlib import Path
@@ -7,68 +6,41 @@ def path_expand(s):
return Path(s).expanduser().resolve()
def is_valid_file(arg):
if not os.path.exists(arg):
return None
else:
return arg
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
##############################################################################
# Stable Diffusion Params
### Stable Diffusion Params
##############################################################################
p.add_argument(
"-a",
"--app",
default="txt2img",
help="Which app to use, one of: txt2img, img2img, outpaint, inpaint.",
)
p.add_argument(
"-p",
"--prompts",
nargs="+",
default=[
"a photo taken of the front of a super-car drifting on a road near "
"mountains at high speeds with smokes coming off the tires, front "
"angle, front point of view, trees in the mountains of the "
"background, ((sharp focus))"
],
help="Text of which images to be generated.",
action="append",
default=[],
help="text of which images to be generated.",
)
p.add_argument(
"--negative_prompts",
nargs="+",
default=[
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), "
"blurry, ugly, blur, oversaturated, cropped"
],
help="Text you don't want to see in the generated image.",
)
p.add_argument(
"--img_path",
type=str,
help="Path to the image input for img2img/inpainting.",
default=[""],
help="text you don't want to see in the generated image.",
)
p.add_argument(
"--steps",
type=int,
default=50,
help="The number of steps to do the sampling.",
help="the no. of steps to do the sampling.",
)
p.add_argument(
"--seed",
type=str,
default=-1,
help="The seed or list of seeds to use. -1 for a random one.",
type=int,
default=42,
help="the seed to use.",
)
p.add_argument(
@@ -76,262 +48,75 @@ p.add_argument(
type=int,
default=1,
choices=range(1, 4),
help="The number of inferences to be made in a single `batch_count`.",
help="the number of inferences to be made in a single `run`.",
)
p.add_argument(
"--height",
type=int,
default=512,
choices=range(128, 769, 8),
help="The height of the output image.",
help="the height of the output image.",
)
p.add_argument(
"--width",
type=int,
default=512,
choices=range(128, 769, 8),
help="The width of the output image.",
help="the width of the output image.",
)
p.add_argument(
"--guidance_scale",
type=float,
default=7.5,
help="The value to be used for guidance scaling.",
)
p.add_argument(
"--noise_level",
type=int,
default=20,
help="The value to be used for noise level of upscaler.",
help="the value to be used for guidance scaling.",
)
p.add_argument(
"--max_length",
type=int,
default=64,
help="Max length of the tokenizer output, options are 64 and 77.",
)
p.add_argument(
"--max_embeddings_multiples",
type=int,
default=5,
help="The max multiple length of prompt embeddings compared to the max "
"output length of text encoder.",
)
p.add_argument(
"--strength",
type=float,
default=0.8,
help="The strength of change applied on the given input image for "
"img2img.",
)
p.add_argument(
"--use_hiresfix",
type=bool,
default=False,
help="Use Hires Fix to do higher resolution images, while trying to "
"avoid the issues that come with it. This is accomplished by first "
"generating an image using txt2img, then running it through img2img.",
)
p.add_argument(
"--hiresfix_height",
type=int,
default=768,
choices=range(128, 769, 8),
help="The height of the Hires Fix image.",
)
p.add_argument(
"--hiresfix_width",
type=int,
default=768,
choices=range(128, 769, 8),
help="The width of the Hires Fix image.",
)
p.add_argument(
"--hiresfix_strength",
type=float,
default=0.6,
help="The denoising strength to apply for the Hires Fix.",
)
p.add_argument(
"--resample_type",
type=str,
default="Nearest Neighbor",
choices=[
"Lanczos",
"Nearest Neighbor",
"Bilinear",
"Bicubic",
"Adaptive",
"Antialias",
"Box",
"Affine",
"Cubic",
],
help="The resample type to use when resizing an image before being run "
"through stable diffusion.",
help="max length of the tokenizer output, options are 64 and 77.",
)
##############################################################################
# Stable Diffusion Training Params
### Model Config and Usage Params
##############################################################################
p.add_argument(
"--lora_save_dir",
type=str,
default="models/lora/",
help="Directory to save the lora fine tuned model.",
"--device", type=str, default="vulkan", help="device to run the model."
)
p.add_argument(
"--training_images_dir",
type=str,
default="models/lora/training_images/",
help="Directory containing images that are an example of the prompt.",
)
p.add_argument(
"--training_steps",
type=int,
default=2000,
help="The number of steps to train.",
)
##############################################################################
# Inpainting and Outpainting Params
##############################################################################
p.add_argument(
"--mask_path",
type=str,
help="Path to the mask image input for inpainting.",
)
p.add_argument(
"--inpaint_full_res",
default=False,
action=argparse.BooleanOptionalAction,
help="If inpaint only masked area or whole picture.",
)
p.add_argument(
"--inpaint_full_res_padding",
type=int,
default=32,
choices=range(0, 257, 4),
help="Number of pixels for only masked padding.",
)
p.add_argument(
"--pixels",
type=int,
default=128,
choices=range(8, 257, 8),
help="Number of expended pixels for one direction for outpainting.",
)
p.add_argument(
"--mask_blur",
type=int,
default=8,
choices=range(0, 65),
help="Number of blur pixels for outpainting.",
)
p.add_argument(
"--left",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend left for outpainting.",
)
p.add_argument(
"--right",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend right for outpainting.",
)
p.add_argument(
"--top",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend top for outpainting.",
)
p.add_argument(
"--bottom",
default=False,
action=argparse.BooleanOptionalAction,
help="If expend bottom for outpainting.",
)
p.add_argument(
"--noise_q",
type=float,
default=1.0,
help="Fall-off exponent for outpainting (lower=higher detail) "
"(min=0.0, max=4.0).",
)
p.add_argument(
"--color_variation",
type=float,
default=0.05,
help="Color variation for outpainting (min=0.0, max=1.0).",
)
##############################################################################
# Model Config and Usage Params
##############################################################################
p.add_argument(
"--device", type=str, default="vulkan", help="Device to run the model."
)
p.add_argument(
"--precision", type=str, default="fp16", help="Precision to run the model."
"--precision", type=str, default="fp16", help="precision to run the model."
)
p.add_argument(
"--import_mlir",
default=False,
action=argparse.BooleanOptionalAction,
help="Imports the model from torch module to shark_module otherwise "
"downloads the model from shark_tank.",
help="imports the model from torch module to shark_module otherwise downloads the model from shark_tank.",
)
p.add_argument(
"--load_vmfb",
default=True,
action=argparse.BooleanOptionalAction,
help="Attempts to load the model from a precompiled flat-buffer "
"and compiles + saves it if not found.",
help="attempts to load the model from a precompiled flatbuffer and compiles + saves it if not found.",
)
p.add_argument(
"--save_vmfb",
default=False,
action=argparse.BooleanOptionalAction,
help="Saves the compiled flat-buffer to the local directory.",
help="saves the compiled flatbuffer to the local directory",
)
p.add_argument(
"--use_tuned",
default=True,
action=argparse.BooleanOptionalAction,
help="Download and use the tuned version of the model if available.",
help="Download and use the tuned version of the model if available",
)
p.add_argument(
@@ -345,42 +130,28 @@ p.add_argument(
"--scheduler",
type=str,
default="SharkEulerDiscrete",
help="Other supported schedulers are [DDIM, PNDM, LMSDiscrete, "
"DPMSolverMultistep, DPMSolverMultistep++, DPMSolverMultistepKarras, "
"DPMSolverMultistepKarras++, EulerDiscrete, EulerAncestralDiscrete, "
"DEISMultistep, KDPM2AncestralDiscrete, DPMSolverSinglestep, DDPM, "
"HeunDiscrete].",
help="other supported schedulers are [PNDM, DDIM, LMSDiscrete, EulerDiscrete, DPMSolverMultistep]",
)
p.add_argument(
"--output_img_format",
type=str,
default="png",
help="Specify the format in which output image is save. "
"Supported options: jpg / png.",
help="specify the format in which output image is save. Supported options: jpg / png",
)
p.add_argument(
"--output_dir",
type=str,
default=None,
help="Directory path to save the output images and json.",
help="Directory path to save the output images and json",
)
p.add_argument(
"--batch_count",
"--runs",
type=int,
default=1,
help="Number of batches to be generated with random seeds in "
"single execution.",
)
p.add_argument(
"--repeatable_seeds",
default=False,
action=argparse.BooleanOptionalAction,
help="The seed of the first batch will be used as the rng seed to "
"generate the subsequent seeds for subsequent batches in that run.",
help="number of images to be generated with random seeds in single execution",
)
p.add_argument(
@@ -390,14 +161,6 @@ p.add_argument(
help="Path to SD's .ckpt file.",
)
p.add_argument(
"--custom_vae",
type=str,
default="",
help="HuggingFace repo-id or path to SD model's checkpoint whose VAE "
"needs to be plugged in.",
)
p.add_argument(
"--hf_model_id",
type=str,
@@ -406,274 +169,163 @@ p.add_argument(
)
p.add_argument(
"--low_cpu_mem_usage",
"--enable_stack_trace",
default=False,
action=argparse.BooleanOptionalAction,
help="Use the accelerate package to reduce cpu memory consumption.",
help="Enable showing the stack trace when retrying the base model configuration",
)
p.add_argument(
"--attention_slicing",
type=str,
default="none",
help="Amount of attention slicing to use (one of 'max', 'auto', 'none', "
"or an integer).",
)
##############################################################################
### IREE - Vulkan supported flags
##############################################################################
p.add_argument(
"--use_stencil",
choices=["canny", "openpose", "scribble"],
help="Enable the stencil feature.",
)
p.add_argument(
"--use_lora",
"--iree-vulkan-target-triple",
type=str,
default="",
help="Use standalone LoRA weight using a HF ID or a checkpoint "
"file (~3 MB).",
help="Specify target triple for vulkan",
)
p.add_argument(
"--use_quantize",
type=str,
default="none",
help="Runs the quantized version of stable diffusion model. "
"This is currently in experimental phase. "
"Currently, only runs the stable-diffusion-2-1-base model in "
"int8 quantization.",
)
p.add_argument(
"--ondemand",
"--vulkan_debug_utils",
default=False,
action=argparse.BooleanOptionalAction,
help="Load and unload models for low VRAM.",
help="Profiles vulkan device and collects the .rdc info",
)
p.add_argument(
"--hf_auth_token",
type=str,
default=None,
help="Specify your own huggingface authentication tokens for models like Llama2.",
"--vulkan_large_heap_block_size",
default="4147483648",
help="flag for setting VMA preferredLargeHeapBlockSize for vulkan device, default is 4G",
)
p.add_argument(
"--device_allocator_heap_key",
type=str,
default="",
help="Specify heap key for device caching allocator."
"Expected form: max_allocation_size;max_allocation_capacity;max_free_allocation_count"
"Example: --device_allocator_heap_key='*;1gib' (will limit caching on device to 1 gigabyte)",
)
##############################################################################
# IREE - Vulkan supported flags
##############################################################################
p.add_argument(
"--iree_vulkan_target_triple",
type=str,
default="",
help="Specify target triple for vulkan.",
)
p.add_argument(
"--iree_metal_target_platform",
type=str,
default="",
help="Specify target triple for metal.",
"--vulkan_validation_layers",
default=False,
action=argparse.BooleanOptionalAction,
help="flag for disabling vulkan validation layers when benchmarking",
)
##############################################################################
# Misc. Debug and Optimization flags
### Misc. Debug and Optimization flags
##############################################################################
p.add_argument(
"--use_compiled_scheduler",
default=True,
action=argparse.BooleanOptionalAction,
help="Use the default scheduler precompiled into the model if available.",
help="use the default scheduler precompiled into the model if available",
)
p.add_argument(
"--local_tank_cache",
default="",
help="Specify where to save downloaded shark_tank artifacts. "
"If this is not set, the default is ~/.local/shark_tank/.",
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
)
p.add_argument(
"--dump_isa",
default=False,
action="store_true",
help="When enabled call amdllpc to get ISA dumps. "
"Use with dispatch benchmarks.",
help="When enabled call amdllpc to get ISA dumps. use with dispatch benchmarks.",
)
p.add_argument(
"--dispatch_benchmarks",
default=None,
help="Dispatches to return benchmark data on. "
'Use "All" for all, and None for none.',
help='dispatches to return benchamrk data on. use "All" for all, and None for none.',
)
p.add_argument(
"--dispatch_benchmarks_dir",
default="temp_dispatch_benchmarks",
help="Directory where you want to store dispatch data "
'generated with "--dispatch_benchmarks".',
help='directory where you want to store dispatch data generated with "--dispatch_benchmarks"',
)
p.add_argument(
"--enable_rgp",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for inserting debug frames between iterations "
"for use with rgp.",
help="flag for inserting debug frames between iterations for use with rgp.",
)
p.add_argument(
"--hide_steps",
default=True,
action=argparse.BooleanOptionalAction,
help="Flag for hiding the details of iteration/sec for each step.",
help="flag for hiding the details of iteration/sec for each step.",
)
p.add_argument(
"--warmup_count",
type=int,
default=0,
help="Flag setting warmup count for CLIP and VAE [>= 0].",
help="flag setting warmup count for clip and vae [>= 0].",
)
p.add_argument(
"--clear_all",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag to clear all mlir and vmfb from common locations. "
"Recompiling will take several minutes.",
help="flag to clear all mlir and vmfb from common locations. Recompiling will take several minutes",
)
p.add_argument(
"--save_metadata_to_json",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for whether or not to save a generation information "
"json file with the image.",
help="flag for whether or not to save a generation information json file with the image.",
)
p.add_argument(
"--write_metadata_to_png",
default=True,
action=argparse.BooleanOptionalAction,
help="Flag for whether or not to save generation information in "
"PNG chunk text to generated images.",
)
p.add_argument(
"--import_debug",
default=False,
action=argparse.BooleanOptionalAction,
help="If import_mlir is True, saves mlir via the debug option "
"in shark importer. Does nothing if import_mlir is false (the default).",
)
p.add_argument(
"--compile_debug",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag to toggle debug assert/verify flags for imported IR in the"
"iree-compiler. Default to false.",
)
p.add_argument(
"--iree_constant_folding",
default=True,
action=argparse.BooleanOptionalAction,
help="Controls constant folding in iree-compile for all SD models.",
help="flag for whether or not to save generation information in PNG chunk text to generated images.",
)
##############################################################################
# Web UI flags
### Web UI flags
##############################################################################
p.add_argument(
"--progress_bar",
default=True,
action=argparse.BooleanOptionalAction,
help="Flag for removing the progress bar animation during "
"image generation.",
help="flag for removing the pregress bar animation during image generation",
)
p.add_argument(
"--ckpt_dir",
type=str,
default="",
help="Path to directory where all .ckpts are stored in order to populate "
"them in the web UI.",
)
# TODO: replace API flag when these can be run together
p.add_argument(
"--ui",
type=str,
default="app" if os.name == "nt" else "web",
help="One of: [api, app, web].",
help="Path to directory where all .ckpts are stored in order to populate them in the web UI",
)
p.add_argument(
"--share",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for generating a public URL.",
help="flag for generating a public URL",
)
p.add_argument(
"--server_port",
type=int,
default=8080,
help="Flag for setting server port.",
help="flag for setting server port",
)
p.add_argument(
"--api",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for enabling rest API.",
)
p.add_argument(
"--debug",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for enabling debugging log in WebUI.",
)
p.add_argument(
"--output_gallery",
default=True,
action=argparse.BooleanOptionalAction,
help="Flag for removing the output gallery tab, and avoid exposing "
"images under --output_dir in the UI.",
)
p.add_argument(
"--output_gallery_followlinks",
default=False,
action=argparse.BooleanOptionalAction,
help="Flag for whether the output gallery tab in the UI should "
"follow symlinks when listing subdirectories under --output_dir.",
)
##############################################################################
# SD model auto-annotation flags
### SD model auto-annotation flags
##############################################################################
p.add_argument(
"--annotation_output",
type=path_expand,
default="./",
help="Directory to save the annotated mlir file.",
help="Directory to save the annotated mlir file",
)
p.add_argument(
@@ -684,49 +336,10 @@ p.add_argument(
)
p.add_argument(
"--save_annotation",
"--use_winograd",
default=False,
action=argparse.BooleanOptionalAction,
help="Save annotated mlir file.",
)
##############################################################################
# SD model auto-tuner flags
##############################################################################
p.add_argument(
"--tuned_config_dir",
type=path_expand,
default="./",
help="Directory to save the tuned config file.",
)
p.add_argument(
"--num_iters",
type=int,
default=400,
help="Number of iterations for tuning.",
)
p.add_argument(
"--search_op",
type=str,
default="all",
help="Op to be optimized, options are matmul, bmm, conv and all.",
)
##############################################################################
# DocuChat Flags
##############################################################################
p.add_argument(
"--run_docuchat_web",
default=False,
action=argparse.BooleanOptionalAction,
help="Specifies whether the docuchat's web version is running or not.",
help="Apply Winograd on selected conv ops.",
)
args, unknown = p.parse_known_args()
if args.import_debug:
os.environ["IREE_SAVE_TEMPS"] = os.path.join(
os.getcwd(), args.hf_model_id.replace("/", "_")
)

View File

@@ -1,2 +0,0 @@
from apps.stable_diffusion.src.utils.stencils.canny import CannyDetector
from apps.stable_diffusion.src.utils.stencils.openpose import OpenposeDetector

View File

@@ -1,6 +0,0 @@
import cv2
class CannyDetector:
def __call__(self, img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)

View File

@@ -1,62 +0,0 @@
import requests
from pathlib import Path
import torch
import numpy as np
# from annotator.util import annotator_ckpts_path
from apps.stable_diffusion.src.utils.stencils.openpose.body import Body
from apps.stable_diffusion.src.utils.stencils.openpose.hand import Hand
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
draw_bodypose,
draw_handpose,
handDetect,
)
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
class OpenposeDetector:
def __init__(self):
cwd = Path.cwd()
ckpt_path = Path(cwd, "stencil_annotator")
ckpt_path.mkdir(parents=True, exist_ok=True)
body_modelpath = ckpt_path / "body_pose_model.pth"
hand_modelpath = ckpt_path / "hand_pose_model.pth"
if not body_modelpath.is_file():
r = requests.get(body_model_path, allow_redirects=True)
open(body_modelpath, "wb").write(r.content)
if not hand_modelpath.is_file():
r = requests.get(hand_model_path, allow_redirects=True)
open(hand_modelpath, "wb").write(r.content)
self.body_estimation = Body(body_modelpath)
self.hand_estimation = Hand(hand_modelpath)
def __call__(self, oriImg, hand=False):
oriImg = oriImg[:, :, ::-1].copy()
with torch.no_grad():
candidate, subset = self.body_estimation(oriImg)
canvas = np.zeros_like(oriImg)
canvas = draw_bodypose(canvas, candidate, subset)
if hand:
hands_list = handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = self.hand_estimation(
oriImg[y : y + w, x : x + w, :]
)
peaks[:, 0] = np.where(
peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x
)
peaks[:, 1] = np.where(
peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y
)
all_hand_peaks.append(peaks)
canvas = draw_handpose(canvas, all_hand_peaks)
return canvas, dict(
candidate=candidate.tolist(), subset=subset.tolist()
)

View File

@@ -1,499 +0,0 @@
import cv2
import numpy as np
import math
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
)
class BodyPoseModel(nn.Module):
def __init__(self):
super(BodyPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv5_5_CPM_L1",
"conv5_5_CPM_L2",
"Mconv7_stage2_L1",
"Mconv7_stage2_L2",
"Mconv7_stage3_L1",
"Mconv7_stage3_L2",
"Mconv7_stage4_L1",
"Mconv7_stage4_L2",
"Mconv7_stage5_L1",
"Mconv7_stage5_L2",
"Mconv7_stage6_L1",
"Mconv7_stage6_L1",
]
blocks = {}
block0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3_CPM", [512, 256, 3, 1, 1]),
("conv4_4_CPM", [256, 128, 3, 1, 1]),
]
)
# Stage 1
block1_1 = OrderedDict(
[
("conv5_1_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L1", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L1", [512, 38, 1, 1, 0]),
]
)
block1_2 = OrderedDict(
[
("conv5_1_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L2", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L2", [512, 19, 1, 1, 0]),
]
)
blocks["block1_1"] = block1_1
blocks["block1_2"] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks["block%d_1" % i] = OrderedDict(
[
("Mconv1_stage%d_L1" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L1" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L1" % i, [128, 38, 1, 1, 0]),
]
)
blocks["block%d_2" % i] = OrderedDict(
[
("Mconv1_stage%d_L2" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L2" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L2" % i, [128, 19, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks["block1_1"]
self.model2_1 = blocks["block2_1"]
self.model3_1 = blocks["block3_1"]
self.model4_1 = blocks["block4_1"]
self.model5_1 = blocks["block5_1"]
self.model6_1 = blocks["block6_1"]
self.model1_2 = blocks["block1_2"]
self.model2_2 = blocks["block2_2"]
self.model3_2 = blocks["block3_2"]
self.model4_2 = blocks["block4_2"]
self.model5_2 = blocks["block5_2"]
self.model6_2 = blocks["block6_2"]
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class Body(object):
def __init__(self, model_path):
self.model = BodyPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(Mconv7_stage6_L2), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(
np.squeeze(Mconv7_stage6_L1), (1, 2, 0)
) # output 0 is PAFs
paf = cv2.resize(
paf,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
paf = paf[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
paf = cv2.resize(
paf,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += +paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(
one_heatmap >= map_left,
one_heatmap >= map_right,
one_heatmap >= map_up,
one_heatmap >= map_down,
one_heatmap > thre1,
)
)
peaks = list(
zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])
) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [
peaks_with_score[i] + (peak_id[i],)
for i in range(len(peak_id))
]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
# the middle joints heatmap correpondence
mapIdx = [
[31, 32],
[39, 40],
[33, 34],
[35, 36],
[41, 42],
[43, 44],
[19, 20],
[21, 22],
[23, 24],
[25, 26],
[27, 28],
[29, 30],
[47, 48],
[49, 50],
[53, 54],
[51, 52],
[55, 56],
[37, 38],
[45, 46],
]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(
zip(
np.linspace(
candA[i][0], candB[j][0], num=mid_num
),
np.linspace(
candA[i][1], candB[j][1], num=mid_num
),
)
)
vec_x = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
0,
]
for I in range(len(startend))
]
)
vec_y = np.array(
[
score_mid[
int(round(startend[I][1])),
int(round(startend[I][0])),
1,
]
for I in range(len(startend))
]
)
score_midpts = np.multiply(
vec_x, vec[0]
) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(
score_midpts
) + min(0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(
np.nonzero(score_midpts > thre2)[0]
) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[
i,
j,
score_with_dist_prior,
score_with_dist_prior
+ candA[i][2]
+ candB[j][2],
]
)
connection_candidate = sorted(
connection_candidate, key=lambda x: x[2], reverse=True
)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack(
[connection, [candA[i][3], candB[j][3], s, i, j]]
)
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array(
[item for sublist in all_peaks for item in sublist]
)
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if (
subset[j][indexA] == partAs[i]
or subset[j][indexB] == partBs[i]
):
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = (
(subset[j1] >= 0).astype(int)
+ (subset[j2] >= 0).astype(int)
)[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += subset[j2][:-2] + 1
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += (
candidate[partBs[i].astype(int), 2]
+ connection_all[k][i][2]
)
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = (
sum(
candidate[
connection_all[k][i, :2].astype(int), 2
]
)
+ connection_all[k][i][2]
)
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# candidate: x, y, score, id
return candidate, subset

View File

@@ -1,205 +0,0 @@
import cv2
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn as nn
from skimage.measure import label
from collections import OrderedDict
from apps.stable_diffusion.src.utils.stencils.openpose.openpose_util import (
make_layers,
transfer,
padRightDownCorner,
npmax,
)
class HandPoseModel(nn.Module):
def __init__(self):
super(HandPoseModel, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv6_2_CPM",
"Mconv7_stage2",
"Mconv7_stage3",
"Mconv7_stage4",
"Mconv7_stage5",
"Mconv7_stage6",
]
# stage 1
block1_0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3", [512, 512, 3, 1, 1]),
("conv4_4", [512, 512, 3, 1, 1]),
("conv5_1", [512, 512, 3, 1, 1]),
("conv5_2", [512, 512, 3, 1, 1]),
("conv5_3_CPM", [512, 128, 3, 1, 1]),
]
)
block1_1 = OrderedDict(
[
("conv6_1_CPM", [128, 512, 1, 1, 0]),
("conv6_2_CPM", [512, 22, 1, 1, 0]),
]
)
blocks = {}
blocks["block1_0"] = block1_0
blocks["block1_1"] = block1_1
# stage 2-6
for i in range(2, 7):
blocks["block%d" % i] = OrderedDict(
[
("Mconv1_stage%d" % i, [150, 128, 7, 1, 3]),
("Mconv2_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d" % i, [128, 22, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks["block1_0"]
self.model1_1 = blocks["block1_1"]
self.model2 = blocks["block2"]
self.model3 = blocks["block3"]
self.model4 = blocks["block4"]
self.model5 = blocks["block5"]
self.model6 = blocks["block6"]
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6
class Hand(object):
def __init__(self, model_path):
self.model = HandPoseModel()
if torch.cuda.is_available():
self.model = self.model.cuda()
model_dict = transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def __call__(self, oriImg):
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(
oriImg,
(0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC,
)
imageToTest_padded, pad = padRightDownCorner(
imageToTest, stride, padValue
)
im = (
np.transpose(
np.float32(imageToTest_padded[:, :, :, np.newaxis]),
(3, 2, 0, 1),
)
/ 256
- 0.5
)
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
if torch.cuda.is_available():
data = data.cuda()
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
output = self.model(data).cpu().numpy()
# output = self.model(data).numpy()q
# extract outputs, resize, and remove padding
heatmap = np.transpose(
np.squeeze(output), (1, 2, 0)
) # output 1 is heatmaps
heatmap = cv2.resize(
heatmap,
(0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC,
)
heatmap = heatmap[
: imageToTest_padded.shape[0] - pad[2],
: imageToTest_padded.shape[1] - pad[3],
:,
]
heatmap = cv2.resize(
heatmap,
(oriImg.shape[1], oriImg.shape[0]),
interpolation=cv2.INTER_CUBIC,
)
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
# 全部小于阈值
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(
binary, return_num=True, connectivity=binary.ndim
)
max_index = (
np.argmax(
[
np.sum(map_ori[label_img == i])
for i in range(1, label_numbers + 1)
]
)
+ 1
)
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = npmax(map_ori)
all_peaks.append([x, y])
return np.array(all_peaks)

View File

@@ -1,272 +0,0 @@
import math
import numpy as np
import matplotlib
import cv2
from collections import OrderedDict
import torch.nn as nn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if "pool" in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(
in_channels=v[0],
out_channels=v[1],
kernel_size=v[2],
stride=v[3],
padding=v[4],
)
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(("relu_" + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights[
".".join(weights_name.split(".")[1:])
]
return transfered_model_weights
# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset):
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)),
(int(length / 2), stickwidth),
int(angle),
0,
360,
1,
)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
# image drawed by opencv is not good.
def draw_handpose(canvas, all_hand_peaks, show_number=False):
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for peaks in all_hand_peaks:
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1) == 0) == 0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb(
[ie / float(len(edges)), 1.0, 1.0]
)
* 255,
thickness=2,
)
for i, keyponit in enumerate(peaks):
x, y = keyponit
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
if show_number:
cv2.putText(
canvas,
str(i),
(x, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.3,
(0, 0, 0),
lineType=cv2.LINE_AA,
)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
for person in subset.astype(int):
# if any of three not detected
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
if not (has_left or has_right):
continue
hands = []
# left hand
if has_left:
left_shoulder_index, left_elbow_index, left_wrist_index = person[
[5, 6, 7]
]
x1, y1 = candidate[left_shoulder_index][:2]
x2, y2 = candidate[left_elbow_index][:2]
x3, y3 = candidate[left_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, True])
# right hand
if has_right:
(
right_shoulder_index,
right_elbow_index,
right_wrist_index,
) = person[[2, 3, 4]]
x1, y1 = candidate[right_shoulder_index][:2]
x2, y2 = candidate[right_elbow_index][:2]
x3, y3 = candidate[right_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, False])
for x1, y1, x2, y2, x3, y3, is_left in hands:
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width
width2 = width
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append([int(x), int(y), int(width), is_left])
"""
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
"""
return detect_result
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return (i,)

View File

@@ -1,186 +0,0 @@
import numpy as np
from PIL import Image
import torch
from apps.stable_diffusion.src.utils.stencils import (
CannyDetector,
OpenposeDetector,
)
stencil = {}
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt=1
):
channels = 3
if isinstance(controlnet_hint, torch.Tensor):
# torch.Tensor: acceptble shape are any of chw, bchw(b==1) or bchw(b==num_images_per_prompt)
shape_chw = (channels, height, width)
shape_bchw = (1, channels, height, width)
shape_nchw = (num_images_per_prompt, channels, height, width)
if controlnet_hint.shape in [shape_chw, shape_bchw, shape_nchw]:
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
if controlnet_hint.shape != shape_nchw:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({channels}, {height}, {width}),"
+ f" (1, {channels}, {height}, {width}) or ({num_images_per_prompt}, "
+ f"{channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, np.ndarray):
# np.ndarray: acceptable shape is any of hw, hwc, bhwc(b==1) or bhwc(b==num_images_per_promot)
# hwc is opencv compatible image format. Color channel must be BGR Format.
if controlnet_hint.shape == (height, width):
controlnet_hint = np.repeat(
controlnet_hint[:, :, np.newaxis], channels, axis=2
) # hw -> hwc(c==3)
shape_hwc = (height, width, channels)
shape_bhwc = (1, height, width, channels)
shape_nhwc = (num_images_per_prompt, height, width, channels)
if controlnet_hint.shape in [shape_hwc, shape_bhwc, shape_nhwc]:
controlnet_hint = torch.from_numpy(controlnet_hint.copy())
controlnet_hint = controlnet_hint.to(
dtype=dtype, device=torch.device("cpu")
)
controlnet_hint /= 255.0
if controlnet_hint.shape != shape_nhwc:
controlnet_hint = controlnet_hint.repeat(
num_images_per_prompt, 1, 1, 1
)
controlnet_hint = controlnet_hint.permute(
0, 3, 1, 2
) # b h w c -> b c h w
return controlnet_hint
else:
raise ValueError(
f"Acceptble shape of `stencil` are any of ({width}, {channels}), "
+ f"({height}, {width}, {channels}), "
+ f"(1, {height}, {width}, {channels}) or "
+ f"({num_images_per_prompt}, {channels}, {height}, {width}) but is {controlnet_hint.shape}"
)
elif isinstance(controlnet_hint, Image.Image):
if controlnet_hint.size == (width, height):
controlnet_hint = controlnet_hint.convert(
"RGB"
) # make sure 3 channel RGB format
controlnet_hint = np.array(controlnet_hint) # to numpy
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
return controlnet_hint_shaping(
controlnet_hint, height, width, num_images_per_prompt
)
else:
raise ValueError(
f"Acceptable image size of `stencil` is ({width}, {height}) but is {controlnet_hint.size}"
)
else:
raise ValueError(
f"Acceptable type of `stencil` are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
)
def controlnet_hint_conversion(
image, use_stencil, height, width, dtype, num_images_per_prompt=1
):
controlnet_hint = None
match use_stencil:
case "canny":
print("Detecting edge with canny")
controlnet_hint = hint_canny(image)
case "openpose":
print("Detecting human pose")
controlnet_hint = hint_openpose(image)
case "scribble":
print("Working with scribble")
controlnet_hint = hint_scribble(image)
case _:
return None
controlnet_hint = controlnet_hint_shaping(
controlnet_hint, height, width, dtype, num_images_per_prompt
)
return controlnet_hint
stencil_to_model_id_map = {
"canny": "lllyasviel/control_v11p_sd15_canny",
"depth": "lllyasviel/control_v11p_sd15_depth",
"hed": "lllyasviel/sd-controlnet-hed",
"mlsd": "lllyasviel/control_v11p_sd15_mlsd",
"normal": "lllyasviel/control_v11p_sd15_normalbae",
"openpose": "lllyasviel/control_v11p_sd15_openpose",
"scribble": "lllyasviel/control_v11p_sd15_scribble",
"seg": "lllyasviel/control_v11p_sd15_seg",
}
def get_stencil_model_id(use_stencil):
if use_stencil in stencil_to_model_id_map:
return stencil_to_model_id_map[use_stencil]
return None
# Stencil 1. Canny
def hint_canny(
image: Image.Image,
low_threshold=100,
high_threshold=200,
):
with torch.no_grad():
input_image = np.array(image)
if not "canny" in stencil:
stencil["canny"] = CannyDetector()
detected_map = stencil["canny"](
input_image, low_threshold, high_threshold
)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 2. OpenPose.
def hint_openpose(
image: Image.Image,
):
with torch.no_grad():
input_image = np.array(image)
if not "openpose" in stencil:
stencil["openpose"] = OpenposeDetector()
detected_map, _ = stencil["openpose"](input_image)
detected_map = HWC3(detected_map)
return detected_map
# Stencil 3. Scribble.
def hint_scribble(image: Image.Image):
with torch.no_grad():
input_image = np.array(image)
detected_map = np.zeros_like(input_image, dtype=np.uint8)
detected_map[np.min(input_image, axis=2) < 127] = 255
return detected_map

View File

@@ -1,70 +1,39 @@
import os
import gc
import json
import re
from PIL import PngImagePlugin
from PIL import Image
from datetime import datetime as dt
from csv import DictWriter
from pathlib import Path
import numpy as np
from random import (
randint,
seed as seed_random,
getstate as random_getstate,
setstate as random_setstate,
)
import tempfile
import torch
from safetensors.torch import load_file
from random import randint
from shark.shark_inference import SharkInference
from shark.shark_importer import import_with_fx, save_mlir
from shark.shark_importer import import_with_fx
from shark.iree_utils.vulkan_utils import (
set_iree_vulkan_runtime_flags,
get_vulkan_target_triple,
get_iree_vulkan_runtime_flags,
)
from shark.iree_utils.metal_utils import get_metal_target_triple
from shark.iree_utils.gpu_utils import get_cuda_sm_cc, get_iree_rocm_args
from shark.iree_utils.gpu_utils import get_cuda_sm_cc
from apps.stable_diffusion.src.utils.stable_args import args
from apps.stable_diffusion.src.utils.resources import opt_flags
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
import sys
import sys, functools, operator
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt,
create_vae_diffusers_config,
convert_ldm_vae_checkpoint,
load_pipeline_from_original_stable_diffusion_ckpt,
)
import requests
from io import BytesIO
from omegaconf import OmegaConf
from cpuinfo import get_cpu_info
def get_extended_name(model_name):
device = args.device.split("://", 1)[0]
extended_name = "{}_{}".format(model_name, device)
return extended_name
def get_vmfb_path_name(model_name):
vmfb_path = os.path.join(os.getcwd(), model_name + ".vmfb")
return vmfb_path
def _load_vmfb(shark_module, vmfb_path, model, precision):
model = "vae" if "base_vae" in model or "vae_encode" in model else model
model = "unet" if "stencil" in model else model
model = "unet" if "unet512" in model else model
precision = "fp32" if "clip" in model else precision
extra_args = get_opt_flags(model, precision)
shark_module.load_module(vmfb_path, extra_args=extra_args)
return shark_module
device = (
args.device
if "://" not in args.device
else "-".join(args.device.split("://"))
)
extended_name = "{}_{}".format(model_name, device)
vmfb_path = os.path.join(os.getcwd(), extended_name + ".vmfb")
return [vmfb_path, extended_name]
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
vmfb_path = get_vmfb_path_name(model_name)
[vmfb_path, extended_name] = get_vmfb_path_name(model_name)
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
@@ -78,7 +47,7 @@ def _compile_module(shark_module, model_name, extra_args=[]):
)
)
path = shark_module.save_module(
os.getcwd(), model_name, extra_args, debug=args.compile_debug
os.getcwd(), extended_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
@@ -87,13 +56,12 @@ def _compile_module(shark_module, model_name, extra_args=[]):
# Downloads the model from shark_tank and returns the shark_module.
def get_shark_model(tank_url, model_name, extra_args=None):
if extra_args is None:
extra_args = []
def get_shark_model(tank_url, model_name, extra_args=[]):
from shark.parser import shark_args
# Set local shark_tank cache directory.
shark_args.local_tank_cache = args.local_tank_cache
from shark.shark_downloader import download_model
if "cuda" in args.device:
@@ -105,7 +73,7 @@ def get_shark_model(tank_url, model_name, extra_args=None):
frontend="torch",
)
shark_module = SharkInference(
mlir_model, device=args.device, mlir_dialect="tm_tensor"
mlir_model, device=args.device, mlir_dialect="linalg"
)
return _compile_module(shark_module, model_name, extra_args)
@@ -114,95 +82,49 @@ def get_shark_model(tank_url, model_name, extra_args=None):
def compile_through_fx(
model,
inputs,
extended_model_name,
model_name,
is_f16=False,
f16_input_mask=None,
use_tuned=False,
save_dir=tempfile.gettempdir(),
debug=False,
generate_vmfb=True,
extra_args=None,
base_model_id=None,
model_name=None,
precision=None,
return_mlir=False,
device=None,
extra_args=[],
):
if extra_args is None:
extra_args = []
if not return_mlir and model_name is not None:
vmfb_path = get_vmfb_path_name(extended_model_name)
if os.path.isfile(vmfb_path):
shark_module = SharkInference(mlir_module=None, device=args.device)
return (
_load_vmfb(shark_module, vmfb_path, model_name, precision),
None,
)
from shark.parser import shark_args
if "cuda" in args.device:
shark_args.enable_tf32 = True
(
mlir_module,
func_name,
) = import_with_fx(
model=model,
inputs=inputs,
is_f16=is_f16,
f16_input_mask=f16_input_mask,
debug=debug,
model_name=extended_model_name,
mlir_module, func_name = import_with_fx(
model, inputs, is_f16, f16_input_mask
)
if use_tuned:
if "vae" in extended_model_name.split("_")[0]:
if "vae" in model_name.split("_")[0]:
args.annotation_model = "vae"
if (
"unet" in model_name.split("_")[0]
or "unet_512" in model_name.split("_")[0]
):
args.annotation_model = "unet"
mlir_module = sd_model_annotation(
mlir_module, extended_model_name, base_model_id
)
mlir_module = sd_model_annotation(mlir_module, model_name)
if not os.path.isdir(save_dir):
save_dir = ""
mlir_module = save_mlir(
mlir_module,
model_name=extended_model_name,
dir=save_dir,
)
shark_module = SharkInference(
mlir_module,
device=args.device if device is None else device,
mlir_dialect="tm_tensor",
device=args.device,
mlir_dialect="linalg",
)
if generate_vmfb:
return (
_compile_module(shark_module, extended_model_name, extra_args),
mlir_module,
)
del mlir_module
gc.collect()
return _compile_module(shark_module, model_name, extra_args)
def set_iree_runtime_flags():
# TODO: This function should be device-agnostic and piped properly
# to general runtime driver init.
vulkan_runtime_flags = get_iree_vulkan_runtime_flags()
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--device_allocator=caching",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
vulkan_runtime_flags += [
f"--enable_rgp=true",
f"--vulkan_debug_utils=true",
]
if args.device_allocator_heap_key:
vulkan_runtime_flags += [
f"--device_allocator=caching:device_local={args.device_allocator_heap_key}",
]
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
@@ -225,15 +147,13 @@ def get_device_mapping(driver, key_combination=3):
specific devices for execution
Args:
driver (str): execution driver (vulkan, cuda, rocm, etc)
key_combination (int, optional): choice for mapping value for
device name.
key_combination (int, optional): choice for mapping value for device name.
1 : path
2 : name
3 : (name, path)
Defaults to 3.
Returns:
dict: map to possible device names user can input mapped to desired
combination of name/path.
dict: map to possible device names user can input mapped to desired combination of name/path.
"""
from shark.iree_utils._common import iree_device_map
@@ -247,7 +167,7 @@ def get_device_mapping(driver, key_combination=3):
if key_combination == 2:
return dev_dict["name"]
if key_combination == 3:
return dev_dict["name"], f"{driver}://{dev_dict['path']}"
return (dev_dict["name"], f"{driver}://{dev_dict['path']}")
# mapping driver name to default device (driver://0)
device_map[f"{driver}"] = get_output_value(device_list[0])
@@ -260,12 +180,10 @@ def get_device_mapping(driver, key_combination=3):
def map_device_to_name_path(device, key_combination=3):
"""Gives the appropriate device data (supported name/path) for user
selected execution device
"""Gives the appropriate device data (supported name/path) for user selected execution device
Args:
device (str): user
key_combination (int, optional): choice for mapping value for
device name.
key_combination (int, optional): choice for mapping value for device name.
1 : path
2 : name
3 : (name, path)
@@ -273,8 +191,7 @@ def map_device_to_name_path(device, key_combination=3):
Raises:
ValueError:
Returns:
str / tuple: returns the mapping str or tuple of mapping str for
the device depending on key_combination value
str / tuple: returns the mapping str or tuple of mapping str for the device depending on key_combination value
"""
driver = device.split("://")[0]
device_map = get_device_mapping(driver, key_combination)
@@ -297,21 +214,10 @@ def set_init_device_flags():
if triple is not None:
args.iree_vulkan_target_triple = triple
print(
f"Found device {device_name}. Using target triple "
f"{args.iree_vulkan_target_triple}."
f"Found device {device_name}. Using target triple {args.iree_vulkan_target_triple}."
)
elif "cuda" in args.device:
args.device = "cuda"
elif "metal" in args.device:
device_name, args.device = map_device_to_name_path(args.device)
if not args.iree_metal_target_platform:
triple = get_metal_target_triple(device_name)
if triple is not None:
args.iree_metal_target_platform = triple.split("-")[-1]
print(
f"Found device {device_name}. Using target triple "
f"{args.iree_metal_target_platform}."
)
elif "cpu" in args.device:
args.device = "cpu"
@@ -326,54 +232,24 @@ def set_init_device_flags():
args.max_length = 64
# Use tuned models in the case of fp16, vulkan rdna3 or cuda sm devices.
if args.ckpt_loc != "":
base_model_id = fetch_and_update_base_model_id(args.ckpt_loc)
else:
base_model_id = fetch_and_update_base_model_id(args.hf_model_id)
if base_model_id == "":
base_model_id = args.hf_model_id
if (
args.precision != "fp16"
or args.height not in [512, 768]
or (args.height == 512 and args.width not in [512, 768])
or (args.height == 768 and args.width not in [512, 768])
args.hf_model_id == "prompthero/openjourney"
or args.ckpt_loc != ""
or args.precision != "fp16"
or args.height != 512
or args.width != 512
or args.batch_size != 1
or ("vulkan" not in args.device and "cuda" not in args.device)
):
args.use_tuned = False
elif (
args.height != args.width
and "rdna2" in args.iree_vulkan_target_triple
and base_model_id
not in [
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
]
"vulkan" in args.device
and "rdna3" not in args.iree_vulkan_target_triple
):
args.use_tuned = False
elif base_model_id not in [
"Linaqruf/anything-v3.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"wavymulder/Analog-Diffusion",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-inpainting",
"stabilityai/stable-diffusion-2-inpainting",
]:
args.use_tuned = False
elif "vulkan" in args.device and not any(
x in args.iree_vulkan_target_triple for x in ["rdna2", "rdna3"]
):
args.use_tuned = False
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80", "sm_89"]:
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80"]:
args.use_tuned = False
elif args.use_base_vae and args.hf_model_id not in [
@@ -382,35 +258,8 @@ def set_init_device_flags():
]:
args.use_tuned = False
elif (
args.height == 768
and args.width == 768
and (
base_model_id
not in [
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
]
or "rdna" not in args.iree_vulkan_target_triple
)
):
args.use_tuned = False
elif "rdna2" in args.iree_vulkan_target_triple and (
base_model_id
not in [
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base",
"CompVis/stable-diffusion-v1-4",
]
):
args.use_tuned = False
if args.use_tuned:
print(
f"Using tuned models for {base_model_id}(fp16) on "
f"device {args.device}."
)
print(f"Using tuned models for {args.hf_model_id}/fp16/{args.device}.")
else:
print("Tuned models are currently not supported for this setting.")
@@ -432,27 +281,6 @@ def set_init_device_flags():
elif args.height != 512 or args.width != 512 or args.batch_size != 1:
args.import_mlir = True
elif args.use_tuned and args.hf_model_id in [
"dreamlike-art/dreamlike-diffusion-1.0",
"prompthero/openjourney",
"stabilityai/stable-diffusion-2-1",
]:
args.import_mlir = True
elif (
args.use_tuned
and "vulkan" in args.device
and "rdna2" in args.iree_vulkan_target_triple
):
args.import_mlir = True
elif (
args.use_tuned
and "cuda" in args.device
and get_cuda_sm_cc() == "sm_89"
):
args.import_mlir = True
# Utility to get list of devices available.
def get_available_devices():
@@ -467,45 +295,18 @@ def get_available_devices():
except:
print(f"{driver_name} devices are not available.")
else:
cpu_name = get_cpu_info()["brand_raw"]
for i, device in enumerate(device_list_dict):
device_name = (
cpu_name if device["name"] == "default" else device["name"]
)
if "local" in driver_name:
device_list.append(
f"{device_name} => {driver_name.replace('local', 'cpu')}"
)
else:
device_list.append(f"{device_name} => {driver_name}://{i}")
device_list.append(f"{device['name']} => {driver_name}://{i}")
return device_list
set_iree_runtime_flags()
available_devices = []
from shark.iree_utils.vulkan_utils import (
get_all_vulkan_devices,
)
vulkaninfo_list = get_all_vulkan_devices()
vulkan_devices = []
id = 0
for device in vulkaninfo_list:
vulkan_devices.append(f"{device.strip()} => vulkan://{id}")
id += 1
if id != 0:
print(f"vulkan devices are available.")
vulkan_devices = get_devices_by_name("vulkan")
available_devices.extend(vulkan_devices)
metal_devices = get_devices_by_name("metal")
available_devices.extend(metal_devices)
cuda_devices = get_devices_by_name("cuda")
available_devices.extend(cuda_devices)
rocm_devices = get_devices_by_name("rocm")
available_devices.extend(rocm_devices)
cpu_device = get_devices_by_name("cpu-sync")
available_devices.extend(cpu_device)
cpu_device = get_devices_by_name("cpu-task")
available_devices.extend(cpu_device)
available_devices.append("cpu")
return available_devices
@@ -525,15 +326,10 @@ def get_opt_flags(model, precision="fp16"):
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
if "rocm" in args.device:
rocm_args = get_iree_rocm_args()
iree_flags.extend(rocm_args)
print(iree_flags)
if args.iree_constant_folding == False:
iree_flags.append("--iree-opt-const-expr-hoisting=False")
iree_flags.append(
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807"
)
# Disable bindings fusion to work with moltenVK.
if sys.platform == "darwin":
iree_flags.append("-iree-stream-fuse-binding=false")
if "default_compilation_flags" in opt_flags[model][is_tuned][precision]:
iree_flags += opt_flags[model][is_tuned][precision][
@@ -559,22 +355,17 @@ def get_opt_flags(model, precision="fp16"):
return iree_flags
def get_path_stem(path):
path = Path(path)
return path.stem
def get_path_to_diffusers_checkpoint(custom_weights):
path = Path(custom_weights)
diffusers_path = path.parent.absolute()
diffusers_directory_name = os.path.join("diffusers", path.stem)
diffusers_directory_name = path.stem
complete_path_to_diffusers = diffusers_path / diffusers_directory_name
complete_path_to_diffusers.mkdir(parents=True, exist_ok=True)
path_to_diffusers = complete_path_to_diffusers.as_posix()
return path_to_diffusers
def preprocessCKPT(custom_weights, is_inpaint=False):
def preprocessCKPT(custom_weights):
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights)
if next(Path(path_to_diffusers).iterdir(), None):
print("Checkpoint already loaded at : ", path_to_diffusers)
@@ -587,155 +378,58 @@ def preprocessCKPT(custom_weights, is_inpaint=False):
from_safetensors = (
True if custom_weights.lower().endswith(".safetensors") else False
)
# EMA weights usually yield higher quality images for inference but
# non-EMA weights have been yielding better results in our case.
# TODO: Add an option `--ema` (`--no-ema`) for users to specify if
# they want to go for EMA weight extraction or not.
# EMA weights usually yield higher quality images for inference but non-EMA weights have
# been yielding better results in our case.
# TODO: Add an option `--ema` (`--no-ema`) for users to specify if they want to go for EMA
# weight extraction or not.
extract_ema = False
print(
"Loading diffusers' pipeline from original stable diffusion checkpoint"
)
num_in_channels = 9 if is_inpaint else 4
pipe = download_from_original_stable_diffusion_ckpt(
checkpoint_path_or_dict=custom_weights,
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path=custom_weights,
extract_ema=extract_ema,
from_safetensors=from_safetensors,
num_in_channels=num_in_channels,
)
pipe.save_pretrained(path_to_diffusers)
print("Loading complete")
def convert_original_vae(vae_checkpoint):
vae_state_dict = {}
for key in list(vae_checkpoint.keys()):
vae_state_dict["first_stage_model." + key] = vae_checkpoint.get(key)
config_url = (
"https://raw.githubusercontent.com/CompVis/stable-diffusion/"
"main/configs/stable-diffusion/v1-inference.yaml"
)
original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file)
vae_config = create_vae_diffusers_config(original_config, image_size=512)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
vae_state_dict, vae_config
)
return converted_vae_checkpoint
def load_vmfb(vmfb_path, model, precision):
model = "vae" if "base_vae" in model else model
precision = "fp32" if "clip" in model else precision
extra_args = get_opt_flags(model, precision)
shark_module = SharkInference(mlir_module=None, device=args.device)
shark_module.load_module(vmfb_path, extra_args=extra_args)
return shark_module
def processLoRA(model, use_lora, splitting_prefix):
state_dict = ""
if ".safetensors" in use_lora:
state_dict = load_file(use_lora)
# This utility returns vmfbs of Clip, Unet and Vae, in case all three of them
# are present; deletes them otherwise.
def fetch_or_delete_vmfbs(basic_model_name, use_base_vae, precision="fp32"):
model_name = ["clip", "unet", "base_vae" if use_base_vae else "vae"]
vmfb_path = [
get_vmfb_path_name(model + basic_model_name)[0] for model in model_name
]
vmfb_present = [os.path.isfile(vmfb) for vmfb in vmfb_path]
all_vmfb_present = functools.reduce(operator.__and__, vmfb_present)
compiled_models = [None] * 3
# We need to delete vmfbs only if some of the models were compiled.
if not all_vmfb_present:
for i in range(len(vmfb_path)):
if vmfb_present[i]:
os.remove(vmfb_path[i])
print("Deleted: ", vmfb_path[i])
else:
state_dict = torch.load(use_lora)
alpha = 0.75
visited = []
# directly update weight in model
process_unet = "te" not in splitting_prefix
for key in state_dict:
if ".alpha" in key or key in visited:
continue
curr_layer = model
if ("text" not in key and process_unet) or (
"text" in key and not process_unet
):
layer_infos = (
key.split(".")[0].split(splitting_prefix)[-1].split("_")
for i in range(len(vmfb_path)):
compiled_models[i] = load_vmfb(
vmfb_path[i], model_name[i], precision
)
else:
continue
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]]
.squeeze(3)
.squeeze(2)
.to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]]
.squeeze(3)
.squeeze(2)
.to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return model
def update_lora_weight_for_unet(unet, use_lora):
extensions = [".bin", ".safetensors", ".pt"]
if not any([extension in use_lora for extension in extensions]):
# We assume if it is a HF ID with standalone LoRA weights.
unet.load_attn_procs(use_lora)
return unet
main_file_name = get_path_stem(use_lora)
if ".bin" in use_lora:
main_file_name += ".bin"
elif ".safetensors" in use_lora:
main_file_name += ".safetensors"
elif ".pt" in use_lora:
main_file_name += ".pt"
else:
sys.exit("Only .bin and .safetensors format for LoRA is supported")
try:
dir_name = os.path.dirname(use_lora)
unet.load_attn_procs(dir_name, weight_name=main_file_name)
return unet
except:
return processLoRA(unet, use_lora, "lora_unet_")
def update_lora_weight(model, use_lora, model_name):
if "unet" in model_name:
return update_lora_weight_for_unet(model, use_lora)
try:
return processLoRA(model, use_lora, "lora_te_")
except:
return None
return compiled_models
# `fetch_and_update_base_model_id` is a resource utility function which
# helps to maintain mapping of the model to run with its base model.
# helps maintaining mapping of the model to run with its base model.
# If `base_model` is "", then this function tries to fetch the base model
# info for the `model_to_run`.
def fetch_and_update_base_model_id(model_to_run, base_model=""):
@@ -752,268 +446,16 @@ def fetch_and_update_base_model_id(model_to_run, base_model=""):
return base_model
elif base_model == "":
return base_model
# Update JSON data to contain an entry mapping model_to_run with
# base_model.
# Update JSON data to contain an entry mapping model_to_run with base_model.
json_data.update(data)
with open(variants_path, "w", encoding="utf-8") as jsonFile:
json.dump(json_data, jsonFile)
# Generate and return a new seed if the provided one is not in the
# supported range (including -1)
def sanitize_seed(seed: int | str):
seed = int(seed)
# Generate and return a new seed if the provided one is not in the supported range (including -1)
def sanitize_seed(seed):
uint32_info = np.iinfo(np.uint32)
uint32_min, uint32_max = uint32_info.min, uint32_info.max
if seed < uint32_min or seed >= uint32_max:
seed = randint(uint32_min, uint32_max)
return seed
# take a seed expression in an input format and convert it to
# a list of integers, where possible
def parse_seed_input(seed_input: str | list | int):
if isinstance(seed_input, str):
try:
seed_input = json.loads(seed_input)
except (ValueError, TypeError):
seed_input = None
if isinstance(seed_input, int):
return [seed_input]
if isinstance(seed_input, list) and all(
type(seed) is int for seed in seed_input
):
return seed_input
raise TypeError(
"Seed input must be an integer or an array of integers in JSON format"
)
# Generate a set of seeds from an input expression for batch_count batches,
# optionally using that input as the rng seed for any randomly generated seeds.
def batch_seeds(
seed_input: str | list | int, batch_count: int, repeatable=False
):
# turn the input into a list if possible
seeds = parse_seed_input(seed_input)
# slice or pad the list to be of batch_count length
seeds = seeds[:batch_count] + [-1] * (batch_count - len(seeds))
if repeatable:
# set seed for the rng based on what we have so far
saved_random_state = random_getstate()
if all(seed < 0 for seed in seeds):
seeds[0] = sanitize_seed(seeds[0])
seed_random(str(seeds))
# generate any seeds that are unspecified
seeds = [sanitize_seed(seed) for seed in seeds]
if repeatable:
# reset the rng back to normal
random_setstate(saved_random_state)
return seeds
# clear all the cached objects to recompile cleanly.
def clear_all():
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
from glob import glob
import shutil
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
for vmfb in vmfbs:
if os.path.exists(vmfb):
os.remove(vmfb)
# Temporary workaround of deleting yaml files to incorporate
# diffusers' pipeline.
# TODO: Remove this once we have better weight updation logic.
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
for yaml in inference_yaml:
if os.path.exists(yaml):
os.remove(yaml)
home = os.path.expanduser("~")
if os.name == "nt": # Windows
appdata = os.getenv("LOCALAPPDATA")
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
shutil.rmtree(
os.path.join(home, ".local/shark_tank"), ignore_errors=True
)
elif os.name == "unix":
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
if args.local_tank_cache != "":
shutil.rmtree(args.local_tank_cache)
def get_generated_imgs_path() -> Path:
return Path(
args.output_dir if args.output_dir else Path.cwd(), "generated_imgs"
)
def get_generated_imgs_todays_subdir() -> str:
return dt.now().strftime("%Y%m%d")
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed, extra_info=None):
if extra_info is None:
extra_info = {}
generated_imgs_path = Path(
get_generated_imgs_path(), get_generated_imgs_todays_subdir()
)
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
out_img_name = f"{dt.now().strftime('%H%M%S')}_{prompt_slice}_{img_seed}"
img_model = args.hf_model_id
if args.ckpt_loc:
img_model = Path(os.path.basename(args.ckpt_loc)).stem
img_vae = None
if args.custom_vae:
img_vae = Path(os.path.basename(args.custom_vae)).stem
img_lora = None
if args.use_lora:
img_lora = Path(os.path.basename(args.use_lora)).stem
if args.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if args.write_metadata_to_png:
pngInfo.add_text(
"parameters",
f"{args.prompts[0]}"
f"\nNegative prompt: {args.negative_prompts[0]}"
f"\nSteps: {args.steps},"
f"Sampler: {args.scheduler}, "
f"CFG scale: {args.guidance_scale}, "
f"Seed: {img_seed},"
f"Size: {args.width}x{args.height}, "
f"Model: {img_model}, "
f"VAE: {img_vae}, "
f"LoRA: {img_lora}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if args.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {args.output_img_format} is not "
f"supported yet. Image saved as png instead."
f"Supported formats: png / jpg"
)
# To be as low-impact as possible to the existing CSV format, we append
# "VAE" and "LORA" to the end. However, it does not fit the hierarchy of
# importance for each data point. Something to consider.
new_entry = {
"VARIANT": img_model,
"SCHEDULER": args.scheduler,
"PROMPT": args.prompts[0],
"NEG_PROMPT": args.negative_prompts[0],
"SEED": img_seed,
"CFG_SCALE": args.guidance_scale,
"PRECISION": args.precision,
"STEPS": args.steps,
"HEIGHT": args.height,
"WIDTH": args.width,
"MAX_LENGTH": args.max_length,
"OUTPUT": out_img_path,
"VAE": img_vae,
"LORA": img_lora,
}
new_entry.update(extra_info)
csv_mode = "a" if os.path.isfile(csv_path) else "w"
with open(csv_path, csv_mode, encoding="utf-8") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
if csv_mode == "w":
dictwriter_obj.writeheader()
dictwriter_obj.writerow(new_entry)
csv_obj.close()
if args.save_metadata_to_json:
del new_entry["OUTPUT"]
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
def get_generation_text_info(seeds, device):
text_output = f"prompt={args.prompts}"
text_output += f"\nnegative prompt={args.negative_prompts}"
text_output += (
f"\nmodel_id={args.hf_model_id}, " f"ckpt_loc={args.ckpt_loc}"
)
text_output += f"\nscheduler={args.scheduler}, " f"device={device}"
text_output += (
f"\nsteps={args.steps}, "
f"guidance_scale={args.guidance_scale}, "
f"seed={seeds}"
)
text_output += (
f"\nsize={args.height}x{args.width}, "
f"batch_count={args.batch_count}, "
f"batch_size={args.batch_size}, "
f"max_length={args.max_length}"
)
return text_output
# For stencil, the input image can be of any size, but we need to ensure that
# it conforms with our model constraints :-
# Both width and height should be in the range of [128, 768] and multiple of 8.
# This utility function performs the transformation on the input image while
# also maintaining the aspect ratio before sending it to the stencil pipeline.
def resize_stencil(image: Image.Image):
width, height = image.size
aspect_ratio = width / height
min_size = min(width, height)
if min_size < 128:
n_size = 128
if width == min_size:
width = n_size
height = n_size / aspect_ratio
else:
height = n_size
width = n_size * aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
min_size = min(width, height)
if min_size > 768:
n_size = 768
if width == min_size:
height = n_size
width = n_size * aspect_ratio
else:
width = n_size
height = n_size / aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
new_image = image.resize((n_width, n_height))
return new_image, n_width, n_height

View File

@@ -0,0 +1,70 @@
# Stable Diffusion optimized for AMD RDNA2/RDNA3 GPUs
Before you start, please be aware that this is beta software that relies on a special AMD driver. Like all StableDiffusion GUIs published so far, you need some technical expertise to set it up. We apologize in advance if you bump into issues. If that happens, please don't hesitate to ask our Discord community for help! Please be assured that we (Nod and AMD) are working hard to improve the user experience in coming months.
If it works well for you, please "star" the following GitHub projects... this is one of the best ways to help and spread the word!
* https://github.com/nod-ai/SHARK
* https://github.com/iree-org/iree
## Install this specific AMD Drivers (AMD latest may not have all the fixes).
### AMD KB Drivers for RDNA2 and RDNA3:
*AMD Software: Adrenalin Edition 22.11.1 for MLIR/IREE Driver Version 22.20.29.09 for Windows® 10 and Windows® 11 (Windows Driver Store Version 31.0.12029.9003)*
First, for RDNA2 users, download this special driver in a folder of your choice. We recommend you keep the installation files around, since you may need to re-install it later, if Windows Update decides to overwrite it:
https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mlir-iree
For RDNA3, the latest driver 23.1.2 supports MLIR/IREE as well: https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-1-2-kb
KNOWN ISSUES with this special AMD driver:
* `Windows Update` may (depending how it's configured) automatically install a new official AMD driver that overwrites this IREE-specific driver. If Stable Diffusion used to work, then a few days later, it slows down a lot or produces incorrect results (e.g. black images), this may be the cause. To fix this problem, please check the installed driver version, and re-install the special driver if needed. (TODO: document how to prevent this `Windows Update` behavior!)
* Some people using this special driver experience mouse pointer accuracy issues, especially if using a larger-than-default mouse pointer. The clicked point isn't centered properly. One possible work-around is to reset the pointer size to "1" in "Change pointer size and color".
## Installation
Download the latest Windows SHARK SD binary [492 here](https://github.com/nod-ai/SHARK/releases/download/20230203.492/shark_sd_20230203_492.exe) in a folder of your choice. If you want nighly builds, you can look for them on the GitHub releases page.
Notes:
* We recommend that you download this EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files. Those contain Vulkan dispatches compiled from MLIR which can be outdated if you run a new EXE from the same folder. You can use `--clear_all` flag once to clean all the old files.
* If you recently updated the driver or this binary (EXE file), we recommend you:
* clear all the local artifacts with `--clear_all` OR
* clear the Vulkan shader cache: For Windows users this can be done by clearing the contents of `C:\Users\%username%\AppData\Local\AMD\VkCache\`. On Linux the same cache is typically located at `~/.cache/AMD/VkCache/`.
* clear the `huggingface` cache. In Windows, this is `C:\Users\%username%\.cache\huggingface`.
## Running
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE to start the web browser)
* The first run may take about 10-15 minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
* If successful, you will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/?__theme=dark.
## Stopping
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment. The application should stop.
* Please make sure to do the above step before you attempt to update the EXE to a new version.
# Results
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
Here are some samples generated:
![tajmahal, snow, sunflowers, oil on canvas_0](https://user-images.githubusercontent.com/74956/204934186-141f7e43-6eb2-4e89-a99c-4704d20444b3.jpg)
![a photo of a crab playing a trumpet](https://user-images.githubusercontent.com/74956/204933258-252e7240-8548-45f7-8253-97647d38313d.jpg)
The output on a 7900XTX would like:
```shell
Stats for run 0:
Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590
Total image generation time: 2.5788655281066895sec
```
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.

View File

@@ -1,51 +0,0 @@
# -*- mode: python ; coding: utf-8 -*-
from apps.stable_diffusion.shark_studio_imports import pathex, datas, hiddenimports
binaries = []
block_cipher = None
a = Analysis(
['web\\index.py'],
pathex=pathex,
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
[],
exclude_binaries=True,
name='studio_bundle',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=True,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
)
coll = COLLECT(
exe,
a.binaries,
a.zipfiles,
a.datas,
strip=False,
upx=True,
upx_exclude=[],
name='studio_bundle',
)

View File

@@ -0,0 +1,209 @@
/* Overwrite the Gradio default theme with their .dark theme declarations */
:root {
--color-focus-primary: var(--color-grey-700);
--color-focus-secondary: var(--color-grey-600);
--color-focus-ring: rgb(55 65 81);
--color-background-primary: var(--color-grey-950);
--color-background-secondary: var(--color-grey-900);
--color-background-tertiary: var(--color-grey-800);
--color-text-body: var(--color-grey-100);
--color-text-label: var(--color-grey-200);
--color-text-placeholder: var(--color-grey);
--color-text-subdued: var(--color-grey-400);
--color-text-link-base: var(--color-blue-500);
--color-text-link-hover: var(--color-blue-400);
--color-text-link-visited: var(--color-blue-600);
--color-text-link-active: var(--color-blue-500);
--color-text-code-background: var(--color-grey-800);
--color-text-code-border: color.border-primary;
--color-border-primary: var(--color-grey-700);
--color-border-secondary: var(--color-grey-600);
--color-border-highlight: var(--color-accent-base);
--color-accent-base: var(--color-orange-500);
--color-accent-light: var(--color-orange-300);
--color-accent-dark: var(--color-orange-700);
--color-functional-error-base: var(--color-red-400);
--color-functional-error-subdued: var(--color-red-300);
--color-functional-error-background: var(--color-background-primary);
--color-functional-info-base: var(--color-yellow);
--color-functional-info-subdued: var(--color-yellow-300);
--color-functional-success-base: var(--color-green);
--color-functional-success-subdued: var(--color-green-300);
--shadow-spread: 2px;
--api-background: linear-gradient(to bottom, rgba(255, 216, 180, .05), transparent);
--api-pill-background: var(--color-orange-400);
--api-pill-border: var(--color-orange-600);
--api-pill-text: var(--color-orange-900);
--block-border-color: var(--color-border-primary);
--block-background: var(--color-background-tertiary);
--uploadable-border-color-hover: var(--color-border-primary);
--uploadable-border-color-loaded: var(--color-functional-success);
--uploadable-text-color: var(--color-text-subdued);
--block_label-border-color: var(--color-border-primary);
--block_label-icon-color: var(--color-text-label);
--block_label-shadow: var(--shadow-drop);
--block_label-background: var(--color-background-secondary);
--icon_button-icon-color-base: var(--color-text-label);
--icon_button-icon-color-hover: var(--color-text-label);
--icon_button-background-base: var(--color-background-primary);
--icon_button-background-hover: var(--color-background-primary);
--icon_button-border-color-base: var(--color-background-primary);
--icon_button-border-color-hover: var(--color-border-secondary);
--input-text-color: var(--color-text-body);
--input-border-color-base: var(--color-border-primary);
--input-border-color-hover: var(--color-border-primary);
--input-border-color-focus: var(--color-border-primary);
--input-background-base: var(--color-background-tertiary);
--input-background-hover: var(--color-background-tertiary);
--input-background-focus: var(--color-background-tertiary);
--input-shadow: var(--shadow-inset);
--checkbox-border-color-base: var(--color-border-primary);
--checkbox-border-color-hover: var(--color-focus-primary);
--checkbox-border-color-focus: var(--color-blue-500);
--checkbox-background-base: var(--color-background-primary);
--checkbox-background-hover: var(--color-background-primary);
--checkbox-background-focus: var(--color-background-primary);
--checkbox-background-selected: var(--color-blue-600);
--checkbox-label-border-color-base: var(--color-border-primary);
--checkbox-label-border-color-hover: var(--color-border-primary);
--checkbox-label-border-color-focus: var(--color-border-secondary);
--checkbox-label-background-base: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--checkbox-label-background-hover: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--checkbox-label-background-focus: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
--form-seperator-color: var(--color-border-primary);
--button-primary-border-color-base: var(--color-orange-600);
--button-primary-border-color-hover: var(--color-orange-600);
--button-primary-border-color-focus: var(--color-orange-600);
--button-primary-text-color-base: white;
--button-primary-text-color-hover: white;
--button-primary-text-color-focus: white;
--button-primary-background-base: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-700));
--button-primary-background-hover: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
--button-primary-background-focus: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
--button-secondary-border-color-base: var(--color-grey-600);
--button-secondary-border-color-hover: var(--color-grey-600);
--button-secondary-border-color-focus: var(--color-grey-600);
--button-secondary-text-color-base: white;
--button-secondary-text-color-hover: white;
--button-secondary-text-color-focus: white;
--button-secondary-background-base: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-700));
--button-secondary-background-hover: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
--button-secondary-background-focus: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
--button-cancel-border-color-base: var(--color-red-600);
--button-cancel-border-color-hover: var(--color-red-600);
--button-cancel-border-color-focus: var(--color-red-600);
--button-cancel-text-color-base: white;
--button-cancel-text-color-hover: white;
--button-cancel-text-color-focus: white;
--button-cancel-background-base: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-700));
--button-cancel-background-focus: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
--button-cancel-background-hover: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
--button-plain-border-color-base: var(--color-grey-600);
--button-plain-border-color-hover: var(--color-grey-500);
--button-plain-border-color-focus: var(--color-grey-500);
--button-plain-text-color-base: var(--color-text-body);
--button-plain-text-color-hover: var(--color-text-body);
--button-plain-text-color-focus: var(--color-text-body);
--button-plain-background-base: var(--color-grey-700);
--button-plain-background-hover: var(--color-grey-700);
--button-plain-background-focus: var(--color-grey-700);
--gallery-label-background-base: var(--color-grey-50);
--gallery-label-background-hover: var(--color-grey-50);
--gallery-label-border-color-base: var(--color-border-primary);
--gallery-label-border-color-hover: var(--color-border-primary);
--gallery-thumb-background-base: var(--color-grey-900);
--gallery-thumb-background-hover: var(--color-grey-900);
--gallery-thumb-border-color-base: var(--color-border-primary);
--gallery-thumb-border-color-hover: var(--color-accent-base);
--gallery-thumb-border-color-focus: var(--color-blue-500);
--gallery-thumb-border-color-selected: var(--color-accent-base);
--chatbot-border-border-color-base: transparent;
--chatbot-border-border-color-latest: transparent;
--chatbot-user-background-base: ;
--chatbot-user-background-latest: ;
--chatbot-user-text-color-base: white;
--chatbot-user-text-color-latest: white;
--chatbot-bot-background-base: ;
--chatbot-bot-background-latest: ;
--chatbot-bot-text-color-base: white;
--chatbot-bot-text-color-latest: white;
--label-gradient-from: var(--color-orange-400);
--label-gradient-to: var(--color-orange-600);
--table-odd-background: var(--color-grey-900);
--table-even-background: var(--color-grey-950);
--table-background-edit: transparent;
--dataset-gallery-background-base: var(--color-background-primary);
--dataset-gallery-background-hover: var(--color-grey-800);
--dataset-dataframe-border-base: var(--color-border-primary);
--dataset-dataframe-border-hover: var(--color-border-secondary);
--dataset-table-background-base: transparent;
--dataset-table-background-hover: var(--color-grey-700);
--dataset-table-border-base: var(--color-grey-800);
--dataset-table-border-hover: var(--color-grey-800);
}
/* SHARK theme customization */
.gradio-container {
background-color: var(--color-background-primary);
}
.container {
background-color: black !important;
padding-top: 20px !important;
}
#ui_title {
padding: 10px !important;
}
#top_logo {
background-color: transparent;
border-radius: 0 !important;
border: 0;
}
#demo_title {
background-color: var(--color-background-primary);
border-radius: 0 !important;
border: 0;
padding-top: 15px;
padding-bottom: 0px;
width: 350px !important;
}
#demo_title_outer {
border-radius: 0;
}
#prompt_box_outer div:first-child {
border-radius: 0 !important
}
#prompt_box textarea {
background-color: var(--color-background-primary) !important;
}
#prompt_examples {
margin: 0 !important;
}
#prompt_examples svg {
display: none !important;
}
#ui_body {
background-color: var(--color-background-secondary) !important;
padding: 10px !important;
border-radius: 0.5em !important;
}
#img_result+div {
display: none !important;
}
footer {
display: none !important;
}

Some files were not shown because too many files have changed in this diff Show More