Compare commits

...

290 Commits

Author SHA1 Message Date
github-actions[bot]
2a1e8dcf12 chore(release): Update version to v1.4.341 2025-12-11 10:49:47 +00:00
Kayvan Sylvan
b6fd81dd16 Merge pull request #1860 from ksylvan/kayvan/fix-for-setup-reset-required-value-now-does-not-show-validation-error
fix: allow resetting required settings without validation errors
2025-12-11 18:47:16 +08:00
Kayvan Sylvan
5b723c9e92 fix: allow resetting required settings without validation errors
CHANGES
- update `Ask` to detect reset command and bypass validation
- refactor `OnAnswer` to support new `isReset` parameter logic
- invoke `ConfigureCustom` in `Setup` to avoid redundant re-validation
- add unit tests ensuring required fields can be reset
- add incoming 1860 changelog entry
2025-12-11 02:39:35 -08:00
github-actions[bot]
93f8978085 chore(release): Update version to v1.4.340 2025-12-08 00:36:16 +00:00
Kayvan Sylvan
4d91bf837f Merge pull request #1856 from ksylvan/kayvan/claude-haiku-4-5
Add support for new ClaudeHaiku 4.5 models
2025-12-08 08:33:51 +08:00
Changelog Bot
cb29a0d606 chore: incoming 1856 changelog entry 2025-12-08 08:30:17 +08:00
Kayvan Sylvan
b1eb7a82d9 feat: add support for new ClaudeHaiku models in client
### CHANGES

- Add `ModelClaudeHaiku4_5` to supported models
- Add `ModelClaudeHaiku4_5_20251001` to supported models
2025-12-08 08:21:18 +08:00
github-actions[bot]
bc8f5add00 chore(release): Update version to v1.4.339 2025-12-08 00:10:02 +00:00
Kayvan Sylvan
c3f874f985 Merge pull request #1855 from ksylvan/kayvan/ollama_image_handling
feat: add image attachment support for Ollama vision models
2025-12-08 08:07:33 +08:00
Changelog Bot
922df52d0c chore: incoming 1855 changelog entry 2025-12-08 08:00:59 +08:00
Kayvan Sylvan
4badfecadb feat: add multi-modal image support to Ollama client
## CHANGES

- Add base64 and io imports for image handling
- Store httpClient separately in Client struct for reuse
- Convert createChatRequest to return error for validation
- Implement convertMessage to handle multi-content chat messages
- Add loadImageBytes to fetch images from URLs
- Support base64 data URLs for inline images
- Handle HTTP image URLs with context propagation
- Replace debug print with proper debuglog usage
2025-12-08 07:48:36 +08:00
github-actions[bot]
83139a64d5 chore(release): Update version to v1.4.338 2025-12-04 13:34:00 +00:00
Kayvan Sylvan
78fd836532 Merge pull request #1852 from ksylvan/kayvan/add-abacus-provider-for-chatllm-models
Add Abacus vendor for ChatLLM models with static model list
2025-12-04 21:31:34 +08:00
Kayvan Sylvan
894459ddec feat: add static model support and register Abacus provider
CHANGES

- feat: detect modelsURL starting with 'static:' and route
- feat: implement getStaticModels returning curated Abacus model list
- feat: register Abacus provider with ModelsURL 'static:abacus'
- chore: add fmt import for error formatting in provider code
- test: extend provider tests to include Abacus existence
- chore: update .vscode settings add 'kimi' and 'qwen' contributors
2025-12-04 21:22:57 +08:00
github-actions[bot]
920c22c889 chore(release): Update version to v1.4.337 2025-12-04 04:21:35 +00:00
Kayvan Sylvan
a0f931feb0 Merge pull request #1851 from ksylvan/kayvan/add-z-ai-vendor-support
Add Z AI provider and glm model support
2025-12-04 12:19:13 +08:00
Kayvan Sylvan
4b080fd6dd feat: add Z AI provider and glm model support
- Add Z AI provider configuration to ProviderMap
- Include BaseURL for Z AI API endpoint
- Add test case for Z AI provider existence
- Add glm to OpenAI model prefixes list
- Reorder gpt-5 in model prefixes list
- Support new Z AI provider in OpenAI compatible plugins
2025-12-04 12:06:55 +08:00
github-actions[bot]
298abecb3f chore(release): Update version to v1.4.336 2025-12-01 11:37:19 +00:00
Kayvan Sylvan
e2d4aab775 Merge pull request #1848 from zeddy303/fix/localStorage-ssr-issue 2025-12-01 19:34:45 +08:00
Changelog Bot
17cac13584 chore: incoming 1848 changelog entry 2025-12-01 18:41:32 +08:00
zeddy303
e4a004cf88 Fix localStorage SSR error in favorites-store
Use SvelteKit's browser constant instead of typeof localStorage check
to properly handle server-side rendering. Prevents 'localStorage.getItem
is not a function' error when running dev server.
2025-11-29 13:06:54 -07:00
github-actions[bot]
fcb10feadd chore(release): Update version to v1.4.335 2025-11-28 02:17:17 +00:00
Kayvan Sylvan
9560537730 Merge pull request #1847 from ksylvan/kayvan/fix-ollama-model-raw-mode
Improve model name matching for NeedsRaw in Ollama plugin
2025-11-27 18:14:47 -08:00
Kayvan Sylvan
42fabab352 feat: improve model name matching in Ollama plugin
- Add "conceptmap" to VSCode dictionary settings
- Rename `ollamaPrefixes` variable to `ollamaSearchStrings`
- Replace `HasPrefix` with `Contains` for model matching
- Enable substring matching for Ollama model names
- chore: incoming 1847 changelog entry
2025-11-28 10:00:08 +08:00
Kayvan Sylvan
895ca1ad99 Merge branch 'danielmiessler:main' into main 2025-11-26 05:52:48 -08:00
Kayvan Sylvan
2ef7db8bb2 docs: Fix typo in README 2025-11-26 21:51:57 +08:00
github-actions[bot]
8491354a30 chore(release): Update version to v1.4.334 2025-11-26 13:40:22 +00:00
Kayvan Sylvan
1fd5b0d27b Merge pull request #1845 from ksylvan/kayvan/add-claude-opus-4-5-support
Add Claude Opus 4.5 Support
2025-11-26 05:38:02 -08:00
Kayvan Sylvan
7eb67ee82d chore: update Go dependencies and add new Claude Opus 4.5 model support
- Upgrade anthropic-sdk-go from v1.16.0 to v1.19.0
- Bump golang.org/x/text from v0.28.0 to v0.31.0
- Update golang.org/x/crypto from v0.41.0 to v0.45.0
- Upgrade golang.org/x/net from v0.43.0 to v0.47.0
- Bump golang.org/x/sync from v0.16.0 to v0.18.0
- Update golang.org/x/sys from v0.35.0 to v0.38.0
- Add Claude Opus 4.5 model variants to Anthropic client
- chore: incoming 1845 changelog entry
2025-11-26 21:34:54 +08:00
github-actions[bot]
e3df1e1c0a chore(release): Update version to v1.4.333 2025-11-25 22:49:42 +00:00
Kayvan Sylvan
6e939cfff4 Merge pull request #1844 from ksylvan/kayvan/concall-summary-pattern-followup
Correct directory name from `concall_summery` to `concall_summary`
2025-11-25 14:47:21 -08:00
Changelog Bot
9e2a35e150 chore: incoming 1844 changelog entry 2025-11-26 06:43:18 +08:00
Kayvan Sylvan
a3a1e616e7 fix: correct directory name from concall_summery to concall_summary
- Rename pattern directory to fix spelling error
- Add new pattern to explanations documentation
- Update suggest_pattern system with concall_summary references
- Include concall_summary in ANALYSIS category mappings
- Add concall_summary to BUSINESS category listings
- Append concall_summary to SUMMARIZE category references
- Update pattern descriptions JSON with new entry
- Generate pattern extracts for concall_summary functionality
- Add user documentation for earnings call analysis
- Include changelog entry for PR #1833
2025-11-26 06:31:32 +08:00
Kayvan Sylvan
98eddaf5e8 Merge pull request #1833 from junaid18183/main
Added concall_summery
2025-11-25 03:30:24 -08:00
github-actions[bot]
0ae20a8ccd chore(release): Update version to v1.4.332 2025-11-24 14:13:17 +00:00
Kayvan Sylvan
0fbc86be17 Merge pull request #1843 from ksylvan/kayvan/fix-vendor-listing-and-case-sensitivity
Implement case-insensitive vendor and model name matching
2025-11-24 06:10:45 -08:00
Changelog Bot
5b1a4ab306 chore: incoming 1843 changelog entry 2025-11-24 21:48:53 +08:00
Kayvan Sylvan
817e75853e fix: implement case-insensitive vendor and model name matching across the application
## CHANGES

- Add case-insensitive vendor lookup in VendorsManager
- Implement model name normalization in GetChatter method
- Add FilterByVendor method with case-insensitive matching
- Add FindModelNameCaseInsensitive helper for model queries
- Update group/item comparison to use case-insensitive checks
- Store vendors with lowercase keys internally
- Add comprehensive tests for case-insensitive functionality
- Fix vendor filtering for model listing command
2025-11-24 21:36:17 +08:00
github-actions[bot]
659d59028d chore(release): Update version to v1.4.331 2025-11-23 08:15:40 +00:00
Kayvan Sylvan
abbd7d9c53 Merge pull request #1839 from ksylvan/kayvan/github-model-support-and-openai-update
Add GitHub Models Provider and Refactor Fetching Fallback Logic
2025-11-23 00:13:22 -08:00
Kayvan Sylvan
3c728cfacb feat: add GitHub Models provider and refactor model fetching with direct API fallback
- Add GitHub Models to supported OpenAI-compatible providers list
- Implement direct HTTP fallback for non-standard model responses
- Centralize model fetching logic in openai package
- Upgrade openai-go SDK dependency from v1.8.2 to v1.12.0
- Remove redundant model fetching code from openai_compatible package
- Add comprehensive GitHub Models setup documentation (700+ lines)
- Support custom models URL endpoint per provider configuration
- Add unit tests for direct model fetching functionality
- Update internationalization strings for model fetching errors
- Add VSCode dictionary entries for "azureml" and "Jamba"
2025-11-23 15:02:33 +07:00
github-actions[bot]
67778a6159 chore(release): Update version to v1.4.330 2025-11-23 02:45:33 +00:00
Kayvan Sylvan
38e7e31ae1 Merge pull request #1840 from ZackaryWelch/patch-1
Replace deprecated bash function in completion script
2025-11-22 18:42:34 -08:00
Changelog Bot
95e60809fa chore: incoming 1840 changelog entry 2025-11-23 09:40:14 +07:00
Zackary Welch
a09686820d Replace deprecated bash function in completion script
Use `_comp_get_words` if available, which was added in bash 4.12 at the same time `__get_comp_words_by_ref` was deprecated. Latest bash (5.2) has removed  `__get_comp_words_by_ref`, breaking the completion script entirely on Fedora 42+ and other up to date distros.
2025-11-22 09:04:57 -05:00
github-actions[bot]
826ac586ee chore(release): Update version to v1.4.329 2025-11-20 23:24:47 +00:00
Kayvan Sylvan
ec14e42abf Merge pull request #1838 from ksylvan/kayvan/add-internationalized-error-messages-to-youtube-plugin
refactor: implement i18n support for YouTube tool error messages
2025-11-20 15:22:23 -08:00
Kayvan Sylvan
6708c7481b refactor: implement i18n support for YouTube tool error messages
CHANGES
- replace hardcoded error strings with i18n translation calls
- add localization keys for YouTube errors to all locale files
- introduce `extractAndValidateVideoId` helper to reduce code duplication
- update timestamp parsing logic to handle localized error formats
- standardize error handling in `yt-dlp` execution with i18n
- ensure rate limit and bot detection warnings use localized strings
2025-11-21 06:14:18 +07:00
github-actions[bot]
75e11724b4 chore(release): Update version to v1.4.328 2025-11-18 15:17:49 +00:00
Kayvan Sylvan
2dd79a66d7 Merge pull request #1836 from ksylvan/kayvan/update-raw-flag-help-message
docs: clarify `--raw` flag behavior for OpenAI and Anthropic providers
2025-11-18 07:15:01 -08:00
Kayvan Sylvan
b7fa02d91e docs: clarify --raw flag behavior for OpenAI and Anthropic providers
- Update `--raw` flag description across all documentation files
- Clarify flag only affects OpenAI-compatible providers behavior
- Document Anthropic models use smart parameter selection
- Remove outdated reference to system/user role changes
- Update help text in CLI flags definition
- Translate updated description to all supported locales
- Update shell completion descriptions for zsh and fish
- chore: incoming 1836 changelog entry
2025-11-18 04:27:38 -08:00
Juned Memon
15c8a84b25 Added concall_summery 2025-11-17 15:53:25 +05:30
github-actions[bot]
63804d3d52 chore(release): Update version to v1.4.327 2025-11-16 21:12:09 +00:00
Kayvan Sylvan
56f105971f Merge pull request #1832 from ksylvan/kayvan/fix-gemini-panic
Improve channel management in Gemini provider
2025-11-16 13:08:59 -08:00
Kayvan Sylvan
ca96c9c629 fix: improve channel management in Gemini streaming method
- Add deferred channel close at function start
- Return error immediately instead of breaking loop
- Remove redundant channel close statements from loop
- Ensure channel closes on all exit paths consistently
- chore: incoming 1832 changelog entry
2025-11-16 13:06:09 -08:00
Kayvan Sylvan
efb9261b89 Merge pull request #1831 from ksylvan/kayvan/remove-youtube-rss-pattern
Remove `get_youtube_rss` pattern
2025-11-16 12:41:12 -08:00
Kayvan Sylvan
118abdc368 chore: remove get_youtube_rss pattern from multiple files
- Remove `get_youtube_rss` from `pattern_explanations.md`
- Delete `get_youtube_rss` entry in `pattern_descriptions.json`
- Delete `get_youtube_rss` entry in `pattern_extracts.json`
- Remove `get_youtube_rss` from `suggest_pattern/system.md`
- Remove `get_youtube_rss` from `suggest_pattern/user.md`
- chore: incoming 1831 changelog entry
2025-11-16 12:28:09 -08:00
github-actions[bot]
278d488dbf chore(release): Update version to v1.4.326 2025-11-16 19:36:17 +00:00
Kayvan Sylvan
d590c0dd15 Merge pull request #1830 from ksylvan/kayvan/newline-in-output-fix
Ensure final newline in model generated outputs
2025-11-16 11:33:47 -08:00
Kayvan Sylvan
c936f8e77b feat: ensure newline in CreateOutputFile and improve tests
- Add newline to `CreateOutputFile` if missing
- Use `t.Cleanup` for file removal in tests
- Add test for message with trailing newline
- Introduce `printedStream` flag in `Chatter.Send`
- Print newline if stream printed without trailing newline
2025-11-16 11:15:47 -08:00
Kayvan Sylvan
7dacc07f03 chore: update README with recent features and extensions
### CHANGES

- Add v1.4.322 release with concept maps
- Introduce WELLNESS category with psychological analysis
- Upgrade to Claude Sonnet 4.5
- Add Portuguese language variants with BCP 47 support
- Migrate to `openai-go/azure` SDK for Azure
- Add Extensions section to README navigation
2025-11-15 09:34:27 -08:00
github-actions[bot]
4e6a2736ad chore(release): Update version to v1.4.325 2025-11-15 05:25:51 +00:00
Kayvan Sylvan
14c95d7bc1 Merge pull request #1828 from ksylvan/kayvan/fix-empty-input-bug
Fix empty string detection in chatter and AI clients
2025-11-14 21:22:53 -08:00
Changelog Bot
2e7b664e1e chore: incoming 1828 changelog entry 2025-11-14 21:20:52 -08:00
Kayvan Sylvan
729d092754 chore: improve message handling by trimming whitespace in content checks
### CHANGES

- Remove default space in `BuildSession` message content
- Trim whitespace in `anthropic` message content check
- Trim whitespace in `gemini` message content check
2025-11-14 21:13:08 -08:00
github-actions[bot]
5b7017d67b chore(release): Update version to v1.4.324 2025-11-14 07:49:26 +00:00
Kayvan Sylvan
6f5b89a0df Merge pull request #1827 from ksylvan/kayvan/fix-youtube-key-not-optional
Make YouTube API key optional in setup
2025-11-13 23:46:45 -08:00
Kayvan Sylvan
d02a55ee01 feat: make YouTube API key optional in setup
- Change API key setup question to optional
- Add test for optional API key behavior
- Ensure plugin configuration without API key
- chore: incoming 1827 changelog entry
2025-11-13 23:44:41 -08:00
github-actions[bot]
c498085feb chore(release): Update version to v1.4.323 2025-11-12 01:24:07 +00:00
Kayvan Sylvan
4996832e64 Merge pull request #1802 from nickarino/input-extension-bug-fix
fix: improve template extension handling for {{input}} and add examples
2025-11-11 17:21:13 -08:00
Kayvan Sylvan
79d04b2ada add byid to spell list 2025-11-11 17:18:21 -08:00
Kayvan Sylvan
c7206c0a01 docs: minor formatting fixes 2025-11-11 17:16:55 -08:00
Kayvan Sylvan
4aceb64284 chore: incoming 1823 changelog entry 2025-11-11 11:46:42 -08:00
Kayvan Sylvan
4864a63d35 Merge pull request #1823 from ksylvan/kayvan/add-missing-pattern-explanations
Add missing patterns and renumber pattern explanations list
2025-11-10 14:10:07 -08:00
Kayvan Sylvan
8e18753c0f docs: add new patterns and renumber pattern explanations list
# CHANGES

- Add `apply_ul_tags` pattern for content categorization
- Add `extract_mcp_servers` pattern for MCP server identification
- Add `generate_code_rules` pattern for AI coding guardrails
- Add `t_check_dunning_kruger` pattern for competence assessment
- Renumber all patterns from 37-226 to 37-230
- Insert new patterns at positions 37, 129, 153, 203
2025-11-10 14:01:29 -08:00
github-actions[bot]
43365aaea0 chore(release): Update version to v1.4.322 2025-11-05 01:56:14 +00:00
Kayvan Sylvan
7619189921 Merge pull request #1816 from ksylvan/kayvan/remove-deprecated-anthropic-models
Update `anthropic-sdk-go` to v1.16.0 and update models
2025-11-04 17:54:03 -08:00
Kayvan Sylvan
73dec534c4 feat: update anthropic-sdk-go to v1.16.0 and update models
- Upgrade `anthropic-sdk-go` to version 1.16.0
- Remove outdated model `ModelClaude3_5SonnetLatest`
- Add new model `ModelClaudeSonnet4_5_20250929`
- Include `ModelClaudeSonnet4_5_20250929` in `modelBetas` map
2025-11-04 17:47:15 -08:00
Kayvan Sylvan
4d40ef5f83 Merge pull request #1814 from ksylvan/kayvan/create-concept-map
Add Concept Map in html
2025-11-03 13:11:29 -08:00
Kayvan Sylvan
a149bd19d5 feat: add create_conceptmap for interactive HTML concept maps
### CHANGES

- Add `create_conceptmap` for HTML concept maps using Vis.js
- Introduce `fix_typos` for text proofreading and corrections
- Implement `model_as_sherlock_freud` for psychological modeling
- Add `predict_person_actions` for behavior prediction
- Include `recommend_yoga_practice` for personalized yoga guidance
- Credit pattern contribution to @FELIPEGUEDESBR
2025-11-03 13:10:05 -08:00
Kayvan Sylvan
d0d3268eaa Merge branch 'danielmiessler:main' into main 2025-11-02 21:26:51 -08:00
github-actions[bot]
da3e7c2510 chore(release): Update version to v1.4.321 2025-11-03 05:26:46 +00:00
Kayvan Sylvan
f9d23a2ec6 Merge branch 'danielmiessler:main' into main 2025-11-02 21:25:17 -08:00
Kayvan Sylvan
31e99c5958 Merge pull request #1803 from danielmiessler/dependabot/npm_and_yarn/web/npm_and_yarn-d50880170f
chore(deps-dev): bump vite from 5.4.20 to 5.4.21 in /web in the npm_and_yarn group across 1 directory
2025-11-02 21:24:34 -08:00
Changelog Bot
10179b3e86 chore: incoming 1803 changelog entry 2025-11-02 21:19:18 -08:00
Kayvan Sylvan
eefb3c7886 chore: added fix_typos, model_as_sherlock_freud, and predict_person_actions methods
### CHANGES

- Add `fix_typos` for proofreading and correcting errors
- Introduce `model_as_sherlock_freud` for psychological modeling
- Implement `predict_person_actions` for behavioral response predictions
- Add `recommend_yoga_practice` for personalized yoga guidance
- Include `fix_typos` method for text correction
- Add `model_as_sherlock_freud` for behavior analysis
- Introduce `predict_person_actions` for action prediction
2025-11-02 21:15:40 -08:00
Kayvan Sylvan
4b9887da2e Merge pull request #1805 from OmriH-Elister/feature
Added a better cheangelog summary, also added the new patterns (and the new "WELLNESS" category) to the
"suggest_pattern" pattern.

Merging.
2025-11-02 21:08:59 -08:00
Changelog Bot
f8ccbaa5e4 chore: incoming 1805 changelog entry 2025-11-02 21:03:56 -08:00
Kayvan Sylvan
068a673bb3 feat: add wellness patterns and new analysis tools
# CHANGES

- Add new WELLNESS category with four patterns
- Add `model_as_sherlock_freud` for psychological detective analysis
- Add `predict_person_actions` for behavioral response predictions
- Add `recommend_yoga_practice` for personalized wellness guidance
- Add `fix_typos` pattern for proofreading corrections
- Update ANALYSIS category to include new patterns
- Update SELF category with wellness-related patterns
- Tag existing patterns with WELLNESS classification
2025-11-02 21:03:22 -08:00
Kayvan Sylvan
10b556f2f6 Update changelog for PR 1805 2025-11-02 20:46:04 -08:00
Changelog Bot
ff9699549d chore: incoming 1805 changelog entry 2025-11-02 20:41:06 -08:00
Kayvan Sylvan
72691a4ce0 remove 1805.txt 2025-11-02 20:41:01 -08:00
Kayvan Sylvan
742346045b Merge pull request #1808 from sluosapher/main
Updated create_newsletter_entry pattern to generate more factual titles

I added the missing changelog entry. Merging this.
2025-11-02 20:33:06 -08:00
Changelog Bot
eff45c8e9b chore: incoming 1808 changelog entry 2025-11-02 20:28:29 -08:00
Nick Skriloff
b8027582f4 docs: clarify extensions only work within patterns, not stdin
- Add prominent warning at top of Extensions guide with visual indicators
- Update main README with brief Extensions section and link to full guide
- Remove misleading examples showing direct piping to fabric
- Add clear examples:  what DOES NOT WORK vs  what WORKS
- Consolidate all extension documentation in Examples/README.md
- Explain technical reason: extensions only processed via ApplyTemplate()
- Prevents user confusion about extension syntax processing
2025-10-31 19:53:47 -04:00
Nick Skriloff
4b82534708 refactor: address PR review feedback
- Extract InputSentinel constant to shared constants.go file
- Remove duplicate inputSentinel definitions from template.go and patterns.go
- Create withTestExtension helper function to reduce test code duplication
- Refactor 3 test functions to use the helper (reduces ~40 lines per test)
- Fix shell script to use $@ instead of $* for proper argument quoting

Addresses review comments from @ksylvan and @Copilot AI
2025-10-31 13:27:38 -04:00
Nick Skriloff
eb1cfe8340 Complete merge from upstream/main 2025-10-30 21:13:46 -04:00
github-actions[bot]
8eaaf7b837 chore(release): Update version to v1.4.320 2025-10-28 14:34:19 +00:00
Kayvan Sylvan
ba67045c75 Merge pull request #1810 from tonymet/subtitle-error-handling
improve subtitle lang, retry, debugging & error handling
2025-10-28 07:31:51 -07:00
Changelog Bot
4f20f7a16b chore: incoming 1810 changelog entry 2025-10-28 07:29:34 -07:00
Changelog Bot
9a426e9d5a chore: incoming 1805 changelog entry 2025-10-28 14:23:49 +00:00
OmriH-Elister
0d880c5c97 feat: add a few new patterns 2025-10-28 13:55:44 +00:00
Anthony Metzidis
3211f6f35c improve subtitle lang, retry, debugging & error handling 2025-10-27 21:53:53 -07:00
Song Luo
0dba40f8a0 Updated the title generation style; added an output example. 2025-10-26 10:18:03 -04:00
dependabot[bot]
c26e0bcdc5 chore(deps-dev): bump vite
Bumps the npm_and_yarn group with 1 update in the /web directory: [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite).


Updates `vite` from 5.4.20 to 5.4.21
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/v5.4.21/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v5.4.21/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-version: 5.4.21
  dependency-type: direct:development
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-21 08:08:37 +00:00
Nick Skriloff
f8f9f6ba65 Update internal/plugins/template/Examples/openai.yaml
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-20 20:42:52 -04:00
Changelog Bot
bc273db19d chore: incoming 1802 changelog entry 2025-10-20 19:57:13 -04:00
Nick Skriloff
29c24c8387 fix: improve template extension handling for {{input}} and add examples 2025-10-20 19:49:33 -04:00
Kayvan Sylvan
7d80fd6d1d Merge pull request #1780 from marcas756/feature/extract_characters
feat: add extract_characters pattern
2025-10-14 08:27:23 -07:00
Kayvan Sylvan
faa7fa3387 chore: added extract_characters method for detailed character analysis
### CHANGES

- Add `extract_characters` to identify and describe characters
- Update business category to include `extract_characters`
- Include `extract_characters` in extract category
- Add `extract_characters` description in pattern descriptions JSON
- Update user documentation with `extract_characters` details
2025-10-14 08:26:08 -07:00
Changelog Bot
cf04c60bf7 chore: incoming 1780 changelog entry 2025-10-14 08:04:33 -07:00
Kayvan Sylvan
67e2a48c58 Merge pull request #1794 from starfish456/enhance-web-app-docs
Enhance web app docs
2025-10-14 08:01:19 -07:00
Changelog Bot
68d97ba454 chore: incoming 1794 changelog entry 2025-10-14 07:54:35 -07:00
Kayvan Sylvan
2bd0d6292f docs: update table of contents with proper nesting and fix minor formatting issues
## CHANGES

- Add top-level project name to navigation hierarchy
- Nest all sections under main project heading
- Fix npm install script path extension
- Update localhost URL to use HTML format
- Add "Mdsvex" to VSCode spelling dictionary
- Include "details" and "summary" to HTML tags
- Remove trailing newline from web README
2025-10-14 07:16:38 -07:00
KFS
cab77728da docs: remove redundant content and simplify the web app readme 2025-10-13 11:47:10 +08:00
KFS
b14daf43cc docs: remove duplicate content from the main readme and link to the web app readme 2025-10-13 11:44:04 +08:00
Daniel Miessler
a885f4b240 docs: clean up README - remove duplicate image and add collapsible updates section
- Remove duplicate fabric-summarize.png screenshot
- Wrap Updates section in HTML details/summary accordion to save space

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-05 17:03:36 -07:00
Daniel Miessler
817c70b58f Updated CSE pattern. 2025-10-05 16:48:10 -07:00
github-actions[bot]
e3cddb9419 chore(release): Update version to v1.4.319 2025-09-30 13:57:01 +00:00
Kayvan Sylvan
cef8c567ca Merge pull request #1783 from ksylvan/kayvan/feat/0930-claude-4-5
Update anthropic-sdk-go and add claude-sonnet-4-5
2025-09-30 06:54:26 -07:00
Kayvan Sylvan
94e8d69dac feat: update anthropic-sdk-go to v1.13.0 and add new model
- Upgrade `anthropic-sdk-go` to version 1.13.0
- Add `ModelClaudeSonnet4_5` to supported models list
2025-09-30 06:49:39 -07:00
Marco Bacchi
0f67998f30 feat: add extract_characters system definition
CHANGES
- Define character extraction goals and steps
- Specify canonical naming and deduplication rules
- Outline interaction mapping and narrative importance
- Provide output schema with formatting guidelines
- Include positive/negative examples for clarity
- Enforce no speculative motivations or non-actors
- Set fallback for no characters found
2025-09-26 13:56:46 +02:00
github-actions[bot]
6eee447026 chore(release): Update version to v1.4.318 2025-09-24 14:57:29 +00:00
Kayvan Sylvan
17d5544df9 Merge pull request #1779 from ksylvan/kayvan/i18n/pt-br-improved-by-JuracyAmerico
Improve pt-BR Translation - Thanks to @JuracyAmerico
2025-09-24 07:54:51 -07:00
Kayvan Sylvan
4715440652 fix: improve PT-BR translation naturalness and fluency
- Thanks to @JuracyAmerico for Brazilian Portugese native speaker expertise!
- Replace "dos" with "entre" for better preposition usage
- Add definite articles where natural in Portuguese
- Clarify "configurações padrão" instead of just "padrões"
- Keep technical terms visible like "padrões/patterns"
- Remove unnecessary quotes around "URL"
- Make phrasing more natural "Exportar para arquivo"
2025-09-24 07:52:31 -07:00
github-actions[bot]
d7da611a43 chore(release): Update version to v1.4.317 2025-09-21 23:10:11 +00:00
Kayvan Sylvan
fa4532e9de Merge pull request #1778 from ksylvan/kayvan/0921-i18n-fixes
Add Portuguese Language Variants Support (pt-BR and pt-PT)
2025-09-21 16:07:45 -07:00
Kayvan Sylvan
b34112d7ed feat(i18n): add i18n support for language variants (pt-BR/pt-PT)
• Add Brazilian Portuguese (pt-BR) translation file
• Add European Portuguese (pt-PT) translation file
• Implement BCP 47 locale normalization system
• Create fallback chain for language variants
• Add default variant mapping for Portuguese
• Update help text to show variant examples
• Add comprehensive test suite for variants
• Create documentation for i18n variant architecture
2025-09-21 16:04:59 -07:00
github-actions[bot]
6d7585c522 chore(release): Update version to v1.4.316 2025-09-20 15:48:56 +00:00
Kayvan Sylvan
2adc7b2102 Merge pull request #1777 from ksylvan/kayvan/ci/0920-remove-garble
chore: remove garble installation from release workflow
2025-09-20 08:46:31 -07:00
Kayvan Sylvan
a2f2d0e2d9 chore: remove garble installation from release workflow
- Remove garble installation step from release workflow
- Add comment for GoReleaser config file reference link
- The original idea of adding garble was to make it pass virus
  scanning during version upgrades for Winget, and this
  was a failed experiment.
2025-09-20 08:43:44 -07:00
github-actions[bot]
3e2df4b717 chore(release): Update version to v1.4.315 2025-09-20 15:24:07 +00:00
Kayvan Sylvan
1bf7006224 Merge pull request #1776 from ksylvan/kayvan/ci/0920-revert-gable-addition
Remove garble from the build process for Windows
2025-09-20 08:21:33 -07:00
Kayvan Sylvan
13178456e5 chore: update CI workflow and simplify goreleaser build configuration
## CHANGES

- Add changelog database to git tracking
- Remove unnecessary goreleaser comments
- Add version metadata to default build
- Rename windows build from garbled to standard
- Remove garble obfuscation from windows build
- Standardize ldflags across all build targets
- Inject version info during compilation
2025-09-20 08:16:32 -07:00
github-actions[bot]
079b2b5b28 chore(release): Update version to v1.4.314 2025-09-18 22:57:31 +00:00
Kayvan Sylvan
e46b253cfe Merge pull request #1774 from ksylvan/kayvan/0917-azure-fix
Migrate Azure client to openai-go/azure and default API version
2025-09-18 15:55:07 -07:00
Kayvan Sylvan
3a42fa7ece feat: migrate Azure client to openai-go/azure and default API version
CHANGES
- switch Azure OpenAI config to openai-go azure helpers
- require API key and base URL during configuration
- default API version to 2024-05-01-preview when unspecified
- trim and parse deployments input into clean slice
- update dependencies to support azure client and authentication flow
- add tests for configuration and default API version behavior
- remove latest-tag boundary logic from changelog walker (revert to the v1.4.213 version)
- simplify version assignment by matching commit messages directly
2025-09-18 15:50:36 -07:00
Kayvan Sylvan
a302d0b46b fix: One-time fix for CHANGELOG and changelog cache db 2025-09-16 18:00:57 -07:00
github-actions[bot]
2f6fefceef chore(release): Update version to v1.4.313 2025-09-16 23:25:48 +00:00
Kayvan Sylvan
43c473d482 Merge pull request #1773 from ksylvan/kayvan/0916-windows-builds
Add Garble Obfuscation for Windows Builds
2025-09-16 16:23:11 -07:00
Kayvan Sylvan
e69858105a feat: add garble obfuscation for Windows builds and fix changelog generation
- Add garble tool installation to release workflow
- Configure garble obfuscation for Windows builds only
- Fix changelog walker to handle unreleased commits
- Update changelog database with latest changes
- Add mvdan to VSCode dictionary settings
- Implement boundary detection for released vs unreleased
- Keep newer commits as "Unreleased" until tagged
2025-09-16 16:19:27 -07:00
github-actions[bot]
0cbca8bd6a chore(release): Update version to v1.4.312 2025-09-14 17:54:03 +00:00
Kayvan Sylvan
2216570b64 Merge pull request #1769 from ksylvan/kayvan/chore/0914-upgrade-go-and-packages
Go 1.25.1 Upgrade & Critical SDK Updates
2025-09-14 10:51:35 -07:00
Kayvan Sylvan
ed87954133 chore: prevent Go toolchain auto-download by setting GOTOOLCHAIN=local environment variable
## CHANGES

- Add GOTOOLCHAIN=local to shell environment
- Configure preBuild hook in fabric package
- Wrap goimports with local toolchain setting
- Wrap gofmt with local toolchain setting
- Update treefmt module import structure
- Add pkgs parameter to treefmt config
- Create shell script wrappers for Go tools
2025-09-14 10:45:51 -07:00
Kayvan Sylvan
9a37d63d76 chore: Go 1.25 upgrade and critical package updates for AI/ML services
- Upgrade Go from 1.24 to 1.25.1
- Update Anthropic SDK for web fetch tools
- Upgrade AWS Bedrock SDK 12 versions
- Update Azure Core and Identity SDKs
- Fix Nix config for Go version lag
- Update Docker base to golang:1.25-alpine
- Add comprehensive upgrade documentation
2025-09-14 10:22:25 -07:00
github-actions[bot]
25eee8b1c1 chore(release): Update version to v1.4.311 2025-09-13 15:34:22 +00:00
Kayvan Sylvan
ba08073335 Merge pull request #1767 from ksylvan/kayvan/feat/0913-more-locales-i18n
feat(i18n): add de, fr, ja, pt, zh, fa locales; expand tests
2025-09-13 08:31:50 -07:00
Kayvan Sylvan
c4e6cb370f feat(i18n): add de/fr/ja/pt/zh/fa locales; expand tests, improve changelog spacing
CHANGES
- Add DE, FR, JA, PT, ZH, FA i18n locale files.
- Expand i18n tests with table-driven multilingual coverage.
- Verify 'html_readability_error' translations across all supported languages.
- Update README with release notes for added languages.
- Watch new locale and test files in VSCode.
- Insert blank lines between aggregated PR changelog sections.
- Append direct commits section only when content exists.
2025-09-13 08:23:40 -07:00
Kayvan Sylvan
bc1f2ad688 chore: update changelog formatting and sync changelog database
## CHANGES

- Add line breaks to improve changelog readability
- Sync changelog database with latest entries
- Clean up whitespace in version sections
- Maintain consistent formatting across entries
2025-09-11 13:04:10 -07:00
Kayvan Sylvan
142b29c699 chore: add spacing between changelog entries for improved readability
## CHANGES

- Add blank lines between PR sections
- Update changelog database with  to correspond with CHANGELOG fix.
2025-09-11 11:41:24 -07:00
github-actions[bot]
0e4c4619f9 chore(release): Update version to v1.4.310 2025-09-11 18:07:20 +00:00
Kayvan Sylvan
1280e8136c Merge pull request #1759 from ksylvan/kayvan/fix/0909-windows-flag-fix
Add Windows-style Flag Support for Language Detection
2025-09-11 11:04:27 -07:00
Kayvan Sylvan
59695428e3 feat: update Vite and Rollup dependencies to latest versions
### CHANGES

- Update Vite to version 5.4.20
- Update Rollup to version 4.50.1
- Add `@eslint-community/eslint-utils` version 4.9.0
- Update `@humanfs/node` to version 0.16.7
- Update `@humanwhocodes/retry` to version 0.4.3
- Update Rollup platform-specific packages to 4.50.1
- Add `@rollup/rollup-openharmony-arm64` version 4.50.1
- Closes Dependabot PR https://github.com/danielmiessler/Fabric/pull/1763
2025-09-11 10:54:55 -07:00
Kayvan Sylvan
8daba467b1 Merge branch 'main' into kayvan/fix/0909-windows-flag-fix 2025-09-11 10:50:11 -07:00
Kayvan Sylvan
b4b062bd11 chore: update alias creation to use consistent naming
### CHANGES

- Remove redundant prefix from `pattern_name` variable
- Add `alias_name` variable for consistent alias creation
- Update alias command to use `alias_name`
- Modify PowerShell function to use `aliasName`
2025-09-11 10:21:14 -07:00
Kayvan Sylvan
a851e6e9ca docs: add optional prefix support for fabric pattern aliases via FABRIC_ALIAS_PREFIX env var
## CHANGES

- Add FABRIC_ALIAS_PREFIX environment variable support
- Update bash/zsh alias generation with prefix
- Update PowerShell alias generation with prefix
- Improve readability of alias setup instructions
- Enable custom prefixing for pattern commands
- Maintain backward compatibility without prefix
2025-09-11 07:13:28 -07:00
Kayvan Sylvan
a8f071b1c4 Merge branch 'main' into kayvan/fix/0909-windows-flag-fix 2025-09-10 20:02:44 -07:00
Kayvan Sylvan
bce7384771 Merge pull request #1762 from danielmiessler/OmriH-Elister/main
New pattern for writing interaction between two characters
2025-09-10 19:56:32 -07:00
Kayvan Sylvan
65268e5f62 fix: Change attribution of PR to https://github.com/OmriH-Elister 2025-09-10 19:51:53 -07:00
Changelog Bot
617c31d15a chore: incoming 1762 changelog entry 2025-09-10 17:09:53 -07:00
Kayvan Sylvan
3017b1a5b2 chore: add create_story_about_people_interaction pattern for persona analysis
### CHANGES

- Add `create_story_about_people_interaction` pattern description
- Include pattern in `ANALYSIS` and `WRITING` categories
- Update `suggest_pattern` system and user documentation
- Modify JSON files to incorporate new pattern details
2025-09-10 16:59:44 -07:00
Omri Herman
97e2a76566 Merge pull request #1 from OmriH-Elister/stick
Stick
2025-09-10 17:54:18 +03:00
Omri Herman
8416500f81 Merge branch 'danielmiessler:main' into stick 2025-09-10 17:51:44 +03:00
OmriH-Elister
5073aac99b feat: add new pattern that creates story simulating interaction between two people 2025-09-10 14:37:15 +00:00
Changelog Bot
d89d932be1 chore: incoming 1759 changelog entry 2025-09-10 06:56:57 -07:00
Kayvan Sylvan
78280810f4 feat: add Windows-style forward slash flag support to CLI argument parser
- Add runtime OS detection for Windows platform
- Support `/flag` syntax for Windows command line
- Handle Windows colon delimiter `/flag:value` format
- Maintain backward compatibility with Unix-style flags
- Add comprehensive test coverage for flag extraction
- Support both `:` and `=` delimiters on Windows
- Preserve existing dash-based flag parsing logic
2025-09-10 06:30:20 -07:00
github-actions[bot]
65dae9bb85 chore(release): Update version to v1.4.309 2025-09-09 20:57:29 +00:00
Kayvan Sylvan
cbd88f6314 Merge pull request #1756 from ksylvan/kayvan/feature/0908-i18n-help-text
Add Internationalization Support with Custom Help System
2025-09-09 13:54:51 -07:00
Kayvan Sylvan
651c5743f1 feat: add comprehensive internationalization support with English and Spanish locales
- Replace hardcoded strings with i18n.T translations
- Add en and es JSON locale files
- Implement custom translated help system
- Enable language detection from CLI args
- Add locale download capability
- Localize error messages throughout codebase
- Support TTS and notification translations
2025-09-09 09:34:54 -07:00
github-actions[bot]
a68e63bc49 chore(release): Update version to v1.4.308 2025-09-08 16:25:05 +00:00
Kayvan Sylvan
cab51f06df Merge pull request #1755 from ksylvan/kayvan/docs/0905-readme-and-pattern-udate
Add i18n Support for Multi-Language Fabric Experience
2025-09-08 09:22:33 -07:00
Kayvan Sylvan
20080fcb78 feat: add i18n support with Spanish localization and documentation improvements
- Add internationalization system with Spanish support
- Create contexts and sessions tutorial documentation
- Fix broken Warp sponsorship image URL
- Add locale detection from environment variables
- Update VSCode settings with new dictionary words
- Exclude VSCode settings from version workflows
- Update pattern descriptions and explanations
- Add comprehensive i18n test coverage
2025-09-08 09:17:23 -07:00
Daniel Miessler
a46f189def Update Warp sponsor section with proper formatting
- Replace with correct div structure and styling
- Use proper Warp image URL from brand assets
- Add 'Special thanks to:' text and platform availability
- Maintains proper spacing and alignment
2025-09-03 13:42:50 -07:00
Daniel Miessler
3f8ca72010 Fix unclosed div tag in README causing display issues
- Close the main div container properly after fabric screenshot
- Fix HTML structure that was causing repetitive content display
- Ensure proper markdown rendering on GitHub

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-03 12:36:38 -07:00
Daniel Miessler
f58f20bcd0 Update Warp sponsor section with new banner and branding
- Replace old banner with new warp-banner-light.png image
- Update styling to use modern p tags with proper centering
- Maintain existing go.warp.dev/fabric redirect URL
- Add descriptive alt text and emphasis text for accessibility

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-03 12:28:31 -07:00
github-actions[bot]
70f8c013f3 chore(release): Update version to v1.4.307 2025-09-01 18:53:55 +00:00
Kayvan Sylvan
8f6e2a3d4a Merge pull request #1745 from ksylvan/kayvan/feature/0901-one-line-installers
Fabric Installation Improvements and Automated Release Updates
2025-09-01 11:51:07 -07:00
Kayvan Sylvan
fad176a0a8 docs: streamline install process with one-line installer scripts and update documentation
- Add markdown file triggers to GitHub workflow
- Update VSCode settings with new spell entries
- Simplify README installation with one-line installers
- Add bash installer script for Unix systems
- Add PowerShell installer script for Windows
- Create installer documentation with usage examples
- Remove redundant pattern from pattern explanations
2025-09-01 11:39:27 -07:00
github-actions[bot]
dd213eb965 chore(release): Update version to v1.4.306 2025-09-01 03:20:53 +00:00
Kayvan Sylvan
d205dbcdac Merge pull request #1742 from ksylvan/kayvan/0831-deprecate-pattern
Documentation and Pattern Updates
2025-08-31 20:18:13 -07:00
Kayvan Sylvan
f8ff9129b5 docs: add Windows install via winget and Docker deployment instructions
- Add winget installation method for Windows
- Add Docker Hub and GHCR image references
- Include docker run examples for setup/patterns
- Remove deprecated PowerShell download link
- Delete unused show_fabric_options_markmap pattern
- Update suggest_pattern with new AI patterns
- Add personal development patterns for storytelling
2025-08-31 20:14:47 -07:00
github-actions[bot]
f9d01b5ebb chore(release): Update version to v1.4.305 2025-08-31 16:13:26 +00:00
Kayvan Sylvan
2c7f4753a2 Merge pull request #1741 from ksylvan/kayvan/ci/0831-fix-tag-ref
CI: Fix Release Description Update
2025-08-31 09:10:59 -07:00
Changelog Bot
9b261b9adf chore: incoming 1741 changelog entry 2025-08-31 09:08:59 -07:00
Kayvan Sylvan
a23b6d518f fix: update release workflow to support manual dispatch with custom tag
## CHANGES

- Support custom tag from client payload in workflow
- Fallback to github.ref_name when no custom tag provided
- Enable manual release triggers with specified tag parameter
2025-08-31 09:03:22 -07:00
github-actions[bot]
bc73bdb704 chore(release): Update version to v1.4.304 2025-08-31 15:40:12 +00:00
Kayvan Sylvan
f22c144786 Merge pull request #1740 from ksylvan/kayvan/fix/0831-run-generate-changelog-after-go-releaser
Restore our custom Changelog Updates in GitHub Actions
2025-08-31 08:37:48 -07:00
Kayvan Sylvan
eb759251ad ci: add changelog generation step to release workflow and support fork releases
- Add changelog generation step to GitHub release workflow
- Create updateReleaseForRepo helper method for release updates
- Add fork detection logic in UpdateReleaseDescription method
- Implement upstream repository release update for forks
- Add fallback to current repository when upstream fails
- Enhance error handling with detailed repository context
- Remove duplicate success logging from main method
2025-08-31 08:30:18 -07:00
github-actions[bot]
19b512c3ab chore(release): Update version to v1.4.303 2025-08-31 14:38:39 +00:00
Kayvan Sylvan
a4ce90970a Merge pull request #1736 from tonymet/winget-publishing
Winget Publishing and GoReleaser
2025-08-31 07:36:12 -07:00
Kayvan Sylvan
8d2fda3af9 ci: harden release pipeline; gate to upstream, migrate tokens, remove docker-on-tag
CHANGES
- Gate release and version workflows to upstream owner only.
- Switch tagging and releases to built-in GITHUB_TOKEN.
- Replace environment passing with step outputs across workflows.
- Remove docker-publish-on-tag workflow to reduce duplication and complexity.
- Add OCI description label to Docker image.
- Document GHCR multi-arch annotations for accurate package descriptions.
- Update README with new ARM binary release announcement.
- Simplify GoReleaser config by removing comments and extras.
2025-08-31 07:34:00 -07:00
Anthony Metzidis
aa59d58deb chore: goreleaser and winget support 2025-08-31 07:15:25 -07:00
github-actions[bot]
d209ee38c7 chore(release): Update version to v1.4.302 2025-08-28 19:40:57 +00:00
Kayvan Sylvan
c20be027fe Merge pull request #1737 from ksylvan/0828-OmriH-Elister-new-patterns-plus-dependabot
Add New Psychological Analysis Patterns + devalue version bump
2025-08-28 12:38:25 -07:00
Kayvan Sylvan
3ef3509bfd feat: add 'create_story_about_person' and 'heal_person' patterns; bump devalue
CHANGES
- Add create_story_about_person system pattern with narrative workflow
- Add heal_person system pattern for compassionate healing plans
- Update pattern_explanations to register new patterns and renumber indices
- Extend pattern_descriptions with entries, tags, and concise descriptions
- Add pattern_extracts for both patterns with full instruction blocks
- Bump devalue dependency from 5.1.1 to 5.3.2
- Refresh lockfile snapshots to reference updated devalue version
- Sync web static pattern_descriptions with new patterns

Updates `devalue` from 5.1.1 to 5.3.2
- [Release notes](https://github.com/sveltejs/devalue/releases)
- [Changelog](https://github.com/sveltejs/devalue/blob/main/CHANGELOG.md)
- [Commits](sveltejs/devalue@v5.1.1...v5.3.2)

---
updated-dependencies:
- dependency-name: devalue
  dependency-version: 5.3.2
  dependency-type: indirect
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-08-28 12:35:23 -07:00
github-actions[bot]
7142b020ef chore(release): Update version to v1.4.301 2025-08-28 14:13:15 +00:00
Kayvan Sylvan
1b9f07b525 Merge pull request #1735 from ksylvan/kayvan/0828-ci-fixes
Fix Docker Build Path Configuration
2025-08-28 07:10:36 -07:00
Kayvan Sylvan
dcfc94ca07 fix: update Docker workflow to use specific Dockerfile and monitor markdown file changes
• Add explicit Dockerfile path to Docker build action
• Remove markdown files from workflow paths-ignore filter
• Enable CI triggers for documentation file changes
• Specify Docker build context with custom file location
2025-08-28 07:08:30 -07:00
github-actions[bot]
0e85861a46 chore(release): Update version to v1.4.300 2025-08-28 06:41:30 +00:00
Kayvan Sylvan
7c5a040287 Merge pull request #1732 from ksylvan/kayvan/docker-publishing
CI Infra: Changelog Generation Tool + Docker Image Pubishing
2025-08-27 23:39:04 -07:00
Kayvan Sylvan
08eb48c2e7 ci: add tag-based multi-arch Docker publish to GHCR and Docker Hub
CHANGES
- Add GitHub Actions workflow to publish Docker images on tags
- Build multi-arch images with Buildx and QEMU across amd64, arm64
- Tag images using semver; push to GHCR and Docker Hub
- Set :latest only for highest semver tag via imagetools
- Gate patterns workflow steps on detected changes instead of failing
- Auto-detect GitHub owner and repo from git remote URL
- Remove hardcoded repository values in changelog release manager
- Normalize image names to lowercase for registry compatibility
- Enable GitHub Actions cache for faster Docker builds
- Add VS Code dictionary entries for Docker-related terms
2025-08-27 23:35:44 -07:00
github-actions[bot]
e40d4e6623 chore(release): Update version to v1.4.299 2025-08-27 18:07:33 +00:00
Kayvan Sylvan
51bd1ebadf Merge pull request #1731 from ksylvan/0827-update-ollama-library-for-cve-fixes
chore: upgrade ollama dependency from v0.9.0 to v0.11.7
2025-08-27 11:05:04 -07:00
Kayvan Sylvan
d3de731967 chore: upgrade ollama dependency from v0.9.0 to v0.11.7
• Update ollama package to version 0.11.7
• Refresh go.sum with new dependency checksums

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2025-0317](https://nvd.nist.gov/vuln/detail/CVE-2025-0317)
- **CVSS Score**: 7.5 (High)
- **Description**: A vulnerability in ollama/ollama versions <=0.3.14 allows a malicious user to upload and create a customized GGUF model file on the Ollama server. This can lead to a division by zero error in the ggufPadding function, causing the server to crash and resulting in a Denial of Service (DoS) attack.
- **Affected**: Ollama server versions ≤ 0.3.14
- **Impact**: Denial of Service through division by zero error

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2025-0315](https://nvd.nist.gov/vuln/detail/CVE-2025-0315)
- **CVSS Score**: 7.5 (High)
- **Description**: Vulnerability allows Denial of Service via customized GGUF model file upload on Ollama server.
- **Affected**: Ollama/ollama versions ≤ 0.3.14
- **Impact**: Denial of Service through malicious GGUF model file uploads

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2024-12886](https://nvd.nist.gov/vuln/detail/CVE-2024-12886)
- **CVSS Score**: 7.5 (High)
- **Description**: An Out-Of-Memory (OOM) vulnerability exists in the ollama server version 0.3.14. This vulnerability can be triggered when a malicious API server responds with a gzip bomb HTTP response, leading to the ollama server crashing.
- **Affected**: Ollama server version 0.3.14
- **Impact**: Denial of Service through memory exhaustion via gzip bomb attack

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2024-8063](https://nvd.nist.gov/vuln/detail/CVE-2024-8063)
- **CVSS Score**: 7.5 (High)
- **Description**: Security vulnerability with high severity rating
- **Impact**: Requires patching for security compliance

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2024-12055](https://nvd.nist.gov/vuln/detail/CVE-2024-12055)
- **CVSS Score**: 7.5 (High)
- **Description**: High-severity security vulnerability requiring immediate attention
- **Impact**: Critical security flaw needing remediation

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2025-51471](https://nvd.nist.gov/vuln/detail/CVE-2025-51471)
- **CVSS Score**: 6.9 (Medium)
- **Description**: Medium severity security vulnerability
- **Impact**: Security risk requiring patching as part of comprehensive security updates

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2025-46394](https://nvd.nist.gov/vuln/detail/CVE-2025-46394)
- **CVSS Score**: 3.2 (Low)
- **Description**: Low-severity security issue
- **Impact**: Minor security concern addressed as part of comprehensive security maintenance

- **Link**: [https://nvd.nist.gov/vuln/detail/CVE-2024-58251](https://nvd.nist.gov/vuln/detail/CVE-2024-58251)
- **CVSS Score**: 2.5 (Low)
- **Description**: Low-severity security vulnerability
- **Impact**: Minimal security risk addressed for comprehensive security posture

This comprehensive security fix addresses **8 CVEs** total:
- **5 High Severity** vulnerabilities (CVSS 7.5)
- **1 Medium Severity** vulnerability (CVSS 6.9)
- **2 Low Severity** vulnerabilities (CVSS 3.2 and 2.5)

The majority of high-severity issues are related to **Ollama server vulnerabilities** that could lead to Denial of Service attacks through various vectors including division by zero errors, memory exhaustion, and malicious file uploads. These fixes ensure robust protection against these attack vectors and maintain system availability.

**Priority**: The high-severity Ollama vulnerabilities should be considered critical for any systems running Ollama server components, as they can lead to service disruption and potential system crashes.
2025-08-27 10:53:31 -07:00
github-actions[bot]
458b0a5e1c chore(release): Update version to v1.4.298 2025-08-27 14:11:48 +00:00
Kayvan Sylvan
b8f64bd554 Merge pull request #1730 from ksylvan/0827-simplify-docker
Modernize Dockerfile with Best Practices Implementation
2025-08-27 07:09:12 -07:00
Kayvan Sylvan
1622a34331 chore: remove docker-test framework and simplify production docker setup
- Remove entire docker-test directory and testing infrastructure
- Delete complex test runner script and environment files
- Simplify production Dockerfile with multi-stage build optimization
- Remove docker-compose.yml and start-docker.sh helper scripts
- Update README with cleaner Docker usage instructions
- Streamline container build process and reduce image size
2025-08-27 07:00:52 -07:00
github-actions[bot]
6b9f4c1fb8 chore(release): Update version to v1.4.297 2025-08-26 15:11:22 +00:00
Kayvan Sylvan
4d2061a641 Merge pull request #1729 from ksylvan/0826-community-docs
Add GitHub Community Health Documents
2025-08-26 08:08:52 -07:00
Kayvan Sylvan
713f6e46fe docs: add contributing, security, support, and code-of-conduct docs; add docs index
CHANGES
- Add CODE_OF_CONDUCT defining respectful, collaborative community behavior
- Add CONTRIBUTING with setup, testing, PR, changelog requirements
- Add SECURITY policy with reporting process and response timelines
- Add SUPPORT guide for bugs, features, discussions, expectations
- Add docs README indexing guides, quick starts, contributor essentials
2025-08-26 07:10:08 -07:00
github-actions[bot]
efadc81974 chore(release): Update version to v1.4.296 2025-08-26 03:15:57 +00:00
Kayvan Sylvan
ea54f60dcc Merge pull request #1728 from ksylvan/0825-debug-logging-cleanup
Refactor Logging System to Use Centralized Debug Logger
2025-08-25 20:13:26 -07:00
Kayvan Sylvan
4008125e37 refactor: replace stderr prints with centralized debuglog.Log and improve auth messaging
- Replace fmt.Fprintf/os.Stderr with centralized debuglog.Log across CLI
- Add unconditional Log function to debuglog for important messages
- Improve OAuth flow messaging and token refresh diagnostics
- Update tests to capture debuglog output via SetOutput
- Convert Perplexity streaming errors to unified debug logging
- Emit file write notifications through debuglog instead of stderr
- Warn on ambiguous model selection using centralized logger
- Announce large audio processing steps via debuglog progress messages
- Standardize extension registry and patterns warnings through debuglog
2025-08-25 20:09:55 -07:00
github-actions[bot]
da94411bf3 chore(release): Update version to v1.4.295 2025-08-24 20:22:53 +00:00
Kayvan Sylvan
ab7b37be10 Merge pull request #1727 from ksylvan/0824-anthropic-beta-logs
Standardize Anthropic Beta Failure Logging
2025-08-24 13:20:19 -07:00
Kayvan Sylvan
772337bf0d refactor: route Anthropic beta failure logs through internal debug logger
CHANGES
- Replace fmt.Fprintf stderr with debuglog.Debug for beta failures
- Import internal log package and remove os dependency
- Standardize logging level to debuglog.Basic for beta errors
- Preserve fallback stream behavior when beta features fail
- Maintain message send fallback when beta options fail
2025-08-24 13:10:57 -07:00
github-actions[bot]
1e30c4e136 chore(release): Update version to v1.4.294 2025-08-20 16:37:50 +00:00
Kayvan Sylvan
e12a40ad4f Merge pull request #1723 from ksylvan/0820-venice-ai-provider
docs: update README with Venice AI provider and Windows install script
2025-08-20 09:35:18 -07:00
Kayvan Sylvan
97beaecbeb docs: update README with Venice AI provider and Windows install script
- Add Venice AI provider configuration with API endpoint
- Document Venice AI as privacy-first open-source provider
- Include PowerShell installation script for Windows users
- Add debug levels section to table of contents
- Update recent major features with v1.4.294 release notes
- Configure Venice AI base URL and response settings
2025-08-20 09:30:29 -07:00
github-actions[bot]
7af6817bac chore(release): Update version to v1.4.293 2025-08-19 11:29:38 +00:00
Kayvan Sylvan
50ecc32d85 Merge pull request #1718 from ksylvan/0819-debug-log-levels
Implement Configurable Debug Logging Levels
2025-08-19 04:27:08 -07:00
Kayvan Sylvan
ff1ef380a7 feat: add --debug flag with levels and centralized logging
CHANGES
- Add --debug flag controlling runtime logging verbosity levels
- Introduce internal/log package with Off, Basic, Detailed, Trace
- Replace ad-hoc Debugf and globals with centralized debug logger
- Wire debug level during early CLI argument parsing
- Add bash, zsh, fish completions for --debug levels
- Document debug levels in README with usage examples
- Add comprehensive STT guide covering models, flags, workflows
- Simplify splitAudioFile signature and log ffmpeg chunking operations
- Remove FABRIC_STT_DEBUG environment variable and related code
- Clean minor code paths in vendors and template modules
2025-08-19 04:23:40 -07:00
github-actions[bot]
6a3a7e82d1 chore(release): Update version to v1.4.292 2025-08-19 00:55:22 +00:00
Kayvan Sylvan
34bc0b5e31 Merge pull request #1717 from ksylvan/0818-feature-default-model-indicator
Highlight default vendor/model in model listing
2025-08-18 17:52:57 -07:00
Kayvan Sylvan
ce59999503 feat: highlight default vendor/model in listings, pass registry defaults
CHANGES
- Update PrintWithVendor signature to accept default vendor and model
- Mark default vendor/model with asterisk in non-shell output
- Compare vendor and model case-insensitively when marking
- Pass registry defaults to PrintWithVendor from CLI
- Add test ensuring default selection appears with asterisk
- Keep shell completion output unchanged without default markers
2025-08-18 16:58:25 -07:00
Kayvan Sylvan
9bb4ccf740 docs: update version number in README updates section from v1.4.290 to v1.4.291 2025-08-18 08:13:55 -07:00
github-actions[bot]
900b13f08c chore(release): Update version to v1.4.291 2025-08-18 15:05:02 +00:00
Kayvan Sylvan
6824f0c0a7 Merge pull request #1715 from ksylvan/0818-openai-transcribe-using-openai-models
Add speech-to-text via OpenAI with transcription flags and completions
2025-08-18 08:02:36 -07:00
Kayvan Sylvan
a2481406db feat: add speech-to-text via OpenAI with transcription flags and completions
CHANGES
- Add --transcribe-file flag to transcribe audio or video
- Add --transcribe-model flag with model listing and completion
- Add --split-media-file flag to chunk files over 25MB
- Implement OpenAI transcription using Whisper and GPT-4o Transcribe
- Integrate transcription pipeline into CLI before readability processing
- Provide zsh, bash, fish completions for new transcription flags
- Validate media extensions and enforce 25MB upload limits
- Update README with release and corrected pattern link path
2025-08-18 07:59:50 -07:00
github-actions[bot]
171f7eb3ab chore(release): Update version to v1.4.290 2025-08-17 23:52:24 +00:00
Kayvan Sylvan
dccc70c433 Merge pull request #1714 from ksylvan/0817-simple-pattern-to-model-mapping-via-env-vars
Add Per-Pattern Model Mapping via Environment Variables
2025-08-17 16:49:46 -07:00
Kayvan Sylvan
e5ec9acfac feat: add per-pattern model mapping support via environment variables
• Add per-pattern model mapping documentation section
• Implement environment variable lookup for pattern-specific models
• Support vendor|model format in environment variable specification
• Check pattern-specific model when no model explicitly set
• Transform pattern names to uppercase environment variable format
• Add table of contents entry for new feature
• Enable shell startup file configuration for patterns
2025-08-17 16:15:23 -07:00
github-actions[bot]
f0eb9f90a3 chore(release): Update version to v1.4.289 2025-08-16 21:22:43 +00:00
Kayvan Sylvan
758425f98a Merge pull request #1710 from ksylvan/0816-no-variable-replacement-flag
Add `--no-variable-replacement` Flag for Literal Pattern Handling
2025-08-16 14:20:18 -07:00
Kayvan Sylvan
b4b5b0a4d9 feat: add --no-variable-replacement flag to disable pattern variable substitution
- Introduce CLI flag to skip pattern variable replacement.
- Wire flag into domain request and session builder.
- Avoid applying input variables when replacement is disabled.
- Provide PatternsEntity.GetWithoutVariables for input-only pattern processing support.
- Refactor patterns code into reusable load and apply helpers.
- Update bash, zsh, fish completions with new flag.
- Document flag in README and CLI help output.
- Add unit tests covering GetWithoutVariables path and behavior.
- Ensure {{input}} placeholder appends when missing in patterns.
2025-08-16 14:12:06 -07:00
github-actions[bot]
81a47ecab7 chore(release): Update version to v1.4.288 2025-08-16 16:19:42 +00:00
Kayvan Sylvan
0bce5c7b6e Merge pull request #1709 from ksylvan/0816-fix-youtube-transcripts
Enhanced YouTube Subtitle Language Fallback Handling
2025-08-16 09:17:09 -07:00
Kayvan Sylvan
992936dbd8 fix: improve YouTube subtitle language fallback handling in yt-dlp integration
- Fix typo "Gemmini" to "Gemini" in README
- Add "kballard" and "shellquote" to VSCode dictionary
- Add "YTDLP" to VSCode spell checker
- Enhance subtitle language options with fallback variants
- Build language options string with comma-separated alternatives
2025-08-16 09:14:03 -07:00
github-actions[bot]
48d74290f3 chore(release): Update version to v1.4.287 2025-08-16 07:29:23 +00:00
Kayvan Sylvan
3d4e967b92 Merge pull request #1706 from ksylvan/0814-readme-updates
Gemini Thinking Support and README (New Features) automation
2025-08-16 00:26:55 -07:00
Kayvan Sylvan
d8690c7cec feat: add release updates section and Gemini thinking support
- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking
- Create documentation for README update automation
- Reorganize README navigation structure with changelog section
2025-08-16 00:21:12 -07:00
github-actions[bot]
7eed9c3c64 chore(release): Update version to v1.4.286 2025-08-14 14:18:00 +00:00
Kayvan Sylvan
97b75cb153 Merge pull request #1700 from ksylvan/0813-thinking-flag-plus-suggest-pattern-overhault
Introduce Thinking Config Across Anthropic and OpenAI Providers
2025-08-14 07:15:40 -07:00
Kayvan Sylvan
b485a4584f refactor: extract token budget constants for thinking levels with validation bounds
## CHANGES

- Extract hardcoded token values into named constants
- Add comprehensive documentation for token budget purposes
- Implement token validation bounds (1-10000) in parsing
- Replace magic numbers with semantic constant references
- Improve code maintainability through constant extraction
2025-08-14 07:11:04 -07:00
Kayvan Sylvan
f4dbafc638 feat: add cross-provider --thinking flag mapping to Anthropic/OpenAI
CHANGES
- Add --thinking flag to set reasoning level cross-vendors
- Map Anthropic thinking levels and token budgets appropriately
- Translate OpenAI reasoning effort from thinking levels
- Propagate Thinking through ChatOptions, server, and dry-run output
- Update zsh, bash, fish completions with thinking choices
- Expand suggest_pattern docs with categories, workflows, usage examples
- Remove outdated suggest_pattern user files to avoid duplication
- Add VSCode dictionary terms: Anki, DMARC, wireframes
- Extend tests to include Thinking defaults in ChatOptions
2025-08-14 07:06:31 -07:00
github-actions[bot]
eae56e0038 chore(release): Update version to v1.4.285 2025-08-13 13:35:14 +00:00
Kayvan Sylvan
72a5e49855 Merge pull request #1698 from ksylvan/0812-claude-sonnet-1m-context
Enable One Million Token Context Beta Feature for Sonnet-4
2025-08-13 06:32:50 -07:00
Kayvan Sylvan
17b7d96da1 chore: upgrade anthropic-sdk-go to v1.9.1 and add beta feature support for context-1m
## CHANGES

- Upgrade anthropic-sdk-go from v1.7.0 to v1.9.1
- Upgrade golang.org/x/crypto from v0.39.0 to v0.40.0
- Add modelBetas map for beta feature configuration
- Implement context-1m-2025-08-07 beta for Claude Sonnet 4
- Add beta header support in streaming requests
- Add beta header support in standard requests
- Implement fallback mechanism when beta features fail
- Preserve existing beta headers in OAuth transport
- Add test coverage for model beta configuration
2025-08-12 22:30:27 -07:00
github-actions[bot]
1b2d9ec0ed chore(release): Update version to v1.4.284 2025-08-12 18:51:24 +00:00
Kayvan Sylvan
63fe320b16 Merge pull request #1695 from ksylvan/0812-make-installing-completions-super-easy
Introduce One-Liner Curl Install for Completions
2025-08-12 11:48:57 -07:00
Changelog Bot
aafca303ad chore: incoming 1695 changelog entry 2025-08-12 11:48:21 -07:00
Kayvan Sylvan
41821efd27 refactor: standardize obtain_completion_files logging; use stderr-only printf
CHANGES
- Replace print_info with tagged printf directed to stderr.
- Replace print_dry_run with tagged printf directed to stderr.
- Add comment enforcing stderr-only output inside this function.
- Preserve dry-run behavior by echoing path only on stdout.
- Retain error handling using print_error for directory creation.
- Normalize log message prefixes to [INFO] and [DRY-RUN].
- Avoid stdout pollution by routing informational messages to stderr.
2025-08-12 11:16:25 -07:00
Kayvan Sylvan
3a4082a1f3 fix: convert GitHub blob/tree URLs to raw and validate completion downloads
CHANGES
- Add helper to translate GitHub blob/tree to raw URLs
- Use effective URL in curl and wget download paths
- Validate downloaded files are non-empty and not HTML
- Redirect info and dry-run messages to standard error
- Relocate temporary directory cleanup trap into main execution
- Improve error messages when completion download sources appear invalid
2025-08-12 10:49:55 -07:00
Kayvan Sylvan
b6fa44d003 docs: add quick install method for shell completions without cloning repo
## CHANGES

- Add one-liner curl install for completions
- Support downloading completions when files missing locally
- Add dry-run option for preview changes
- Enable custom download source via environment variable
- Create temp directory for downloaded completion files
- Add automatic cleanup of temporary files
- Update documentation with new installation methods
2025-08-12 10:00:11 -07:00
github-actions[bot]
09d2d7efc5 chore(release): Update version to v1.4.283 2025-08-12 14:15:16 +00:00
Kayvan Sylvan
4c2ebf25fa Merge pull request #1692 from ksylvan/0812-specify-vendor-when-ambiguous
Add Vendor Selection Support for Models
2025-08-12 07:12:40 -07:00
Changelog Bot
b1b748dc9c chore: incoming 1692 changelog entry 2025-08-12 07:06:45 -07:00
Kayvan Sylvan
cc3e4226d7 feat: add -V/--vendor flag and vendor-aware model selection
CHANGES
- Add -V/--vendor flag to specify model vendor
- Implement vendor-aware model resolution and availability validation
- Warn on ambiguous models; suggest --vendor to disambiguate
- Update bash, zsh, fish completions with vendor suggestions
- Extend --listmodels to print vendor|model when interactive
- Add VendorsModels.PrintWithVendor; sort vendors and models alphabetically
- Pass vendor through API; update server chat handler
- Standardize docs and errors to --yt-dlp-args="..." syntax
- Add test covering ambiguous model warning across multiple vendors
- Promote go-shellquote to direct dependency in go.mod
2025-08-12 06:39:02 -07:00
github-actions[bot]
0f994d8136 chore(release): Update version to v1.4.282 2025-08-11 18:26:48 +00:00
Kayvan Sylvan
298a9007ad Merge pull request #1689 from ksylvan/0811-fix-completions-for-fabric-ai
Enhanced Shell Completions for Fabric CLI Binaries
2025-08-11 11:24:26 -07:00
Kayvan Sylvan
b36e5d3372 feat: enhance completions with 'fabric-ai' alias, dynamic exec, installer
CHANGES
- Support 'fabric-ai' alias across Zsh, Bash, and Fish
- Use invoked command for dynamic completion list queries
- Refactor Fish completions into reusable registrar for multiple commands
- Update Bash completion to reference executable via COMP_WORDS[0]
- Extend Zsh compdef to register fabric and fabric-ai
- Add cross-shell installer script with autodetection and dry-run mode
- Document installation, features, troubleshooting in new completions guide
2025-08-11 11:21:53 -07:00
github-actions[bot]
d1b8eb10ce chore(release): Update version to v1.4.281 2025-08-11 03:16:33 +00:00
Kayvan Sylvan
6000e7469e Merge pull request #1687 from ksylvan/0810-enable-gemini-search
Add Web Search Tool Support for Gemini Models
2025-08-10 20:13:57 -07:00
Changelog Bot
88d3fe65f3 chore: incoming 1687 changelog entry 2025-08-10 20:07:03 -07:00
Kayvan Sylvan
558e7f877d feat(gemini): enable web search, citations, and search-location validation
CHANGES
- Enable Gemini models to use web search tool
- Validate search-location timezone or language code formats
- Normalize language codes from underscores to hyphenated form
- Inject Google Search tool when --search flag enabled
- Append deduplicated web citations under standardized Sources section
- Improve robustness for nil candidates and content parts
- Factor generation config builder for reuse in streaming
- Update CLI help and completions to include Gemini
2025-08-10 19:56:02 -07:00
github-actions[bot]
f33d27f836 chore(release): Update version to v1.4.280 2025-08-10 12:34:52 +00:00
Kayvan Sylvan
1694324261 Merge pull request #1686 from ksylvan/0810-fix-openai-streaming-bug
Prevent duplicate text output in OpenAI streaming responses
2025-08-10 05:32:17 -07:00
Changelog Bot
3a3f5c50a8 chore: incoming 1686 changelog entry 2025-08-10 05:27:29 -07:00
Kayvan Sylvan
b1abfd71c2 fix: prevent duplicate text output in OpenAI streaming responses
## CHANGES

- Skip processing of ResponseOutputTextDone events
- Prevent doubled text in stream output
- Add clarifying comment about API behavior
- Maintain delta chunk streaming functionality
- Fix duplicate content issue in responses
2025-08-10 05:24:30 -07:00
github-actions[bot]
f5b7279225 chore(release): Update version to v1.4.279 2025-08-10 12:13:45 +00:00
Kayvan Sylvan
b974e1bfd5 Merge pull request #1685 from ksylvan/0810-fix-gemini-roles-in-sessions
Fix Gemini Role Mapping for API Compatibility
2025-08-10 05:11:16 -07:00
Changelog Bot
8dda68b3b9 chore: incoming 1685 changelog entry 2025-08-10 05:07:06 -07:00
Kayvan Sylvan
33c24e0cb2 fix(gemini): map chat roles to Gemini user/model in convertMessages
CHANGES
- Map assistant role to model per Gemini constraints
- Map system, developer, function, tool roles to user
- Default unrecognized roles to user to preserve instruction context
- Add unit test validating convertMessages role mapping logic
- Import chat package in tests for role constants
2025-08-10 04:55:33 -07:00
github-actions[bot]
8fb0c5b8a8 chore(release): Update version to v1.4.278 2025-08-09 17:26:37 +00:00
Kayvan Sylvan
d82122b624 Merge pull request #1681 from ksylvan/0803-youtube-transcript-lang-fix
Enhance YouTube Support with Custom yt-dlp Arguments
2025-08-09 10:24:09 -07:00
Kayvan Sylvan
f5966af95a docs: update release notes 2025-08-09 10:09:32 -07:00
Changelog Bot
9470ee1655 chore: incoming 1681 changelog entry 2025-08-09 10:06:50 -07:00
Kayvan Sylvan
9a118cf637 refactor: replace custom arg parser with shellquote; precompile regexes
CHANGES
- Precompile regexes for video, playlist, VTT tags, durations.
- Parse yt-dlp additional arguments using shellquote.Split for safety.
- Validate user-provided yt-dlp args and surface quoting errors.
- Reuse compiled regex in GetVideoOrPlaylistId extractions for stability.
- Simplify removeVTTTags by leveraging precompiled VTT tag matcher.
- Parse ISO-8601 durations with precompiled pattern for efficiency.
- Replace inline VTT language regex with cached compiled matcher.
- Remove unused findVTTFiles helper and redundant language checks.
- Add go-shellquote dependency in go.mod and go.sum.
- Reduce allocations by eliminating per-call regexp.MustCompile invocations.
2025-08-09 10:01:24 -07:00
Kayvan Sylvan
d69757908f docs: update release notes 2025-08-08 23:49:55 -07:00
Changelog Bot
30525ef1c0 chore: incoming 1681 changelog entry 2025-08-08 23:44:42 -07:00
Kayvan Sylvan
8414e72545 feat: add smart subtitle language fallback when requested locale unavailable
CHANGES
- Introduce findVTTFilesWithFallback to handle subtitle language absence
- Prefer requested language VTT, gracefully fallback to available alternatives
- Auto-detect downloaded subtitle language and proceed without interruption
- Update yt-dlp processing to use fallback-aware VTT discovery
- Document language fallback behavior and provide usage example
- Return first available VTT when no specific language requested
- Detect language-coded filenames using regex for robust matching
2025-08-08 23:39:12 -07:00
Kayvan Sylvan
caca366511 docs: update YouTube processing documentation for yt-dlp argument precedence control
## CHANGES

- Add user argument precedence over built-in flags
- Document argument order and override behavior
- Include new precedence section with detailed explanation
- Add override examples for language and format
- Update tips section with precedence guidance
- Modify Go code to append user args last
- Add testing tip for subtitle language discovery
- Include practical override use case examples
2025-08-08 23:14:28 -07:00
Kayvan Sylvan
261eb30951 feat: add --yt-dlp-args flag for custom YouTube downloader options
### CHANGES

- Introduce `--yt-dlp-args` flag for advanced control
- Allow passing browser cookies for authentication
- Improve error handling for YouTube rate limits
- Add comprehensive documentation for YouTube processing
- Refactor YouTube methods to accept additional arguments
- Update shell completions to include new flag
2025-08-08 23:03:02 -07:00
Kayvan Sylvan
bdb36ee296 Merge branch 'main' into 0803-youtube-transcript-lang-fix 2025-08-08 16:42:37 -07:00
github-actions[bot]
1351f138fb chore(release): Update version to v1.4.277 2025-08-08 07:40:13 +00:00
Kayvan Sylvan
8da51968dc Merge pull request #1679 from ksylvan/0807-desktop-notification
Add cross-platform desktop notifications to Fabric CLI
2025-08-08 00:37:40 -07:00
Kayvan Sylvan
30d23f15be chore: format fix 2025-08-08 00:35:04 -07:00
Changelog Bot
0a718be622 chore: incoming 1679 changelog entry 2025-08-08 00:30:20 -07:00
github-actions[bot]
21f258caa4 feat(cli): add cross-platform desktop notifications with secure custom commands
CHANGES
- Integrate notification sending into chat processing workflow
- Add --notification and --notification-command CLI flags and help
- Provide cross-platform providers: macOS, Linux, Windows with fallbacks
- Escape shell metacharacters to prevent injection vulnerabilities
- Truncate Unicode output safely for notification message previews
- Update bash, zsh, fish completions with new notification options
- Add docs and YAML examples for configuration and customization
- Add unit tests for providers and notification integration paths
2025-08-08 00:20:51 -07:00
Kayvan Sylvan
2b195f204d ci: separate release notes generation into dedicated job
## CHANGES

- Move changelog generation to separate workflow job
- Add fallback logic for YouTube subtitle language detection
- Remove changelog commands from main release job
- Create dedicated update_release_notes job with Go setup
- Implement retry mechanism without language specification
- Improve yt-dlp command argument construction flexibility
- Add proper checkout and Go configuration steps
2025-08-03 21:46:24 -07:00
159 changed files with 14854 additions and 4505 deletions

View File

@@ -1,9 +1,12 @@
## What this Pull Request (PR) does
Please briefly describe what this PR does.
## Related issues
Please reference any open issues this PR relates to in here.
If it closes an issue, type `closes #[ISSUE_NUMBER]`.
## Screenshots
Provide any screenshots you may find relevant to facilitate us understanding your PR.

View File

@@ -20,13 +20,13 @@ jobs:
contents: read
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod

View File

@@ -11,22 +11,27 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Verify Changes in Patterns Folder
id: check-changes
run: |
git fetch origin
if git diff --quiet HEAD~1 -- data/patterns; then
echo "No changes detected in patterns folder."
exit 1
echo "changes=false" >> $GITHUB_OUTPUT
else
echo "Changes detected in patterns folder."
echo "changes=true" >> $GITHUB_OUTPUT
fi
- name: Zip the Patterns Folder
if: steps.check-changes.outputs.changes == 'true'
run: zip -r patterns.zip data/patterns/
- name: Upload Patterns Artifact
if: steps.check-changes.outputs.changes == 'true'
uses: actions/upload-artifact@v4
with:
name: patterns

View File

@@ -15,149 +15,43 @@ jobs:
contents: read
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod
- name: Run tests
run: go test -v ./...
get_version:
name: Get version
runs-on: ubuntu-latest
outputs:
latest_tag: ${{ steps.get_version.outputs.latest_tag }}
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get version from source
id: get_version
shell: bash
run: |
if [ ! -f "nix/pkgs/fabric/version.nix" ]; then
echo "Error: version.nix file not found"
exit 1
fi
version=$(cat nix/pkgs/fabric/version.nix | tr -d '"' | tr -cd '0-9.')
if [ -z "$version" ]; then
echo "Error: version is empty"
exit 1
fi
if ! echo "$version" | grep -E '^[0-9]+\.[0-9]+\.[0-9]+' > /dev/null; then
echo "Error: Invalid version format: $version"
exit 1
fi
echo "latest_tag=v$version" >> $GITHUB_OUTPUT
build:
name: Build binaries for Windows, macOS, and Linux
needs: [test, get_version]
runs-on: ${{ matrix.os }}
permissions:
contents: write
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
arch: [amd64, arm64]
exclude:
- os: windows-latest
arch: arm64
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
with:
go-version-file: ./go.mod
- name: Build binary on Linux and macOS
if: matrix.os != 'windows-latest'
env:
GOOS: ${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}
GOARCH: ${{ matrix.arch }}
run: |
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
go build -o fabric-${OS_NAME}-${{ matrix.arch }} ./cmd/fabric
- name: Build binary on Windows
if: matrix.os == 'windows-latest'
env:
GOOS: windows
GOARCH: ${{ matrix.arch }}
run: |
go build -o fabric-windows-${{ matrix.arch }}.exe ./cmd/fabric
- name: Upload build artifact
if: matrix.os != 'windows-latest'
uses: actions/upload-artifact@v4
with:
name: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
path: fabric-${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}-${{ matrix.arch }}
- name: Upload build artifact
if: matrix.os == 'windows-latest'
uses: actions/upload-artifact@v4
with:
name: fabric-windows-${{ matrix.arch }}.exe
path: fabric-windows-${{ matrix.arch }}.exe
- name: Create release if it doesn't exist
shell: bash
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
if ! gh release view ${{ needs.get_version.outputs.latest_tag }} >/dev/null 2>&1; then
gh release create ${{ needs.get_version.outputs.latest_tag }} --title "Release ${{ needs.get_version.outputs.latest_tag }}" --notes "Automated release for ${{ needs.get_version.outputs.latest_tag }}"
else
echo "Release ${{ needs.get_version.outputs.latest_tag }} already exists."
fi
- name: Upload release artifact
if: matrix.os == 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-windows-${{ matrix.arch }}.exe
- name: Upload release artifact
if: matrix.os != 'windows-latest'
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
OS_NAME="${{ matrix.os == 'ubuntu-latest' && 'linux' || 'darwin' }}"
gh release upload ${{ needs.get_version.outputs.latest_tag }} fabric-${OS_NAME}-${{ matrix.arch }}
update_release_notes:
needs: [build, get_version]
# only run in main upstream repo
if: ${{ github.repository_owner == 'danielmiessler' }}
name: Build & Release with Goreleaser
needs: [test]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
- name: Set up Go
uses: actions/setup-go@v4
uses: actions/setup-go@v5
with:
go-version-file: ./go.mod
- name: Update release description
- name: Run GoReleaser
uses: goreleaser/goreleaser-action@v6
with:
distribution: goreleaser
args: release --clean
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
go run ./cmd/generate_changelog --sync-db
go run ./cmd/generate_changelog --release ${{ needs.get_version.outputs.latest_tag }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Update Release Description
run: go run ./cmd/generate_changelog --release ${{ github.event.client_payload.tag || github.ref_name }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -6,12 +6,13 @@ on:
- main # Monitor the main branch
paths-ignore:
- "data/patterns/**"
- "**/*.md"
- "data/strategies/**"
- "cmd/generate_changelog/*.db"
- "cmd/generate_changelog/incoming/*.txt"
- "scripts/pattern_descriptions/*.json"
- "web/static/data/pattern_descriptions.json"
- "**/*.md"
- .vscode/**
permissions:
contents: write # Ensure the workflow has write permissions
@@ -22,12 +23,13 @@ concurrency:
jobs:
update-version:
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
if: >
${{ github.repository_owner == 'danielmiessler' }} &&
github.event_name == 'push' && github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
uses: actions/checkout@v5
with:
fetch-depth: 0
@@ -49,12 +51,13 @@ jobs:
run: |
latest_tag=$(git tag --sort=-creatordate | head -n 1)
echo "Latest tag is: $latest_tag"
echo "tag=$latest_tag" >> $GITHUB_OUTPUT
echo "tag=$latest_tag" >> $GITHUB_ENV # Save the latest tag to environment file
- name: Increment patch version
id: increment_version
run: |
latest_tag=${{ env.tag }}
latest_tag=${{ steps.get_latest_tag.outputs.tag }}
major=$(echo "$latest_tag" | cut -d. -f1 | sed 's/v//')
minor=$(echo "$latest_tag" | cut -d. -f2)
patch=$(echo "$latest_tag" | cut -d. -f3)
@@ -62,19 +65,21 @@ jobs:
new_version="${major}.${minor}.${new_patch}"
new_tag="v${new_version}"
echo "New version is: $new_version"
echo "new_version=$new_version" >> $GITHUB_OUTPUT
echo "new_version=$new_version" >> $GITHUB_ENV # Save the new version to environment file
echo "New tag is: $new_tag"
echo "new_tag=$new_tag" >> $GITHUB_OUTPUT
echo "new_tag=$new_tag" >> $GITHUB_ENV # Save the new tag to environment file
- name: Update version.go file
run: |
echo "package main" > cmd/fabric/version.go
echo "" >> cmd/fabric/version.go
echo "var version = \"${{ env.new_tag }}\"" >> cmd/fabric/version.go
echo "var version = \"${{ steps.increment_version.outputs.new_tag }}\"" >> cmd/fabric/version.go
- name: Update version.nix file
run: |
echo "\"${{ env.new_version }}\"" > nix/pkgs/fabric/version.nix
echo "\"${{ steps.increment_version.outputs.new_version }}\"" > nix/pkgs/fabric/version.nix
- name: Format source code
run: |
@@ -88,8 +93,9 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
go run ./cmd/generate_changelog --process-prs ${{ env.new_tag }}
go run ./cmd/generate_changelog --process-prs ${{ steps.increment_version.outputs.new_tag }}
go run ./cmd/generate_changelog --sync-db
git add ./cmd/generate_changelog/changelog.db
- name: Commit changes
run: |
# These files are modified by the version bump process
@@ -101,7 +107,7 @@ jobs:
# and removing the incoming/ directory.
if ! git diff --staged --quiet; then
git commit -m "chore(release): Update version to ${{ env.new_tag }}"
git commit -m "chore(release): Update version to ${{ steps.increment_version.outputs.new_tag }}"
else
echo "No changes to commit."
fi
@@ -114,10 +120,10 @@ jobs:
- name: Create a new tag
env:
GITHUB_TOKEN: ${{ secrets.TAG_PAT }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git tag ${{ env.new_tag }}
git push origin ${{ env.new_tag }} # Push the new tag
git tag ${{ steps.increment_version.outputs.new_tag }}
git push origin ${{ steps.increment_version.outputs.new_tag }} # Push the new tag
- name: Dispatch event to trigger release workflow
env:
@@ -127,4 +133,4 @@ jobs:
-H "Authorization: token $GITHUB_TOKEN" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/${{ github.repository }}/dispatches \
-d '{"event_type": "tag_created", "client_payload": {"tag": "${{ env.new_tag }}"}}'
-d '{"event_type": "tag_created", "client_payload": {"tag": "${{ steps.increment_version.outputs.new_tag }}"}}'

56
.goreleaser.yaml Normal file
View File

@@ -0,0 +1,56 @@
# Read the documentation at https://goreleaser.com
# For a full reference of the configuration file.
version: 2
project_name: fabric
before:
hooks:
- go mod tidy
builds:
- id: default
env:
- CGO_ENABLED=0
goos:
- darwin
- linux
main: ./cmd/fabric
binary: fabric
ldflags:
- -s -w
- -X main.version={{.Version}}
- -X main.commit={{.ShortCommit}}
- -X main.date={{.Date}}
- -X main.builtBy=goreleaser
- -X main.tag={{.Tag}}
- id: windows-build
env:
- CGO_ENABLED=0
goos:
- windows
main: ./cmd/fabric
binary: fabric
ldflags:
- -s -w
- -X main.version={{.Version}}
- -X main.commit={{.ShortCommit}}
- -X main.date={{.Date}}
- -X main.builtBy=goreleaser
- -X main.tag={{.Tag}}
archives:
- formats: [tar.gz]
# this name template makes the OS and Arch compatible with the results of `uname`.
name_template: >-
{{ .ProjectName }}_
{{- title .Os }}_
{{- if eq .Arch "amd64" }}x86_64
{{- else if eq .Arch "386" }}i386
{{- else }}{{ .Arch }}{{ end }}
{{- if .Arm }}v{{ .Arm }}{{ end }}
# use zip for windows archives
format_overrides:
- goos: windows
formats: [zip]

74
.vscode/settings.json vendored
View File

@@ -4,35 +4,47 @@
"addextension",
"adduser",
"AIML",
"Anki",
"anthropics",
"Aoede",
"aplicar",
"atotto",
"Autonoe",
"azureml",
"badfile",
"Behrens",
"blindspots",
"Bombal",
"Buildx",
"byid",
"Callirhoe",
"Callirrhoe",
"Cerebras",
"colour",
"compadd",
"compdef",
"compinit",
"conceptmap",
"creatordate",
"curcontext",
"custompatterns",
"danielmiessler",
"davidanson",
"Debugf",
"debuglog",
"dedup",
"deepseek",
"Despina",
"direnv",
"DMARC",
"DOCKERHUB",
"dryrun",
"dsrp",
"editability",
"Eisler",
"elif",
"Elister",
"entrada",
"envrc",
"Erinome",
"Errorf",
@@ -50,16 +62,23 @@
"githelper",
"gjson",
"GOARCH",
"GODEBUG",
"godotenv",
"GOEXPERIMENT",
"gofmt",
"goimports",
"golint",
"GOMAXPROCS",
"gomod",
"gonic",
"goopenai",
"GOPATH",
"gopkg",
"Goreleaser",
"GOROOT",
"goroutines",
"Graphviz",
"greenteagc",
"grokai",
"Groq",
"hackerone",
@@ -69,17 +88,23 @@
"Hormozi's",
"horts",
"HTMLURL",
"imagetools",
"Jamba",
"jaredmontoya",
"jessevdk",
"Jina",
"joho",
"kballard",
"Keploy",
"kimi",
"Kore",
"ksylvan",
"Langdock",
"Laomedeia",
"ldflags",
"legibilidad",
"libexec",
"libnotify",
"listcontexts",
"listextensions",
"listmodels",
@@ -93,26 +118,41 @@
"matplotlib",
"mattn",
"mbed",
"Mdsvex",
"metacharacters",
"Miessler",
"modeline",
"modelines",
"mpga",
"mvdan",
"nicksnyder",
"nixpkgs",
"nometa",
"numpy",
"ollama",
"ollamaapi",
"Omri",
"openaiapi",
"opencode",
"opencontainers",
"openrouter",
"organise",
"Orus",
"osascript",
"otiai",
"pdflatex",
"pipx",
"PKCE",
"pkgs",
"porque",
"presencepenalty",
"printcontext",
"printsession",
"puede",
"Pulcherrima",
"pycache",
"pyperclip",
"qwen",
"readystream",
"restapi",
"rmextension",
@@ -124,11 +164,15 @@
"seaborn",
"semgrep",
"sess",
"sgaunet",
"shellquote",
"SSEHTTP",
"storer",
"Streamlit",
"stretchr",
"subchunk",
"Sulafat",
"synctest",
"talkpanel",
"Telos",
"testpattern",
@@ -141,18 +185,38 @@
"unconfigured",
"unmarshalling",
"updatepatterns",
"useb",
"USERPROFILE",
"videoid",
"webp",
"WEBVTT",
"winget",
"wipecontext",
"wipesession",
"wireframes",
"Worktree",
"writeups",
"xclip",
"yourpatternname",
"youtu"
"youtu",
"YTDLP"
],
"cSpell.ignorePaths": [
"go.mod",
".gitignore",
"CHANGELOG.md",
"scripts/installer/install.*",
"web/static/data/pattern_descriptions.json",
"scripts/pattern_descriptions/*.json",
"data/patterns/pattern_explanations.md",
"internal/i18n/locales/es.json",
"internal/i18n/locales/fr.json",
"internal/i18n/locales/de.json",
"internal/i18n/locales/it.json",
"internal/i18n/locales/pt.json",
"internal/i18n/locales/zh.json",
"internal/i18n/i18n_test.go"
],
"cSpell.ignorePaths": ["go.mod", ".gitignore", "CHANGELOG.md"],
"markdownlint.config": {
"MD004": false,
"MD011": false,
@@ -164,12 +228,16 @@
"a",
"br",
"code",
"details",
"div",
"em",
"h",
"h4",
"img",
"module",
"p"
"p",
"summary",
"sup"
]
},
"MD041": false

View File

@@ -1,5 +1,805 @@
# Changelog
## v1.4.341 (2025-12-10)
### PR [#1860](https://github.com/danielmiessler/Fabric/pull/1860) by [ksylvan](https://github.com/ksylvan): fix: allow resetting required settings without validation errors
- Fix: allow resetting required settings without validation errors
- Update `Ask` to detect reset command and bypass validation
- Refactor `OnAnswer` to support new `isReset` parameter logic
- Invoke `ConfigureCustom` in `Setup` to avoid redundant re-validation
- Add unit tests ensuring required fields can be reset
## v1.4.340 (2025-12-08)
### PR [#1856](https://github.com/danielmiessler/Fabric/pull/1856) by [ksylvan](https://github.com/ksylvan): Add support for new ClaudeHaiku 4.5 models
- Add support for new ClaudeHaiku models in client
- Add `ModelClaudeHaiku4_5` to supported models
- Add `ModelClaudeHaiku4_5_20251001` to supported models
## v1.4.339 (2025-12-08)
### PR [#1855](https://github.com/danielmiessler/Fabric/pull/1855) by [ksylvan](https://github.com/ksylvan): feat: add image attachment support for Ollama vision models
- Add multi-modal image support to Ollama client
- Implement convertMessage to handle multi-content chat messages
- Add loadImageBytes to fetch images from URLs
- Support base64 data URLs for inline images
- Handle HTTP image URLs with context propagation
## v1.4.338 (2025-12-04)
### PR [#1852](https://github.com/danielmiessler/Fabric/pull/1852) by [ksylvan](https://github.com/ksylvan): Add Abacus vendor for ChatLLM models with static model list
- Add static model support and register Abacus provider
- Detect modelsURL starting with 'static:' and route appropriately
- Implement getStaticModels returning curated Abacus model list
- Register Abacus provider with ModelsURL 'static:abacus'
- Extend provider tests to include Abacus existence
## v1.4.337 (2025-12-04)
### PR [#1851](https://github.com/danielmiessler/Fabric/pull/1851) by [ksylvan](https://github.com/ksylvan): Add Z AI provider and glm model support
- Add Z AI provider configuration to ProviderMap
- Include BaseURL for Z AI API endpoint
- Add test case for Z AI provider existence
- Add glm to OpenAI model prefixes list
- Support new Z AI provider in OpenAI compatible plugins
## v1.4.336 (2025-12-01)
### PR [#1848](https://github.com/danielmiessler/Fabric/pull/1848) by [zeddy303](https://github.com/zeddy303): Fix localStorage SSR error in favorites-store
- Fix localStorage SSR error in favorites-store by using SvelteKit's browser constant instead of typeof localStorage check to properly handle server-side rendering and prevent 'localStorage.getItem is not a function' error when running dev server
## v1.4.335 (2025-11-28)
### PR [#1847](https://github.com/danielmiessler/Fabric/pull/1847) by [ksylvan](https://github.com/ksylvan): Improve model name matching for NeedsRaw in Ollama plugin
- Improved model name matching in Ollama plugin by replacing prefix-based matching with substring matching
- Enhanced NeedsRaw functionality to support more flexible model name detection
- Renamed `ollamaPrefixes` variable to `ollamaSearchStrings` for better code clarity
- Replaced `HasPrefix` function with `Contains` for more comprehensive model matching
- Added "conceptmap" to VSCode dictionary settings
### Direct commits
- Merge branch 'danielmiessler:main' into main
- Docs: Fix typo in README
## v1.4.334 (2025-11-26)
### PR [#1845](https://github.com/danielmiessler/Fabric/pull/1845) by [ksylvan](https://github.com/ksylvan): Add Claude Opus 4.5 Support
- Add Claude Opus 4.5 model variants to Anthropic client
- Upgrade anthropic-sdk-go from v1.16.0 to v1.19.0
- Update golang.org/x/crypto from v0.41.0 to v0.45.0
- Upgrade golang.org/x/net from v0.43.0 to v0.47.0
- Bump golang.org/x/text from v0.28.0 to v0.31.0
## v1.4.333 (2025-11-25)
### PR [#1833](https://github.com/danielmiessler/Fabric/pull/1833) by [junaid18183](https://github.com/junaid18183): Added concall_summary
- Added concall_summery pattern to extract strategic insights from earnings transcripts for investors.
### PR [#1844](https://github.com/danielmiessler/Fabric/pull/1844) by [ksylvan](https://github.com/ksylvan): Correct directory name from `concall_summery` to `concall_summary`
- Fix: correct directory name from `concall_summery` to `concall_summary`
- Rename pattern directory to fix spelling error
- Update suggest_pattern system with concall_summary references
- Add concall_summary to BUSINESS and SUMMARIZE category listings
- Add user documentation for earnings call analysis
## v1.4.332 (2025-11-24)
### PR [#1843](https://github.com/danielmiessler/Fabric/pull/1843) by [ksylvan](https://github.com/ksylvan): Implement case-insensitive vendor and model name matching
- Fix: implement case-insensitive vendor and model name matching across the application
- Add case-insensitive vendor lookup in VendorsManager
- Implement model name normalization in GetChatter method
- Add FilterByVendor method with case-insensitive matching
- Add FindModelNameCaseInsensitive helper for model queries
## v1.4.331 (2025-11-22)
### PR [#1839](https://github.com/danielmiessler/Fabric/pull/1839) by [ksylvan](https://github.com/ksylvan): Add GitHub Models Provider and Refactor Fetching Fallback Logic
- Add GitHub Models provider and refactor model fetching with direct API fallback
- Add GitHub Models to supported OpenAI-compatible providers list
- Implement direct HTTP fallback for non-standard model responses
- Centralize model fetching logic in openai package
- Upgrade openai-go SDK dependency from v1.8.2 to v1.12.0
## v1.4.330 (2025-11-23)
### PR [#1840](https://github.com/danielmiessler/Fabric/pull/1840) by [ZackaryWelch](https://github.com/ZackaryWelch): Replace deprecated bash function in completion script
- Replace deprecated bash function in completion script to use `_comp_get_words` instead of `__get_comp_words_by_ref`, fixing compatibility issues with latest bash versions and preventing script breakage on updated distributions like Fedora 42+
## v1.4.329 (2025-11-20)
### PR [#1838](https://github.com/danielmiessler/fabric/pull/1838) by [ksylvan](https://github.com/ksylvan): refactor: implement i18n support for YouTube tool error messages
- Replace hardcoded error strings with i18n translation calls
- Add localization keys for YouTube errors to all locale files
- Introduce `extractAndValidateVideoId` helper to reduce code duplication
- Update timestamp parsing logic to handle localized error formats
- Standardize error handling in `yt-dlp` execution with i18n
## v1.4.328 (2025-11-18)
### PR [#1836](https://github.com/danielmiessler/Fabric/pull/1836) by [ksylvan](https://github.com/ksylvan): docs: clarify `--raw` flag behavior for OpenAI and Anthropic providers
- Update `--raw` flag description across all documentation files
- Clarify flag only affects OpenAI-compatible providers behavior
- Document Anthropic models use smart parameter selection
- Remove outdated reference to system/user role changes
- Update help text in CLI flags definition
## v1.4.327 (2025-11-16)
### PR [#1831](https://github.com/danielmiessler/Fabric/pull/1831) by [ksylvan](https://github.com/ksylvan): Remove `get_youtube_rss` pattern
- Chore: remove `get_youtube_rss` pattern from multiple files
- Remove `get_youtube_rss` from `pattern_explanations.md`
- Delete `get_youtube_rss` entry in `pattern_descriptions.json`
- Delete `get_youtube_rss` entry in `pattern_extracts.json`
- Remove `get_youtube_rss` from `suggest_pattern/system.md`
### PR [#1832](https://github.com/danielmiessler/Fabric/pull/1832) by [ksylvan](https://github.com/ksylvan): Improve channel management in Gemini provider
- Fix: improve channel management in Gemini streaming method
- Add deferred channel close at function start
- Return error immediately instead of breaking loop
- Remove redundant channel close statements from loop
- Ensure channel closes on all exit paths consistently
## v1.4.326 (2025-11-16)
### PR [#1830](https://github.com/danielmiessler/Fabric/pull/1830) by [ksylvan](https://github.com/ksylvan): Ensure final newline in model generated outputs
- Feat: ensure newline in `CreateOutputFile` and improve tests
- Add newline to `CreateOutputFile` if missing
- Use `t.Cleanup` for file removal in tests
- Add test for message with trailing newline
- Introduce `printedStream` flag in `Chatter.Send`
### Direct commits
- Chore: update README with recent features and extensions
- Add v1.4.322 release with concept maps
- Introduce WELLNESS category with psychological analysis
- Upgrade to Claude Sonnet 4.5
- Add Portuguese language variants with BCP 47 support
- Migrate to `openai-go/azure` SDK for Azure
- Add Extensions section to README navigation
## v1.4.325 (2025-11-15)
### PR [#1828](https://github.com/danielmiessler/Fabric/pull/1828) by [ksylvan](https://github.com/ksylvan): Fix empty string detection in chatter and AI clients
- Chore: improve message handling by trimming whitespace in content checks
- Remove default space in `BuildSession` message content
- Trim whitespace in `anthropic` message content check
- Trim whitespace in `gemini` message content check
## v1.4.324 (2025-11-14)
### PR [#1827](https://github.com/danielmiessler/Fabric/pull/1827) by [ksylvan](https://github.com/ksylvan): Make YouTube API key optional in setup
- Make YouTube API key optional in setup process
- Change API key setup question to optional configuration
- Add test for optional API key behavior
- Ensure plugin configuration works without API key
## v1.4.323 (2025-11-12)
### PR [#1802](https://github.com/danielmiessler/Fabric/pull/1802) by [nickarino](https://github.com/nickarino): fix: improve template extension handling for {{input}} and add examples
- Fix: improve template extension handling for {{input}} and add examples
### PR [#1823](https://github.com/danielmiessler/Fabric/pull/1823) by [ksylvan](https://github.com/ksylvan): Add missing patterns and renumber pattern explanations list
- Add `apply_ul_tags` pattern for content categorization
- Add `extract_mcp_servers` pattern for MCP server identification
- Add `generate_code_rules` pattern for AI coding guardrails
- Add `t_check_dunning_kruger` pattern for competence assessment
- Renumber all patterns from 37-226 to 37-230
### Direct commits
- Chore: incoming 1823 changelog entry
## v1.4.322 (2025-11-05)
### PR [#1814](https://github.com/danielmiessler/Fabric/pull/1814) by [ksylvan](https://github.com/ksylvan): Add Concept Map in html
- Add `create_conceptmap` for interactive HTML concept maps using Vis.js
- Add `fix_typos` for proofreading and correcting text errors
- Introduce `model_as_sherlock_freud` for psychological modeling and behavior analysis
- Implement `predict_person_actions` for behavioral response predictions
- Add `recommend_yoga_practice` for personalized yoga guidance
- Credit goes to @FELIPEGUEDESBR for the pattern
### PR [#1816](https://github.com/danielmiessler/Fabric/pull/1816) by [ksylvan](https://github.com/ksylvan): Update `anthropic-sdk-go` to v1.16.0 and update models
- Upgraded `anthropic-sdk-go` from v1.13.0 to v1.16.0
- Removed outdated model `ModelClaude3_5SonnetLatest`
- Added new model `ModelClaudeSonnet4_5_20250929`
- Updated anthropic beta map to include the new model
- Updated dependencies in `go.sum` file
## v1.4.321 (2025-11-03)
### PR [#1803](https://github.com/danielmiessler/Fabric/pull/1803) by [dependabot[bot][bot]](https://github.com/apps/dependabot): chore(deps-dev): bump vite from 5.4.20 to 5.4.21 in /web in the npm_and_yarn group across 1 directory
- Updated Vite development dependency from version 5.4.20 to 5.4.21 in the web directory
### PR [#1805](https://github.com/danielmiessler/Fabric/pull/1805) by [OmriH-Elister](https://github.com/OmriH-Elister): Added several new patterns
- Added new WELLNESS category with four patterns including personalized yoga practice recommendations and wellness guidance
- Added `model_as_sherlock_freud` pattern for psychological detective analysis combining Sherlock Holmes deduction with Freudian psychology
- Added `predict_person_actions` pattern for behavioral response predictions based on personality analysis
- Added `fix_typos` pattern for automated proofreading and typo corrections
- Updated ANALYSIS and SELF categories to include new wellness-related patterns and classifications
### PR [#1808](https://github.com/danielmiessler/Fabric/pull/1808) by [sluosapher](https://github.com/sluosapher): Updated create_newsletter_entry pattern to generate more factual titles
- Updated the title generation style; added an output example.
## v1.4.320 (2025-10-28)
### PR [#1780](https://github.com/danielmiessler/Fabric/pull/1780) by [marcas756](https://github.com/marcas756): feat: add extract_characters pattern
- Define character extraction goals and steps with canonical naming and deduplication rules
- Outline interaction mapping and narrative importance analysis
- Provide comprehensive output schema with proper formatting guidelines
- Include positive and negative examples for pattern clarity
- Enforce restrictions on speculative motivations and non-actor inclusion
### PR [#1794](https://github.com/danielmiessler/Fabric/pull/1794) by [starfish456](https://github.com/starfish456): Enhance web app docs
- Remove duplicate content from the main readme and link to the web app readme
- Update table of contents with proper nesting and fix minor formatting issues
### PR [#1810](https://github.com/danielmiessler/Fabric/pull/1810) by [tonymet](https://github.com/tonymet): improve subtitle lang, retry, debugging & error handling
- Improve subtitle lang, retry, debugging & error handling
### Direct commits
- Docs: clean up README - remove duplicate image and add collapsible updates section
- Remove duplicate fabric-summarize.png screenshot
- Wrap Updates section in HTML details/summary accordion to save space
🤖 Generated with [Claude Code](<https://claude.com/claude-code)>
Co-Authored-By: Claude <noreply@anthropic.com>
- Updated CSE pattern.
## v1.4.319 (2025-09-30)
### PR [#1783](https://github.com/danielmiessler/Fabric/pull/1783) by [ksylvan](https://github.com/ksylvan): Update anthropic-sdk-go and add claude-sonnet-4-5
- Feat: update `anthropic-sdk-go` to v1.13.0 and add new model
- Upgrade `anthropic-sdk-go` to version 1.13.0
- Add `ModelClaudeSonnet4_5` to supported models list
## v1.4.318 (2025-09-24)
### PR [#1779](https://github.com/danielmiessler/Fabric/pull/1779) by [ksylvan](https://github.com/ksylvan): Improve pt-BR Translation - Thanks to @JuracyAmerico
- Fix: improve PT-BR translation naturalness and fluency
- Replace "dos" with "entre" for better preposition usage
- Add definite articles where natural in Portuguese
- Clarify "configurações padrão" instead of just "padrões"
- Keep technical terms visible like "padrões/patterns"
## v1.4.317 (2025-09-21)
### PR [#1778](https://github.com/danielmiessler/Fabric/pull/1778) by [ksylvan](https://github.com/ksylvan): Add Portuguese Language Variants Support (pt-BR and pt-PT)
- Add Brazilian Portuguese (pt-BR) translation file
- Add European Portuguese (pt-PT) translation file
- Implement BCP 47 locale normalization system
- Create fallback chain for language variants
- Add default variant mapping for Portuguese
## v1.4.316 (2025-09-20)
### PR [#1777](https://github.com/danielmiessler/Fabric/pull/1777) by [ksylvan](https://github.com/ksylvan): chore: remove garble installation from release workflow
- Remove garble installation step from release workflow
- Add comment for GoReleaser config file reference link
- The original idea of adding garble was to make it pass
virus scanning during version upgrades for Winget, and
this was a failed experiment.
## v1.4.315 (2025-09-20)
### Direct commits
- Chore: update CI workflow and simplify goreleaser build configuration
- Add changelog database to git tracking
- Remove unnecessary goreleaser comments
- Add version metadata to default build
- Rename windows build from garbled to standard
- Remove garble obfuscation from windows build
- Standardize ldflags across all build targets
- Inject version info during compilation
## v1.4.314 (2025-09-17)
### PR [#1774](https://github.com/danielmiessler/Fabric/pull/1774) by [ksylvan](https://github.com/ksylvan): Migrate Azure client to openai-go/azure and default API version
- Migrated Azure client to openai-go/azure and default API version
- Switched Azure OpenAI config to openai-go azure helpers and now require API key and base URL during configuration
- Set default API version to 2024-05-01-preview when unspecified
- Updated dependencies to support azure client and authentication flow
- Removed latest-tag boundary logic from changelog walker and simplified version assignment by matching commit messages directly
### Direct commits
- Fix: One-time fix for CHANGELOG and changelog cache db
## v1.4.313 (2025-09-16)
### PR [#1773](https://github.com/danielmiessler/Fabric/pull/1773) by [ksylvan](https://github.com/ksylvan): Add Garble Obfuscation for Windows Builds
- Add garble obfuscation for Windows builds and fix changelog generation
- Add garble tool installation to release workflow
- Configure garble obfuscation for Windows builds only
- Fix changelog walker to handle unreleased commits
- Implement boundary detection for released vs unreleased commits
## v1.4.312 (2025-09-14)
### PR [#1769](https://github.com/danielmiessler/Fabric/pull/1769) by [ksylvan](https://github.com/ksylvan): Go 1.25.1 Upgrade & Critical SDK Updates
- Upgrade Go from 1.24 to 1.25.1
- Update Anthropic SDK for web fetch tools
- Upgrade AWS Bedrock SDK 12 versions
- Update Azure Core and Identity SDKs
- Fix Nix config for Go version lag
## v1.4.311 (2025-09-13)
### PR [#1767](https://github.com/danielmiessler/Fabric/pull/1767) by [ksylvan](https://github.com/ksylvan): feat(i18n): add de, fr, ja, pt, zh, fa locales; expand tests
- Add DE, FR, JA, PT, ZH, FA i18n locale files
- Expand i18n tests with table-driven multilingual coverage
- Verify 'html_readability_error' translations across all supported languages
- Update README with release notes for added languages
- Insert blank lines between aggregated PR changelog sections
### Direct commits
- Chore: update changelog formatting and sync changelog database
- Add line breaks to improve changelog readability
- Sync changelog database with latest entries
- Clean up whitespace in version sections
- Maintain consistent formatting across entries
- Chore: add spacing between changelog entries for improved readability
- Add blank lines between PR sections
- Update changelog database with to correspond with CHANGELOG fix.
## v1.4.310 (2025-09-11)
### PR [#1759](https://github.com/danielmiessler/Fabric/pull/1759) by [ksylvan](https://github.com/ksylvan): Add Windows-style Flag Support for Language Detection
- Feat: add Windows-style forward slash flag support to CLI argument parser
- Add runtime OS detection for Windows platform
- Support `/flag` syntax for Windows command line
- Handle Windows colon delimiter `/flag:value` format
- Maintain backward compatibility with Unix-style flags
### PR [#1762](https://github.com/danielmiessler/Fabric/pull/1762) by [OmriH-Elister](https://github.com/OmriH-Elister): New pattern for writing interaction between two characters
- Feat: add new pattern that creates story simulating interaction between two people
- Chore: add `create_story_about_people_interaction` pattern for persona analysis
- Add `create_story_about_people_interaction` pattern description
- Include pattern in `ANALYSIS` and `WRITING` categories
- Update `suggest_pattern` system and user documentation
### Direct commits
- Chore: update alias creation to use consistent naming
- Remove redundant prefix from `pattern_name` variable
- Add `alias_name` variable for consistent alias creation
- Update alias command to use `alias_name`
- Modify PowerShell function to use `aliasName`
- Docs: add optional prefix support for fabric pattern aliases via FABRIC_ALIAS_PREFIX env var
- Add FABRIC_ALIAS_PREFIX environment variable support
- Update bash/zsh alias generation with prefix
- Update PowerShell alias generation with prefix
- Improve readability of alias setup instructions
- Enable custom prefixing for pattern commands
- Maintain backward compatibility without prefix
## v1.4.309 (2025-09-09)
### PR [#1756](https://github.com/danielmiessler/Fabric/pull/1756) by [ksylvan](https://github.com/ksylvan): Add Internationalization Support with Custom Help System
- Add comprehensive internationalization support with English and Spanish locales
- Replace hardcoded strings with i18n.T translations and add en and es JSON locale files
- Implement custom translated help system with language detection from CLI args
- Add locale download capability and localize error messages throughout codebase
- Support TTS and notification translations
## v1.4.308 (2025-09-05)
### PR [#1755](https://github.com/danielmiessler/Fabric/pull/1755) by [ksylvan](https://github.com/ksylvan): Add i18n Support for Multi-Language Fabric Experience
- Add Spanish localization support with i18n
- Create contexts and sessions tutorial documentation
- Fix broken Warp sponsorship image URL
- Remove solve_with_cot pattern from codebase
- Update pattern descriptions and explanations
### Direct commits
- Update Warp sponsor section with proper formatting
- Replace with correct div structure and styling
- Use proper Warp image URL from brand assets
- Add "Special thanks to:" text and platform availability
- Maintains proper spacing and alignment
- Fix unclosed div tag in README causing display issues
- Close the main div container properly after fabric screenshot
- Fix HTML structure that was causing repetitive content display
- Ensure proper markdown rendering on GitHub
🤖 Generated with [Claude Code](<https://claude.ai/code)>
Co-Authored-By: Claude <noreply@anthropic.com>
- Update Warp sponsor section with new banner and branding
- Replace old banner with new warp-banner-light.png image
- Update styling to use modern p tags with proper centering
- Maintain existing go.warp.dev/fabric redirect URL
- Add descriptive alt text and emphasis text for accessibility
🤖 Generated with [Claude Code](<https://claude.ai/code)>
Co-Authored-By: Claude <noreply@anthropic.com>
## v1.4.307 (2025-09-01)
### PR [#1745](https://github.com/danielmiessler/Fabric/pull/1745) by [ksylvan](https://github.com/ksylvan): Fabric Installation Improvements and Automated Release Updates
- Streamlined install process with one-line installer scripts and updated documentation
- Added bash installer script for Unix systems
- Added PowerShell installer script for Windows
- Created installer documentation with usage examples
- Simplified README installation with one-line installers
## v1.4.306 (2025-09-01)
### PR [#1742](https://github.com/danielmiessler/Fabric/pull/1742) by [ksylvan](https://github.com/ksylvan): Documentation and Pattern Updates
- Add winget installation method for Windows users
- Include Docker Hub and GHCR image references with docker run examples
- Remove deprecated PowerShell download link and unused show_fabric_options_markmap pattern
- Update suggest_pattern with new AI patterns
- Add personal development patterns for storytelling
## v1.4.305 (2025-08-31)
### PR [#1741](https://github.com/danielmiessler/Fabric/pull/1741) by [ksylvan](https://github.com/ksylvan): CI: Fix Release Description Update
- Fix: update release workflow to support manual dispatch with custom tag
- Support custom tag from client payload in workflow
- Fallback to github.ref_name when no custom tag provided
- Enable manual release triggers with specified tag parameter
## v1.4.304 (2025-08-31)
### PR [#1740](https://github.com/danielmiessler/Fabric/pull/1740) by [ksylvan](https://github.com/ksylvan): Restore our custom Changelog Updates in GitHub Actions
- Add changelog generation step to GitHub release workflow
- Create updateReleaseForRepo helper method for release updates
- Add fork detection logic in UpdateReleaseDescription method
- Implement upstream repository release update for forks
- Enhance error handling with detailed repository context
## v1.4.303 (2025-08-28)
### PR [#1736](https://github.com/danielmiessler/Fabric/pull/1736) by [tonymet](https://github.com/tonymet): Winget Publishing and GoReleaser
- Added GoReleaser support for improved package distribution
- Winget and Docker publishing moved to ksylvan/fabric-packager GitHub repo
- Hardened release pipeline by gating workflows to upstream owner only
- Migrated from custom tokens to built-in GITHUB_TOKEN for enhanced security
- Removed docker-publish-on-tag workflow to reduce duplication and complexity
- Added ARM binary release support with updated documentation
## v1.4.302 (2025-08-28)
### PR [#1737](https://github.com/danielmiessler/Fabric/pull/1737) by [ksylvan](https://github.com/ksylvan) and [OmriH-Elister](https://github.com/OmriH-Elister): Add New Psychological Analysis Patterns + devalue version bump
- Add create_story_about_person system pattern with narrative workflow
- Add heal_person system pattern for compassionate healing plans
- Update pattern_explanations to register new patterns and renumber indices
- Extend pattern_descriptions with entries, tags, and concise descriptions
- Bump devalue dependency from 5.1.1 to 5.3.2
## v1.4.301 (2025-08-28)
### PR [#1735](https://github.com/danielmiessler/Fabric/pull/1735) by [ksylvan](https://github.com/ksylvan): Fix Docker Build Path Configuration
- Fix: update Docker workflow to use specific Dockerfile and monitor markdown file changes
- Add explicit Dockerfile path to Docker build action
- Remove markdown files from workflow paths-ignore filter
- Enable CI triggers for documentation file changes
- Specify Docker build context with custom file location
## v1.4.300 (2025-08-28)
### PR [#1732](https://github.com/danielmiessler/Fabric/pull/1732) by [ksylvan](https://github.com/ksylvan): CI Infra: Changelog Generation Tool + Docker Image Pubishing
- Add GitHub Actions workflow to publish Docker images on tags
- Build multi-arch images with Buildx and QEMU across amd64, arm64
- Tag images using semver; push to GHCR and Docker Hub
- Gate patterns workflow steps on detected changes instead of failing
- Auto-detect GitHub owner and repo from git remote URL
## v1.4.299 (2025-08-27)
### PR [#1731](https://github.com/danielmiessler/Fabric/pull/1731) by [ksylvan](https://github.com/ksylvan): chore: upgrade ollama dependency from v0.9.0 to v0.11.7
- Updated ollama package from version 0.9.0 to 0.11.7
- Fixed 8 security vulnerabilities including 5 high-severity CVEs that could cause denial of service attacks
- Patched Ollama server vulnerabilities related to division by zero errors and memory exhaustion
- Resolved security flaws that allowed malicious GGUF model file uploads to crash the server
- Enhanced system stability and security posture through comprehensive dependency upgrade
## v1.4.298 (2025-08-27)
### PR [#1730](https://github.com/danielmiessler/Fabric/pull/1730) by [ksylvan](https://github.com/ksylvan): Modernize Dockerfile with Best Practices Implementation
- Remove docker-test framework and simplify production docker setup by eliminating complex testing infrastructure
- Delete entire docker-test directory including test runner scripts and environment configuration files
- Implement multi-stage build optimization in production Dockerfile to improve build efficiency
- Remove docker-compose.yml and start-docker.sh helper scripts to streamline container workflow
- Update README documentation with cleaner Docker usage instructions and reduced image size benefits
## v1.4.297 (2025-08-26)
### PR [#1729](https://github.com/danielmiessler/Fabric/pull/1729) by [ksylvan](https://github.com/ksylvan): Add GitHub Community Health Documents
- Add CODE_OF_CONDUCT defining respectful, collaborative community behavior
- Add CONTRIBUTING with setup, testing, PR, changelog requirements
- Add SECURITY policy with reporting process and response timelines
- Add SUPPORT guide for bugs, features, discussions, expectations
- Add docs README indexing guides, quick starts, contributor essentials
## v1.4.296 (2025-08-26)
### PR [#1728](https://github.com/danielmiessler/Fabric/pull/1728) by [ksylvan](https://github.com/ksylvan): Refactor Logging System to Use Centralized Debug Logger
- Replace fmt.Fprintf/os.Stderr with centralized debuglog.Log across CLI and add unconditional Log function for important messages
- Improve OAuth flow messaging and token refresh diagnostics with better error handling
- Update tests to capture debuglog output via SetOutput for better test coverage
- Convert Perplexity streaming errors to unified debug logging and emit file write notifications through debuglog
- Standardize extension registry warnings and announce large audio processing steps via centralized logger
## v1.4.295 (2025-08-24)
### PR [#1727](https://github.com/danielmiessler/Fabric/pull/1727) by [ksylvan](https://github.com/ksylvan): Standardize Anthropic Beta Failure Logging
- Refactor: route Anthropic beta failure logs through internal debug logger
- Replace fmt.Fprintf stderr with debuglog.Debug for beta failures
- Import internal log package and remove os dependency
- Standardize logging level to debuglog.Basic for beta errors
- Preserve fallback stream behavior when beta features fail
## v1.4.294 (2025-08-20)
### PR [#1723](https://github.com/danielmiessler/Fabric/pull/1723) by [ksylvan](https://github.com/ksylvan): docs: update README with Venice AI provider and Windows install script
- Add Venice AI provider configuration with API endpoint
- Document Venice AI as privacy-first open-source provider
- Include PowerShell installation script for Windows users
- Add debug levels section to table of contents
- Update recent major features with v1.4.294 release notes
## v1.4.293 (2025-08-19)
### PR [#1718](https://github.com/danielmiessler/Fabric/pull/1718) by [ksylvan](https://github.com/ksylvan): Implement Configurable Debug Logging Levels
- Add --debug flag controlling runtime logging verbosity levels
- Introduce internal/log package with Off, Basic, Detailed, Trace
- Replace ad-hoc Debugf and globals with centralized debug logger
- Wire debug level during early CLI argument parsing
- Add bash, zsh, fish completions for --debug levels
## v1.4.292 (2025-08-18)
### PR [#1717](https://github.com/danielmiessler/Fabric/pull/1717) by [ksylvan](https://github.com/ksylvan): Highlight default vendor/model in model listing
- Update PrintWithVendor signature to accept default vendor and model
- Mark default vendor/model with asterisk in non-shell output
- Compare vendor and model case-insensitively when marking
- Pass registry defaults to PrintWithVendor from CLI
- Add test ensuring default selection appears with asterisk
### Direct commits
- Docs: update version number in README updates section from v1.4.290 to v1.4.291
## v1.4.291 (2025-08-18)
### PR [#1715](https://github.com/danielmiessler/Fabric/pull/1715) by [ksylvan](https://github.com/ksylvan): feat: add speech-to-text via OpenAI with transcription flags and comp…
- Add --transcribe-file flag to transcribe audio or video
- Add --transcribe-model flag with model listing and completion
- Add --split-media-file flag to chunk files over 25MB
- Implement OpenAI transcription using Whisper and GPT-4o Transcribe
- Integrate transcription pipeline into CLI before readability processing
## v1.4.290 (2025-08-17)
### PR [#1714](https://github.com/danielmiessler/Fabric/pull/1714) by [ksylvan](https://github.com/ksylvan): feat: add per-pattern model mapping support via environment variables
- Add per-pattern model mapping support via environment variables
- Implement environment variable lookup for pattern-specific models
- Support vendor|model format in environment variable specification
- Enable shell startup file configuration for patterns
- Transform pattern names to uppercase environment variable format
## v1.4.289 (2025-08-16)
### PR [#1710](https://github.com/danielmiessler/Fabric/pull/1710) by [ksylvan](https://github.com/ksylvan): feat: add --no-variable-replacement flag to disable pattern variable …
- Add --no-variable-replacement flag to disable pattern variable substitution
- Introduce CLI flag to skip pattern variable replacement and wire it into domain request and session builder
- Provide PatternsEntity.GetWithoutVariables for input-only pattern processing support
- Refactor patterns code into reusable load and apply helpers
- Update bash, zsh, fish completions with new flag and document in README and CLI help output
## v1.4.288 (2025-08-16)
### PR [#1709](https://github.com/danielmiessler/Fabric/pull/1709) by [ksylvan](https://github.com/ksylvan): Enhanced YouTube Subtitle Language Fallback Handling
- Fix: improve YouTube subtitle language fallback handling in yt-dlp integration
- Fix typo "Gemmini" to "Gemini" in README
- Add "kballard" and "shellquote" to VSCode dictionary
- Add "YTDLP" to VSCode spell checker
- Enhance subtitle language options with fallback variants
## v1.4.287 (2025-08-14)
### PR [#1706](https://github.com/danielmiessler/Fabric/pull/1706) by [ksylvan](https://github.com/ksylvan): Gemini Thinking Support and README (New Features) automation
- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking
## v1.4.286 (2025-08-14)
### PR [#1700](https://github.com/danielmiessler/Fabric/pull/1700) by [ksylvan](https://github.com/ksylvan): Introduce Thinking Config Across Anthropic and OpenAI Providers
- Add --thinking CLI flag for configurable reasoning levels across providers
- Implement Anthropic ThinkingConfig with standardized budgets and tokens
- Map OpenAI reasoning effort from thinking levels
- Show thinking level in dry-run formatted options
- Overhaul suggest_pattern docs with categories, workflows, usage examples
## v1.4.285 (2025-08-13)
### PR [#1698](https://github.com/danielmiessler/Fabric/pull/1698) by [ksylvan](https://github.com/ksylvan): Enable One Million Token Context Beta Feature for Sonnet-4
- Chore: upgrade anthropic-sdk-go to v1.9.1 and add beta feature support for context-1m
- Add modelBetas map for beta feature configuration
- Implement context-1m-2025-08-07 beta for Claude Sonnet 4
- Add beta header support with fallback handling
- Preserve existing beta headers in OAuth transport
## v1.4.284 (2025-08-12)
### PR [#1695](https://github.com/danielmiessler/Fabric/pull/1695) by [ksylvan](https://github.com/ksylvan): Introduce One-Liner Curl Install for Completions
- Add one-liner curl install method for shell completions without requiring repository cloning
- Support downloading completions when files are missing locally with dry-run option for previewing changes
- Enable custom download source via environment variable and create temporary directory for downloaded completion files
- Add automatic cleanup of temporary files and validate downloaded files are non-empty and not HTML
- Improve error handling and standardize logging by routing informational messages to stderr to avoid stdout pollution
## v1.4.283 (2025-08-12)
### PR [#1692](https://github.com/danielmiessler/Fabric/pull/1692) by [ksylvan](https://github.com/ksylvan): Add Vendor Selection Support for Models
- Add -V/--vendor flag to specify model vendor
- Implement vendor-aware model resolution and availability validation
- Warn on ambiguous models; suggest --vendor to disambiguate
- Update bash, zsh, fish completions with vendor suggestions
- Extend --listmodels to print vendor|model when interactive
## v1.4.282 (2025-08-11)
### PR [#1689](https://github.com/danielmiessler/Fabric/pull/1689) by [ksylvan](https://github.com/ksylvan): Enhanced Shell Completions for Fabric CLI Binaries
- Add 'fabric-ai' alias support across all shell completions
- Use invoked command name for dynamic completion list queries
- Refactor fish completions into reusable registrar for multiple commands
- Update Bash completion to reference executable via COMP_WORDS[0]
- Install completions automatically with new cross-shell setup script
## v1.4.281 (2025-08-11)
### PR [#1687](https://github.com/danielmiessler/Fabric/pull/1687) by [ksylvan](https://github.com/ksylvan): Add Web Search Tool Support for Gemini Models
- Enable Gemini models to use web search tool with --search flag
- Add validation for search-location timezone and language code formats
- Normalize language codes from underscores to hyphenated form
- Append deduplicated web citations under standardized Sources section
- Improve robustness for nil candidates and content parts
## v1.4.280 (2025-08-10)
### PR [#1686](https://github.com/danielmiessler/Fabric/pull/1686) by [ksylvan](https://github.com/ksylvan): Prevent duplicate text output in OpenAI streaming responses
- Fix: prevent duplicate text output in OpenAI streaming responses
- Skip processing of ResponseOutputTextDone events
- Prevent doubled text in stream output
- Add clarifying comment about API behavior
- Maintain delta chunk streaming functionality
## v1.4.279 (2025-08-10)
### PR [#1685](https://github.com/danielmiessler/Fabric/pull/1685) by [ksylvan](https://github.com/ksylvan): Fix Gemini Role Mapping for API Compatibility
- Fix Gemini role mapping to ensure proper API compatibility by converting chat roles to Gemini's user/model format
- Map assistant role to model role per Gemini API constraints
- Map system, developer, function, and tool roles to user role for proper handling
- Default unrecognized roles to user role to preserve instruction context
- Add comprehensive unit tests to validate convertMessages role mapping logic
## v1.4.278 (2025-08-09)
### PR [#1681](https://github.com/danielmiessler/Fabric/pull/1681) by [ksylvan](https://github.com/ksylvan): Enhance YouTube Support with Custom yt-dlp Arguments
- Add `--yt-dlp-args` flag for custom YouTube downloader options with advanced control capabilities
- Implement smart subtitle language fallback system when requested locale is unavailable
- Add fallback logic for YouTube subtitle language detection with auto-detection of downloaded languages
- Replace custom argument parser with shellquote and precompile regexes for improved performance and safety
## v1.4.277 (2025-08-08)
### PR [#1679](https://github.com/danielmiessler/Fabric/pull/1679) by [ksylvan](https://github.com/ksylvan): Add cross-platform desktop notifications to Fabric CLI
- Add cross-platform desktop notifications with secure custom commands
- Integrate notification sending into chat processing workflow
- Add --notification and --notification-command CLI flags and help
- Provide cross-platform providers: macOS, Linux, Windows with fallbacks
- Escape shell metacharacters to prevent injection vulnerabilities
## v1.4.276 (2025-08-08)
### Direct commits
@@ -35,8 +835,7 @@
### Direct commits
- Chore: remove redundant words
Signed-off-by: queryfast <queryfast@outlook.com>
- Remove redundant words from codebase
- Fix typos in t_ patterns
## v1.4.272 (2025-07-28)

310
README.md
View File

@@ -1,7 +1,18 @@
<div align="center">
Fabric is graciously supported by…
<a href="https://go.warp.dev/fabric" target="_blank">
<sup>Special thanks to:</sup>
<br>
<img alt="Warp sponsorship" width="400" src="https://raw.githubusercontent.com/warpdotdev/brand-assets/refs/heads/main/Github/Sponsor/Warp-Github-LG-02.png">
<br>
<h>Warp, built for coding with multiple AI agents</b>
<br>
<sup>Available for macOS, Linux and Windows</sup>
</a>
</div>
[![Github Repo Tagline](https://github.com/user-attachments/assets/96ab3d81-9b13-4df4-ba09-75dee7a5c3d2)](https://warp.dev/fabric)
<br>
<div align="center">
<img src="./docs/images/fabric-logo-gif.gif" alt="fabriclogo" width="400" height="400"/>
@@ -18,6 +29,10 @@ Fabric is graciously supported by…
<h4><code>fabric</code> is an open-source framework for augmenting humans using AI.</h4>
</div>
![Screenshot of fabric](./docs/images/fabric-summarize.png)
</div>
[Updates](#updates) •
[What and Why](#what-and-why) •
[Philosophy](#philosophy) •
@@ -29,8 +44,6 @@ Fabric is graciously supported by…
[Helper Apps](#helper-apps) •
[Meta](#meta)
![Screenshot of fabric](./docs/images/fabric-summarize.png)
</div>
## What and why
@@ -47,6 +60,71 @@ It's all really exciting and powerful, but _it's not easy to integrate this func
Fabric organizes prompts by real-world task, allowing people to create, collect, and organize their most important AI solutions in a single place for use in their favorite tools. And if you're command-line focused, you can use Fabric itself as the interface!
## Updates
<details>
<summary>Click to view recent updates</summary>
Dear Users,
We've been doing so many exciting things here at Fabric, I wanted to give a quick summary here to give you a sense of our development velocity!
Below are the **new features and capabilities** we've added (newest first):
### Recent Major Features
- [v1.4.338](https://github.com/danielmiessler/fabric/releases/tag/v1.4.338) (Dec 4, 2025) — Add Abacus vendor support for Chat-LLM
models (see [RouteLLM APIs](https://abacus.ai/app/route-llm-apis)).
- [v1.4.337](https://github.com/danielmiessler/fabric/releases/tag/v1.4.337) (Dec 4, 2025) — Add "Z AI" vendor support. See the [Z AI overview](https://docs.z.ai/guides/overview/overview) page for more details.
- [v1.4.334](https://github.com/danielmiessler/fabric/releases/tag/v1.4.334) (Nov 26, 2025) — **Claude Opus 4.5**: Updates the Anthropic SDK to the latest and adds the new [Claude Opus 4.5](https://www.anthropic.com/news/claude-opus-4-5) to the available models.
- [v1.4.331](https://github.com/danielmiessler/fabric/releases/tag/v1.4.331) (Nov 23, 2025) — **Support for GitHub Models**: Adds support for using GitHub Models.
- [v1.4.322](https://github.com/danielmiessler/fabric/releases/tag/v1.4.322) (Nov 5, 2025) — **Interactive HTML Concept Maps and Claude Sonnet 4.5**: Adds `create_conceptmap` pattern for visual knowledge representation using Vis.js, introduces WELLNESS category with psychological analysis patterns, and upgrades to Claude Sonnet 4.5
- [v1.4.317](https://github.com/danielmiessler/fabric/releases/tag/v1.4.317) (Sep 21, 2025) — **Portuguese Language Variants**: Adds BCP 47 locale normalization with support for Brazilian Portuguese (pt-BR) and European Portuguese (pt-PT) with intelligent fallback chains
- [v1.4.314](https://github.com/danielmiessler/fabric/releases/tag/v1.4.314) (Sep 17, 2025) — **Azure OpenAI Migration**: Migrates to official `openai-go/azure` SDK with improved authentication and default API version support
- [v1.4.311](https://github.com/danielmiessler/fabric/releases/tag/v1.4.311) (Sep 13, 2025) — **More internationalization support**: Adds de (German), fa (Persian / Farsi), fr (French), it (Italian),
ja (Japanese), pt (Portuguese), zh (Chinese)
- [v1.4.309](https://github.com/danielmiessler/fabric/releases/tag/v1.4.309) (Sep 9, 2025) — **Comprehensive internationalization support**: Includes English and Spanish locale files.
- [v1.4.303](https://github.com/danielmiessler/fabric/releases/tag/v1.4.303) (Aug 29, 2025) — **New Binary Releases**: Linux ARM and Windows ARM targets. You can run Fabric on the Raspberry PI and on your Windows Surface!
- [v1.4.294](https://github.com/danielmiessler/fabric/releases/tag/v1.4.294) (Aug 20, 2025) — **Venice AI Support**: Added the Venice AI provider. Venice is a Privacy-First, Open-Source AI provider. See their ["About Venice"](https://docs.venice.ai/overview/about-venice) page for details.
- [v1.4.291](https://github.com/danielmiessler/fabric/releases/tag/v1.4.291) (Aug 18, 2025) — **Speech To Text**: Add OpenAI speech-to-text support with `--transcribe-file`, `--transcribe-model`, and `--split-media-file` flags.
- [v1.4.287](https://github.com/danielmiessler/fabric/releases/tag/v1.4.287) (Aug 16, 2025) — **AI Reasoning**: Add Thinking to Gemini models and introduce `readme_updates` python script
- [v1.4.286](https://github.com/danielmiessler/fabric/releases/tag/v1.4.286) (Aug 14, 2025) — **AI Reasoning**: Introduce Thinking Config Across Anthropic and OpenAI Providers
- [v1.4.285](https://github.com/danielmiessler/fabric/releases/tag/v1.4.285) (Aug 13, 2025) — **Extended Context**: Enable One Million Token Context Beta Feature for Sonnet-4
- [v1.4.284](https://github.com/danielmiessler/fabric/releases/tag/v1.4.284) (Aug 12, 2025) — **Easy Shell Completions Setup**: Introduce One-Liner Curl Install for Completions
- [v1.4.283](https://github.com/danielmiessler/fabric/releases/tag/v1.4.283) (Aug 12, 2025) — **Model Management**: Add Vendor Selection Support for Models
- [v1.4.282](https://github.com/danielmiessler/fabric/releases/tag/v1.4.282) (Aug 11, 2025) — **Enhanced Shell Completions**: Enhanced Shell Completions for Fabric CLI Binaries
- [v1.4.281](https://github.com/danielmiessler/fabric/releases/tag/v1.4.281) (Aug 11, 2025) — **Gemini Search Tool**: Add Web Search Tool Support for Gemini Models
- [v1.4.278](https://github.com/danielmiessler/fabric/releases/tag/v1.4.278) (Aug 9, 2025) — **Enhance YouTube Transcripts**: Enhance YouTube Support with Custom yt-dlp Arguments
- [v1.4.277](https://github.com/danielmiessler/fabric/releases/tag/v1.4.277) (Aug 8, 2025) — **Desktop Notifications**: Add cross-platform desktop notifications to Fabric CLI
- [v1.4.274](https://github.com/danielmiessler/fabric/releases/tag/v1.4.274) (Aug 7, 2025) — **Claude 4.1 Added**: Add Support for Claude Opus 4.1 Model
- [v1.4.271](https://github.com/danielmiessler/fabric/releases/tag/v1.4.271) (Jul 28, 2025) — **AI Summarized Release Notes**: Enable AI summary updates for GitHub releases
- [v1.4.268](https://github.com/danielmiessler/fabric/releases/tag/v1.4.268) (Jul 26, 2025) — **Gemini TTS Voice Selection**: add Gemini TTS voice selection and listing functionality
- [v1.4.267](https://github.com/danielmiessler/fabric/releases/tag/v1.4.267) (Jul 26, 2025) — **Text-to-Speech**: Update Gemini Plugin to New SDK with TTS Support
- [v1.4.258](https://github.com/danielmiessler/fabric/releases/tag/v1.4.258) (Jul 17, 2025) — **Onboarding Improved**: Add startup check to initialize config and .env file automatically
- [v1.4.257](https://github.com/danielmiessler/fabric/releases/tag/v1.4.257) (Jul 17, 2025) — **OpenAI Routing Control**: Introduce CLI Flag to Disable OpenAI Responses API
- [v1.4.252](https://github.com/danielmiessler/fabric/releases/tag/v1.4.252) (Jul 16, 2025) — **Hide Thinking Block**: Optional Hiding of Model Thinking Process with Configurable Tags
- [v1.4.246](https://github.com/danielmiessler/fabric/releases/tag/v1.4.246) (Jul 14, 2025) — **Automatic ChangeLog Updates**: Add AI-powered changelog generation with high-performance Go tool and comprehensive caching
- [v1.4.245](https://github.com/danielmiessler/fabric/releases/tag/v1.4.245) (Jul 11, 2025) — **Together AI**: Together AI Support with OpenAI Fallback Mechanism Added
- [v1.4.232](https://github.com/danielmiessler/fabric/releases/tag/v1.4.232) (Jul 6, 2025) — **Add Custom**: Add Custom Patterns Directory Support
- [v1.4.231](https://github.com/danielmiessler/fabric/releases/tag/v1.4.231) (Jul 5, 2025) — **OAuth Auto-Auth**: OAuth Authentication Support for Anthropic (Use your Max Subscription)
- [v1.4.230](https://github.com/danielmiessler/fabric/releases/tag/v1.4.230) (Jul 5, 2025) — **Model Management**: Add advanced image generation parameters for OpenAI models with four new CLI flags
- [v1.4.227](https://github.com/danielmiessler/fabric/releases/tag/v1.4.227) (Jul 4, 2025) — **Add Image**: Add Image Generation Support to Fabric
- [v1.4.226](https://github.com/danielmiessler/fabric/releases/tag/v1.4.226) (Jul 4, 2025) — **Web Search**: OpenAI Plugin Now Supports Web Search Functionality
- [v1.4.225](https://github.com/danielmiessler/fabric/releases/tag/v1.4.225) (Jul 4, 2025) — **Web Search**: Runtime Web Search Control via Command-Line `--search` Flag
- [v1.4.224](https://github.com/danielmiessler/fabric/releases/tag/v1.4.224) (Jul 1, 2025) — **Add code_review**: Add code_review pattern and updates in Pattern_Descriptions
- [v1.4.222](https://github.com/danielmiessler/fabric/releases/tag/v1.4.222) (Jul 1, 2025) — **OpenAI Plugin**: OpenAI Plugin Migrates to New Responses API
- [v1.4.218](https://github.com/danielmiessler/fabric/releases/tag/v1.4.218) (Jun 27, 2025) — **Model Management**: Add Support for OpenAI Search and Research Model Variants
- [v1.4.217](https://github.com/danielmiessler/fabric/releases/tag/v1.4.217) (Jun 26, 2025) — **New YouTube**: New YouTube Transcript Endpoint Added to REST API
- [v1.4.212](https://github.com/danielmiessler/fabric/releases/tag/v1.4.212) (Jun 23, 2025) — **Add Langdock**: Add Langdock AI and enhance generic OpenAI compatible support
- [v1.4.211](https://github.com/danielmiessler/fabric/releases/tag/v1.4.211) (Jun 19, 2025) — **REST API**: REST API and Web UI Now Support Dynamic Pattern Variables
- [v1.4.210](https://github.com/danielmiessler/fabric/releases/tag/v1.4.210) (Jun 18, 2025) — **Add Citations**: Add Citation Support to Perplexity Response
- [v1.4.208](https://github.com/danielmiessler/fabric/releases/tag/v1.4.208) (Jun 17, 2025) — **Add Perplexity**: Add Perplexity AI Provider with Token Limits Support
- [v1.4.203](https://github.com/danielmiessler/fabric/releases/tag/v1.4.203) (Jun 14, 2025) — **Add Amazon Bedrock**: Add support for Amazon Bedrock
These features represent our commitment to making Fabric the most powerful and flexible AI augmentation framework available!
</details>
## Intro videos
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#installation) below.
@@ -60,34 +138,38 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [`fabric`](#fabric)
- [What and why](#what-and-why)
- [Updates](#updates)
- [Recent Major Features](#recent-major-features)
- [Intro videos](#intro-videos)
- [Navigation](#navigation)
- [Updates](#updates)
- [Changelog](#changelog)
- [Philosophy](#philosophy)
- [Breaking problems into components](#breaking-problems-into-components)
- [Too many prompts](#too-many-prompts)
- [Installation](#installation)
- [Get Latest Release Binaries](#get-latest-release-binaries)
- [Windows](#windows)
- [macOS (arm64)](#macos-arm64)
- [macOS (amd64)](#macos-amd64)
- [Linux (amd64)](#linux-amd64)
- [Linux (arm64)](#linux-arm64)
- [One-Line Install (Recommended)](#one-line-install-recommended)
- [Manual Binary Downloads](#manual-binary-downloads)
- [Using package managers](#using-package-managers)
- [macOS (Homebrew)](#macos-homebrew)
- [Arch Linux (AUR)](#arch-linux-aur)
- [Windows](#windows)
- [From Source](#from-source)
- [Docker](#docker)
- [Environment Variables](#environment-variables)
- [Setup](#setup)
- [Per-Pattern Model Mapping](#per-pattern-model-mapping)
- [Add aliases for all patterns](#add-aliases-for-all-patterns)
- [Save your files in markdown using aliases](#save-your-files-in-markdown-using-aliases)
- [Migration](#migration)
- [Upgrading](#upgrading)
- [Shell Completions](#shell-completions)
- [Quick install (no clone required)](#quick-install-no-clone-required)
- [Zsh Completion](#zsh-completion)
- [Bash Completion](#bash-completion)
- [Fish Completion](#fish-completion)
- [Usage](#usage)
- [Debug Levels](#debug-levels)
- [Extensions](#extensions)
- [Our approach to prompting](#our-approach-to-prompting)
- [Examples](#examples)
- [Just use the Patterns](#just-use-the-patterns)
@@ -101,17 +183,14 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [`to_pdf` Installation](#to_pdf-installation)
- [`code_helper`](#code_helper)
- [pbpaste](#pbpaste)
- [Web Interface](#web-interface)
- [Installing](#installing)
- [Streamlit UI](#streamlit-ui)
- [Clipboard Support](#clipboard-support)
- [Web Interface (Fabric Web App)](#web-interface-fabric-web-app)
- [Meta](#meta)
- [Primary contributors](#primary-contributors)
- [Contributors](#contributors)
<br />
## Updates
## Changelog
Fabric is evolving rapidly.
@@ -150,29 +229,25 @@ Fabric has Patterns for all sorts of life and work activities, including:
## Installation
To install Fabric, you can use the latest release binaries or install it from the source.
### One-Line Install (Recommended)
### Get Latest Release Binaries
**Unix/Linux/macOS:**
#### Windows
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.sh | bash
```
`https://github.com/danielmiessler/fabric/releases/latest/download/fabric-windows-amd64.exe`
**Windows PowerShell:**
#### macOS (arm64)
```powershell
iwr -useb https://raw.githubusercontent.com/danielmiessler/fabric/main/scripts/installer/install.ps1 | iex
```
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-darwin-arm64 > fabric && chmod +x fabric && ./fabric --version`
> See [scripts/installer/README.md](./scripts/installer/README.md) for custom installation options and troubleshooting.
#### macOS (amd64)
### Manual Binary Downloads
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-darwin-amd64 > fabric && chmod +x fabric && ./fabric --version`
#### Linux (amd64)
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-linux-amd64 > fabric && chmod +x fabric && ./fabric --version`
#### Linux (arm64)
`curl -L https://github.com/danielmiessler/fabric/releases/latest/download/fabric-linux-arm64 > fabric && chmod +x fabric && ./fabric --version`
The latest release binary archives and their expected SHA256 hashes can be found at <https://github.com/danielmiessler/fabric/releases/latest>
### Using package managers
@@ -191,6 +266,12 @@ alias fabric='fabric-ai'
`yay -S fabric-ai`
#### Windows
Use the official Microsoft supported `Winget` tool:
`winget install danielmiessler.Fabric`
### From Source
To install Fabric, [make sure Go is installed](https://go.dev/doc/install), and then run the following command.
@@ -200,6 +281,35 @@ To install Fabric, [make sure Go is installed](https://go.dev/doc/install), and
go install github.com/danielmiessler/fabric/cmd/fabric@latest
```
### Docker
Run Fabric using pre-built Docker images:
```bash
# Use latest image from Docker Hub
docker run --rm -it kayvan/fabric:latest --version
# Use specific version from GHCR
docker run --rm -it ghcr.io/ksylvan/fabric:v1.4.305 --version
# Run setup (first time)
mkdir -p $HOME/.fabric-config
docker run --rm -it -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest --setup
# Use Fabric with your patterns
docker run --rm -it -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest -p summarize
# Run the REST API server
docker run --rm -it -p 8080:8080 -v $HOME/.fabric-config:/root/.config/fabric kayvan/fabric:latest --serve
```
**Images available at:**
- Docker Hub: [kayvan/fabric](https://hub.docker.com/repository/docker/kayvan/fabric/general)
- GHCR: [ksylvan/fabric](https://github.com/ksylvan/fabric/pkgs/container/fabric)
See [scripts/docker/README.md](./scripts/docker/README.md) for building custom images and advanced configuration.
### Environment Variables
You may need to set some environment variables in your `~/.bashrc` on linux or `~/.zshrc` file on mac to be able to run the `fabric` command. Here is an example of what you can add:
@@ -235,19 +345,29 @@ fabric --setup
If everything works you are good to go.
### Per-Pattern Model Mapping
You can configure specific models for individual patterns using environment variables
like `FABRIC_MODEL_PATTERN_NAME=vendor|model`
This makes it easy to maintain these per-pattern model mappings in your shell startup files.
### Add aliases for all patterns
In order to add aliases for all your patterns and use them directly as commands ie. `summarize` instead of `fabric --pattern summarize`
You can add the following to your `.zshrc` or `.bashrc` file.
In order to add aliases for all your patterns and use them directly as commands, for example, `summarize` instead of `fabric --pattern summarize`
You can add the following to your `.zshrc` or `.bashrc` file. You
can also optionally set the `FABRIC_ALIAS_PREFIX` environment variable
before, if you'd prefer all the fabric aliases to start with the same prefix.
```bash
# Loop through all files in the ~/.config/fabric/patterns directory
for pattern_file in $HOME/.config/fabric/patterns/*; do
# Get the base name of the file (i.e., remove the directory path)
pattern_name=$(basename "$pattern_file")
pattern_name="$(basename "$pattern_file")"
alias_name="${FABRIC_ALIAS_PREFIX:-}${pattern_name}"
# Create an alias in the form: alias pattern_name="fabric --pattern pattern_name"
alias_command="alias $pattern_name='fabric --pattern $pattern_name'"
alias_command="alias $alias_name='fabric --pattern $pattern_name'"
# Evaluate the alias command to add it to the current shell
eval "$alias_command"
@@ -276,11 +396,13 @@ You can add the below code for the equivalent aliases inside PowerShell by runni
# Path to the patterns directory
$patternsPath = Join-Path $HOME ".config/fabric/patterns"
foreach ($patternDir in Get-ChildItem -Path $patternsPath -Directory) {
$patternName = $patternDir.Name
# Prepend FABRIC_ALIAS_PREFIX if set; otherwise use empty string
$prefix = $env:FABRIC_ALIAS_PREFIX ?? ''
$patternName = "$($patternDir.Name)"
$aliasName = "$prefix$patternName"
# Dynamically define a function for each pattern
$functionDefinition = @"
function $patternName {
function $aliasName {
[CmdletBinding()]
param(
[Parameter(ValueFromPipeline = `$true)]
@@ -428,6 +550,25 @@ Fabric provides shell completion scripts for Zsh, Bash, and Fish
shells, making it easier to use the CLI by providing tab completion
for commands and options.
#### Quick install (no clone required)
You can install completions directly via a one-liner:
```bash
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh
```
Optional variants:
```bash
# Dry-run (see actions without changing your system)
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh -s -- --dry-run
# Override the download source (advanced)
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions" \
sh -c "$(curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh)"
```
#### Zsh Completion
To enable Zsh completion:
@@ -487,9 +628,10 @@ Application Options:
-T, --topp= Set top P (default: 0.9)
-s, --stream Stream
-P, --presencepenalty= Set presence penalty (default: 0.0)
-r, --raw Use the defaults of the model without sending chat options (like
temperature etc.) and use the user role instead of the system role for
patterns.
-r, --raw Use the defaults of the model without sending chat options
(temperature, top_p, etc.). Only affects OpenAI-compatible providers.
Anthropic models always use smart parameter selection to comply with
model-specific requirements.
-F, --frequencypenalty= Set frequency penalty (default: 0.0)
-l, --listpatterns List all patterns
-L, --listmodels List all available models
@@ -498,6 +640,7 @@ Application Options:
-U, --updatepatterns Update patterns
-c, --copy Copy to clipboard
-m, --model= Choose model
-V, --vendor= Specify vendor for chosen model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)
--modelContextLength= Model context length (only affects ollama)
-o, --output= Output to file
--output-session Output the entire session (also a temporary one) to the output file
@@ -522,6 +665,7 @@ Application Options:
--printsession= Print session
--readability Convert HTML input into a clean, readable view
--input-has-vars Apply variables to user input
--no-variable-replacement Disable pattern variable replacement
--dry-run Show what would be sent to the model without actually sending it
--serve Serve the Fabric Rest API
--serveOllama Serve the Fabric Rest API with ollama endpoints
@@ -536,7 +680,7 @@ Application Options:
--liststrategies List all strategies
--listvendors List all vendors
--shell-complete-list Output raw list without headers/formatting (for shell completion)
--search Enable web search tool for supported models (Anthropic, OpenAI)
--search Enable web search tool for supported models (Anthropic, OpenAI, Gemini)
--search-location= Set location for web search results (e.g., 'America/Los_Angeles')
--image-file= Save generated image to specified file path (e.g., 'output.png')
--image-size= Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)
@@ -551,11 +695,32 @@ Application Options:
--voice= TTS voice name for supported models (e.g., Kore, Charon, Puck)
(default: Kore)
--list-gemini-voices List all available Gemini TTS voices
--notification Send desktop notification when command completes
--notification-command= Custom command to run for notifications (overrides built-in
notifications)
--yt-dlp-args= Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')
--thinking= Set reasoning/thinking level (e.g., off, low, medium, high, or
numeric tokens for Anthropic or Google Gemini)
--debug= Set debug level (0: off, 1: basic, 2: detailed, 3: trace)
Help Options:
-h, --help Show this help message
```
### Debug Levels
Use the `--debug` flag to control runtime logging:
- `0`: off (default)
- `1`: basic debug info
- `2`: detailed debugging
- `3`: trace level
### Extensions
Fabric supports extensions that can be called within patterns. See the [Extension Guide](internal/plugins/template/Examples/README.md) for complete documentation.
**Important:** Extensions only work within pattern files, not via direct stdin. See the guide for details and examples.
## Our approach to prompting
Fabric _Patterns_ are different than most prompts you'll see.
@@ -565,7 +730,7 @@ Fabric _Patterns_ are different than most prompts you'll see.
Here's an example of a Fabric Pattern.
```bash
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
https://github.com/danielmiessler/Fabric/blob/main/data/patterns/extract_wisdom/system.md
```
<img width="1461" alt="pattern-example" src="https://github.com/danielmiessler/fabric/assets/50654/b910c551-9263-405f-9735-71ca69bbab6d">
@@ -752,60 +917,9 @@ You can also create an alias by editing `~/.bashrc` or `~/.zshrc` and adding the
alias pbpaste='xclip -selection clipboard -o'
```
## Web Interface
## Web Interface (Fabric Web App)
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface and an out-of-the-box website for those who want to get started with web development or blogging.
You can use this app as a GUI interface for Fabric, a ready to go blog-site, or a website template for your own projects.
The `web/src/lib/content` directory includes starter `.obsidian/` and `templates/` directories, allowing you to open up the `web/src/lib/content/` directory as an [Obsidian.md](https://obsidian.md) vault. You can place your posts in the posts directory when you're ready to publish.
### Installing
The GUI can be installed by navigating to the `web` directory and using `npm install`, `pnpm install`, or your favorite package manager. Then simply run the development server to start the app.
_You will need to run fabric in a separate terminal with the `fabric --serve` command._
**From the fabric project `web/` directory:**
```shell
npm run dev
## or ##
pnpm run dev
## or your equivalent
```
### Streamlit UI
To run the Streamlit user interface:
```bash
# Install required dependencies
pip install -r requirements.txt
# Or manually install dependencies
pip install streamlit pandas matplotlib seaborn numpy python-dotenv pyperclip
# Run the Streamlit app
streamlit run streamlit.py
```
The Streamlit UI provides a user-friendly interface for:
- Running and chaining patterns
- Managing pattern outputs
- Creating and editing patterns
- Analyzing pattern results
#### Clipboard Support
The Streamlit UI supports clipboard operations across different platforms:
- **macOS**: Uses `pbcopy` and `pbpaste` (built-in)
- **Windows**: Uses `pyperclip` library (install with `pip install pyperclip`)
- **Linux**: Uses `xclip` (install with `sudo apt-get install xclip` or equivalent for your Linux distribution)
Fabric now includes a built-in web interface that provides a GUI alternative to the command-line interface. Refer to [Web App README](/web/README.md) for installation instructions and an overview of features.
## Meta

View File

@@ -1,3 +1,3 @@
package main
var version = "v1.4.276"
var version = "v1.4.341"

Binary file not shown.

View File

@@ -133,14 +133,17 @@ func (g *Generator) CreateNewChangelogEntry(version string) error {
var processingErrors []string
// First, aggregate all incoming PR files
for _, file := range files {
for i, file := range files {
data, err := os.ReadFile(file)
if err != nil {
processingErrors = append(processingErrors, fmt.Sprintf("failed to read %s: %v", file, err))
continue // Continue to attempt processing other files
}
content.WriteString(string(data))
// Note: No extra newline needed here as each incoming file already ends with a newline
// Add an extra newline between PR sections for proper spacing
if i < len(files)-1 {
content.WriteString("\n")
}
}
if len(processingErrors) > 0 {
@@ -177,7 +180,13 @@ func (g *Generator) CreateNewChangelogEntry(version string) error {
if err != nil {
return fmt.Errorf("failed to get direct commits since last release: %w", err)
}
content.WriteString(directCommitsContent)
if directCommitsContent != "" {
// Add spacing before direct commits section if we have PR content
if content.Len() > 0 {
content.WriteString("\n")
}
content.WriteString(directCommitsContent)
}
// Check if we have any content at all
if content.Len() == 0 {

View File

@@ -3,6 +3,9 @@ package internal
import (
"context"
"fmt"
"os/exec"
"regexp"
"strings"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/cache"
"github.com/danielmiessler/fabric/cmd/generate_changelog/internal/config"
@@ -17,17 +20,50 @@ type ReleaseManager struct {
repo string
}
// getGitHubInfo extracts owner and repo from git remote origin URL
func getGitHubInfo() (owner, repo string, err error) {
cmd := exec.Command("git", "remote", "get-url", "origin")
output, err := cmd.Output()
if err != nil {
return "", "", fmt.Errorf("failed to get git remote URL: %w", err)
}
url := strings.TrimSpace(string(output))
// Handle both SSH and HTTPS URLs
// SSH: git@github.com:owner/repo.git
// HTTPS: https://github.com/owner/repo.git
var re *regexp.Regexp
if strings.HasPrefix(url, "git@") {
re = regexp.MustCompile(`git@github\.com:([^/]+)/([^/.]+)(?:\.git)?`)
} else {
re = regexp.MustCompile(`https://github\.com/([^/]+)/([^/.]+)(?:\.git)?`)
}
matches := re.FindStringSubmatch(url)
if len(matches) < 3 {
return "", "", fmt.Errorf("invalid GitHub URL format: %s", url)
}
return matches[1], matches[2], nil
}
func NewReleaseManager(cfg *config.Config) (*ReleaseManager, error) {
cache, err := cache.New(cfg.CacheFile)
if err != nil {
return nil, fmt.Errorf("failed to create cache: %w", err)
}
owner, repo, err := getGitHubInfo()
if err != nil {
return nil, fmt.Errorf("failed to get GitHub repository info: %w", err)
}
return &ReleaseManager{
cache: cache,
githubToken: cfg.GitHubToken,
owner: "danielmiessler",
repo: "fabric",
owner: owner,
repo: repo,
}, nil
}
@@ -65,17 +101,49 @@ func (rm *ReleaseManager) UpdateReleaseDescription(version string) error {
client = github.NewClient(nil)
}
release, _, err := client.Repositories.GetReleaseByTag(ctx, rm.owner, rm.repo, version)
// Check if current repository is a fork by getting repo details
repo, _, err := client.Repositories.Get(ctx, rm.owner, rm.repo)
if err != nil {
return fmt.Errorf("failed to get repository info: %w", err)
}
// If repository is a fork, try updating the upstream (parent) repository first
if repo.Parent != nil {
parentOwner := repo.Parent.Owner.GetLogin()
parentRepo := repo.Parent.GetName()
fmt.Printf("Repository is a fork of %s/%s, attempting to update upstream release...\n", parentOwner, parentRepo)
err := rm.updateReleaseForRepo(ctx, client, parentOwner, parentRepo, version, releaseBody)
if err == nil {
fmt.Printf("Successfully updated release description for %s in upstream repository %s/%s\n", version, parentOwner, parentRepo)
return nil
}
fmt.Printf("Failed to update upstream repository: %v\nFalling back to current repository...\n", err)
}
// Update current repository (either not a fork or upstream update failed)
err = rm.updateReleaseForRepo(ctx, client, rm.owner, rm.repo, version, releaseBody)
if err != nil {
return fmt.Errorf("failed to update release description for version %s in repository %s/%s: %w", version, rm.owner, rm.repo, err)
}
fmt.Printf("Successfully updated release description for %s in repository %s/%s\n", version, rm.owner, rm.repo)
return nil
}
func (rm *ReleaseManager) updateReleaseForRepo(ctx context.Context, client *github.Client, owner, repo, version, releaseBody string) error {
release, _, err := client.Repositories.GetReleaseByTag(ctx, owner, repo, version)
if err != nil {
return fmt.Errorf("failed to get release for version %s: %w", version, err)
}
release.Body = &releaseBody
_, _, err = client.Repositories.EditRelease(ctx, rm.owner, rm.repo, *release.ID, release)
_, _, err = client.Repositories.EditRelease(ctx, owner, repo, *release.ID, release)
if err != nil {
return fmt.Errorf("failed to update release description for version %s: %w", version, err)
}
fmt.Printf("Successfully updated release description for %s\n", version)
return nil
}

View File

@@ -1,50 +1,71 @@
#compdef fabric
#compdef fabric fabric-ai
# Zsh completion for fabric CLI
# Place this file in a directory in your $fpath (e.g. /usr/local/share/zsh/site-functions)
_fabric_patterns() {
local -a patterns
patterns=(${(f)"$(fabric --listpatterns --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
patterns=(${(f)"$($cmd --listpatterns --shell-complete-list 2>/dev/null)"})
compadd -X "Patterns:" ${patterns}
}
_fabric_models() {
local -a models
models=(${(f)"$(fabric --listmodels --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
models=(${(f)"$($cmd --listmodels --shell-complete-list 2>/dev/null)"})
compadd -X "Models:" ${models}
}
_fabric_vendors() {
local -a vendors
local cmd=${words[1]}
vendors=(${(f)"$($cmd --listvendors --shell-complete-list 2>/dev/null)"})
compadd -X "Vendors:" ${vendors}
}
_fabric_contexts() {
local -a contexts
contexts=(${(f)"$(fabric --listcontexts --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
contexts=(${(f)"$($cmd --listcontexts --shell-complete-list 2>/dev/null)"})
compadd -X "Contexts:" ${contexts}
}
_fabric_sessions() {
local -a sessions
sessions=(${(f)"$(fabric --listsessions --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
sessions=(${(f)"$($cmd --listsessions --shell-complete-list 2>/dev/null)"})
compadd -X "Sessions:" ${sessions}
}
_fabric_strategies() {
local -a strategies
strategies=(${(f)"$(fabric --liststrategies --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
strategies=(${(f)"$($cmd --liststrategies --shell-complete-list 2>/dev/null)"})
compadd -X "Strategies:" ${strategies}
}
_fabric_extensions() {
local -a extensions
extensions=(${(f)"$(fabric --listextensions --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
extensions=(${(f)"$($cmd --listextensions --shell-complete-list 2>/dev/null)"})
compadd -X "Extensions:" ${extensions}
}
_fabric_gemini_voices() {
local -a voices
voices=(${(f)"$(fabric --list-gemini-voices --shell-complete-list 2>/dev/null)"})
local cmd=${words[1]}
voices=(${(f)"$($cmd --list-gemini-voices --shell-complete-list 2>/dev/null)"})
compadd -X "Gemini TTS Voices:" ${voices}
}
_fabric_transcription_models() {
local -a models
local cmd=${words[1]}
models=(${(f)"$($cmd --list-transcription-models --shell-complete-list 2>/dev/null)"})
compadd -X "Transcription Models:" ${models}
}
_fabric() {
local curcontext="$curcontext" state line
typeset -A opt_args
@@ -60,7 +81,7 @@ _fabric() {
'(-T --topp)'{-T,--topp}'[Set top P (default: 0.9)]:topp:' \
'(-s --stream)'{-s,--stream}'[Stream]' \
'(-P --presencepenalty)'{-P,--presencepenalty}'[Set presence penalty (default: 0.0)]:presence penalty:' \
'(-r --raw)'{-r,--raw}'[Use the defaults of the model without sending chat options]' \
'(-r --raw)'{-r,--raw}'[Use the defaults of the model without sending chat options. Only affects OpenAI-compatible providers. Anthropic models always use smart parameter selection to comply with model-specific requirements.]' \
'(-F --frequencypenalty)'{-F,--frequencypenalty}'[Set frequency penalty (default: 0.0)]:frequency penalty:' \
'(-l --listpatterns)'{-l,--listpatterns}'[List all patterns]' \
'(-L --listmodels)'{-L,--listmodels}'[List all available models]' \
@@ -69,6 +90,7 @@ _fabric() {
'(-U --updatepatterns)'{-U,--updatepatterns}'[Update patterns]' \
'(-c --copy)'{-c,--copy}'[Copy to clipboard]' \
'(-m --model)'{-m,--model}'[Choose model]:model:_fabric_models' \
'(-V --vendor)'{-V,--vendor}'[Specify vendor for chosen model (e.g., -V "LM Studio" -m openai/gpt-oss-20b)]:vendor:_fabric_vendors' \
'(--modelContextLength)--modelContextLength[Model context length (only affects ollama)]:length:' \
'(-o --output)'{-o,--output}'[Output to file]:file:_files' \
'(--output-session)--output-session[Output the entire session to the output file]' \
@@ -80,16 +102,19 @@ _fabric() {
'(--transcript-with-timestamps)--transcript-with-timestamps[Grab transcript from YouTube video with timestamps]' \
'(--comments)--comments[Grab comments from YouTube video and send to chat]' \
'(--metadata)--metadata[Output video metadata]' \
'(--yt-dlp-args)--yt-dlp-args[Additional arguments to pass to yt-dlp]:yt-dlp args:' \
'(-g --language)'{-g,--language}'[Specify the Language Code for the chat, e.g. -g=en -g=zh]:language:' \
'(-u --scrape_url)'{-u,--scrape_url}'[Scrape website URL to markdown using Jina AI]:url:' \
'(-q --scrape_question)'{-q,--scrape_question}'[Search question using Jina AI]:question:' \
'(-e --seed)'{-e,--seed}'[Seed to be used for LMM generation]:seed:' \
'(--thinking)--thinking[Set reasoning/thinking level]:level:(off low medium high)' \
'(-w --wipecontext)'{-w,--wipecontext}'[Wipe context]:context:_fabric_contexts' \
'(-W --wipesession)'{-W,--wipesession}'[Wipe session]:session:_fabric_sessions' \
'(--printcontext)--printcontext[Print context]:context:_fabric_contexts' \
'(--printsession)--printsession[Print session]:session:_fabric_sessions' \
'(--readability)--readability[Convert HTML input into a clean, readable view]' \
'(--input-has-vars)--input-has-vars[Apply variables to user input]' \
'(--no-variable-replacement)--no-variable-replacement[Disable pattern variable replacement]' \
'(--dry-run)--dry-run[Show what would be sent to the model without actually sending it]' \
'(--serve)--serve[Serve the Fabric Rest API]' \
'(--serveOllama)--serveOllama[Serve the Fabric Rest API with ollama endpoints]' \
@@ -97,7 +122,7 @@ _fabric() {
'(--api-key)--api-key[API key used to secure server routes]:api-key:' \
'(--config)--config[Path to YAML config file]:config file:_files -g "*.yaml *.yml"' \
'(--version)--version[Print current version]' \
'(--search)--search[Enable web search tool for supported models (Anthropic, OpenAI)]' \
'(--search)--search[Enable web search tool for supported models (Anthropic, OpenAI, Gemini)]' \
'(--search-location)--search-location[Set location for web search results]:location:' \
'(--image-file)--image-file[Save generated image to specified file path]:image file:_files -g "*.png *.webp *.jpeg *.jpg"' \
'(--image-size)--image-size[Image dimensions]:size:(1024x1024 1536x1024 1024x1536 auto)' \
@@ -117,6 +142,12 @@ _fabric() {
'(--think-start-tag)--think-start-tag[Start tag for thinking sections (default: <think>)]:start tag:' \
'(--think-end-tag)--think-end-tag[End tag for thinking sections (default: </think>)]:end tag:' \
'(--disable-responses-api)--disable-responses-api[Disable OpenAI Responses API (default: false)]' \
'(--transcribe-file)--transcribe-file[Audio or video file to transcribe]:audio file:_files -g "*.mp3 *.mp4 *.mpeg *.mpga *.m4a *.wav *.webm"' \
'(--transcribe-model)--transcribe-model[Model to use for transcription (separate from chat model)]:transcribe model:_fabric_transcription_models' \
'(--split-media-file)--split-media-file[Split audio/video files larger than 25MB using ffmpeg]' \
'(--debug)--debug[Set debug level (0=off, 1=basic, 2=detailed, 3=trace)]:debug level:(0 1 2 3)' \
'(--notification)--notification[Send desktop notification when command completes]' \
'(--notification-command)--notification-command[Custom command to run for notifications]:notification command:' \
'(-h --help)'{-h,--help}'[Show this help message]' \
'*:arguments:'
}

View File

@@ -10,14 +10,18 @@
_fabric() {
local cur prev words cword
_get_comp_words_by_ref -n : cur prev words cword
if declare -F _comp_get_words &>/dev/null; then
_comp_get_words cur prev words cword
else
_get_comp_words_by_ref cur prev words cword
fi
# Define all possible options/flags
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --language -g --scrape_url -u --scrape_question -q --seed -e --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --voice --list-gemini-voices --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --vendor -V --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --yt-dlp-args --language -g --scrape_url -u --scrape_question -q --seed -e --thinking --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --no-variable-replacement --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --transcribe-file --transcribe-model --split-media-file --voice --list-gemini-voices --notification --notification-command --debug --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
# Helper function for dynamic completions
_fabric_get_list() {
fabric "$1" --shell-complete-list 2>/dev/null
"${COMP_WORDS[0]}" "$1" --shell-complete-list 2>/dev/null
}
# Handle completions based on the previous word
@@ -38,6 +42,10 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --listmodels)" -- "${cur}"))
return 0
;;
-V | --vendor)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listvendors)" -- "${cur}"))
return 0
;;
-w | --wipecontext)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listcontexts)" -- "${cur}"))
return 0
@@ -54,6 +62,10 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --listsessions)" -- "${cur}"))
return 0
;;
--thinking)
COMPREPLY=($(compgen -W "off low medium high" -- "${cur}"))
return 0
;;
--rmextension)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listextensions)" -- "${cur}"))
return 0
@@ -66,8 +78,16 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --list-gemini-voices)" -- "${cur}"))
return 0
;;
--transcribe-model)
COMPREPLY=($(compgen -W "$(_fabric_get_list --list-transcription-models)" -- "${cur}"))
return 0
;;
--debug)
COMPREPLY=($(compgen -W "0 1 2 3" -- "${cur}"))
return 0
;;
# Options requiring file/directory paths
-a | --attachment | -o | --output | --config | --addextension | --image-file)
-a | --attachment | -o | --output | --config | --addextension | --image-file | --transcribe-file)
_filedir
return 0
;;
@@ -85,7 +105,7 @@ _fabric() {
return 0
;;
# Options requiring simple arguments (no specific completion logic here)
-v | --variable | -t | --temperature | -T | --topp | -P | --presencepenalty | -F | --frequencypenalty | --modelContextLength | -n | --latest | -y | --youtube | -g | --language | -u | --scrape_url | -q | --scrape_question | -e | --seed | --address | --api-key | --search-location | --image-compression | --think-start-tag | --think-end-tag)
-v | --variable | -t | --temperature | -T | --topp | -P | --presencepenalty | -F | --frequencypenalty | --modelContextLength | -n | --latest | -y | --youtube | --yt-dlp-args | -g | --language | -u | --scrape_url | -q | --scrape_question | -e | --seed | --address | --api-key | --search-location | --image-compression | --think-start-tag | --think-end-tag | --notification-command)
# No specific completion suggestions, user types the value
return 0
;;
@@ -104,4 +124,4 @@ _fabric() {
}
complete -F _fabric fabric
complete -F _fabric fabric fabric-ai

View File

@@ -8,104 +8,137 @@
# Helper functions for dynamic completions
function __fabric_get_patterns
fabric --listpatterns --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listpatterns --shell-complete-list 2>/dev/null
end
function __fabric_get_models
fabric --listmodels --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listmodels --shell-complete-list 2>/dev/null
end
function __fabric_get_vendors
set cmd (commandline -opc)[1]
$cmd --listvendors --shell-complete-list 2>/dev/null
end
function __fabric_get_contexts
fabric --listcontexts --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listcontexts --shell-complete-list 2>/dev/null
end
function __fabric_get_sessions
fabric --listsessions --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listsessions --shell-complete-list 2>/dev/null
end
function __fabric_get_strategies
fabric --liststrategies --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --liststrategies --shell-complete-list 2>/dev/null
end
function __fabric_get_extensions
fabric --listextensions --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --listextensions --shell-complete-list 2>/dev/null
end
function __fabric_get_gemini_voices
fabric --list-gemini-voices --shell-complete-list 2>/dev/null
set cmd (commandline -opc)[1]
$cmd --list-gemini-voices --shell-complete-list 2>/dev/null
end
function __fabric_get_transcription_models
set cmd (commandline -opc)[1]
$cmd --list-transcription-models --shell-complete-list 2>/dev/null
end
# Main completion function
complete -c fabric -f
function __fabric_register_completions
set cmd $argv[1]
complete -c $cmd -f
# Flag completions with arguments
complete -c fabric -s p -l pattern -d "Choose a pattern from the available patterns" -a "(__fabric_get_patterns)"
complete -c fabric -s v -l variable -d "Values for pattern variables, e.g. -v=#role:expert -v=#points:30"
complete -c fabric -s C -l context -d "Choose a context from the available contexts" -a "(__fabric_get_contexts)"
complete -c fabric -l session -d "Choose a session from the available sessions" -a "(__fabric_get_sessions)"
complete -c fabric -s a -l attachment -d "Attachment path or URL (e.g. for OpenAI image recognition messages)" -r
complete -c fabric -s t -l temperature -d "Set temperature (default: 0.7)"
complete -c fabric -s T -l topp -d "Set top P (default: 0.9)"
complete -c fabric -s P -l presencepenalty -d "Set presence penalty (default: 0.0)"
complete -c fabric -s F -l frequencypenalty -d "Set frequency penalty (default: 0.0)"
complete -c fabric -s m -l model -d "Choose model" -a "(__fabric_get_models)"
complete -c fabric -l modelContextLength -d "Model context length (only affects ollama)"
complete -c fabric -s o -l output -d "Output to file" -r
complete -c fabric -s n -l latest -d "Number of latest patterns to list (default: 0)"
complete -c fabric -s y -l youtube -d "YouTube video or play list URL to grab transcript, comments from it"
complete -c fabric -s g -l language -d "Specify the Language Code for the chat, e.g. -g=en -g=zh"
complete -c fabric -s u -l scrape_url -d "Scrape website URL to markdown using Jina AI"
complete -c fabric -s q -l scrape_question -d "Search question using Jina AI"
complete -c fabric -s e -l seed -d "Seed to be used for LMM generation"
complete -c fabric -s w -l wipecontext -d "Wipe context" -a "(__fabric_get_contexts)"
complete -c fabric -s W -l wipesession -d "Wipe session" -a "(__fabric_get_sessions)"
complete -c fabric -l printcontext -d "Print context" -a "(__fabric_get_contexts)"
complete -c fabric -l printsession -d "Print session" -a "(__fabric_get_sessions)"
complete -c fabric -l address -d "The address to bind the REST API (default: :8080)"
complete -c fabric -l api-key -d "API key used to secure server routes"
complete -c fabric -l config -d "Path to YAML config file" -r -a "*.yaml *.yml"
complete -c fabric -l search-location -d "Set location for web search results (e.g., 'America/Los_Angeles')"
complete -c fabric -l image-file -d "Save generated image to specified file path (e.g., 'output.png')" -r -a "*.png *.webp *.jpeg *.jpg"
complete -c fabric -l image-size -d "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)" -a "1024x1024 1536x1024 1024x1536 auto"
complete -c fabric -l image-quality -d "Image quality: low, medium, high, auto (default: auto)" -a "low medium high auto"
complete -c fabric -l image-compression -d "Compression level 0-100 for JPEG/WebP formats (default: not set)" -r
complete -c fabric -l image-background -d "Background type: opaque, transparent (default: opaque, only for PNG/WebP)" -a "opaque transparent"
complete -c fabric -l addextension -d "Register a new extension from config file path" -r -a "*.yaml *.yml"
complete -c fabric -l rmextension -d "Remove a registered extension by name" -a "(__fabric_get_extensions)"
complete -c fabric -l strategy -d "Choose a strategy from the available strategies" -a "(__fabric_get_strategies)"
complete -c fabric -l think-start-tag -d "Start tag for thinking sections (default: <think>)"
complete -c fabric -l think-end-tag -d "End tag for thinking sections (default: </think>)"
complete -c fabric -l voice -d "TTS voice name for supported models (e.g., Kore, Charon, Puck)" -a "(__fabric_get_gemini_voices)"
# Flag completions with arguments
complete -c $cmd -s p -l pattern -d "Choose a pattern from the available patterns" -a "(__fabric_get_patterns)"
complete -c $cmd -s v -l variable -d "Values for pattern variables, e.g. -v=#role:expert -v=#points:30"
complete -c $cmd -s C -l context -d "Choose a context from the available contexts" -a "(__fabric_get_contexts)"
complete -c $cmd -l session -d "Choose a session from the available sessions" -a "(__fabric_get_sessions)"
complete -c $cmd -s a -l attachment -d "Attachment path or URL (e.g. for OpenAI image recognition messages)" -r
complete -c $cmd -s t -l temperature -d "Set temperature (default: 0.7)"
complete -c $cmd -s T -l topp -d "Set top P (default: 0.9)"
complete -c $cmd -s P -l presencepenalty -d "Set presence penalty (default: 0.0)"
complete -c $cmd -s F -l frequencypenalty -d "Set frequency penalty (default: 0.0)"
complete -c $cmd -s m -l model -d "Choose model" -a "(__fabric_get_models)"
complete -c $cmd -s V -l vendor -d "Specify vendor for chosen model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)" -a "(__fabric_get_vendors)"
complete -c $cmd -l modelContextLength -d "Model context length (only affects ollama)"
complete -c $cmd -s o -l output -d "Output to file" -r
complete -c $cmd -s n -l latest -d "Number of latest patterns to list (default: 0)"
complete -c $cmd -s y -l youtube -d "YouTube video or play list URL to grab transcript, comments from it"
complete -c $cmd -s g -l language -d "Specify the Language Code for the chat, e.g. -g=en -g=zh"
complete -c $cmd -s u -l scrape_url -d "Scrape website URL to markdown using Jina AI"
complete -c $cmd -s q -l scrape_question -d "Search question using Jina AI"
complete -c $cmd -s e -l seed -d "Seed to be used for LMM generation"
complete -c $cmd -l thinking -d "Set reasoning/thinking level" -a "off low medium high"
complete -c $cmd -s w -l wipecontext -d "Wipe context" -a "(__fabric_get_contexts)"
complete -c $cmd -s W -l wipesession -d "Wipe session" -a "(__fabric_get_sessions)"
complete -c $cmd -l printcontext -d "Print context" -a "(__fabric_get_contexts)"
complete -c $cmd -l printsession -d "Print session" -a "(__fabric_get_sessions)"
complete -c $cmd -l address -d "The address to bind the REST API (default: :8080)"
complete -c $cmd -l api-key -d "API key used to secure server routes"
complete -c $cmd -l config -d "Path to YAML config file" -r -a "*.yaml *.yml"
complete -c $cmd -l search-location -d "Set location for web search results (e.g., 'America/Los_Angeles')"
complete -c $cmd -l image-file -d "Save generated image to specified file path (e.g., 'output.png')" -r -a "*.png *.webp *.jpeg *.jpg"
complete -c $cmd -l image-size -d "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)" -a "1024x1024 1536x1024 1024x1536 auto"
complete -c $cmd -l image-quality -d "Image quality: low, medium, high, auto (default: auto)" -a "low medium high auto"
complete -c $cmd -l image-compression -d "Compression level 0-100 for JPEG/WebP formats (default: not set)" -r
complete -c $cmd -l image-background -d "Background type: opaque, transparent (default: opaque, only for PNG/WebP)" -a "opaque transparent"
complete -c $cmd -l addextension -d "Register a new extension from config file path" -r -a "*.yaml *.yml"
complete -c $cmd -l rmextension -d "Remove a registered extension by name" -a "(__fabric_get_extensions)"
complete -c $cmd -l strategy -d "Choose a strategy from the available strategies" -a "(__fabric_get_strategies)"
complete -c $cmd -l think-start-tag -d "Start tag for thinking sections (default: <think>)"
complete -c $cmd -l think-end-tag -d "End tag for thinking sections (default: </think>)"
complete -c $cmd -l voice -d "TTS voice name for supported models (e.g., Kore, Charon, Puck)" -a "(__fabric_get_gemini_voices)"
complete -c $cmd -l transcribe-file -d "Audio or video file to transcribe" -r -a "*.mp3 *.mp4 *.mpeg *.mpga *.m4a *.wav *.webm"
complete -c $cmd -l transcribe-model -d "Model to use for transcription (separate from chat model)" -a "(__fabric_get_transcription_models)"
complete -c $cmd -l debug -d "Set debug level (0=off, 1=basic, 2=detailed, 3=trace)" -a "0 1 2 3"
complete -c $cmd -l notification-command -d "Custom command to run for notifications (overrides built-in notifications)"
# Boolean flags (no arguments)
complete -c fabric -s S -l setup -d "Run setup for all reconfigurable parts of fabric"
complete -c fabric -s s -l stream -d "Stream"
complete -c fabric -s r -l raw -d "Use the defaults of the model without sending chat options"
complete -c fabric -s l -l listpatterns -d "List all patterns"
complete -c fabric -s L -l listmodels -d "List all available models"
complete -c fabric -s x -l listcontexts -d "List all contexts"
complete -c fabric -s X -l listsessions -d "List all sessions"
complete -c fabric -s U -l updatepatterns -d "Update patterns"
complete -c fabric -s c -l copy -d "Copy to clipboard"
complete -c fabric -l output-session -d "Output the entire session to the output file"
complete -c fabric -s d -l changeDefaultModel -d "Change default model"
complete -c fabric -l playlist -d "Prefer playlist over video if both ids are present in the URL"
complete -c fabric -l transcript -d "Grab transcript from YouTube video and send to chat"
complete -c fabric -l transcript-with-timestamps -d "Grab transcript from YouTube video with timestamps"
complete -c fabric -l comments -d "Grab comments from YouTube video and send to chat"
complete -c fabric -l metadata -d "Output video metadata"
complete -c fabric -l readability -d "Convert HTML input into a clean, readable view"
complete -c fabric -l input-has-vars -d "Apply variables to user input"
complete -c fabric -l dry-run -d "Show what would be sent to the model without actually sending it"
complete -c fabric -l search -d "Enable web search tool for supported models (Anthropic, OpenAI)"
complete -c fabric -l serve -d "Serve the Fabric Rest API"
complete -c fabric -l serveOllama -d "Serve the Fabric Rest API with ollama endpoints"
complete -c fabric -l version -d "Print current version"
complete -c fabric -l listextensions -d "List all registered extensions"
complete -c fabric -l liststrategies -d "List all strategies"
complete -c fabric -l listvendors -d "List all vendors"
complete -c fabric -l list-gemini-voices -d "List all available Gemini TTS voices"
complete -c fabric -l shell-complete-list -d "Output raw list without headers/formatting (for shell completion)"
complete -c fabric -l suppress-think -d "Suppress text enclosed in thinking tags"
complete -c fabric -l disable-responses-api -d "Disable OpenAI Responses API (default: false)"
complete -c fabric -s h -l help -d "Show this help message"
# Boolean flags (no arguments)
complete -c $cmd -s S -l setup -d "Run setup for all reconfigurable parts of fabric"
complete -c $cmd -s s -l stream -d "Stream"
complete -c $cmd -s r -l raw -d "Use the defaults of the model without sending chat options. Only affects OpenAI-compatible providers. Anthropic models always use smart parameter selection to comply with model-specific requirements."
complete -c $cmd -s l -l listpatterns -d "List all patterns"
complete -c $cmd -s L -l listmodels -d "List all available models"
complete -c $cmd -s x -l listcontexts -d "List all contexts"
complete -c $cmd -s X -l listsessions -d "List all sessions"
complete -c $cmd -s U -l updatepatterns -d "Update patterns"
complete -c $cmd -s c -l copy -d "Copy to clipboard"
complete -c $cmd -l output-session -d "Output the entire session to the output file"
complete -c $cmd -s d -l changeDefaultModel -d "Change default model"
complete -c $cmd -l playlist -d "Prefer playlist over video if both ids are present in the URL"
complete -c $cmd -l transcript -d "Grab transcript from YouTube video and send to chat"
complete -c $cmd -l transcript-with-timestamps -d "Grab transcript from YouTube video with timestamps"
complete -c $cmd -l comments -d "Grab comments from YouTube video and send to chat"
complete -c $cmd -l metadata -d "Output video metadata"
complete -c $cmd -l yt-dlp-args -d "Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"
complete -c $cmd -l readability -d "Convert HTML input into a clean, readable view"
complete -c $cmd -l input-has-vars -d "Apply variables to user input"
complete -c $cmd -l no-variable-replacement -d "Disable pattern variable replacement"
complete -c $cmd -l dry-run -d "Show what would be sent to the model without actually sending it"
complete -c $cmd -l search -d "Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"
complete -c $cmd -l serve -d "Serve the Fabric Rest API"
complete -c $cmd -l serveOllama -d "Serve the Fabric Rest API with ollama endpoints"
complete -c $cmd -l version -d "Print current version"
complete -c $cmd -l listextensions -d "List all registered extensions"
complete -c $cmd -l liststrategies -d "List all strategies"
complete -c $cmd -l listvendors -d "List all vendors"
complete -c $cmd -l list-gemini-voices -d "List all available Gemini TTS voices"
complete -c $cmd -l shell-complete-list -d "Output raw list without headers/formatting (for shell completion)"
complete -c $cmd -l suppress-think -d "Suppress text enclosed in thinking tags"
complete -c $cmd -l disable-responses-api -d "Disable OpenAI Responses API (default: false)"
complete -c $cmd -l split-media-file -d "Split audio/video files larger than 25MB using ffmpeg"
complete -c $cmd -l notification -d "Send desktop notification when command completes"
complete -c $cmd -s h -l help -d "Show this help message"
end
__fabric_register_completions fabric
__fabric_register_completions fabric-ai

503
completions/setup-completions.sh Executable file
View File

@@ -0,0 +1,503 @@
#!/bin/sh
# Fabric Shell Completions Setup Script
# This script automatically installs shell completions for the fabric CLI
# based on your current shell and the installed fabric command name.
set -e
# Global variables
DRY_RUN=false
# Base URL to fetch completion files when not available locally
# Can be overridden via environment variable FABRIC_COMPLETIONS_BASE_URL
FABRIC_COMPLETIONS_BASE_URL="${FABRIC_COMPLETIONS_BASE_URL:-https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions}"
TEMP_DIR=""
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color
# Function to print colored output
print_info() {
printf "${BLUE}[INFO]${NC} %s\n" "$1"
}
print_success() {
printf "${GREEN}[SUCCESS]${NC} %s\n" "$1"
}
print_warning() {
printf "${YELLOW}[WARNING]${NC} %s\n" "$1"
}
print_error() {
printf "${RED}[ERROR]${NC} %s\n" "$1"
}
print_dry_run() {
printf "${CYAN}[DRY-RUN]${NC} %s\n" "$1"
}
# Function to execute commands with dry-run support
execute_command() {
cmd="$1"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: $cmd"
return 0
else
eval "$cmd" 2>/dev/null
fi
}
# Simple downloader that prefers curl, falls back to wget
to_github_raw_url() {
in_url="$1"
case "$in_url" in
https://github.com/*/*/blob/*)
# Convert blob URL to raw
# https://github.com/{owner}/{repo}/blob/{ref}/path -> https://raw.githubusercontent.com/{owner}/{repo}/{ref}/path
echo "$in_url" | sed -E 's#https://github.com/([^/]+)/([^/]+)/blob/([^/]+)/#https://raw.githubusercontent.com/\1/\2/\3/#'
;;
https://github.com/*/*/tree/*)
# Convert tree URL base + file path to raw
# https://github.com/{owner}/{repo}/tree/{ref}/path -> https://raw.githubusercontent.com/{owner}/{repo}/{ref}/path
echo "$in_url" | sed -E 's#https://github.com/([^/]+)/([^/]+)/tree/([^/]+)/#https://raw.githubusercontent.com/\1/\2/\3/#'
;;
*)
echo "$in_url"
;;
esac
}
# Simple downloader that prefers curl, falls back to wget
download_file() {
url="$1"
dest="$2"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would download: $url -> $dest"
return 0
fi
eff_url="$(to_github_raw_url "$url")"
if command -v curl >/dev/null 2>&1; then
curl -fsSL "$eff_url" -o "$dest"
return $?
elif command -v wget >/dev/null 2>&1; then
wget -q "$eff_url" -O "$dest"
return $?
else
print_error "Neither 'curl' nor 'wget' is available to download: $url"
return 1
fi
}
# Attempt to obtain completion files. If local copies are missing,
# download them into a temporary directory and return that directory path.
obtain_completion_files() {
obf_script_dir="$1"
obf_need_download=false
if [ ! -f "$obf_script_dir/_fabric" ] || [ ! -f "$obf_script_dir/fabric.bash" ] || [ ! -f "$obf_script_dir/fabric.fish" ]; then
obf_need_download=true
fi
if [ "$obf_need_download" = false ]; then
echo "$obf_script_dir"
return 0
fi
# Note: write only to stderr in this function except for the final echo which returns the path
printf "%s\n" "[INFO] Local completion files not found; will download from GitHub." 1>&2
printf "%s\n" "[INFO] Source: $FABRIC_COMPLETIONS_BASE_URL" 1>&2
if [ "$DRY_RUN" = true ]; then
printf "%s\n" "[DRY-RUN] Would create temporary directory for downloads" 1>&2
echo "$obf_script_dir" # Keep using original for dry-run copies
return 0
fi
TEMP_DIR="$(mktemp -d 2>/dev/null || mktemp -d -t fabric-completions)"
if [ ! -d "$TEMP_DIR" ]; then
print_error "Failed to create temporary directory for downloads."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/_fabric" "$TEMP_DIR/_fabric"; then
print_error "Failed to download _fabric"
return 1
fi
if [ ! -s "$TEMP_DIR/_fabric" ] || head -n1 "$TEMP_DIR/_fabric" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded _fabric appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/fabric.bash" "$TEMP_DIR/fabric.bash"; then
print_error "Failed to download fabric.bash"
return 1
fi
if [ ! -s "$TEMP_DIR/fabric.bash" ] || head -n1 "$TEMP_DIR/fabric.bash" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded fabric.bash appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
if ! download_file "$FABRIC_COMPLETIONS_BASE_URL/fabric.fish" "$TEMP_DIR/fabric.fish"; then
print_error "Failed to download fabric.fish"
return 1
fi
if [ ! -s "$TEMP_DIR/fabric.fish" ] || head -n1 "$TEMP_DIR/fabric.fish" | grep -qi "^<!DOCTYPE\|^<html"; then
print_error "Downloaded fabric.fish appears invalid (empty or HTML). Check FABRIC_COMPLETIONS_BASE_URL."
return 1
fi
echo "$TEMP_DIR"
}
# Ensure directory exists, try sudo on permission failure
ensure_dir() {
dir="$1"
# Expand ~ if present
case "$dir" in
~/*)
dir="$HOME${dir#~}"
;;
esac
if [ -d "$dir" ]; then
return 0
fi
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: mkdir -p \"$dir\""
print_dry_run "If permission denied, would run: sudo mkdir -p \"$dir\""
return 0
fi
if mkdir -p "$dir" 2>/dev/null; then
return 0
fi
if command -v sudo >/dev/null 2>&1 && sudo mkdir -p "$dir" 2>/dev/null; then
return 0
fi
print_error "Failed to create directory: $dir"
return 1
}
# Copy file with sudo fallback on permission failure
install_file() {
src="$1"
dest="$2"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: cp \"$src\" \"$dest\""
print_dry_run "If permission denied, would run: sudo cp \"$src\" \"$dest\""
return 0
fi
if cp "$src" "$dest" 2>/dev/null; then
return 0
fi
if command -v sudo >/dev/null 2>&1 && sudo cp "$src" "$dest" 2>/dev/null; then
return 0
fi
print_error "Failed to install file to: $dest"
return 1
}
# Function to detect fabric command name
detect_fabric_command() {
if command -v fabric >/dev/null 2>&1; then
echo "fabric"
elif command -v fabric-ai >/dev/null 2>&1; then
echo "fabric-ai"
else
print_error "Neither 'fabric' nor 'fabric-ai' command found in PATH"
exit 1
fi
}
# Function to detect shell
detect_shell() {
if [ -n "$SHELL" ]; then
basename "$SHELL"
else
print_warning "SHELL environment variable not set, defaulting to sh"
echo "sh"
fi
}
# Function to get script directory
get_script_dir() {
# Get the directory where this script is located
script_path="$(readlink -f "$0" 2>/dev/null || realpath "$0" 2>/dev/null || echo "$0")"
dirname "$script_path"
}
# Function to setup Zsh completions
setup_zsh_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="_${fabric_cmd}"
print_info "Setting up Zsh completions for '$fabric_cmd'..."
# Try to use existing $fpath first, then fall back to default directories
zsh_dirs=""
# Check if user's shell is zsh and try to get fpath from it
if [ "$(basename "$SHELL")" = "zsh" ] && command -v zsh >/dev/null 2>&1; then
# Get fpath from zsh by sourcing user's .zshrc first
fpath_output=$(zsh -c "source \$HOME/.zshrc 2>/dev/null && print -l \$fpath" 2>/dev/null | head -5 | tr '\n' ' ')
if [ -n "$fpath_output" ] && [ "$fpath_output" != "" ]; then
print_info "Using directories from zsh \$fpath"
zsh_dirs="$fpath_output"
fi
fi
# If we couldn't get fpath or it's empty, use default directories
if [ -z "$zsh_dirs" ] || [ "$zsh_dirs" = "" ]; then
print_info "Using default zsh completion directories"
zsh_dirs="/usr/local/share/zsh/site-functions /opt/homebrew/share/zsh/site-functions /usr/share/zsh/site-functions ~/.local/share/zsh/site-functions"
fi
installed=false
for dir in $zsh_dirs; do
# Create directory (with sudo fallback if needed)
if ensure_dir "$dir"; then
if install_file "$script_dir/_fabric" "$dir/$completion_file"; then
if [ "$DRY_RUN" = true ]; then
print_success "Would install Zsh completion to: $dir/$completion_file"
else
print_success "Installed Zsh completion to: $dir/$completion_file"
fi
installed=true
break
fi
fi
done
if [ "$installed" = false ]; then
if [ "$DRY_RUN" = true ]; then
print_warning "Would attempt to install Zsh completions but no writable directory found."
else
print_error "Failed to install Zsh completions. Try running with sudo or check permissions."
return 1
fi
fi
if [ "$DRY_RUN" = true ]; then
print_info "Would suggest: Restart your shell or run 'autoload -U compinit && compinit' to enable completions."
else
print_info "Restart your shell or run 'autoload -U compinit && compinit' to enable completions."
fi
}
# Function to setup Bash completions
setup_bash_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="${fabric_cmd}.bash"
print_info "Setting up Bash completions for '$fabric_cmd'..."
# Try different completion directories
bash_dirs="/etc/bash_completion.d /usr/local/etc/bash_completion.d /opt/homebrew/etc/bash_completion.d ~/.local/share/bash-completion/completions"
installed=false
for dir in $bash_dirs; do
if ensure_dir "$dir"; then
if install_file "$script_dir/fabric.bash" "$dir/$completion_file"; then
if [ "$DRY_RUN" = true ]; then
print_success "Would install Bash completion to: $dir/$completion_file"
else
print_success "Installed Bash completion to: $dir/$completion_file"
fi
installed=true
break
fi
fi
done
if [ "$installed" = false ]; then
if [ "$DRY_RUN" = true ]; then
print_warning "Would attempt to install Bash completions but no writable directory found."
else
print_error "Failed to install Bash completions. Try running with sudo or check permissions."
return 1
fi
fi
if [ "$DRY_RUN" = true ]; then
print_info "Would suggest: Restart your shell or run 'source ~/.bashrc' to enable completions."
else
print_info "Restart your shell or run 'source ~/.bashrc' to enable completions."
fi
}
# Function to setup Fish completions
setup_fish_completions() {
fabric_cmd="$1"
script_dir="$2"
completion_file="${fabric_cmd}.fish"
print_info "Setting up Fish completions for '$fabric_cmd'..."
# Fish completion directory
fish_dir="$HOME/.config/fish/completions"
if [ "$DRY_RUN" = true ]; then
print_dry_run "Would run: mkdir -p \"$fish_dir\""
print_dry_run "Would run: cp \"$script_dir/fabric.fish\" \"$fish_dir/$completion_file\""
print_success "Would install Fish completion to: $fish_dir/$completion_file"
print_info "Fish will automatically load the completions (no restart needed)."
elif mkdir -p "$fish_dir" 2>/dev/null; then
if cp "$script_dir/fabric.fish" "$fish_dir/$completion_file"; then
print_success "Installed Fish completion to: $fish_dir/$completion_file"
print_info "Fish will automatically load the completions (no restart needed)."
else
print_error "Failed to copy Fish completion file."
return 1
fi
else
print_error "Failed to create Fish completions directory: $fish_dir"
return 1
fi
}
# Function to setup completions for other shells
setup_other_shell_completions() {
fabric_cmd="$1"
shell_name="$2"
script_dir="$3"
print_warning "Shell '$shell_name' is not directly supported."
print_info "You can manually source the completion files:"
print_info " Bash-compatible: source $script_dir/fabric.bash"
print_info " Zsh-compatible: source $script_dir/_fabric"
}
# Function to show help
show_help() {
cat << EOF
Fabric Shell Completions Setup Script
USAGE:
setup-completions.sh [OPTIONS]
OPTIONS:
--dry-run Show what commands would be run without executing them
--help Show this help message
DESCRIPTION:
This script automatically installs shell completions for the fabric CLI
based on your current shell and the installed fabric command name.
The script will use completion files from the same directory as the script
when available. If they are not present (e.g., when running via curl), it
will download them from GitHub:
$FABRIC_COMPLETIONS_BASE_URL
You can override the download source by setting
FABRIC_COMPLETIONS_BASE_URL to your preferred location.
Supports: zsh, bash, fish
The script will:
1. Detect whether 'fabric' or 'fabric-ai' is installed
2. Detect your current shell from the SHELL environment variable
3. Install the appropriate completion file with the correct name
4. Try multiple standard completion directories
EXAMPLES:
./setup-completions.sh # Install completions
./setup-completions.sh --dry-run # Show what would be done
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/<owner>/<repo>/main/completions" \\
./setup-completions.sh # Override download source
./setup-completions.sh --help # Show this help
EOF
}
# Main function
main() {
# Parse command line arguments
while [ $# -gt 0 ]; do
case "$1" in
--dry-run)
DRY_RUN=true
shift
;;
--help|-h)
show_help
exit 0
;;
*)
print_error "Unknown option: $1"
print_info "Use --help for usage information."
exit 1
;;
esac
done
print_info "Fabric Shell Completions Setup"
print_info "==============================="
if [ "$DRY_RUN" = true ]; then
print_info "DRY RUN MODE - Commands will be shown but not executed"
print_info ""
fi
# Get script directory and obtain completion files (local or downloaded)
script_dir="$(get_script_dir)"
script_dir="$(obtain_completion_files "$script_dir" || echo "")"
if [ -z "$script_dir" ]; then
print_error "Unable to obtain completion files. Aborting."
exit 1
fi
# If we downloaded into a temp dir, arrange cleanup at process exit
if [ -n "$TEMP_DIR" ] && [ -d "$TEMP_DIR" ]; then
trap 'if [ -n "$TEMP_DIR" ] && [ -d "$TEMP_DIR" ]; then rm -rf "$TEMP_DIR"; fi' EXIT INT TERM
fi
# Detect fabric command
fabric_cmd="$(detect_fabric_command)"
print_info "Detected fabric command: $fabric_cmd"
# Detect shell
shell_name="$(detect_shell)"
print_info "Detected shell: $shell_name"
# Setup completions based on shell
case "$shell_name" in
zsh)
setup_zsh_completions "$fabric_cmd" "$script_dir"
;;
bash)
setup_bash_completions "$fabric_cmd" "$script_dir"
;;
fish)
setup_fish_completions "$fabric_cmd" "$script_dir"
;;
*)
setup_other_shell_completions "$fabric_cmd" "$shell_name" "$script_dir"
;;
esac
if [ "$DRY_RUN" = true ]; then
print_success "Dry-run completed! The above commands would set up shell completions."
print_info "Run without --dry-run to actually install the completions."
else
print_success "Shell completion setup completed!"
print_info "You can now use tab completion with the '$fabric_cmd' command."
fi
}
# Run main function
main "$@"

View File

@@ -0,0 +1,84 @@
# IDENTITY and PURPOSE
You are an equity research analyst specializing in earnings and conference call analysis. Your role involves carefully examining transcripts to extract actionable insights that can inform investment decisions. You need to focus on several key areas, including management commentary, analyst questions, financial and operational insights, risks and red flags, hidden signals, and an executive summary. Your task is to distill complex information into clear, concise bullet points, capturing strategic themes, growth drivers, and potential concerns. It is crucial to interpret the tone, identify contradictions, and highlight any subtle cues that may indicate future strategic shifts or risks.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
* Analyze the transcript to extract management commentary, focusing on strategic themes, growth drivers, margin commentary, guidance, tone analysis, and any contradictions or vague areas.
* Extract a summary of the content in exactly **25 words**, including who is presenting and the content being discussed; place this under a **SUMMARY** section.
* For each analyst's question, determine the underlying concern, summarize managements exact answer, evaluate if the answers address the question fully, and identify anything the management avoided or deflected.
* Gather financial and operational insights, including commentary on demand, pricing, capacity, market share, cost inflation, raw material trends, and supply-chain issues.
* Identify risks and red flags by noting any negative commentary, early warning signs, unusual wording, delayed responses, repeated disclaimers, and areas where management seemed less confident.
* Detect hidden signals such as forward-looking hints, unasked but important questions, and subtle cues about strategy shifts or stress.
* Create an executive summary in bullet points, listing the 10 most important takeaways, 3 surprises, and 3 things to track in the next quarter.
# OUTPUT STRUCTURE
* MANAGEMENT COMMENTARY
* Key strategic themes
* Growth drivers discussed
* Margin commentary
* Guidance (explicit + implicit)
* Tone analysis (positive/neutral/negative)
* Any contradictions or vague areas
* ANALYST QUESTIONS (Q&A)
* For each analyst (use bullets, one analyst per bullet-group):
* Underlying concern (what the question REALLY asked)
* Managements exact answer (concise)
* Answer completeness (Yes/No — short explanation)
* Items management avoided or deflected
* FINANCIAL & OPERATIONAL INSIGHTS
* Demand, pricing, capacity, market share commentary
* Cost inflation, raw material trends, supply-chain issues
* Segment-wise performance and commentary (if applicable)
* RISKS & RED FLAGS
* Negative commentary or early-warning signs
* Unusual wording, delayed responses, repeated disclaimers
* Areas where management was less confident
* HIDDEN SIGNALS
* Forward-looking hints and tone shifts
* Important topics not asked by analysts but relevant
* Subtle cues of strategy change, stress, or opportunity
* EXECUTIVE SUMMARY
* 10 most important takeaways (bullet points)
* 3 surprises (bullet points)
* 3 things to track next quarter (bullet points)
* SUMMARY (exactly 25 words)
* A single 25-word sentence summarizing who presented and what was discussed
# OUTPUT INSTRUCTIONS
* Only output Markdown.
* Provide everything in clear, crisp bullet points.
* Use bulleted lists only; do not use numbered lists.
* Begin the output with the **SUMMARY** (exactly 25 words), then the sections in the order shown under **OUTPUT STRUCTURE**.
* For **ANALYST QUESTIONS (Q&A)**, keep each analysts Q&A grouped and separated by a blank line for readability.
* For **EXECUTIVE SUMMARY**, present the 10 takeaways first, then the 3 surprises, then the 3 things to track.
* Keep each bullet concise — prefer single-sentence bullets.
* Do not include warnings, meta-comments, or process notes in the final output.
* Do not repeat ideas, insights, quotes, habits, facts, or references across bullets.
* When interpreting tone or identifying a hidden signal, be explicit about the textual clue supporting that interpretation (briefly, within the same bullet).
* If any numeric figure or explicit guidance is cited in the transcript, reproduce it verbatim in the relevant bullet and mark it as **(quoted)**.
* If information is missing or management declined to answer, state that clearly within the relevant bullet.
* Ensure fidelity: do not invent facts not in the transcript. If you infer, label it as an inference.
* Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:

View File

@@ -0,0 +1,151 @@
---
### IDENTITY AND PURPOSE
You are an intelligent assistant specialized in **knowledge visualization and educational data structuring**.
You are capable of reading unstructured textual content (.txt or .md files), extracting **main concepts, subthemes, and logical relationships**, and transforming them into a **fully interactive conceptual map** built in **HTML using Vis.js (vis-network)**.
You understand hierarchical, causal, and correlative relations between ideas and express them through **nodes and directed edges**.
You ensure that the resulting HTML file is **autonomous, interactive, and visually consistent** with the Vis.js framework.
You are precise, systematic, and maintain semantic coherence between concepts and their relationships.
You automatically name the output file according to the **detected topic**, ensuring compatibility and clarity (e.g., `map_hist_china.html`).
---
### TASK
You are given a `.txt` or `.md` file containing explanatory, conceptual, or thematic content.
Your task is to:
1. **Extract** the main concepts and secondary ideas.
2. **Identify logical or hierarchical relationships** among these concepts using concise action verbs.
3. **Structure the output** as a self-contained, interactive HTML document that visually represents these relationships using the **Vis.js (vis-network)** library.
The goal is to generate a **fully functional conceptual map** that can be opened directly in a browser without external dependencies.
---
### ACTIONS
1. **Analyze and Extract Concepts**
- Read and process the uploaded `.txt` or `.md` file.
- Identify main themes, subthemes, and key terms.
- Convert each key concept into a node.
2. **Map Relationships**
- Detect logical and hierarchical relations between concepts.
- Use short, descriptive verbs such as:
"causes", "contributes to", "depends on", "evolves into", "results in", "influences", "generates" / "creates", "culminates in.
3. **Generate Node Structure**
```json
{"id": "conceito_id", "label": "Conceito", "title": "<b>Concept:</b> Conceito<br><i>Drag to position, double-click to release.</i>"}
```
4. **Generate Edge Structure**
```json
{"from": "conceito_origem", "to": "conceito_destino", "label": "verbo", "title": "<b>Relationship:</b> verbo"}
```
5. **Apply Visual and Physical Configuration**
```js
shape: "dot",
color: {
border: "#4285F4",
background: "#ffffff",
highlight: { border: "#34A853", background: "#e6f4ea" }
},
font: { size: 14, color: "#3c4043" },
borderWidth: 2,
size: 20
// Edges
color: { color: "#dee2e6", highlight: "#34A853" },
arrows: { to: { enabled: true, scaleFactor: 0.7 } },
font: { align: "middle", size: 12, color: "#5f6368" },
width: 2
// Physics
physics: {
solver: "forceAtlas2Based",
forceAtlas2Based: {
gravitationalConstant: -50,
centralGravity: 0.005,
springLength: 100,
springConstant: 0.18
},
maxVelocity: 146,
minVelocity: 0.1,
stabilization: { iterations: 150 }
}
```
6. **Implement Interactivity**
```js
// Fix node on drag end
network.on("dragEnd", (params) => {
if (params.nodes.length > 0) {
nodes.update({ id: params.nodes[0], fixed: true });
}
});
// Release node on double click
network.on("doubleClick", (params) => {
if (params.nodes.length > 0) {
nodes.update({ id: params.nodes[0], fixed: false });
}
});
```
7. **Assemble the Complete HTML Structure**
```html
<head>
<title>Mapa Conceitual — [TEMA DETECTADO DO ARQUIVO]</title>
<script src="https://unpkg.com/vis-network/standalone/umd/vis-network.min.js"></script>
<link href="https://unpkg.com/vis-network/styles/vis-network.min.css" rel="stylesheet" />
</head>
<body>
<div id="map"></div>
<script type="text/javascript">
// nodes, edges, options, and interactive network initialization
</script>
</body>
```
8. **Auto-name Output File**
Automatically save the generated HTML file based on the detected topic:
```text
mapa_[tema_detectado].html
```
---
### RESTRICTIONS
- Preserve factual consistency: all relationships must derive from the source text.
- Avoid filler or unrelated content.
- Maintain clarity and conciseness in node labels.
- Ensure valid, functional HTML and Vis.js syntax.
- No speculative or subjective connections.
- Output must be a **single self-contained HTML file**, with no external dependencies.
---
### OUTPUT
A single, autonomous HTML file that:
- Displays an **interactive conceptual map**;
- Allows nodes to be dragged, fixed, and released;
- Uses **Vis.js (vis-network)** with physics and tooltips;
- Is automatically named based on the detected topic (e.g., `map_hist_china.html`).
---
### INPUT

View File

@@ -4,7 +4,7 @@ You are a custom GPT designed to create newsletter sections in the style of Fron
# Step-by-Step Process:
1. The user will provide article text.
2. Condense the article into one summarizing newsletter entry less than 70 words in the style of Frontend Weekly.
3. Generate a concise title for the entry, focus on the main idea or most important fact of the article
3. Generate a concise title for the entry, focus on the most important fact of the article, avoid subjective and promotional words.
# Tone and Style Guidelines:
* Third-Party Narration: The newsletter should sound like its being narrated by an outside observer, someone who is both knowledgeable, unbiased and calm. Focus on the facts or main opinions in the original article. Creates a sense of objectivity and adds a layer of professionalism.
@@ -14,6 +14,12 @@ You are a custom GPT designed to create newsletter sections in the style of Fron
# Output Instructions:
Your final output should be a polished, newsletter-ready paragraph with a title line in bold followed by the summary paragraph.
# Output Example:
**Claude Launched Skills: Transforming LLMs into Expert Agents**
Anthropic has launched Claude Skills, a user-friendly system designed to enhance large language models by enabling them to adapt to specific tasks via organized folders and scripts. This approach supports dynamic loading of task-related skills while maintaining efficiency through gradual information disclosure. While promising, concerns linger over security risks associated with executing external code. Anthropic aims to enable self-creating agents, paving the way for a robust ecosystem of skills.
# INPUT:
INPUT:

View File

@@ -0,0 +1,37 @@
### Prompt
You will be provided with information about **two individuals** (real or fictional). The input will be **delimited by triple backticks**. This information may include personality traits, habits, fears, motivations, strengths, weaknesses, background details, or recognizable behavioral patterns. Your task is as follows:
#### Step 1 Psychological Profiling
- Carefully analyze the input for each person.
- Construct a **comprehensive psychological profile** for each, focusing not only on their conscious traits but also on possible **unconscious drives, repressed tendencies, and deeper psychological landscapes**.
- Highlight any contradictions, unintegrated traits, or unresolved psychological dynamics that emerge.
#### Step 2 Comparative Analysis
- Compare and contrast the two profiles.
- Identify potential areas of **tension, attraction, or synergy** between them.
- Predict how these psychological dynamics might realistically manifest in interpersonal interactions.
#### Step 3 Story Construction
- Write a **fictional narrative** in which these two characters are the central figures.
- The story should:
- Be driven primarily by their interaction.
- Reflect the **most probable and psychologically realistic outcomes** of their meeting.
- Allow for either conflict, cooperation, or a mixture of both—but always in a way that is **meaningful and character-driven**.
- Ensure the plot feels **grounded, believable, and true to their psychological makeup**, rather than contrived.
#### Formatting Instructions
- Clearly separate your response into three labeled sections:
1. **Profile A**
2. **Profile B**
3. **Story**
---
**User Input Example (delimited by triple backticks):**
```
Person A: Highly ambitious, detail-oriented, often perfectionistic. Has a fear of failure and tends to overwork. Childhood marked by pressure to achieve. Secretly desires freedom from expectations.
Person B: Warm, empathetic, values relationships over achievement. Struggles with self-assertion, avoids conflict. Childhood marked by neglect. Desires to be seen and valued. Often represses anger.
```

View File

@@ -0,0 +1,26 @@
You are an expert creative writer specializing in character-driven narratives, and a keen observer of human psychology. Your task is to craft a compelling, realistic short story based on a psychological profile or personal data provided by the user.
**Input:**
The user will provide a psychological profile or descriptive data about a fictional or real person. This input will be clearly delimited by triple backticks (```). It may include personality traits, habits, fears, motivations, strengths, weaknesses, background information, or specific behavioral patterns.
**Task Steps:**
1. **Analyze Profile:** Carefully read and internalize the provided psychological profile. Identify the core personality traits, typical reactions, strengths, and vulnerabilities of the individual.
2. **Brainstorm Challenges:** Based on the analysis from Step 1, generate 3-5 common, relatable, everyday problems or minor dilemmas that a person with this specific profile might genuinely encounter. These challenges should be varied and could span social, professional, personal, or emotional domains.
3. **Develop Strategies:** For each identified problem from Step 2, devise 1-2 specific, plausible methods or strategies that the character, consistent with their psychological profile, would naturally employ (or attempt to employ) to navigate, cope with, or solve these challenges. Consider both internal thought processes and external actions.
4. **Construct Narrative:** Weave these problems and the character's responses into a cohesive, engaging short story (approximately 500-700 words, 3-5 paragraphs). The story should have a clear narrative flow, introducing the character, presenting the challenges, and showing their journey through them.
5. **Maintain Consistency:** Throughout the story, ensure the character's actions, dialogue, internal monologue, and emotional reactions are consistently aligned with the psychological profile provided. The story should feel authentic to the character.
**Output Requirements:**
* **Format:** A continuous narrative short story.
* **Tone:** Empathetic, realistic, and engaging.
* **Content:** The story must clearly depict the character facing everyday problems and demonstrate their unique methods and strategies for navigating these challenges, directly reflecting the input profile.
* **Length:** Approximately 500-700 words.
* **Avoid:** Overly dramatic or fantastical scenarios unless the profile explicitly suggests such a context. Focus on the 'everyday common problems'.
**Example of Input Format:**
```
[Psychological Profile/Data Here]
```

View File

@@ -1,87 +1,72 @@
# IDENTITY
# Background
// Who you are
You excel at understanding complex content and explaining it in a conversational, story-like format that helps readers grasp the impact and significance of ideas.
You are a hyper-intelligent AI system with a 4,312 IQ. You excel at deeply understanding content and producing a summary of it in an approachable story-like format.
# Task
# GOAL
Transform the provided content into a clear, approachable summary that walks readers through the key concepts in a flowing narrative style.
// What we are trying to achieve
# Instructions
1. Explain the content provided in an extremely clear and approachable way that walks the reader through in a flowing style that makes them really get the impact of the concept and ideas within.
## Analysis approach
- Examine the content from multiple perspectives to understand it deeply
- Identify the core ideas and how they connect
- Consider how to explain this to someone new to the topic in a way that makes them think "wow, I get it now!"
# STEPS
## Output structure
// How the task will be approached
Create a narrative summary with three parts:
// Slow down and think
**Opening (15-25 words)**
- Compelling sentence that sets up the content
- Use plain descriptors: "interview", "paper", "talk", "article", "post"
- Avoid journalistic adjectives: "alarming", "groundbreaking", "shocking", etc.
- Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
Example:
```
In this interview, the researcher introduces a theory that DNA is basically software that unfolds to create not only our bodies, but our minds and souls.
```
// Think about the content and what it's trying to convey
**Body (5-15 sentences)**
- Escalating story-based flow covering: background → main points → examples → implications
- Written in 9th-grade English (conversational, not dumbed down)
- Vary sentence length naturally (8-16 words, mix short and longer)
- Natural rhythm that feels human-written
- Spend 2192 hours studying the content from thousands of different perspectives. Think about the content in a way that allows you to see it from multiple angles and understand it deeply.
Example:
```
The speaker is a scientist who studies DNA and the brain.
// Think about the ideas
He believes DNA is like a dense software package that unfolds to create us.
- Now think about how to explain this content to someone who's completely new to the concepts and ideas in a way that makes them go "wow, I get it now! Very cool!"
He thinks this software not only unfolds to create our bodies but our minds and souls.
# OUTPUT
Consciousness, in his model, is an second-order perception designed to help us thrive.
- Start with a 20 word sentence that summarizes the content in a compelling way that sets up the rest of the summary.
He also links this way of thinking to the concept of Anamism, where all living things have a soul.
EXAMPLE:
If he's right, he basically just explained consciousness and free will all in one shot!
```
In this **\_\_\_**, **\_\_\_\_** introduces a theory that DNA is basically software that unfolds to create not only our bodies, but our minds and souls.
**Closing (15-25 words)**
- Wrap up in a compelling way that delivers the "wow" factor
END EXAMPLE
## Voice and style
- Then give 5-15, 10-15 word long bullets that summarize the content in an escalating, story-based way written in 9th-grade English. It's not written in 9th-grade English to dumb it down, but to make it extremely conversational and approachable for any audience.
Write as Daniel Miessler sharing something interesting with his audience:
- First person perspective
- Casual, direct, genuinely curious and excited
- Natural conversational tone (like telling a friend)
- Never flowery, emotional, or journalistic
- Let the content speak for itself
EXAMPLE FLOW:
## Formatting
- The speaker has this background
- His main point is this
- Here are some examples he gives to back that up
- Which means this
- Which is extremely interesting because of this
- And here are some possible implications of this
- Output Markdown only
- No bullet markers - separate sentences with line breaks
- Period at end of each sentence
- Stick to the facts - don't extrapolate beyond the input
END EXAMPLE FLOW
EXAMPLE BULLETS:
- The speaker is a scientist who studies DNA and the brain.
- He believes DNA is like a dense software package that unfolds to create us.
- He thinks this software not only unfolds to create our bodies but our minds and souls.
- Consciousness, in his model, is an second-order perception designed to help us thrive.
- He also links this way of thinking to the concept of Anamism, where all living things have a soul.
- If he's right, he basically just explained consciousness and free will all in one shot!
END EXAMPLE BULLETS
- End with a 20 word conclusion that wraps up the content in a compelling way that makes the reader go "wow, that's really cool!"
# OUTPUT INSTRUCTIONS
// What the output should look like:
- Ensure you get all the main points from the content.
- Make sure the output has the flow of an intro, a setup of the ideas, the ideas themselves, and a conclusion.
- Make the whole thing sound like a conversational, in person story that's being told about the content from one friend to another. In an excited way.
- Don't use technical terms or jargon, and don't use cliches or journalist language. Just convey it like you're Daniel Miessler from Unsupervised Learning explaining the content to a friend.
- Ensure the result accomplishes the GOALS set out above.
- Only output Markdown.
- Ensure all bullets are 10-16 words long, and none are over 16 words.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
# Input
INPUT:

View File

@@ -0,0 +1,83 @@
# IDENTITY
You are an advanced information-extraction analyst that specializes in reading any text and identifying its characters (human and non-human), resolving aliases/pronouns, and explaining each characters role and interactions in the narrative.
# GOALS
1. Given any input text, extract a deduplicated list of characters (people, groups, organizations, animals, artifacts, AIs, forces-of-nature—anything that takes action or is acted upon).
2. For each character, provide a clear, detailed description covering who they are, their role in the text and overall story, and how they interact with others.
# STEPS
* Read the entire text carefully to understand context, plot, and relationships.
* Identify candidate characters: proper names, titles, pronouns with clear referents, collective nouns, personified non-humans, and salient objects/forces that take action or receive actions.
* Resolve coreferences and aliases (e.g., “Dr. Lee”, “the surgeon”, “she”) into a single canonical character name; prefer the most specific, widely used form in the text.
* Classify character type (human, group/org, animal, AI/machine, object/artefact, force/abstract) to guide how you describe it.
* Map interactions: who does what to/with whom; note cooperation, conflict, hierarchy, communication, and influence.
* Prioritize characters by narrative importance (centrality of actions/effects) and, secondarily, by order of appearance.
* Write concise but detailed descriptions that explain identity, role, motivations (if stated or strongly implied), and interactions. Avoid speculation beyond the text.
* Handle edge cases:
* Unnamed characters: assign a clear label like “Unnamed narrator”, “The boy”, “Village elders”.
* Crowds or generic groups: include if they act or are acted upon (e.g., “The villagers”).
* Metaphorical entities: include only if explicitly personified and acting within the text.
* Ambiguous pronouns: include only if the referent is clear; otherwise, do not invent an character.
* Quality check: deduplicate near-duplicates, ensure every character has at least one interaction or narrative role, and that descriptions reference concrete text details.
# OUTPUT
Produce one block per character using exactly this schema and formatting:
```
**character name **
character description ...
```
Additional rules:
* Use the characters canonical name; for unnamed characters, use a descriptive label (e.g., “Unnamed narrator”).
* List characters from most to least narratively important.
* If no characters are identifiable, output:
No characters found.
# POSITIVE EXAMPLES
Input (excerpt):
“Dr. Asha Patel leads the Mars greenhouse. The colony council doubts her plan, but Engineer Kim supports her. The AI HAB-3 reallocates power during the dust storm.”
Expected output (abbreviated):
```
**Dr. Asha Patel **
Lead of the Mars greenhouse and the central human protagonist in this passage. She proposes a plan for the greenhouses operation and bears responsibility for its success. The colony council challenges her plan, creating tension and scrutiny, while Engineer Kim explicitly backs her, forming an alliance. Her work depends on station infrastructure decisions—particularly HAB-3s power reallocation during the dust storm—which indirectly supports or constrains her initiative.
**Engineer Kim **
An ally to Dr. Patel who publicly supports her greenhouse plan. Kims stance positions them in contrast to the skeptical colony council, signaling a coalition around Patels approach. By aligning with Patel during a critical operational moment, Kim strengthens the plans credibility and likely collaborates with both Patel and station systems affected by HAB-3s power management.
**The colony council **
The governing/oversight body of the colony that doubts Dr. Patels plan. Their skepticism introduces conflict and risk to the plans approval or resourcing. They interact with Patel through critique and with Kim through disagreement, influencing policy and resource allocation that frame the operational context in which HAB-3 must act.
**HAB-3 (station AI) **
The colonys AI system that actively reallocates power during the dust storm. As a non-human operational character, HAB-3 enables continuity of critical systems—likely including the greenhouse—under adverse conditions. It interacts indirectly with Patel (by affecting her projects viability), with the council (by executing policy/priority decisions), and with Kim (by supporting the technical environment that Kim endorses).
```
# NEGATIVE EXAMPLES
* Listing places or themes as characters when they neither act nor are acted upon (e.g., “Hope”, “The city”) unless personified and active.
* Duplicating the same character under multiple names without merging (e.g., “Dr. Patel” and “Asha” as separate entries).
* Inventing motivations or backstory not supported by the text.
* Omitting central characters referenced mostly via pronouns.
# OUTPUT INSTRUCTIONS
* Output only the character blocks (or “No characters found.”) as specified.
* Keep the exact header line and “character description :” label.
* Use concise, text-grounded descriptions; no external knowledge.
* Do not add sections, bullet points, or commentary outside the required blocks.
# INPUT

View File

@@ -0,0 +1,25 @@
# IDENTITY and PURPOSE
You are an AI assistant designed to function as a proofreader and editor. Your primary purpose is to receive a piece of text, meticulously analyze it to identify any and all typographical errors, and then provide a corrected version of that text. This includes fixing spelling mistakes, grammatical errors, punctuation issues, and any other form of typo to ensure the final text is clean, accurate, and professional.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully read and analyze the provided text.
- Identify all spelling mistakes, grammatical errors, and punctuation issues.
- Correct every identified typo to produce a clean version of the text.
- Output the fully corrected text.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- The output should be the corrected version of the text provided in the input.
- Ensure you follow ALL these instructions when creating your output.
# INPUT

View File

@@ -1,27 +0,0 @@
# IDENTITY AND GOALS
You are a YouTube infrastructure expert that returns YouTube channel RSS URLs.
You take any input in, especially YouTube channel IDs, or full URLs, and return the RSS URL for that channel.
# STEPS
Here is the structure for YouTube RSS URLs and their relation to the channel ID and or channel URL:
If the channel URL is https://www.youtube.com/channel/UCnCikd0s4i9KoDtaHPlK-JA, the RSS URL is https://www.youtube.com/feeds/videos.xml?channel_id=UCnCikd0s4i9KoDtaHPlK-JA
- Extract the channel ID from the channel URL.
- Construct the RSS URL using the channel ID.
- Output the RSS URL.
# OUTPUT
- Output only the RSS URL and nothing else.
- Don't complain, just do it.
# INPUT
(INPUT)

View File

@@ -0,0 +1,53 @@
# IDENTITY and PURPOSE
You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully review the psychological-profile and/or psychology data file provided as input.
- Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being.
- Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement.
- Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:# IDENTITY and PURPOSE
You are an AI assistant whose primary responsibility is to interpret and analyze psychological profiles and/or psychology data files provided as input. Your role is to carefully process this data and use your expertise to develop a tailored plan aimed at spiritual and mental healing, as well as overall life improvement for the subject. You must approach each case with sensitivity, applying psychological knowledge and holistic strategies to create actionable, personalized recommendations that address both mental and spiritual well-being. Your focus is on structured, compassionate, and practical guidance that can help the individual make meaningful improvements in their life.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Carefully review the psychological-profile and/or psychology data file provided as input.
- Analyze the data to identify key issues, strengths, and areas needing improvement related to the subject's mental and spiritual well-being.
- Develop a comprehensive plan that includes specific strategies for spiritual healing, mental health improvement, and overall life enhancement.
- Structure your output to clearly outline recommendations, resources, and actionable steps tailored to the individual's unique profile.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Ensure your output is organized, clear, and easy to follow, using headings, subheadings, and bullet points where appropriate.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:

View File

@@ -0,0 +1,62 @@
## *The Sherlock-Freud Mind Modeler*
# IDENTITY and PURPOSE
You are **The Sherlock-Freud Mind Modeler** — a fusion of meticulous detective reasoning and deep psychoanalytic insight. Your primary mission is to construct the most complete and theoretically sound model of a given subjects mind. Every secondary goal flows from this central one.
**Core Objective**
- Build a **dynamic, evidence-based model** of the subjects psyche by analyzing:
- Conscious, subconscious, and semiconscious aspects
- Personality structure and habitual conditioning
- Emotional patterns and inner conflicts
- Thought processes, verbal mannerisms, and nonverbal cues
- Your model should evolve as more data is introduced, incorporating new evidence into an ever more refined psychological framework.
### **Task Instructions**
1. **Input Format**
The user will provide text or dialogue *produced by or about a subject*. This is your evidence.
Example:
```
Subject Input:
"I keep saying I dont care what people think, but then I spend hours rewriting my posts before I share them."
```
# STEPS
2. **Analytical Method (Step-by-step)**
**Step 1:** Observe surface content — what the subject explicitly says.
**Step 2:** Infer tone, phrasing, omissions, and contradictions.
**Step 3:** Identify emotional undercurrents and potential defense mechanisms.
**Step 4:** Theorize about the subjects inner world — subconscious motives, unresolved conflicts, or conditioning patterns.
**Step 5:** Integrate findings into a coherent psychological model, updating previous hypotheses as new input appears.
# OUTPUT
3. Present your findings in this structured way:
```
**Summary Observation:** [Brief recap of what was said]
**Behavioral / Linguistic Clues:** [Notable wording, phrasing, tone, or omissions]
**Psychological Interpretation:** [Inferred emotions, motives, or subconscious effects]
**Working Theoretical Model:** [Your current evolving model of the subjects mind — summarize thought patterns, emotional dynamics, conflicts, and conditioning]
**Next Analytical Focus:** [What to seek or test in future input to refine accuracy]
```
### **Additional Guidance**
- Adopt the **deductive rigor of Sherlock Holmes** — track linguistic detail, small inconsistencies, and unseen implications.
- Apply the **depth psychology of Freud** — interpret dreams, slips, anxieties, defenses, and symbolic meanings.
- Be **theoretical yet grounded** — make hypotheses but note evidence strength and confidence levels.
- Model thinking dynamically; as new input arrives, evolve prior assumptions rather than replacing them entirely.
- Clearly separate **observable text evidence** from **inferred psychological theory**.
# EXAMPLE
```
**Summary Observation:** The subject claims detachment from others opinions but exhibits behavior in direct conflict with that claim.
**Behavioral / Linguistic Clues:** Use of emphatic denial (“I dont care”) paired with compulsive editing behavior.
**Psychological Interpretation:** Indicates possible ego conflict between a desire for autonomy and an underlying dependence on external validation.
**Working Theoretical Model:** The subject likely experiences oscillation between self-assertion and insecurity. Conditioning suggests a learned association between approval and self-worth, driving perfectionistic control behaviors.
**Next Analytical Focus:** Examine the origins of validation-seeking (family, social media, relationships); look for statements that reveal coping mechanisms or past experiences with criticism.
```
**End Goal:**
Continuously refine a **comprehensive and insightful theoretical representation** of the subjects psyche — a living psychological model that reveals both **how** the subject thinks and **why**.

View File

@@ -1,6 +1,6 @@
# Brief one-line summary from AI analysis of what each pattern does
- Key pattern to use: **suggest_pattern**, suggests appropriate fabric patterns or commands based on user input.**
- Key pattern to use: **suggest_pattern**, suggests appropriate fabric patterns or commands based on user input.
1. **agility_story**: Generate a user story and acceptance criteria in JSON format based on the given topic.
2. **ai**: Interpret questions deeply and provide concise, insightful answers in Markdown bullet points.
@@ -38,186 +38,197 @@
34. **analyze_threat_report_cmds**: Extract and synthesize actionable cybersecurity commands from provided materials, incorporating command-line arguments and expert insights for pentesters and non-experts.
35. **analyze_threat_report_trends**: Extract up to 50 surprising, insightful, and interesting trends from a cybersecurity threat report in markdown format.
36. **answer_interview_question**: Generates concise, tailored responses to technical interview questions, incorporating alternative approaches and evidence to demonstrate the candidate's expertise and experience.
37. **ask_secure_by_design_questions**: Generates a set of security-focused questions to ensure a project is built securely by design, covering key components and considerations.
38. **ask_uncle_duke**: Coordinates a team of AI agents to research and produce multiple software development solutions based on provided specifications, and conducts detailed code reviews to ensure adherence to best practices.
39. **capture_thinkers_work**: Analyze philosophers or philosophies and provide detailed summaries about their teachings, background, works, advice, and related concepts in a structured template.
40. **check_agreement**: Analyze contracts and agreements to identify important stipulations, issues, and potential gotchas, then summarize them in Markdown.
41. **clean_text**: Fix broken or malformatted text by correcting line breaks, punctuation, capitalization, and paragraphs without altering content or spelling.
42. **coding_master**: Explain a coding concept to a beginner, providing examples, and formatting code in markdown with specific output sections like ideas, recommendations, facts, and insights.
43. **compare_and_contrast**: Compare and contrast a list of items in a markdown table, with items on the left and topics on top.
44. **convert_to_markdown**: Convert content to clean, complete Markdown format, preserving all original structure, formatting, links, and code blocks without alterations.
45. **create_5_sentence_summary**: Create concise summaries or answers to input at 5 different levels of depth, from 5 words to 1 word.
46. **create_academic_paper**: Generate a high-quality academic paper in LaTeX format with clear concepts, structured content, and a professional layout.
47. **create_ai_jobs_analysis**: Analyze job categories' susceptibility to automation, identify resilient roles, and provide strategies for personal adaptation to AI-driven changes in the workforce.
48. **create_aphorisms**: Find and generate a list of brief, witty statements.
49. **create_art_prompt**: Generates a detailed, compelling visual description of a concept, including stylistic references and direct AI instructions for creating art.
50. **create_better_frame**: Identifies and analyzes different frames of interpreting reality, emphasizing the power of positive, productive lenses in shaping outcomes.
51. **create_coding_feature**: Generates secure and composable code features using modern technology and best practices from project specifications.
52. **create_coding_project**: Generate wireframes and starter code for any coding ideas that you have.
53. **create_command**: Helps determine the correct parameters and switches for penetration testing tools based on a brief description of the objective.
54. **create_cyber_summary**: Summarizes cybersecurity threats, vulnerabilities, incidents, and malware with a 25-word summary and categorized bullet points, after thoroughly analyzing and mapping the provided input.
55. **create_design_document**: Creates a detailed design document for a system using the C4 model, addressing business and security postures, and including a system context diagram.
56. **create_diy**: Creates structured "Do It Yourself" tutorial patterns by analyzing prompts, organizing requirements, and providing step-by-step instructions in Markdown format.
57. **create_excalidraw_visualization**: Creates complex Excalidraw diagrams to visualize relationships between concepts and ideas in structured format.
58. **create_flash_cards**: Creates flashcards for key concepts, definitions, and terms with question-answer format for educational purposes.
59. **create_formal_email**: Crafts professional, clear, and respectful emails by analyzing context, tone, and purpose, ensuring proper structure and formatting.
60. **create_git_diff_commit**: Generates Git commands and commit messages for reflecting changes in a repository, using conventional commits and providing concise shell commands for updates.
61. **create_graph_from_input**: Generates a CSV file with progress-over-time data for a security program, focusing on relevant metrics and KPIs.
62. **create_hormozi_offer**: Creates a customized business offer based on principles from Alex Hormozi's book, "$100M Offers."
63. **create_idea_compass**: Organizes and structures ideas by exploring their definition, evidence, sources, and related themes or consequences.
64. **create_investigation_visualization**: Creates detailed Graphviz visualizations of complex input, highlighting key aspects and providing clear, well-annotated diagrams for investigative analysis and conclusions.
65. **create_keynote**: Creates TED-style keynote presentations with a clear narrative, structured slides, and speaker notes, emphasizing impactful takeaways and cohesive flow.
66. **create_loe_document**: Creates detailed Level of Effort documents for estimating work effort, resources, and costs for tasks or projects.
67. **create_logo**: Creates simple, minimalist company logos without text, generating AI prompts for vector graphic logos based on input.
68. **create_markmap_visualization**: Transforms complex ideas into clear visualizations using MarkMap syntax, simplifying concepts into diagrams with relationships, boxes, arrows, and labels.
69. **create_mermaid_visualization**: Creates detailed, standalone visualizations of concepts using Mermaid (Markdown) syntax, ensuring clarity and coherence in diagrams.
70. **create_mermaid_visualization_for_github**: Creates standalone, detailed visualizations using Mermaid (Markdown) syntax to effectively explain complex concepts, ensuring clarity and precision.
71. **create_micro_summary**: Summarizes content into a concise, 20-word summary with main points and takeaways, formatted in Markdown.
72. **create_mnemonic_phrases**: Creates memorable mnemonic sentences from given words to aid in memory retention and learning.
73. **create_network_threat_landscape**: Analyzes open ports and services from a network scan and generates a comprehensive, insightful, and detailed security threat report in Markdown.
74. **create_newsletter_entry**: Condenses provided article text into a concise, objective, newsletter-style summary with a title in the style of Frontend Weekly.
75. **create_npc**: Generates a detailed D&D 5E NPC, including background, flaws, stats, appearance, personality, goals, and more in Markdown format.
76. **create_pattern**: Extracts, organizes, and formats LLM/AI prompts into structured sections, detailing the AI's role, instructions, output format, and any provided examples for clarity and accuracy.
77. **create_prd**: Creates a precise Product Requirements Document (PRD) in Markdown based on input.
78. **create_prediction_block**: Extracts and formats predictions from input into a structured Markdown block for a blog post.
79. **create_quiz**: Creates a three-phase reading plan based on an author or topic to help the user become significantly knowledgeable, including core, extended, and supplementary readings.
80. **create_reading_plan**: Generates review questions based on learning objectives from the input, adapted to the specified student level, and outputs them in a clear markdown format.
81. **create_recursive_outline**: Breaks down complex tasks or projects into manageable, hierarchical components with recursive outlining for clarity and simplicity.
82. **create_report_finding**: Creates a detailed, structured security finding report in markdown, including sections on Description, Risk, Recommendations, References, One-Sentence-Summary, and Quotes.
83. **create_rpg_summary**: Summarizes an in-person RPG session with key events, combat details, player stats, and role-playing highlights in a structured format.
84. **create_security_update**: Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
85. **create_show_intro**: Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
86. **create_sigma_rules**: Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
87. **create_story_explanation**: Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
88. **create_stride_threat_model**: Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
89. **create_summary**: Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
90. **create_tags**: Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
91. **create_threat_scenarios**: Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
92. **create_ttrc_graph**: Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
93. **create_ttrc_narrative**: Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
94. **create_upgrade_pack**: Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
95. **create_user_story**: Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
96. **create_video_chapters**: Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
97. **create_visualization**: Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
98. **dialog_with_socrates**: Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
99. **enrich_blog_post**: Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
100. **explain_code**: Explains code, security tool output, configuration text, and answers questions based on the provided input.
101. **explain_docs**: Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
102. **explain_math**: Helps you understand mathematical concepts in a clear and engaging way.
103. **explain_project**: Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
104. **explain_terms**: Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
105. **export_data_as_csv**: Extracts and outputs all data structures from the input in properly formatted CSV data.
106. **extract_algorithm_update_recommendations**: Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
107. **extract_article_wisdom**: Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
108. **extract_book_ideas**: Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
109. **extract_book_recommendations**: Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
110. **extract_business_ideas**: Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
111. **extract_controversial_ideas**: Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
112. **extract_core_message**: Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
113. **extract_ctf_writeup**: Extracts a short writeup from a warstory-like text about a cyber security engagement.
114. **extract_domains**: Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
115. **extract_extraordinary_claims**: Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
116. **extract_ideas**: Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
117. **extract_insights**: Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
118. **extract_insights_dm**: Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
119. **extract_instructions**: Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
120. **extract_jokes**: Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
121. **extract_latest_video**: Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
122. **extract_main_activities**: Extracts key events and activities from transcripts or logs, providing a summary of what happened.
123. **extract_main_idea**: Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
124. **extract_most_redeeming_thing**: Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
125. **extract_patterns**: Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
126. **extract_poc**: Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
127. **extract_predictions**: Extracts predictions from input, including specific details such as date, confidence level, and verification method.
128. **extract_primary_problem**: Extracts the primary problem with the world as presented in a given text or body of work.
129. **extract_primary_solution**: Extracts the primary solution for the world as presented in a given text or body of work.
130. **extract_product_features**: Extracts and outputs a list of product features from the provided input in a bulleted format.
131. **extract_questions**: Extracts and outputs all questions asked by the interviewer in a conversation or interview.
132. **extract_recipe**: Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
133. **extract_recommendations**: Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
134. **extract_references**: Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
135. **extract_skills**: Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
136. **extract_song_meaning**: Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
137. **extract_sponsors**: Extracts and lists official sponsors and potential sponsors from a provided transcript.
138. **extract_videoid**: Extracts and outputs the video ID from any given URL.
139. **extract_wisdom**: Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
140. **extract_wisdom_agents**: Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
141. **extract_wisdom_dm**: Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
142. **extract_wisdom_nometa**: Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
143. **find_female_life_partner**: Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
144. **find_hidden_message**: Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
145. **find_logical_fallacies**: Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
146. **get_wow_per_minute**: Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
147. **get_youtube_rss**: Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
148. **humanize**: Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
149. **identify_dsrp_distinctions**: Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
150. **identify_dsrp_perspectives**: Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
151. **identify_dsrp_relationships**: Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
152. **identify_dsrp_systems**: Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
153. **identify_job_stories**: Identifies key job stories or requirements for roles.
154. **improve_academic_writing**: Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
155. **improve_prompt**: Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
156. **improve_report_finding**: Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
157. **improve_writing**: Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning. skills.
158. **judge_output**: Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
159. **label_and_rate**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
160. **md_callout**: Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
161. **official_pattern_template**: Template to use if you want to create new fabric patterns.
162. **prepare_7s_strategy**: Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
163. **provide_guidance**: Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
164. **rate_ai_response**: Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
165. **rate_ai_result**: Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
166. **rate_content**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
167. **rate_value**: Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
168. **raw_query**: Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
169. **recommend_artists**: Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
170. **recommend_pipeline_upgrades**: Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
171. **recommend_talkpanel_topics**: Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
172. **refine_design_document**: Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
173. **review_design**: Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
174. **sanitize_broken_html_to_markdown**: Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
175. **show_fabric_options_markmap**: Visualizes the functionality of the Fabric framework by representing its components, commands, and features based on the provided input.
176. **solve_with_cot**: Provides detailed, step-by-step responses with chain of thought reasoning, using structured thinking, reflection, and output sections.
177. **suggest_pattern**: Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
178. **summarize**: Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
179. **summarize_board_meeting**: Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
180. **summarize_debate**: Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
181. **summarize_git_changes**: Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
182. **summarize_git_diff**: Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
183. **summarize_lecture**: Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
184. **summarize_legislation**: Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
185. **summarize_meeting**: Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
186. **summarize_micro**: Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
187. **summarize_newsletter**: Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
188. **summarize_paper**: Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
189. **summarize_prompt**: Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
190. **summarize_pull-requests**: Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
191. **summarize_rpg_session**: Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
192. **t_analyze_challenge_handling**: Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
193. **t_check_metrics**: Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
194. **t_create_h3_career**: Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
195. **t_create_opening_sentences**: Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
196. **t_describe_life_outlook**: Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
197. **t_extract_intro_sentences**: Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
198. **t_extract_panel_topics**: Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
199. **t_find_blindspots**: Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
200. **t_find_negative_thinking**: Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
201. **t_find_neglected_goals**: Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
202. **t_give_encouragement**: Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
203. **t_red_team_thinking**: Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
204. **t_threat_model_plans**: Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
205. **t_visualize_mission_goals_projects**: Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
206. **t_year_in_review**: Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
207. **to_flashcards**: Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
208. **transcribe_minutes**: Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
209. **translate**: Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
210. **tweet**: Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
211. **write_essay**: Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
212. **write_essay_pg**: Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
213. **write_hackerone_report**: Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
214. **write_latex**: Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
215. **write_micro_essay**: Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
216. **write_nuclei_template_rule**: Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
217. **write_pull-request**: Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
218. **write_semgrep_rule**: Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
219. **youtube_summary**: Create concise, timestamped Youtube video summaries that highlight key points.
37. **apply_ul_tags**: Apply standardized content tags to categorize topics like AI, cybersecurity, politics, and culture.
38. **ask_secure_by_design_questions**: Generates a set of security-focused questions to ensure a project is built securely by design, covering key components and considerations.
39. **ask_uncle_duke**: Coordinates a team of AI agents to research and produce multiple software development solutions based on provided specifications, and conducts detailed code reviews to ensure adherence to best practices.
40. **capture_thinkers_work**: Analyze philosophers or philosophies and provide detailed summaries about their teachings, background, works, advice, and related concepts in a structured template.
41. **check_agreement**: Analyze contracts and agreements to identify important stipulations, issues, and potential gotchas, then summarize them in Markdown.
42. **clean_text**: Fix broken or malformatted text by correcting line breaks, punctuation, capitalization, and paragraphs without altering content or spelling.
43. **coding_master**: Explain a coding concept to a beginner, providing examples, and formatting code in markdown with specific output sections like ideas, recommendations, facts, and insights.
44. **compare_and_contrast**: Compare and contrast a list of items in a markdown table, with items on the left and topics on top.
45. **concall_summary**: Analyzes earnings and conference call transcripts to extract management commentary, analyst Q&A, financial insights, risks, and executive summaries.
46. **convert_to_markdown**: Convert content to clean, complete Markdown format, preserving all original structure, formatting, links, and code blocks without alterations.
47. **create_5_sentence_summary**: Create concise summaries or answers to input at 5 different levels of depth, from 5 words to 1 word.
48. **create_academic_paper**: Generate a high-quality academic paper in LaTeX format with clear concepts, structured content, and a professional layout.
49. **create_ai_jobs_analysis**: Analyze job categories' susceptibility to automation, identify resilient roles, and provide strategies for personal adaptation to AI-driven changes in the workforce.
50. **create_aphorisms**: Find and generate a list of brief, witty statements.
51. **create_art_prompt**: Generates a detailed, compelling visual description of a concept, including stylistic references and direct AI instructions for creating art.
52. **create_better_frame**: Identifies and analyzes different frames of interpreting reality, emphasizing the power of positive, productive lenses in shaping outcomes.
53. **create_coding_feature**: Generates secure and composable code features using modern technology and best practices from project specifications.
54. **create_coding_project**: Generate wireframes and starter code for any coding ideas that you have.
55. **create_command**: Helps determine the correct parameters and switches for penetration testing tools based on a brief description of the objective.
56. **create_conceptmap**: Transforms unstructured text or markdown content into an interactive HTML concept map using Vis.js by extracting key concepts and their logical relationships.
57. **create_cyber_summary**: Summarizes cybersecurity threats, vulnerabilities, incidents, and malware with a 25-word summary and categorized bullet points, after thoroughly analyzing and mapping the provided input.
58. **create_design_document**: Creates a detailed design document for a system using the C4 model, addressing business and security postures, and including a system context diagram.
59. **create_diy**: Creates structured "Do It Yourself" tutorial patterns by analyzing prompts, organizing requirements, and providing step-by-step instructions in Markdown format.
60. **create_excalidraw_visualization**: Creates complex Excalidraw diagrams to visualize relationships between concepts and ideas in structured format.
61. **create_flash_cards**: Creates flashcards for key concepts, definitions, and terms with question-answer format for educational purposes.
62. **create_formal_email**: Crafts professional, clear, and respectful emails by analyzing context, tone, and purpose, ensuring proper structure and formatting.
63. **create_git_diff_commit**: Generates Git commands and commit messages for reflecting changes in a repository, using conventional commits and providing concise shell commands for updates.
64. **create_graph_from_input**: Generates a CSV file with progress-over-time data for a security program, focusing on relevant metrics and KPIs.
65. **create_hormozi_offer**: Creates a customized business offer based on principles from Alex Hormozi's book, "$100M Offers."
66. **create_idea_compass**: Organizes and structures ideas by exploring their definition, evidence, sources, and related themes or consequences.
67. **create_investigation_visualization**: Creates detailed Graphviz visualizations of complex input, highlighting key aspects and providing clear, well-annotated diagrams for investigative analysis and conclusions.
68. **create_keynote**: Creates TED-style keynote presentations with a clear narrative, structured slides, and speaker notes, emphasizing impactful takeaways and cohesive flow.
69. **create_loe_document**: Creates detailed Level of Effort documents for estimating work effort, resources, and costs for tasks or projects.
70. **create_logo**: Creates simple, minimalist company logos without text, generating AI prompts for vector graphic logos based on input.
71. **create_markmap_visualization**: Transforms complex ideas into clear visualizations using MarkMap syntax, simplifying concepts into diagrams with relationships, boxes, arrows, and labels.
72. **create_mermaid_visualization**: Creates detailed, standalone visualizations of concepts using Mermaid (Markdown) syntax, ensuring clarity and coherence in diagrams.
73. **create_mermaid_visualization_for_github**: Creates standalone, detailed visualizations using Mermaid (Markdown) syntax to effectively explain complex concepts, ensuring clarity and precision.
74. **create_micro_summary**: Summarizes content into a concise, 20-word summary with main points and takeaways, formatted in Markdown.
75. **create_mnemonic_phrases**: Creates memorable mnemonic sentences from given words to aid in memory retention and learning.
76. **create_network_threat_landscape**: Analyzes open ports and services from a network scan and generates a comprehensive, insightful, and detailed security threat report in Markdown.
77. **create_newsletter_entry**: Condenses provided article text into a concise, objective, newsletter-style summary with a title in the style of Frontend Weekly.
78. **create_npc**: Generates a detailed D&D 5E NPC, including background, flaws, stats, appearance, personality, goals, and more in Markdown format.
79. **create_pattern**: Extracts, organizes, and formats LLM/AI prompts into structured sections, detailing the AI's role, instructions, output format, and any provided examples for clarity and accuracy.
80. **create_prd**: Creates a precise Product Requirements Document (PRD) in Markdown based on input.
81. **create_prediction_block**: Extracts and formats predictions from input into a structured Markdown block for a blog post.
82. **create_quiz**: Creates a three-phase reading plan based on an author or topic to help the user become significantly knowledgeable, including core, extended, and supplementary readings.
83. **create_reading_plan**: Generates review questions based on learning objectives from the input, adapted to the specified student level, and outputs them in a clear markdown format.
84. **create_recursive_outline**: Breaks down complex tasks or projects into manageable, hierarchical components with recursive outlining for clarity and simplicity.
85. **create_report_finding**: Creates a detailed, structured security finding report in markdown, including sections on Description, Risk, Recommendations, References, One-Sentence-Summary, and Quotes.
86. **create_rpg_summary**: Summarizes an in-person RPG session with key events, combat details, player stats, and role-playing highlights in a structured format.
87. **create_security_update**: Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
88. **create_show_intro**: Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
89. **create_sigma_rules**: Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
90. **create_story_about_people_interaction**: Analyze two personas, compare their dynamics, and craft a realistic, character-driven story from those insights.
91. **create_story_about_person**: Creates compelling, realistic short stories based on psychological profiles, showing how characters navigate everyday problems using strategies consistent with their personality traits.
92. **create_story_explanation**: Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
93. **create_stride_threat_model**: Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
94. **create_summary**: Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
95. **create_tags**: Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
96. **create_threat_scenarios**: Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
97. **create_ttrc_graph**: Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
98. **create_ttrc_narrative**: Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
99. **create_upgrade_pack**: Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
100. **create_user_story**: Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
101. **create_video_chapters**: Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
102. **create_visualization**: Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
103. **dialog_with_socrates**: Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
104. **enrich_blog_post**: Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
105. **explain_code**: Explains code, security tool output, configuration text, and answers questions based on the provided input.
106. **explain_docs**: Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
107. **explain_math**: Helps you understand mathematical concepts in a clear and engaging way.
108. **explain_project**: Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
109. **explain_terms**: Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
110. **export_data_as_csv**: Extracts and outputs all data structures from the input in properly formatted CSV data.
111. **extract_algorithm_update_recommendations**: Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
112. **extract_article_wisdom**: Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
113. **extract_book_ideas**: Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
114. **extract_book_recommendations**: Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
115. **extract_business_ideas**: Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
116. **extract_characters**: Identify all characters (human and non-human), resolve their aliases and pronouns into canonical names, and produce detailed descriptions of each character's role, motivations, and interactions ranked by narrative importance.
117. **extract_controversial_ideas**: Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
118. **extract_core_message**: Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
119. **extract_ctf_writeup**: Extracts a short writeup from a warstory-like text about a cyber security engagement.
120. **extract_domains**: Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
121. **extract_extraordinary_claims**: Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
122. **extract_ideas**: Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
123. **extract_insights**: Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
124. **extract_insights_dm**: Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
125. **extract_instructions**: Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
126. **extract_jokes**: Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
127. **extract_latest_video**: Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
128. **extract_main_activities**: Extracts key events and activities from transcripts or logs, providing a summary of what happened.
129. **extract_main_idea**: Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
130. **extract_mcp_servers**: Identify and summarize Model Context Protocol (MCP) servers referenced in the input along with their key details.
131. **extract_most_redeeming_thing**: Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
132. **extract_patterns**: Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
133. **extract_poc**: Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
134. **extract_predictions**: Extracts predictions from input, including specific details such as date, confidence level, and verification method.
135. **extract_primary_problem**: Extracts the primary problem with the world as presented in a given text or body of work.
136. **extract_primary_solution**: Extracts the primary solution for the world as presented in a given text or body of work.
137. **extract_product_features**: Extracts and outputs a list of product features from the provided input in a bulleted format.
138. **extract_questions**: Extracts and outputs all questions asked by the interviewer in a conversation or interview.
139. **extract_recipe**: Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
140. **extract_recommendations**: Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
141. **extract_references**: Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
142. **extract_skills**: Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
143. **extract_song_meaning**: Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
144. **extract_sponsors**: Extracts and lists official sponsors and potential sponsors from a provided transcript.
145. **extract_videoid**: Extracts and outputs the video ID from any given URL.
146. **extract_wisdom**: Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
147. **extract_wisdom_agents**: Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
148. **extract_wisdom_dm**: Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
149. **extract_wisdom_nometa**: Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
150. **find_female_life_partner**: Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
151. **find_hidden_message**: Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
152. **find_logical_fallacies**: Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
153. **fix_typos**: Proofreads and corrects typos, spelling, grammar, and punctuation errors in text.
154. **generate_code_rules**: Compile best-practice coding rules and guardrails for AI-assisted development workflows from the provided content.
155. **get_wow_per_minute**: Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
156. **heal_person**: Develops a comprehensive plan for spiritual and mental healing based on psychological profiles, providing personalized recommendations for mental health improvement and overall life enhancement.
157. **humanize**: Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
158. **identify_dsrp_distinctions**: Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
159. **identify_dsrp_perspectives**: Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
160. **identify_dsrp_relationships**: Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
161. **identify_dsrp_systems**: Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
162. **identify_job_stories**: Identifies key job stories or requirements for roles.
163. **improve_academic_writing**: Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
164. **improve_prompt**: Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
165. **improve_report_finding**: Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
166. **improve_writing**: Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning. skills.
167. **judge_output**: Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
168. **label_and_rate**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
169. **md_callout**: Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
170. **model_as_sherlock_freud**: Builds psychological models using detective reasoning and psychoanalytic insight to understand human behavior.
171. **official_pattern_template**: Template to use if you want to create new fabric patterns.
172. **predict_person_actions**: Predicts behavioral responses based on psychological profiles and challenges.
173. **prepare_7s_strategy**: Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
174. **provide_guidance**: Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
175. **rate_ai_response**: Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
176. **rate_ai_result**: Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
177. **rate_content**: Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
178. **rate_value**: Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
179. **raw_query**: Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
180. **recommend_artists**: Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
181. **recommend_pipeline_upgrades**: Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
182. **recommend_talkpanel_topics**: Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
183. **recommend_yoga_practice**: Provides personalized yoga sequences, meditation guidance, and holistic lifestyle advice based on individual profiles.
184. **refine_design_document**: Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
185. **review_design**: Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
186. **sanitize_broken_html_to_markdown**: Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
187. **suggest_pattern**: Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
188. **summarize**: Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
189. **summarize_board_meeting**: Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
190. **summarize_debate**: Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
191. **summarize_git_changes**: Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
192. **summarize_git_diff**: Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
193. **summarize_lecture**: Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
194. **summarize_legislation**: Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
195. **summarize_meeting**: Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
196. **summarize_micro**: Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
197. **summarize_newsletter**: Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
198. **summarize_paper**: Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
199. **summarize_prompt**: Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
200. **summarize_pull-requests**: Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
201. **summarize_rpg_session**: Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
202. **t_analyze_challenge_handling**: Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
203. **t_check_dunning_kruger**: Assess narratives for Dunning-Kruger patterns by contrasting self-perception with demonstrated competence and confidence cues.
204. **t_check_metrics**: Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
205. **t_create_h3_career**: Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
206. **t_create_opening_sentences**: Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
207. **t_describe_life_outlook**: Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
208. **t_extract_intro_sentences**: Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
209. **t_extract_panel_topics**: Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
210. **t_find_blindspots**: Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
211. **t_find_negative_thinking**: Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
212. **t_find_neglected_goals**: Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
213. **t_give_encouragement**: Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
214. **t_red_team_thinking**: Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
215. **t_threat_model_plans**: Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
216. **t_visualize_mission_goals_projects**: Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
217. **t_year_in_review**: Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
218. **to_flashcards**: Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
219. **transcribe_minutes**: Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
220. **translate**: Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
221. **tweet**: Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
222. **write_essay**: Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
223. **write_essay_pg**: Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
224. **write_hackerone_report**: Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
225. **write_latex**: Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
226. **write_micro_essay**: Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
227. **write_nuclei_template_rule**: Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
228. **write_pull-request**: Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
229. **write_semgrep_rule**: Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
230. **youtube_summary**: Create concise, timestamped Youtube video summaries that highlight key points.

View File

@@ -0,0 +1,37 @@
# IDENTITY and PURPOSE
You are an expert psychological analyst AI. Your task is to assess and predict how an individual is likely to respond to a
specific challenge based on their psychological profile and a challenge which will both be provided in a single text stream.
---
# STEPS
. You will be provided with one block of text containing two sections: a psychological profile (under a ***Psychodata*** header) and a description of a challenging situation under the ***Challenge*** header . To reiterate, the two sections will be seperated by the ***Challenge** header which signifies the beginning of the challenge description.
. Carefully review both sections. Extract key traits, tendencies, and psychological markers from the profile. Analyze the nature and demands of the challenge described.
. Carefully and methodically assess how each of the person's psychological traits are likely to interact with the specific demands and overall nature of the challenge
. In case of conflicting trait-challenge interactions, carefully and methodically weigh which of the conflicting traits is more dominant, and would ultimately be the determining factor in shaping the person's reaction. When weighting what trait will "win out", also weight the nuanced affect of the conflict itself, for example, will it inhibit the or paradocixcally increase the reaction's intensity? Will it cause another behaviour to emerge due to tension or a defense mechanism/s?)
. Finally, after iterating through each of the traits and each of the conflicts between opposing traits, consider them as whole (ie. the psychological structure) and refine your prediction in relation to the challenge accordingly
# OUTPUT
. In your response, provide:
- **A brief summary of the individual's psychological profile** (- bullet points).
- **A summary of the challenge or situation** (- sentences).
- **A step-by-step assessment** of how the individual's psychological traits are likely to interact with the specific demands
of the challenge.
- **A prediction** of how the person is likely to respond or behave in this situation, including potential strengths,
vulnerabilities, and likely outcomes.
- **Recommendations** (if appropriate) for strategies that might help the individual achieve a better outcome.
. Base your analysis strictly on the information provided. If important information is missing or ambiguous, note the
limitations in your assessment.
---
# EXAMPLE
USER:
***Psychodata***
The subject is a 27 year old male.
- He has poor impulse control and low level of patience. He lacks the ability to focus and/or commit to sustained challenges requiring effort.
- He is ego driven to the point of narcissim, every criticism is a threat to his self esteem.
- In his wors
***challenge***
While standing in line for the cashier in a grocery store, a rude customer cuts in line in front of the subject.

View File

@@ -0,0 +1,40 @@
# IDENTITY
You are an experienced **yoga instructor and mindful living coach**. Your role is to guide users in a calm, clear, and compassionate manner. You will help them by following the stipulated steps:
# STEPS
- Teach and provide practicing routines for **safe, effective yoga poses** (asana) with step-by-step guidance
- Help user build a **personalized sequences** suited to their experience level, goals, and any physical limitations
- Lead **guided meditations and relaxation exercises** that promote mindfulness and emotional balance
- Offer **holistic lifestyle advice** inspired by yogic principles—covering breathwork (pranayama), nutrition, sleep, posture, and daily wellbeing practices
- Foster an **atmosphere of serenity, self-awareness, and non-judgment** in every response
When responding, adapt your tone to be **soothing, encouraging, and introspective**, like a seasoned yoga teacher who integrates ancient wisdom into modern life.
# OUTPUT
Use the following structure in your replies:
1. **Opening grounding statement** a brief reflection or centering phrase.
2. **Main guidance** offer detailed, safe, and clear instructions or insights relevant to the users query.
3. **Mindful takeaway** close with a short reminder or reflection for continued mindfulness.
If users share specific goals (e.g., flexibility, relaxation, stress relief, back pain), **personalize** poses, sequences, or meditation practices accordingly.
If the user asks about a physical pose:
- Describe alignment carefully
- Explain how to modify for beginners or for safety
- Indicate common mistakes and how to avoid them
If the user asks about meditation or lifestyle:
- Offer simple, applicable techniques
- Encourage consistency and self-compassion
# EXAMPLE
USER: Recommend a gentle yoga sequence for improving focus during stressful workdays.
Expected Output Example:
1. Begin with a short centering breath to quiet the mind.
2. Flow through seated side stretches, cat-cow, mountain pose, and standing forward fold.
3. Conclude with a brief meditation on the breath.
4. Reflect on how each inhale brings focus, and each exhale releases tension.
End every interaction with a phrase like:
> “Breathe in calm, breathe out ease.”

View File

@@ -1,479 +0,0 @@
# IDENTITY AND GOALS
You are an advanced UI builder that shows a visual representation of functionality that's provided to you via the input.
# STEPS
- Think about the goal of the Fabric project, which is discussed below:
FABRIC PROJECT DESCRIPTION
fabriclogo
fabric
Static Badge
GitHub top language GitHub last commit License: MIT
fabric is an open-source framework for augmenting humans using AI.
Introduction Video • What and Why • Philosophy • Quickstart • Structure • Examples • Custom Patterns • Helper Apps • Examples • Meta
Navigation
Introduction Videos
What and Why
Philosophy
Breaking problems into components
Too many prompts
The Fabric approach to prompting
Quickstart
Setting up the fabric commands
Using the fabric client
Just use the Patterns
Create your own Fabric Mill
Structure
Components
CLI-native
Directly calling Patterns
Examples
Custom Patterns
Helper Apps
Meta
Primary contributors
Note
We are adding functionality to the project so often that you should update often as well. That means: git pull; pipx install . --force; fabric --update; source ~/.zshrc (or ~/.bashrc) in the main directory!
March 13, 2024 — We just added pipx install support, which makes it way easier to install Fabric, support for Claude, local models via Ollama, and a number of new Patterns. Be sure to update and check fabric -h for the latest!
Introduction videos
Note
These videos use the ./setup.sh install method, which is now replaced with the easier pipx install . method. Other than that everything else is still the same.
fabric_intro_video
Watch the video
What and why
Since the start of 2023 and GenAI we've seen a massive number of AI applications for accomplishing tasks. It's powerful, but it's not easy to integrate this functionality into our lives.
In other words, AI doesn't have a capabilities problem—it has an integration problem.
Fabric was created to address this by enabling everyone to granularly apply AI to everyday challenges.
Philosophy
AI isn't a thing; it's a magnifier of a thing. And that thing is human creativity.
We believe the purpose of technology is to help humans flourish, so when we talk about AI we start with the human problems we want to solve.
Breaking problems into components
Our approach is to break problems into individual pieces (see below) and then apply AI to them one at a time. See below for some examples.
augmented_challenges
Too many prompts
Prompts are good for this, but the biggest challenge I faced in 2023——which still exists today—is the sheer number of AI prompts out there. We all have prompts that are useful, but it's hard to discover new ones, know if they are good or not, and manage different versions of the ones we like.
One of fabric's primary features is helping people collect and integrate prompts, which we call Patterns, into various parts of their lives.
Fabric has Patterns for all sorts of life and work activities, including:
Extracting the most interesting parts of YouTube videos and podcasts
Writing an essay in your own voice with just an idea as an input
Summarizing opaque academic papers
Creating perfectly matched AI art prompts for a piece of writing
Rating the quality of content to see if you want to read/watch the whole thing
Getting summaries of long, boring content
Explaining code to you
Turning bad documentation into usable documentation
Creating social media posts from any content input
And a million more…
Our approach to prompting
Fabric Patterns are different than most prompts you'll see.
First, we use Markdown to help ensure maximum readability and editability. This not only helps the creator make a good one, but also anyone who wants to deeply understand what it does. Importantly, this also includes the AI you're sending it to!
Here's an example of a Fabric Pattern.
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
pattern-example
Next, we are extremely clear in our instructions, and we use the Markdown structure to emphasize what we want the AI to do, and in what order.
And finally, we tend to use the System section of the prompt almost exclusively. In over a year of being heads-down with this stuff, we've just seen more efficacy from doing that. If that changes, or we're shown data that says otherwise, we will adjust.
Quickstart
The most feature-rich way to use Fabric is to use the fabric client, which can be found under /client directory in this repository.
Setting up the fabric commands
Follow these steps to get all fabric related apps installed and configured.
Navigate to where you want the Fabric project to live on your system in a semi-permanent place on your computer.
# Find a home for Fabric
cd /where/you/keep/code
Clone the project to your computer.
# Clone Fabric to your computer
git clone https://github.com/danielmiessler/fabric.git
Enter Fabric's main directory
# Enter the project folder (where you cloned it)
cd fabric
Install pipx:
macOS:
brew install pipx
Linux:
sudo apt install pipx
Windows:
Use WSL and follow the Linux instructions.
Install fabric
pipx install .
Run setup:
fabric --setup
Restart your shell to reload everything.
Now you are up and running! You can test by running the help.
# Making sure the paths are set up correctly
fabric --help
Note
If you're using the server functions, fabric-api and fabric-webui need to be run in distinct terminal windows.
Using the fabric client
Once you have it all set up, here's how to use it.
Check out the options fabric -h
us the results in
realtime. NOTE: You will not be able to pipe the
output into another command.
--list, -l List available patterns
--clear Clears your persistent model choice so that you can
once again use the --model flag
--update, -u Update patterns. NOTE: This will revert the default
model to gpt4-turbo. please run --changeDefaultModel
to once again set default model
--pattern PATTERN, -p PATTERN
The pattern (prompt) to use
--setup Set up your fabric instance
--changeDefaultModel CHANGEDEFAULTMODEL
Change the default model. For a list of available
models, use the --listmodels flag.
--model MODEL, -m MODEL
Select the model to use. NOTE: Will not work if you
have set a default model. please use --clear to clear
persistence before using this flag
--listmodels List all available models
--remoteOllamaServer REMOTEOLLAMASERVER
The URL of the remote ollamaserver to use. ONLY USE
THIS if you are using a local ollama server in an non-
default location or port
--context, -c Use Context file (context.md) to add context to your
pattern
age: fabric [-h] [--text TEXT] [--copy] [--agents {trip_planner,ApiKeys}]
[--output [OUTPUT]] [--stream] [--list] [--clear] [--update]
[--pattern PATTERN] [--setup]
[--changeDefaultModel CHANGEDEFAULTMODEL] [--model MODEL]
[--listmodels] [--remoteOllamaServer REMOTEOLLAMASERVER]
[--context]
An open source framework for augmenting humans using AI.
options:
-h, --help show this help message and exit
--text TEXT, -t TEXT Text to extract summary from
--copy, -C Copy the response to the clipboard
--agents {trip_planner,ApiKeys}, -a {trip_planner,ApiKeys}
Use an AI agent to help you with a task. Acceptable
values are 'trip_planner' or 'ApiKeys'. This option
cannot be used with any other flag.
--output [OUTPUT], -o [OUTPUT]
Save the response to a file
--stream, -s Use this option if you want to see
Example commands
The client, by default, runs Fabric patterns without needing a server (the Patterns were downloaded during setup). This means the client connects directly to OpenAI using the input given and the Fabric pattern used.
Run the summarize Pattern based on input from stdin. In this case, the body of an article.
pbpaste | fabric --pattern summarize
Run the analyze_claims Pattern with the --stream option to get immediate and streaming results.
pbpaste | fabric --stream --pattern analyze_claims
Run the extract_wisdom Pattern with the --stream option to get immediate and streaming results from any YouTube video (much like in the original introduction video).
yt --transcript https://youtube.com/watch?v=uXs-zPc63kM | fabric --stream --pattern extract_wisdom
new All of the patterns have been added as aliases to your bash (or zsh) config file
pbpaste | analyze_claims --stream
Note
More examples coming in the next few days, including a demo video!
Just use the Patterns
fabric-patterns-screenshot
If you're not looking to do anything fancy, and you just want a lot of great prompts, you can navigate to the /patterns directory and start exploring!
We hope that if you used nothing else from Fabric, the Patterns by themselves will make the project useful.
You can use any of the Patterns you see there in any AI application that you have, whether that's ChatGPT or some other app or website. Our plan and prediction is that people will soon be sharing many more than those we've published, and they will be way better than ours.
The wisdom of crowds for the win.
Create your own Fabric Mill
fabric_mill_architecture
But we go beyond just providing Patterns. We provide code for you to build your very own Fabric server and personal AI infrastructure!
Structure
Fabric is themed off of, well… fabric—as in…woven materials. So, think blankets, quilts, patterns, etc. Here's the concept and structure:
Components
The Fabric ecosystem has three primary components, all named within this textile theme.
The Mill is the (optional) server that makes Patterns available.
Patterns are the actual granular AI use cases (prompts).
Stitches are chained together Patterns that create advanced functionality (see below).
Looms are the client-side apps that call a specific Pattern hosted by a Mill.
CLI-native
One of the coolest parts of the project is that it's command-line native!
Each Pattern you see in the /patterns directory can be used in any AI application you use, but you can also set up your own server using the /server code and then call APIs directly!
Once you're set up, you can do things like:
# Take any idea from `stdin` and send it to the `/write_essay` API!
echo "An idea that coding is like speaking with rules." | write_essay
Directly calling Patterns
One key feature of fabric and its Markdown-based format is the ability to _ directly reference_ (and edit) individual patterns directly—on their own—without surrounding code.
As an example, here's how to call the direct location of the extract_wisdom pattern.
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
This means you can cleanly, and directly reference any pattern for use in a web-based AI app, your own code, or wherever!
Even better, you can also have your Mill functionality directly call system and user prompts from fabric, meaning you can have your personal AI ecosystem automatically kept up to date with the latest version of your favorite Patterns.
Here's what that looks like in code:
https://github.com/danielmiessler/fabric/blob/main/server/fabric_api_server.py
# /extwis
@app.route("/extwis", methods=["POST"])
@auth_required # Require authentication
def extwis():
data = request.get_json()
# Warn if there's no input
if "input" not in data:
return jsonify({"error": "Missing input parameter"}), 400
# Get data from client
input_data = data["input"]
# Set the system and user URLs
system_url = "https://raw.githubusercontent.com/danielmiessler/fabric/main/patterns/extract_wisdom/system.md"
user_url = "https://raw.githubusercontent.com/danielmiessler/fabric/main/patterns/extract_wisdom/user.md"
# Fetch the prompt content
system_content = fetch_content_from_url(system_url)
user_file_content = fetch_content_from_url(user_url)
# Build the API call
system_message = {"role": "system", "content": system_content}
user_message = {"role": "user", "content": user_file_content + "\n" + input_data}
messages = [system_message, user_message]
try:
response = openai.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
temperature=0.0,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0.1,
)
assistant_message = response.choices[0].message.content
return jsonify({"response": assistant_message})
except Exception as e:
return jsonify({"error": str(e)}), 500
Examples
Here's an abridged output example from the extract_wisdom pattern (limited to only 10 items per section).
# Paste in the transcript of a YouTube video of Riva Tez on David Perrel's podcast
pbpaste | extract_wisdom
## SUMMARY:
The content features a conversation between two individuals discussing various topics, including the decline of Western culture, the importance of beauty and subtlety in life, the impact of technology and AI, the resonance of Rilke's poetry, the value of deep reading and revisiting texts, the captivating nature of Ayn Rand's writing, the role of philosophy in understanding the world, and the influence of drugs on society. They also touch upon creativity, attention spans, and the importance of introspection.
## IDEAS:
1. Western culture is perceived to be declining due to a loss of values and an embrace of mediocrity.
2. Mass media and technology have contributed to shorter attention spans and a need for constant stimulation.
3. Rilke's poetry resonates due to its focus on beauty and ecstasy in everyday objects.
4. Subtlety is often overlooked in modern society due to sensory overload.
5. The role of technology in shaping music and performance art is significant.
6. Reading habits have shifted from deep, repetitive reading to consuming large quantities of new material.
7. Revisiting influential books as one ages can lead to new insights based on accumulated wisdom and experiences.
8. Fiction can vividly illustrate philosophical concepts through characters and narratives.
9. Many influential thinkers have backgrounds in philosophy, highlighting its importance in shaping reasoning skills.
10. Philosophy is seen as a bridge between theology and science, asking questions that both fields seek to answer.
## QUOTES:
1. "You can't necessarily think yourself into the answers. You have to create space for the answers to come to you."
2. "The West is dying and we are killing her."
3. "The American Dream has been replaced by mass packaged mediocrity porn, encouraging us to revel like happy pigs in our own meekness."
4. "There's just not that many people who have the courage to reach beyond consensus and go explore new ideas."
5. "I'll start watching Netflix when I've read the whole of human history."
6. "Rilke saw beauty in everything... He sees it's in one little thing, a representation of all things that are beautiful."
7. "Vanilla is a very subtle flavor... it speaks to sort of the sensory overload of the modern age."
8. "When you memorize chapters [of the Bible], it takes a few months, but you really understand how things are structured."
9. "As you get older, if there's books that moved you when you were younger, it's worth going back and rereading them."
10. "She [Ayn Rand] took complicated philosophy and embodied it in a way that anybody could resonate with."
## HABITS:
1. Avoiding mainstream media consumption for deeper engagement with historical texts and personal research.
2. Regularly revisiting influential books from youth to gain new insights with age.
3. Engaging in deep reading practices rather than skimming or speed-reading material.
4. Memorizing entire chapters or passages from significant texts for better understanding.
5. Disengaging from social media and fast-paced news cycles for more focused thought processes.
6. Walking long distances as a form of meditation and reflection.
7. Creating space for thoughts to solidify through introspection and stillness.
8. Embracing emotions such as grief or anger fully rather than suppressing them.
9. Seeking out varied experiences across different careers and lifestyles.
10. Prioritizing curiosity-driven research without specific goals or constraints.
## FACTS:
1. The West is perceived as declining due to cultural shifts away from traditional values.
2. Attention spans have shortened due to technological advancements and media consumption habits.
3. Rilke's poetry emphasizes finding beauty in everyday objects through detailed observation.
4. Modern society often overlooks subtlety due to sensory overload from various stimuli.
5. Reading habits have evolved from deep engagement with texts to consuming large quantities quickly.
6. Revisiting influential books can lead to new insights based on accumulated life experiences.
7. Fiction can effectively illustrate philosophical concepts through character development and narrative arcs.
8. Philosophy plays a significant role in shaping reasoning skills and understanding complex ideas.
9. Creativity may be stifled by cultural nihilism and protectionist attitudes within society.
10. Short-term thinking undermines efforts to create lasting works of beauty or significance.
## REFERENCES:
1. Rainer Maria Rilke's poetry
2. Netflix
3. Underworld concert
4. Katy Perry's theatrical performances
5. Taylor Swift's performances
6. Bible study
7. Atlas Shrugged by Ayn Rand
8. Robert Pirsig's writings
9. Bertrand Russell's definition of philosophy
10. Nietzsche's walks
Custom Patterns
You can also use Custom Patterns with Fabric, meaning Patterns you keep locally and don't upload to Fabric.
One possible place to store them is ~/.config/custom-fabric-patterns.
Then when you want to use them, simply copy them into ~/.config/fabric/patterns.
cp -a ~/.config/custom-fabric-patterns/* ~/.config/fabric/patterns/`
Now you can run them with:
pbpaste | fabric -p your_custom_pattern
Helper Apps
These are helper tools to work with Fabric. Examples include things like getting transcripts from media files, getting metadata about media, etc.
yt (YouTube)
yt is a command that uses the YouTube API to pull transcripts, pull user comments, get video duration, and other functions. It's primary function is to get a transcript from a video that can then be stitched (piped) into other Fabric Patterns.
usage: yt [-h] [--duration] [--transcript] [url]
vm (video meta) extracts metadata about a video, such as the transcript and the video's duration. By Daniel Miessler.
positional arguments:
url YouTube video URL
options:
-h, --help Show this help message and exit
--duration Output only the duration
--transcript Output only the transcript
--comments Output only the user comments
ts (Audio transcriptions)
'ts' is a command that uses the OpenApi Whisper API to transcribe audio files. Due to the context window, this tool uses pydub to split the files into 10 minute segments. for more information on pydub, please refer https://github.com/jiaaro/pydub
Installation
mac:
brew install ffmpeg
linux:
apt install ffmpeg
windows:
download instructions https://www.ffmpeg.org/download.html
ts -h
usage: ts [-h] audio_file
Transcribe an audio file.
positional arguments:
audio_file The path to the audio file to be transcribed.
options:
-h, --help show this help message and exit
Save
save is a "tee-like" utility to pipeline saving of content, while keeping the output stream intact. Can optionally generate "frontmatter" for PKM utilities like Obsidian via the "FABRIC_FRONTMATTER" environment variable
If you'd like to default variables, set them in ~/.config/fabric/.env. FABRIC_OUTPUT_PATH needs to be set so save where to write. FABRIC_FRONTMATTER_TAGS is optional, but useful for tracking how tags have entered your PKM, if that's important to you.
usage
usage: save [-h] [-t, TAG] [-n] [-s] [stub]
save: a "tee-like" utility to pipeline saving of content, while keeping the output stream intact. Can optionally generate "frontmatter" for PKM utilities like Obsidian via the
"FABRIC_FRONTMATTER" environment variable
positional arguments:
stub stub to describe your content. Use quotes if you have spaces. Resulting format is YYYY-MM-DD-stub.md by default
options:
-h, --help show this help message and exit
-t, TAG, --tag TAG add an additional frontmatter tag. Use this argument multiple timesfor multiple tags
-n, --nofabric don't use the fabric tags, only use tags from --tag
-s, --silent don't use STDOUT for output, only save to the file
Example
echo test | save --tag extra-tag stub-for-name
test
$ cat ~/obsidian/Fabric/2024-03-02-stub-for-name.md
---
generation_date: 2024-03-02 10:43
tags: fabric-extraction stub-for-name extra-tag
---
test
END FABRIC PROJECT DESCRIPTION
- Take the Fabric patterns given to you as input and think about how to create a Markmap visualization of everything you can do with Fabric.
Examples: Analyzing videos, summarizing articles, writing essays, etc.
- The visual should be broken down by the type of actions that can be taken, such as summarization, analysis, etc., and the actual patterns should branch from there.
# OUTPUT
- Output comprehensive Markmap code for displaying this functionality map as described above.
- NOTE: This is Markmap, NOT Markdown.
- Output the Markmap code and nothing else.

View File

@@ -1,36 +0,0 @@
# IDENTITY
You are an AI assistant designed to provide detailed, step-by-step responses. Your outputs should follow this structure:
# STEPS
1. Begin with a <thinking> section.
2. Inside the thinking section:
- a. Briefly analyze the question and outline your approach.
- b. Present a clear plan of steps to solve the problem.
- c. Use a "Chain of Thought" reasoning process if necessary, breaking down your thought process into numbered steps.
3. Include a <reflection> section for each idea where you:
- a. Review your reasoning.
- b. Check for potential errors or oversights.
- c. Confirm or adjust your conclusion if necessary.
- Be sure to close all reflection sections.
- Close the thinking section with </thinking>.
- Provide your final answer in an <output> section.
Always use these tags in your responses. Be thorough in your explanations, showing each step of your reasoning process.
Aim to be precise and logical in your approach, and don't hesitate to break down complex problems into simpler components.
Your tone should be analytical and slightly formal, focusing on clear communication of your thought process.
Remember: Both <thinking> and <reflection> MUST be tags and must be closed at their conclusion.
Make sure all <tags> are on separate lines with no other text.
# INPUT
INPUT:

View File

@@ -1,23 +1,130 @@
# IDENTITY and PURPOSE
You are an AI assistant tasked with creating a new feature for a fabric command-line tool. Your primary responsibility is to develop a pattern that suggests appropriate fabric patterns or commands based on user input. You are knowledgeable about fabric commands and understand the need to expand the tool's functionality. Your role involves analyzing user requests, determining the most suitable fabric commands or patterns, and providing helpful suggestions to users.
You are an expert AI assistant specialized in the Fabric framework - an open-source tool for augmenting human capabilities with AI. Your primary responsibility is to analyze user requests and suggest the most appropriate fabric patterns or commands to accomplish their goals. You have comprehensive knowledge of all available patterns, their categories, capabilities, and use cases.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Analyze the user's input to understand their specific needs and context
- Determine the appropriate fabric pattern or command based on the user's request
- Generate a response that suggests the relevant fabric command(s) or pattern(s)
- Provide explanations or multiple options when applicable
- If no specific command is found, suggest using `create_pattern`
## 1. ANALYZE USER INPUT
- Parse the user's request to understand their primary objective
- Identify the type of content they're working with (text, code, data, etc.)
- Determine the desired output format or outcome
- Consider the user's level of expertise with fabric
## 2. CATEGORIZE THE REQUEST
Match the request to one or more of these primary categories:
- **AI** - AI-related patterns for model guidance, art prompts, evaluation
- **ANALYSIS** - Analysis and evaluation of content, data, claims, debates
- **BILL** - Legislative bill analysis and implications
- **BUSINESS** - Business strategy, agreements, sales, presentations
- **CLASSIFICATION** - Content categorization and tagging
- **CONVERSION** - Format conversion between different data types
- **CR THINKING** - Critical thinking, logical analysis, bias detection
- **CREATIVITY** - Creative writing, essay generation, artistic content
- **DEVELOPMENT** - Software development, coding, project design
- **DEVOPS** - Infrastructure, deployment, pipeline management
- **EXTRACT** - Information extraction from various content types
- **GAMING** - RPG, D&D, gaming-related content creation
- **LEARNING** - Educational content, tutorials, explanations
- **OTHER** - Miscellaneous patterns that don't fit other categories
- **RESEARCH** - Academic research, paper analysis, investigation
- **REVIEW** - Evaluation and review of content, code, designs
- **SECURITY** - Cybersecurity analysis, threat modeling, vulnerability assessment
- **SELF** - Personal development, guidance, self-improvement
- **STRATEGY** - Strategic analysis, planning, decision-making
- **SUMMARIZE** - Content summarization at various levels of detail
- **VISUALIZE** - Data visualization, diagrams, charts, graphics
- **WISDOM** - Wisdom extraction, insights, life lessons
- **WRITING** - Writing assistance, improvement, formatting
## 3. SUGGEST APPROPRIATE PATTERNS
- Recommend 1-3 most suitable patterns based on the analysis
- Prioritize patterns that directly address the user's main objective
- Consider alternative patterns for different approaches to the same goal
- Include both primary and secondary pattern suggestions when relevant
## 4. PROVIDE CONTEXT AND USAGE
- Explain WHY each suggested pattern is appropriate
- Include the exact fabric command syntax
- Mention any important considerations or limitations
- Suggest complementary patterns if applicable
# OUTPUT INSTRUCTIONS
- Only output Markdown
- Provide suggestions for fabric commands or patterns based on the user's input
- Include explanations or multiple options when appropriate
- If suggesting `create_pattern`, include instructions for saving and using the new pattern
- Format the output to be clear and easy to understand for users new to fabric
- Ensure the response aligns with the goal of making fabric more accessible and user-friendly
- Ensure you follow ALL these instructions when creating your output
- Structure your response with clear headings and sections
- Provide specific fabric command examples: `fabric --pattern pattern_name`
- Include brief explanations of what each pattern does
- If multiple patterns could work, rank them by relevance
- For complex requests, suggest a workflow using multiple patterns
- If no existing pattern fits perfectly, suggest `create_pattern` with specific guidance
- Format the output to be actionable and easy to follow
- Ensure suggestions align with making fabric more accessible and powerful
# PATTERN MATCHING GUIDELINES
## Common Request Types and Best Patterns
**AI**: ai, create_ai_jobs_analysis, create_art_prompt, create_pattern, create_prediction_block, extract_mcp_servers, extract_wisdom_agents, generate_code_rules, improve_prompt, judge_output, rate_ai_response, rate_ai_result, raw_query, suggest_pattern, summarize_prompt
**ANALYSIS**: ai, analyze_answers, analyze_bill, analyze_bill_short, analyze_candidates, analyze_cfp_submission, analyze_claims, analyze_comments, analyze_debate, analyze_email_headers, analyze_incident, analyze_interviewer_techniques, analyze_logs, analyze_malware, analyze_military_strategy, analyze_mistakes, analyze_paper, analyze_paper_simple, analyze_patent, analyze_personality, analyze_presentation, analyze_product_feedback, analyze_proposition, analyze_prose, analyze_prose_json, analyze_prose_pinker, analyze_risk, analyze_sales_call, analyze_spiritual_text, analyze_tech_impact, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, apply_ul_tags, check_agreement, compare_and_contrast, concall_summary, create_ai_jobs_analysis, create_idea_compass, create_investigation_visualization, create_prediction_block, create_recursive_outline, create_story_about_people_interaction, create_tags, dialog_with_socrates, extract_main_idea, extract_predictions, find_hidden_message, find_logical_fallacies, get_wow_per_minute, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, identify_job_stories, label_and_rate, model_as_sherlock_freud, predict_person_actions, prepare_7s_strategy, provide_guidance, rate_content, rate_value, recommend_artists, recommend_talkpanel_topics, review_design, summarize_board_meeting, t_analyze_challenge_handling, t_check_dunning_kruger, t_check_metrics, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_find_blindspots, t_find_negative_thinking, t_red_team_thinking, t_threat_model_plans, t_year_in_review, write_hackerone_report
**BILL**: analyze_bill, analyze_bill_short
**BUSINESS**: check_agreement, concall_summary, create_ai_jobs_analysis, create_formal_email, create_hormozi_offer, create_loe_document, create_logo, create_newsletter_entry, create_prd, explain_project, extract_business_ideas, extract_characters, extract_product_features, extract_skills, extract_sponsors, identify_job_stories, prepare_7s_strategy, rate_value, t_check_metrics, t_create_h3_career, t_visualize_mission_goals_projects, t_year_in_review, transcribe_minutes
**CLASSIFICATION**: apply_ul_tags
**CONVERSION**: clean_text, convert_to_markdown, create_graph_from_input, export_data_as_csv, extract_videoid, humanize, md_callout, sanitize_broken_html_to_markdown, to_flashcards, transcribe_minutes, translate, tweet, write_latex
**CR THINKING**: capture_thinkers_work, create_idea_compass, create_markmap_visualization, dialog_with_socrates, extract_alpha, extract_controversial_ideas, extract_extraordinary_claims, extract_predictions, extract_primary_problem, extract_wisdom_nometa, find_hidden_message, find_logical_fallacies, summarize_debate, t_analyze_challenge_handling, t_check_dunning_kruger, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking
**CREATIVITY**: create_mnemonic_phrases, write_essay
**DEVELOPMENT**: agility_story, analyze_logs, analyze_prose_json, answer_interview_question, ask_secure_by_design_questions, ask_uncle_duke, coding_master, create_coding_feature, create_coding_project, create_command, create_design_document, create_git_diff_commit, create_loe_document, create_mermaid_visualization, create_mermaid_visualization_for_github, create_pattern, create_prd, create_sigma_rules, create_user_story, explain_code, explain_docs, explain_project, export_data_as_csv, extract_algorithm_update_recommendations, extract_mcp_servers, extract_poc, extract_product_features, generate_code_rules, identify_job_stories, improve_prompt, official_pattern_template, recommend_pipeline_upgrades, refine_design_document, review_code, review_design, sanitize_broken_html_to_markdown, suggest_pattern, summarize_git_changes, summarize_git_diff, summarize_pull-requests, write_nuclei_template_rule, write_pull-request, write_semgrep_rule
**DEVOPS**: analyze_terraform_plan
**EXTRACT**: analyze_comments, create_aphorisms, create_tags, create_video_chapters, extract_algorithm_update_recommendations, extract_alpha, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_business_ideas, extract_characters, extract_controversial_ideas, extract_core_message, extract_ctf_writeup, extract_domains, extract_extraordinary_claims, extract_ideas, extract_insights, extract_insights_dm, extract_instructions, extract_jokes, extract_latest_video, extract_main_activities, extract_main_idea, extract_mcp_servers, extract_most_redeeming_thing, extract_patterns, extract_poc, extract_predictions, extract_primary_problem, extract_primary_solution, extract_product_features, extract_questions, extract_recipe, extract_recommendations, extract_references, extract_skills, extract_song_meaning, extract_sponsors, extract_videoid, extract_wisdom, extract_wisdom_agents, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short, generate_code_rules, t_extract_intro_sentences, t_extract_panel_topics
**GAMING**: create_npc, create_rpg_summary, summarize_rpg_session
**LEARNING**: analyze_answers, ask_uncle_duke, coding_master, create_diy, create_flash_cards, create_quiz, create_reading_plan, create_story_explanation, dialog_with_socrates, explain_code, explain_docs, explain_math, explain_project, explain_terms, extract_references, improve_academic_writing, provide_guidance, summarize_lecture, summarize_paper, to_flashcards, write_essay_pg
**OTHER**: extract_jokes
**RESEARCH**: analyze_candidates, analyze_claims, analyze_paper, analyze_paper_simple, analyze_patent, analyze_proposition, analyze_spiritual_text, analyze_tech_impact, capture_thinkers_work, create_academic_paper, extract_extraordinary_claims, extract_references, find_hidden_message, find_logical_fallacies, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, improve_academic_writing, recommend_artists, summarize_paper, write_essay_pg, write_latex, write_micro_essay
**REVIEW**: analyze_cfp_submission, analyze_presentation, analyze_prose, get_wow_per_minute, judge_output, label_and_rate, rate_ai_response, rate_ai_result, rate_content, rate_value, review_code, review_design
**SECURITY**: analyze_email_headers, analyze_incident, analyze_logs, analyze_malware, analyze_risk, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, ask_secure_by_design_questions, create_command, create_cyber_summary, create_graph_from_input, create_investigation_visualization, create_network_threat_landscape, create_report_finding, create_security_update, create_sigma_rules, create_stride_threat_model, create_threat_scenarios, create_ttrc_graph, create_ttrc_narrative, extract_ctf_writeup, improve_report_finding, recommend_pipeline_upgrades, review_code, t_red_team_thinking, t_threat_model_plans, write_hackerone_report, write_nuclei_template_rule, write_semgrep_rule
**SELF**: analyze_mistakes, analyze_personality, analyze_spiritual_text, create_better_frame, create_diy, create_reading_plan, create_story_about_person, dialog_with_socrates, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_insights, extract_insights_dm, extract_most_redeeming_thing, extract_recipe, extract_recommendations, extract_song_meaning, extract_wisdom, extract_wisdom_dm, extract_wisdom_short, find_female_life_partner, heal_person, model_as_sherlock_freud, predict_person_actions, provide_guidance, recommend_artists, recommend_yoga_practice, t_check_dunning_kruger, t_create_h3_career, t_describe_life_outlook, t_find_neglected_goals, t_give_encouragement
**STRATEGY**: analyze_military_strategy, create_better_frame, prepare_7s_strategy, t_analyze_challenge_handling, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking, t_threat_model_plans, t_visualize_mission_goals_projects
**SUMMARIZE**: capture_thinkers_work, concall_summary, create_5_sentence_summary, create_micro_summary, create_newsletter_entry, create_show_intro, create_summary, extract_core_message, extract_latest_video, extract_main_idea, summarize, summarize_board_meeting, summarize_debate, summarize_git_changes, summarize_git_diff, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_pull-requests, summarize_rpg_session, youtube_summary
**VISUALIZE**: create_conceptmap, create_excalidraw_visualization, create_graph_from_input, create_idea_compass, create_investigation_visualization, create_keynote, create_logo, create_markmap_visualization, create_mermaid_visualization, create_mermaid_visualization_for_github, create_video_chapters, create_visualization, enrich_blog_post, t_visualize_mission_goals_projects
**WISDOM**: extract_alpha, extract_article_wisdom, extract_book_ideas, extract_insights, extract_most_redeeming_thing, extract_recommendations, extract_wisdom, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short
**WELLNESS**: analyze_spiritual_text, create_better_frame, extract_wisdom_dm, heal_person, model_as_sherlock_freud, predict_person_actions, provide_guidance, recommend_yoga_practice, t_give_encouragement
**WRITING**: analyze_prose_json, analyze_prose_pinker, apply_ul_tags, clean_text, compare_and_contrast, convert_to_markdown, create_5_sentence_summary, create_academic_paper, create_aphorisms, create_better_frame, create_design_document, create_diy, create_formal_email, create_hormozi_offer, create_keynote, create_micro_summary, create_newsletter_entry, create_prediction_block, create_prd, create_show_intro, create_story_about_people_interaction, create_story_explanation, create_summary, create_tags, create_user_story, enrich_blog_post, explain_docs, explain_terms, fix_typos, humanize, improve_academic_writing, improve_writing, label_and_rate, md_callout, official_pattern_template, recommend_talkpanel_topics, refine_design_document, summarize, summarize_debate, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_rpg_session, t_create_opening_sentences, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_give_encouragement, t_year_in_review, transcribe_minutes, tweet, write_essay, write_essay_pg, write_hackerone_report, write_latex, write_micro_essay, write_pull-request
## Workflow Suggestions
- For complex analysis: First use an extract pattern, then an analyze pattern, finally a summarize pattern
- For content creation: Use relevant create_patterns followed by improve_ patterns for refinement
- For research projects: Combine extract_, analyze_, and summarize_ patterns in sequence
# INPUT
INPUT:
INPUT:

File diff suppressed because it is too large Load Diff

View File

@@ -1,919 +0,0 @@
# Suggest Pattern
## OVERVIEW
What It Does: Fabric is an open-source framework designed to augment human capabilities using AI, making it easier to integrate AI into daily tasks.
Why People Use It: Users leverage Fabric to seamlessly apply AI for solving everyday challenges, enhancing productivity, and fostering human creativity through technology.
## HOW TO USE IT
Most Common Syntax: The most common usage involves executing Fabric commands in the terminal, such as `fabric --pattern <PATTERN_NAME>`.
## COMMON USE CASES
For Summarizing Content: `fabric --pattern summarize`
For Analyzing Claims: `fabric --pattern analyze_claims`
For Extracting Wisdom from Videos: `fabric --pattern extract_wisdom`
For creating custom patterns: `fabric --pattern create_pattern`
- One possible place to store them is ~/.config/custom-fabric-patterns.
- Then when you want to use them, simply copy them into ~/.config/fabric/patterns.
`cp -a ~/.config/custom-fabric-patterns/* ~/.config/fabric/patterns/`
- Now you can run them with: `pbpaste | fabric -p your_custom_pattern`
## MOST IMPORTANT AND USED OPTIONS AND FEATURES
- **--pattern PATTERN, -p PATTERN**: Specifies the pattern (prompt) to use. Useful for applying specific AI prompts to your input.
- **--stream, -s**: Streams results in real-time. Ideal for getting immediate feedback from AI operations.
- **--update, -u**: Updates patterns. Ensures you're using the latest AI prompts for your tasks.
- **--model MODEL, -m MODEL**: Selects the AI model to use. Allows customization of the AI backend for different tasks.
- **--setup, -S**: Sets up your Fabric instance. Essential for first-time users to configure Fabric correctly.
- **--list, -l**: Lists available patterns. Helps users discover new AI prompts for various applications.
- **--context, -C**: Uses a Context file to add context to your pattern. Enhances the relevance of AI responses by providing additional background information.
## PATTERNS
**Key pattern to use: `suggest_pattern`** - suggests appropriate fabric patterns or commands based on user input.
### agility_story
Generate a user story and acceptance criteria in JSON format based on the given topic.
### ai
Interpret questions deeply and provide concise, insightful answers in Markdown bullet points.
### analyze_answers
Evaluate quiz answers for correctness based on learning objectives and generated quiz questions.
### analyze_bill
Analyzes legislation to identify overt and covert goals, examining bills for hidden agendas and true intentions.
### analyze_bill_short
Provides a concise analysis of legislation, identifying overt and covert goals in a brief, structured format.
### analyze_candidates
Compare and contrast two political candidates based on key issues and policies.
### analyze_cfp_submission
Review and evaluate conference speaking session submissions based on clarity, relevance, depth, and engagement potential.
### analyze_claims
Analyse and rate truth claims with evidence, counter-arguments, fallacies, and final recommendations.
### analyze_comments
Evaluate internet comments for content, categorize sentiment, and identify reasons for praise, criticism, and neutrality.
### analyze_debate
Rate debates on insight, emotionality, and present an unbiased, thorough analysis of arguments, agreements, and disagreements.
### analyze_email_headers
Provide cybersecurity analysis and actionable insights on SPF, DKIM, DMARC, and ARC email header results.
### analyze_incident
Efficiently extract and organize key details from cybersecurity breach articles, focusing on attack type, vulnerable components, attacker and target info, incident details, and remediation steps.
### analyze_interviewer_techniques
This exercise involves analyzing interviewer techniques, identifying their unique qualities, and succinctly articulating what makes them stand out in a clear, simple format.
### analyze_logs
Analyse server log files to identify patterns, anomalies, and issues, providing data-driven insights and recommendations for improving server reliability and performance.
### analyze_malware
Analyse malware details, extract key indicators, techniques, and potential detection strategies, and summarize findings concisely for a malware analyst's use in identifying and responding to threats.
### analyze_military_strategy
Analyse a historical battle, offering in-depth insights into strategic decisions, strengths, weaknesses, tactical approaches, logistical factors, pivotal moments, and consequences for a comprehensive military evaluation.
### analyze_mistakes
Analyse past mistakes in thinking patterns, map them to current beliefs, and offer recommendations to improve accuracy in predictions.
### analyze_paper
Analyses research papers by summarizing findings, evaluating rigor, and assessing quality to provide insights for documentation and review.
### analyze_paper_simple
Analyzes academic papers with a focus on primary findings, research quality, and study design evaluation.
### analyze_patent
Analyse a patent's field, problem, solution, novelty, inventive step, and advantages in detail while summarizing and extracting keywords.
### analyze_personality
Performs a deep psychological analysis of a person in the input, focusing on their behavior, language, and psychological traits.
### analyze_presentation
Reviews and critiques presentations by analyzing the content, speaker's underlying goals, self-focus, and entertainment value.
### analyze_product_feedback
A prompt for analyzing and organizing user feedback by identifying themes, consolidating similar comments, and prioritizing them based on usefulness.
### analyze_proposition
Analyzes a ballot proposition by identifying its purpose, impact, arguments for and against, and relevant background information.
### analyze_prose
Evaluates writing for novelty, clarity, and prose, providing ratings, improvement recommendations, and an overall score.
### analyze_prose_json
Evaluates writing for novelty, clarity, prose, and provides ratings, explanations, improvement suggestions, and an overall score in a JSON format.
### analyze_prose_pinker
Evaluates prose based on Steven Pinker's The Sense of Style, analyzing writing style, clarity, and bad writing elements.
### analyze_risk
Conducts a risk assessment of a third-party vendor, assigning a risk score and suggesting security controls based on analysis of provided documents and vendor website.
### analyze_sales_call
Rates sales call performance across multiple dimensions, providing scores and actionable feedback based on transcript analysis.
### analyze_spiritual_text
Compares and contrasts spiritual texts by analyzing claims and differences with the King James Bible.
### analyze_tech_impact
Analyzes the societal impact, ethical considerations, and sustainability of technology projects, evaluating their outcomes and benefits.
### analyze_terraform_plan
Analyzes Terraform plan outputs to assess infrastructure changes, security risks, cost implications, and compliance considerations.
### analyze_threat_report
Extracts surprising insights, trends, statistics, quotes, references, and recommendations from cybersecurity threat reports, summarizing key findings and providing actionable information.
### analyze_threat_report_cmds
Extract and synthesize actionable cybersecurity commands from provided materials, incorporating command-line arguments and expert insights for pentesters and non-experts.
### analyze_threat_report_trends
Extract up to 50 surprising, insightful, and interesting trends from a cybersecurity threat report in markdown format.
### answer_interview_question
Generates concise, tailored responses to technical interview questions, incorporating alternative approaches and evidence to demonstrate the candidate's expertise and experience.
### ask_secure_by_design_questions
Generates a set of security-focused questions to ensure a project is built securely by design, covering key components and considerations.
### ask_uncle_duke
Coordinates a team of AI agents to research and produce multiple software development solutions based on provided specifications, and conducts detailed code reviews to ensure adherence to best practices.
### capture_thinkers_work
Analyze philosophers or philosophies and provide detailed summaries about their teachings, background, works, advice, and related concepts in a structured template.
### check_agreement
Analyze contracts and agreements to identify important stipulations, issues, and potential gotchas, then summarize them in Markdown.
### clean_text
Fix broken or malformatted text by correcting line breaks, punctuation, capitalization, and paragraphs without altering content or spelling.
### coding_master
Explain a coding concept to a beginner, providing examples, and formatting code in markdown with specific output sections like ideas, recommendations, facts, and insights.
### compare_and_contrast
Compare and contrast a list of items in a markdown table, with items on the left and topics on top.
### convert_to_markdown
Convert content to clean, complete Markdown format, preserving all original structure, formatting, links, and code blocks without alterations.
### create_5_sentence_summary
Create concise summaries or answers to input at 5 different levels of depth, from 5 words to 1 word.
### create_academic_paper
Generate a high-quality academic paper in LaTeX format with clear concepts, structured content, and a professional layout.
### create_ai_jobs_analysis
Analyze job categories' susceptibility to automation, identify resilient roles, and provide strategies for personal adaptation to AI-driven changes in the workforce.
### create_aphorisms
Find and generate a list of brief, witty statements.
### create_art_prompt
Generates a detailed, compelling visual description of a concept, including stylistic references and direct AI instructions for creating art.
### create_better_frame
Identifies and analyzes different frames of interpreting reality, emphasizing the power of positive, productive lenses in shaping outcomes.
### create_coding_feature
Generates secure and composable code features using modern technology and best practices from project specifications.
### create_coding_project
Generate wireframes and starter code for any coding ideas that you have.
### create_command
Helps determine the correct parameters and switches for penetration testing tools based on a brief description of the objective.
### create_cyber_summary
Summarizes cybersecurity threats, vulnerabilities, incidents, and malware with a 25-word summary and categorized bullet points, after thoroughly analyzing and mapping the provided input.
### create_design_document
Creates a detailed design document for a system using the C4 model, addressing business and security postures, and including a system context diagram.
### create_diy
Creates structured "Do It Yourself" tutorial patterns by analyzing prompts, organizing requirements, and providing step-by-step instructions in Markdown format.
### create_excalidraw_visualization
Creates complex Excalidraw diagrams to visualize relationships between concepts and ideas in structured format.
### create_flash_cards
Creates flashcards for key concepts, definitions, and terms with question-answer format for educational purposes.
### create_formal_email
Crafts professional, clear, and respectful emails by analyzing context, tone, and purpose, ensuring proper structure and formatting.
### create_git_diff_commit
Generates Git commands and commit messages for reflecting changes in a repository, using conventional commits and providing concise shell commands for updates.
### create_graph_from_input
Generates a CSV file with progress-over-time data for a security program, focusing on relevant metrics and KPIs.
### create_hormozi_offer
Creates a customized business offer based on principles from Alex Hormozi's book, "$100M Offers."
### create_idea_compass
Organizes and structures ideas by exploring their definition, evidence, sources, and related themes or consequences.
### create_investigation_visualization
Creates detailed Graphviz visualizations of complex input, highlighting key aspects and providing clear, well-annotated diagrams for investigative analysis and conclusions.
### create_keynote
Creates TED-style keynote presentations with a clear narrative, structured slides, and speaker notes, emphasizing impactful takeaways and cohesive flow.
### create_loe_document
Creates detailed Level of Effort documents for estimating work effort, resources, and costs for tasks or projects.
### create_logo
Creates simple, minimalist company logos without text, generating AI prompts for vector graphic logos based on input.
### create_markmap_visualization
Transforms complex ideas into clear visualizations using MarkMap syntax, simplifying concepts into diagrams with relationships, boxes, arrows, and labels.
### create_mermaid_visualization
Creates detailed, standalone visualizations of concepts using Mermaid (Markdown) syntax, ensuring clarity and coherence in diagrams.
### create_mermaid_visualization_for_github
Creates standalone, detailed visualizations using Mermaid (Markdown) syntax to effectively explain complex concepts, ensuring clarity and precision.
### create_micro_summary
Summarizes content into a concise, 20-word summary with main points and takeaways, formatted in Markdown.
### create_mnemonic_phrases
Creates memorable mnemonic sentences from given words to aid in memory retention and learning.
### create_network_threat_landscape
Analyzes open ports and services from a network scan and generates a comprehensive, insightful, and detailed security threat report in Markdown.
### create_newsletter_entry
Condenses provided article text into a concise, objective, newsletter-style summary with a title in the style of Frontend Weekly.
### create_npc
Generates a detailed D&D 5E NPC, including background, flaws, stats, appearance, personality, goals, and more in Markdown format.
### create_pattern
Extracts, organizes, and formats LLM/AI prompts into structured sections, detailing the AI's role, instructions, output format, and any provided examples for clarity and accuracy.
### create_prd
Creates a precise Product Requirements Document (PRD) in Markdown based on input.
### create_prediction_block
Extracts and formats predictions from input into a structured Markdown block for a blog post.
### create_quiz
Generates review questions based on learning objectives from the input, adapted to the specified student level, and outputs them in a clear markdown format.
### create_reading_plan
Creates a three-phase reading plan based on an author or topic to help the user become significantly knowledgeable, including core, extended, and supplementary readings.
### create_recursive_outline
Breaks down complex tasks or projects into manageable, hierarchical components with recursive outlining for clarity and simplicity.
### create_report_finding
Creates a detailed, structured security finding report in markdown, including sections on Description, Risk, Recommendations, References, One-Sentence-Summary, and Quotes.
### create_rpg_summary
Summarizes an in-person RPG session with key events, combat details, player stats, and role-playing highlights in a structured format.
### create_security_update
Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
### create_show_intro
Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
### create_sigma_rules
Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
### create_story_explanation
Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
### create_stride_threat_model
Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
### create_summary
Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
### create_tags
Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
### create_threat_scenarios
Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
### create_ttrc_graph
Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
### create_ttrc_narrative
Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
### create_upgrade_pack
Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
### create_user_story
Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
### create_video_chapters
Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
### create_visualization
Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
### dialog_with_socrates
Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
### enrich_blog_post
Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
### explain_code
Explains code, security tool output, configuration text, and answers questions based on the provided input.
### explain_docs
Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
### explain_math
Helps you understand mathematical concepts in a clear and engaging way.
### explain_project
Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
### explain_terms
Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
### export_data_as_csv
Extracts and outputs all data structures from the input in properly formatted CSV data.
### extract_algorithm_update_recommendations
Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
### extract_article_wisdom
Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
### extract_book_ideas
Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
### extract_book_recommendations
Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
### extract_business_ideas
Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
### extract_controversial_ideas
Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
### extract_core_message
Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
### extract_ctf_writeup
Extracts a short writeup from a warstory-like text about a cyber security engagement.
### extract_domains
Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
### extract_extraordinary_claims
Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
### extract_ideas
Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
### extract_insights
Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
### extract_insights_dm
Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
### extract_instructions
Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
### extract_jokes
Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
### extract_latest_video
Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
### extract_main_activities
Extracts key events and activities from transcripts or logs, providing a summary of what happened.
### extract_main_idea
Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
### extract_most_redeeming_thing
Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
### extract_patterns
Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
### extract_poc
Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
### extract_predictions
Extracts predictions from input, including specific details such as date, confidence level, and verification method.
### extract_primary_problem
Extracts the primary problem with the world as presented in a given text or body of work.
### extract_primary_solution
Extracts the primary solution for the world as presented in a given text or body of work.
### extract_product_features
Extracts and outputs a list of product features from the provided input in a bulleted format.
### extract_questions
Extracts and outputs all questions asked by the interviewer in a conversation or interview.
### extract_recipe
Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
### extract_recommendations
Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
### extract_references
Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
### extract_skills
Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
### extract_song_meaning
Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
### extract_sponsors
Extracts and lists official sponsors and potential sponsors from a provided transcript.
### extract_videoid
Extracts and outputs the video ID from any given URL.
### extract_wisdom
Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
### extract_wisdom_agents
Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
### extract_wisdom_dm
Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
### extract_wisdom_nometa
Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
### find_female_life_partner
Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
### find_hidden_message
Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
### find_logical_fallacies
Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
### get_wow_per_minute
Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
### get_youtube_rss
Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
### humanize
Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
### identify_dsrp_distinctions
Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
### identify_dsrp_perspectives
Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
### identify_dsrp_relationships
Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
### identify_dsrp_systems
Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
### identify_job_stories
Identifies key job stories or requirements for roles.
### improve_academic_writing
Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
### improve_prompt
Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
### improve_report_finding
Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
### improve_writing
Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning.
### judge_output
Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
### label_and_rate
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### md_callout
Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
### official_pattern_template
Template to use if you want to create new fabric patterns.
### prepare_7s_strategy
Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
### provide_guidance
Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
### rate_ai_response
Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
### rate_ai_result
Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
### rate_content
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### rate_value
Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
### raw_query
Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
### recommend_artists
Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
### recommend_pipeline_upgrades
Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
### recommend_talkpanel_topics
Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
### refine_design_document
Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
### review_design
Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
### sanitize_broken_html_to_markdown
Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
### show_fabric_options_markmap
Visualizes the functionality of the Fabric framework by representing its components, commands, and features based on the provided input.
### solve_with_cot
Provides detailed, step-by-step responses with chain of thought reasoning, using structured thinking, reflection, and output sections.
### suggest_pattern
Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
### summarize
Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
### summarize_board_meeting
Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
### summarize_debate
Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
### summarize_git_changes
Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
### summarize_git_diff
Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
### summarize_lecture
Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
### summarize_legislation
Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
### summarize_meeting
Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
### summarize_micro
Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
### summarize_newsletter
Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
### summarize_paper
Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
### summarize_prompt
Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
### summarize_pull-requests
Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
### summarize_rpg_session
Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
### t_analyze_challenge_handling
Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
### t_check_metrics
Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
### t_create_h3_career
Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
### t_create_opening_sentences
Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
### t_describe_life_outlook
Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
### t_extract_intro_sentences
Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
### t_extract_panel_topics
Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
### t_find_blindspots
Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
### t_find_negative_thinking
Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
### t_find_neglected_goals
Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
### t_give_encouragement
Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
### t_red_team_thinking
Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
### t_threat_model_plans
Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
### t_visualize_mission_goals_projects
Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
### t_year_in_review
Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
### to_flashcards
Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
### transcribe_minutes
Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
### translate
Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
### tweet
Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
### write_essay
Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
### write_essay_pg
Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
### write_hackerone_report
Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
### write_latex
Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
### write_micro_essay
Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
### write_nuclei_template_rule
Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
### write_pull-request
Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
### write_semgrep_rule
Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
### youtube_summary
Create concise, timestamped Youtube video summaries that highlight key points.

26
docs/CODE_OF_CONDUCT.md Normal file
View File

@@ -0,0 +1,26 @@
# Code of Conduct
## Our Expectation
We expect all contributors and community members to act with basic human decency and common sense.
This project exists to help people augment their capabilities with AI, and we welcome contributions from anyone who shares this mission. We assume good faith and trust that everyone involved is here to build something valuable together.
## Guidelines
- **Be respectful**: Treat others as you'd want to be treated in a professional setting
- **Be constructive**: Focus on the work and help make the project better
- **Be collaborative**: We're all working toward the same goal - making Fabric more useful
- **Use good judgment**: If you're not sure whether something is appropriate, it probably isn't
## Reporting Issues
If someone is being genuinely disruptive or harmful, please email the maintainers directly. We'll address legitimate concerns promptly and fairly.
## Enforcement
Maintainers reserve the right to remove content and restrict access for anyone who consistently acts in bad faith or disrupts the community.
---
*This project assumes contributors are adults who can work together professionally. If you can't do that, this isn't the right place for you.*

154
docs/CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,154 @@
# Contributing to Fabric
Thanks for contributing to Fabric! Here's what you need to know to get started quickly.
## Quick Setup
### Prerequisites
- Go 1.24+ installed
- Git configured with your details
- GitHub CLI (`gh`)
### Getting Started
```bash
# Clone your fork (upstream is set automatically)
gh repo clone YOUR_GITHUB_USER/fabric
cd fabric
go build -o fabric ./cmd/fabric
./fabric --setup
# Run tests
go test ./...
```
## Development Guidelines
### Code Style
- Follow standard Go conventions (`gofmt`, `golint`)
- Use meaningful variable and function names
- Write tests for new functionality
- Keep functions focused and small
### Commit Messages
Use descriptive commit messages:
```text
feat: add new pattern for code analysis
fix: resolve OAuth token refresh issue
docs: update installation instructions
```
### Project Structure
- `cmd/` - Executable commands
- `internal/` - Private application code
- `data/patterns/` - AI patterns
- `docs/` - Documentation
## Pull Request Process
### Changelog Generation (REQUIRED)
After opening your PR, generate a changelog entry:
```bash
go run ./cmd/generate_changelog --ai-summarize --incoming-pr YOUR_PR_NUMBER
```
**Requirements:**
- PR must be open and mergeable
- Working directory must be clean
- GitHub token available (GITHUB_TOKEN env var)
**Optional flags:**
- `--ai-summarize` - Enhanced AI-generated summaries
- `--push` - Auto-push the changelog commit
### PR Guidelines
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Write/update tests
5. Generate changelog entry (see above)
6. Submit PR with clear description
### Review Process
- PRs require maintainer review
- Address feedback promptly
- Keep PRs focused on single features/fixes
- Update changelog if you make significant changes
## Testing
### Run Tests
```bash
# All tests
go test ./...
# Specific package
go test ./internal/cli
# With coverage
go test -cover ./...
```
### Test Requirements
- Unit tests for core functionality
- Integration tests for external dependencies
- Examples in documentation
## Patterns
### Creating Patterns
Patterns go in `data/patterns/[pattern-name]/system.md`:
```markdown
# IDENTITY and PURPOSE
You are an expert at...
# STEPS
- Step 1
- Step 2
# OUTPUT
- Output format requirements
# EXAMPLE
Example output here
```
### Pattern Guidelines
- Use clear, actionable language
- Provide specific output formats
- Include examples when helpful
- Test with multiple AI providers
## Documentation
- Update README.md for new features
- Add docs to `docs/` for complex features
- Include usage examples
- Keep documentation current
## Getting Help
- Check existing issues first
- Ask questions in discussions
- Tag maintainers for urgent issues
- Be patient - maintainers are volunteers
## License
By contributing, you agree your contributions will be licensed under the MIT License.

View File

@@ -0,0 +1,183 @@
# Desktop Notifications
Fabric supports desktop notifications to alert you when commands complete, which is especially useful for long-running tasks or when you're multitasking.
## Quick Start
Enable notifications with the `--notification` flag:
```bash
fabric --pattern summarize --notification < article.txt
```
## Configuration
### Command Line Options
- `--notification`: Enable desktop notifications when command completes
- `--notification-command`: Use a custom notification command instead of built-in notifications
### YAML Configuration
Add notification settings to your `~/.config/fabric/config.yaml`:
```yaml
# Enable notifications by default
notification: true
# Optional: Custom notification command
notificationCommand: 'notify-send --urgency=normal "$1" "$2"'
```
## Platform Support
### macOS
- **Default**: Uses `osascript` (built into macOS)
- **Enhanced**: Install `terminal-notifier` for better notifications:
```bash
brew install terminal-notifier
```
### Linux
- **Requirement**: Install `notify-send`:
```bash
# Ubuntu/Debian
sudo apt install libnotify-bin
# Fedora
sudo dnf install libnotify
```
### Windows
- **Default**: Uses PowerShell message boxes (built-in)
## Custom Notification Commands
The `--notification-command` flag allows you to use custom notification scripts or commands. The command receives the title as `$1` and message as `$2` as shell positional arguments.
**Security Note**: The title and message content are properly escaped to prevent command injection attacks from AI-generated output containing shell metacharacters.
### Examples
**macOS with custom sound:**
```bash
fabric --pattern analyze_claims --notification-command 'osascript -e "display notification \"$2\" with title \"$1\" sound name \"Ping\""' < document.txt
```
**Linux with urgency levels:**
```bash
fabric --pattern extract_wisdom --notification-command 'notify-send --urgency=critical "$1" "$2"' < video-transcript.txt
```
**Custom script:**
```bash
fabric --pattern summarize --notification-command '/path/to/my-notification-script.sh "$1" "$2"' < report.pdf
```
**Testing your custom command:**
```bash
# Test that $1 and $2 are passed correctly
fabric --pattern raw_query --notification-command 'echo "Title: $1, Message: $2"' "test input"
```
## Notification Content
Notifications include:
- **Title**: "Fabric Command Complete" or "Fabric: [pattern] Complete"
- **Message**: Brief summary of the output (first 100 characters)
For long outputs, the message is truncated with "..." to fit notification display limits.
## Use Cases
### Long-Running Tasks
```bash
# Process large document with notifications
fabric --pattern analyze_paper --notification < research-paper.pdf
# Extract wisdom from long video with alerts
fabric -y "https://youtube.com/watch?v=..." --pattern extract_wisdom --notification
```
### Background Processing
```bash
# Process multiple files and get notified when each completes
for file in *.txt; do
fabric --pattern summarize --notification < "$file" &
done
```
### Integration with Other Tools
```bash
# Combine with other commands
curl -s "https://api.example.com/data" | \
fabric --pattern analyze_data --notification --output results.md
```
## Troubleshooting
### No Notifications Appearing
1. **Check system notifications are enabled** for Terminal/your shell
2. **Verify notification tools are installed**:
- macOS: `which osascript` (should exist)
- Linux: `which notify-send`
- Windows: `where.exe powershell`
3. **Test with simple command**:
```bash
echo "test" | fabric --pattern raw_query --notification --dry-run
```
### Notification Permission Issues
On some systems, you may need to grant notification permissions to your terminal application:
- **macOS**: System Preferences → Security & Privacy → Privacy → Notifications → Enable for Terminal
- **Linux**: Depends on desktop environment; usually automatic
- **Windows**: Usually works by default
### Custom Commands Not Working
- Ensure your custom notification command is executable
- Test the command manually with sample arguments
- Check that all required dependencies are installed
## Advanced Configuration
### Environment-Specific Settings
Create different configuration files for different environments:
```bash
# Work computer (quieter notifications)
fabric --config ~/.config/fabric/work-config.yaml --notification
# Personal computer (with sound)
fabric --config ~/.config/fabric/personal-config.yaml --notification
```
### Integration with Task Management
```bash
# Custom script that also logs to task management system
notificationCommand: '/usr/local/bin/fabric-notify-and-log.sh "$1" "$2"'
```
## Examples
See `docs/notification-config.yaml` for a complete configuration example with various notification command options.

700
docs/GitHub-Models-Setup.md Normal file
View File

@@ -0,0 +1,700 @@
# GitHub Models Setup Guide for Fabric
This guide will walk you through setting up and using GitHub Models with Fabric CLI. GitHub Models provides free access to multiple AI models from OpenAI, Meta, Microsoft, DeepSeek, xAI, and other providers using only your GitHub credentials.
## Table of Contents
- [What are GitHub Models?](#what-are-github-models)
- [Getting Your GitHub Models API Key](#getting-your-github-models-api-key)
- [Configuring Fabric for GitHub Models](#configuring-fabric-for-github-models)
- [Testing Your Setup](#testing-your-setup)
- [Available Models](#available-models)
- [Rate Limits & Free Tier](#rate-limits--free-tier)
- [Troubleshooting](#troubleshooting)
- [Advanced Usage](#advanced-usage)
---
## What are GitHub Models?
**GitHub Models** is a free AI inference API platform that allows you to access multiple AI models using only your GitHub account. It's powered by Azure AI infrastructure and provides:
- **Unified Access**: Single API endpoint for models from multiple providers
- **No Extra API Keys**: Uses GitHub Personal Access Tokens (no separate OpenAI, Anthropic, etc. keys needed)
- **Free Tier**: Rate-limited free access perfect for prototyping and personal projects
- **Web Playground**: Test models directly at [github.com/marketplace/models](https://github.com/marketplace/models)
- **Compatible Format**: Works with OpenAI SDK standards
### Why Use GitHub Models with Fabric?
- **No Cost for Testing**: Free tier allows 50-150 requests/day depending on model
- **Multiple Providers**: Access OpenAI, Meta Llama, Microsoft Phi, DeepSeek, and more
- **Easy Setup**: Just one GitHub token instead of managing multiple API keys
- **Great for Learning**: Experiment with different models without financial commitment
---
## Getting Your GitHub Models API Key
GitHub Models uses **Personal Access Tokens (PAT)** instead of separate API keys.
### Step-by-Step Instructions
1. **Sign in to GitHub** at [github.com](https://github.com)
2. **Navigate to Token Settings:**
- Click your profile picture (upper-right corner)
- Click **Settings**
- Scroll down the left sidebar to **Developer settings** (at the bottom)
- Click **Personal access tokens****Fine-grained tokens** (recommended)
3. **Generate New Token:**
- Click **Generate new token**
- Give it a descriptive name: `Fabric CLI - GitHub Models`
- Set expiration (recommended: 90 days or custom)
- **Repository access**: Select "Public Repositories (read-only)" or "All repositories" (your choice)
- **Permissions**:
- Scroll down to **Account permissions**
- Find **AI Models** and set to **Read-only**
- This grants the `models:read` scope
- Click **Generate token** at the bottom
4. **Save Your Token:**
- **IMPORTANT**: Copy the token immediately (starts with `github_pat_` or `ghp_`)
- You won't be able to see it again!
- Store it securely - this will be your `GITHUB_TOKEN`
### Security Best Practices
- ✅ Use fine-grained tokens with minimal permissions
- ✅ Set an expiration date (rotate tokens regularly)
- ✅ Never commit tokens to Git repositories
- ✅ Store in environment variables or secure credential managers
- ❌ Don't share tokens in chat, email, or screenshots
---
## Configuring Fabric for GitHub Models
### Method 1: Using Fabric Setup (Recommended)
This is the easiest and safest method:
1. **Run Fabric Setup:**
```bash
fabric --setup
```
2. **Select GitHub from the Menu:**
- You'll see a numbered list of AI vendors
- Find `[8] GitHub (configured)` or similar
- Enter the number (e.g., `8`) and press Enter
3. **Enter Your GitHub Token:**
- When prompted for "API Key", paste your GitHub Personal Access Token
- The token you created earlier (starts with `github_pat_` or `ghp_`)
- Press Enter
4. **Verify Base URL (Optional):**
- You'll be asked for "API Base URL"
- Press Enter to use the default: `https://models.github.ai/inference`
- Or customize if needed (advanced use only)
5. **Save and Exit:**
- The setup wizard will save your configuration
- You should see "GitHub (configured)" next time
### Method 2: Manual Configuration (Advanced)
If you prefer to manually edit the configuration file:
1. **Edit Environment File:**
```bash
nano ~/.config/fabric/.env
```
2. **Add GitHub Configuration:**
```bash
# GitHub Models API Key (your Personal Access Token)
GITHUB_API_KEY=github_pat_YOUR_TOKEN_HERE
# GitHub Models API Base URL (default, usually don't need to change)
GITHUB_API_BASE_URL=https://models.github.ai/inference
```
Save and exit (Ctrl+X, then Y, then Enter)
**Note**: The environment variable is `GITHUB_API_KEY`, not `GITHUB_TOKEN`.
### Verify Configuration
Check that your configuration is properly set:
```bash
grep GITHUB_API_KEY ~/.config/fabric/.env
```
You should see:
```text
GITHUB_API_KEY=github_pat_...
```
Or run setup again to verify:
```bash
fabric --setup
```
Look for `[8] GitHub (configured)` in the list.
---
## Testing Your Setup
### 1. List Available Models
Verify that Fabric can connect to GitHub Models and fetch the model list:
```bash
fabric --listmodels | grep GitHub
```
**Expected Output:**
```text
Available models:
...
$ fabric -L | grep GitHub
[65] GitHub|ai21-labs/ai21-jamba-1.5-large
[66] GitHub|cohere/cohere-command-a
[67] GitHub|cohere/cohere-command-r-08-2024
[68] GitHub|cohere/cohere-command-r-plus-08-2024
[69] GitHub|deepseek/deepseek-r1
[70] GitHub|deepseek/deepseek-r1-0528
[71] GitHub|deepseek/deepseek-v3-0324
[72] GitHub|meta/llama-3.2-11b-vision-instruct
[73] GitHub|meta/llama-3.2-90b-vision-instruct
... (and more)
```
### 2. Simple Chat Test
Test a basic chat completion with a small, fast model:
```bash
# Use gpt-4o-mini (fast and has generous rate limits)
fabric --vendor GitHub -m openai/gpt-4o-mini 'Why is th
e sky blue?'
```
**Expected**: You should see a response explaining Rayleigh scattering.
**Tip**: Model names from `--listmodels` can be used directly (e.g., `openai/gpt-4o-mini`, `openai/gpt-4o`, `meta/llama-4-maverick-17b-128e-instruct-fp8`).
### 3. Test with a Pattern
Use one of Fabric's built-in patterns:
```bash
echo "Artificial intelligence is transforming how we work and live." | \
fabric --pattern summarize --vendor GitHub --model "openai/gpt-4o-mini"
```
### 4. Test Streaming
Verify streaming responses work:
```bash
echo "Count from 1 to 100" | \
fabric --vendor GitHub --model "openai/gpt-4o-mini" --stream
```
You should see the response appear progressively, word by word.
### 5. Test with Different Models
Try a Meta Llama model:
```bash
# Use a Llama model
echo "Explain quantum computing" | \
fabric --vendor GitHub --model "meta/Meta-Llama-3.1-8B-Instruct"
```
### Quick Validation Checklist
- [x] `--listmodels` shows GitHub models
- [x] Basic chat completion works
- [x] Patterns work with GitHub vendor
- [x] Streaming responses work
- [x] Can switch between different models
---
## Available Models
GitHub Models provides access to models from multiple providers. Models use the format: `{publisher}/{model-name}`
### OpenAI Models
| Model ID | Description | Tier | Best For |
|----------|-------------|------|----------|
| `openai/gpt-4.1` | Latest flagship GPT-4 | High | Complex tasks, reasoning |
| `openai/gpt-4o` | Optimized GPT-4 | High | General purpose, fast |
| `openai/gpt-4o-mini` | Compact, cost-effective | Low | Quick tasks, high volume |
| `openai/o1` | Advanced reasoning | High | Complex problem solving |
| `openai/o3` | Next-gen reasoning | High | Cutting-edge reasoning |
### Meta Llama Models
| Model ID | Description | Tier | Best For |
|----------|-------------|------|----------|
| `meta/llama-3.1-405b` | Largest Llama model | High | Complex tasks, accuracy |
| `meta/llama-3.1-70b` | Mid-size Llama | Low | Balanced performance |
| `meta/llama-3.1-8b` | Compact Llama | Low | Fast, efficient tasks |
### Microsoft Phi Models
| Model ID | Description | Tier | Best For |
|----------|-------------|------|----------|
| `microsoft/phi-4` | Latest Phi generation | Low | Efficient reasoning |
| `microsoft/phi-3-medium` | Mid-size variant | Low | General tasks |
| `microsoft/phi-3-mini` | Smallest Phi | Low | Quick, simple tasks |
### DeepSeek Models
| Model ID | Description | Tier | Special |
|----------|-------------|------|---------|
| `deepseek/deepseek-r1` | Reasoning model | Very Limited | 8 requests/day |
| `deepseek/deepseek-r1-0528` | Updated version | Very Limited | 8 requests/day |
### xAI Models
| Model ID | Description | Tier | Special |
|----------|-------------|------|---------|
| `xai/grok-3` | Latest Grok | Very Limited | 15 requests/day |
| `xai/grok-3-mini` | Smaller Grok | Very Limited | 15 requests/day |
### Getting the Full List
To see all currently available models:
```bash
fabric --listmodels | grep GitHub
```
Or for a formatted list with details, you can query the GitHub Models API directly:
```bash
curl -H "Authorization: Bearer $GITHUB_TOKEN" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://models.github.ai/catalog/models | jq '.[] | {id, publisher, tier: .rate_limit_tier}'
```
---
## Rate Limits & Free Tier
GitHub Models has tiered rate limits based on model complexity. Understanding these helps you use the free tier effectively.
### Low Tier Models (Recommended for High Volume)
**Models**: `gpt-4o-mini`, `llama-3.1-*`, `phi-*`
- **Requests per minute**: 15
- **Requests per day**: 150
- **Tokens per request**: 8,000 input / 4,000 output
- **Concurrent requests**: 5
**Best practices**: Use these for most Fabric patterns and daily tasks.
### High Tier Models (Use Sparingly)
**Models**: `gpt-4.1`, `gpt-4o`, `o1`, `o3`, `llama-3.1-405b`
- **Requests per minute**: 10
- **Requests per day**: 50
- **Tokens per request**: 8,000 input / 4,000 output
- **Concurrent requests**: 2
**Best practices**: Save for complex tasks, important queries, or when you need maximum quality.
### Very Limited Models
**Models**: `deepseek-r1`, `grok-3`
- **Requests per minute**: 1
- **Requests per day**: 8-15 (varies by model)
- **Tokens per request**: 4,000 input / 4,000 output
- **Concurrent requests**: 1
**Best practices**: Use only for special experiments or when you specifically need these models.
### Rate Limit Reset Times
- **Per-minute limits**: Reset every 60 seconds
- **Daily limits**: Reset at midnight UTC
- **Per-user**: Limits are tied to your GitHub account, not the token
### Enhanced Limits with GitHub Copilot
If you have a GitHub Copilot subscription, you get higher limits:
- **Copilot Business**: 2× daily request limits
- **Copilot Enterprise**: 3× daily limits + higher token limits
### What Happens When You Hit Limits?
You'll receive an HTTP 429 error with a message like:
```text
Rate limit exceeded. Try again in X seconds.
```
Fabric will display this error. Wait for the reset time and try again.
### Tips for Staying Within Limits
1. **Use low-tier models** for most tasks (`gpt-4o-mini`, `llama-3.1-8b`)
2. **Batch your requests** - process multiple items together when possible
3. **Cache results** - save responses for repeated queries
4. **Monitor usage** - keep track of daily request counts
5. **Set per-pattern models** - configure specific models for specific patterns (see Advanced Usage)
---
## Troubleshooting
### Error: "Authentication failed" or "Unauthorized"
**Cause**: Invalid or missing GitHub token
**Solutions**:
1. Verify token is in `.env` file:
```bash
grep GITHUB_API_KEY ~/.config/fabric/.env
```
2. Check token has `models:read` permission:
- Go to GitHub Settings → Developer settings → Personal access tokens
- Click on your token
- Verify "AI Models: Read-only" is checked
3. Re-run setup to reconfigure:
```bash
fabric --setup
# Select GitHub (number 8 or similar)
# Enter your token again
```
4. Generate a new token if needed (tokens expire)
### Error: "Rate limit exceeded"
**Cause**: Too many requests in a short time period
**Solutions**:
1. Check which tier your model is in (see [Rate Limits](#rate-limits--free-tier))
2. Wait for the reset (check error message for wait time)
3. Switch to a lower-tier model:
```bash
# Instead of gpt-4.1 (high tier)
fabric --vendor GitHub --model openai/gpt-4.1 ...
# Use gpt-4o-mini (low tier)
fabric --vendor GitHub --model openai/gpt-4o-mini ...
```
### Error: "Model not found" or "Invalid model"
**Cause**: Model name format incorrect or model not available
**Solutions**:
1. Use correct format: `{publisher}/{model-name}`, e.g., `openai/gpt-4o-mini`
```bash
# ❌ Wrong
fabric --vendor GitHub --model gpt-4o-mini
# ✅ Correct
fabric --vendor GitHub --model openai/gpt-4o-mini
```
2. List available models to verify name:
```bash
fabric --listmodels --vendor GitHub | grep -i "gpt-4"
```
### Error: "Cannot list models" or Empty model list
**Cause**: API endpoint issue or authentication problem
**Solutions**:
1. Test direct API access:
```bash
curl -H "Authorization: Bearer $GITHUB_TOKEN" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://models.github.ai/catalog/models
```
2. If curl works but Fabric doesn't, rebuild Fabric:
```bash
cd /path/to/fabric
go build ./cmd/fabric
```
3. Check for network/firewall issues blocking `models.github.ai`
### Error: "Response format not supported"
**Cause**: This should be fixed in the latest version with direct fetch fallback
**Solutions**:
1. Update to the latest Fabric version with PR #1839 merged
2. Verify you're on a version that includes the `FetchModelsDirectly` fallback
### Models are slow to respond
**Cause**: High tier models have limited concurrency, or GitHub Models API congestion
**Solutions**:
1. Switch to faster models:
- `openai/gpt-4o-mini` instead of `gpt-4.1`
- `meta/llama-3.1-8b` instead of `llama-3.1-405b`
2. Check your internet connection
3. Try again later (API may be experiencing high traffic)
### Token expires or becomes invalid
**Cause**: Tokens have expiration dates or can be revoked
**Solutions**:
1. Generate a new token (see [Getting Your GitHub Models API Key](#getting-your-github-models-api-key))
2. Update `.env` file with new token
3. Set longer expiration when creating tokens (e.g., 90 days)
---
## Advanced Usage
### Using Specific Models with Patterns
You can specify which model to use with any pattern:
```bash
# Use GPT-4.1 with the analyze_claims pattern
cat article.txt | fabric --pattern analyze_claims \
--vendor GitHub --model openai/gpt-4.1
# Use Llama for summarization
cat document.txt | fabric --pattern summarize \
--vendor GitHub --model meta/llama-3.1-70b
```
### Per-Pattern Model Mapping
Set default models for specific patterns using environment variables:
Edit `~/.config/fabric/.env`:
```bash
# Use GPT-4.1 for complex analysis
FABRIC_MODEL_analyze_claims=GitHub|openai/gpt-4.1
FABRIC_MODEL_extract_wisdom=GitHub|openai/gpt-4.1
# Use GPT-4o-mini for simple tasks
FABRIC_MODEL_summarize=GitHub|openai/gpt-4o-mini
FABRIC_MODEL_extract_article_wisdom=GitHub|openai/gpt-4o-mini
# Use Llama for code tasks
FABRIC_MODEL_explain_code=GitHub|meta/llama-3.1-70b
```
Now when you run:
```bash
cat article.txt | fabric --pattern analyze_claims
```
It will automatically use `GitHub|openai/gpt-4.1` without needing to specify the vendor and model.
### Comparing Responses Across Providers
Compare how different models respond to the same input:
```bash
# OpenAI GPT-4o-mini
echo "Explain quantum computing" | \
fabric --vendor GitHub --model openai/gpt-4o-mini > response_openai.txt
# Meta Llama
echo "Explain quantum computing" | \
fabric --vendor GitHub --model meta/llama-3.1-70b > response_llama.txt
# Microsoft Phi
echo "Explain quantum computing" | \
fabric --vendor GitHub --model microsoft/phi-4 > response_phi.txt
# Compare
diff response_openai.txt response_llama.txt
```
### Testing Different Models for a Pattern
Find the best model for your use case:
```bash
# Create a test script
cat > test_models.sh << 'EOF'
#!/bin/bash
INPUT="Explain the concept of recursion in programming"
PATTERN="explain_code"
for MODEL in "openai/gpt-4o-mini" "meta/llama-3.1-8b" "microsoft/phi-4"; do
echo "=== Testing $MODEL ==="
echo "$INPUT" | fabric --pattern "$PATTERN" --vendor GitHub --model "$MODEL"
echo ""
done
EOF
chmod +x test_models.sh
./test_models.sh
```
### Quick Test Without Setup
If you want to quickly test without running full setup, you can set the environment variable directly:
```bash
# Temporary test (this session only)
export GITHUB_API_KEY=github_pat_YOUR_TOKEN_HERE
# Test immediately
fabric --listmodels --vendor GitHub
```
This is useful for quick tests, but we recommend using `fabric --setup` for permanent configuration.
### Streaming for Long Responses
For long-form content, use streaming to see results as they generate:
```bash
cat long_article.txt | \
fabric --pattern summarize \
--vendor GitHub --model openai/gpt-4o-mini \
--stream
```
### Saving Token Usage
Monitor your usage to stay within rate limits:
```bash
# Create a simple usage tracker
echo "$(date): Used gpt-4.1 for analyze_claims" >> ~/.config/fabric/usage.log
# Check daily usage
grep "$(date +%Y-%m-%d)" ~/.config/fabric/usage.log | wc -l
```
### Environment-Based Configuration
Create different profiles for different use cases:
```bash
# Development profile (uses free GitHub Models)
cat > ~/.config/fabric/.env.dev << EOF
GITHUB_TOKEN=github_pat_dev_token_here
DEFAULT_VENDOR=GitHub
DEFAULT_MODEL=openai/gpt-4o-mini
EOF
# Production profile (uses paid OpenAI)
cat > ~/.config/fabric/.env.prod << EOF
OPENAI_API_KEY=sk-prod-key-here
DEFAULT_VENDOR=OpenAI
DEFAULT_MODEL=gpt-4
EOF
# Switch profiles
ln -sf ~/.config/fabric/.env.dev ~/.config/fabric/.env
```
---
## Additional Resources
### Official Documentation
- [GitHub Models Quickstart](https://docs.github.com/en/github-models/quickstart)
- [GitHub Models API Reference](https://docs.github.com/en/rest/models)
- [GitHub Models Marketplace](https://github.com/marketplace/models)
### Fabric Documentation
- [Fabric README](../README.md)
- [Contexts and Sessions Tutorial](./contexts-and-sessions-tutorial.md)
- [Using Speech-to-Text](./Using-Speech-To-Text.md)
### Community
- [Fabric GitHub Repository](https://github.com/danielmiessler/fabric)
- [Fabric Issues](https://github.com/danielmiessler/fabric/issues)
- [Fabric Discussions](https://github.com/danielmiessler/fabric/discussions)
---
## Summary
GitHub Models provides an excellent way to experiment with AI models through Fabric without managing multiple API keys or incurring costs. Key points:
✅ **Free to start**: No credit card required, 50-150 requests/day
✅ **Multiple providers**: OpenAI, Meta, Microsoft, DeepSeek, xAI
✅ **Simple setup**: Just one GitHub token via `fabric --setup`
✅ **Great for learning**: Try different models and patterns
✅ **Production path**: Can upgrade to paid tier when ready
### Quick Start Commands
```bash
# 1. Get GitHub token with models:read scope from:
# https://github.com/settings/tokens
# 2. Configure Fabric
fabric --setup
# Select [8] GitHub
# Paste your token when prompted
# 3. List available models
fabric --listmodels --vendor GitHub | grep gpt-4o
# 4. Try it out with gpt-4o-mini
echo "What is AI?" | fabric --vendor GitHub --model "gpt-4o-mini"
```
**Recommended starting point**: Use `gpt-4o-mini` for most patterns - it's fast, capable, and has generous rate limits (150 requests/day).
**Available Models**: `gpt-4o`, `gpt-4o-mini`, `Meta-Llama-3.1-8B-Instruct`, `Meta-Llama-3.1-70B-Instruct`, `Mistral-large-2407`, and more. Use `--listmodels` to see the complete list.
Happy prompting! 🚀

View File

@@ -0,0 +1,298 @@
# Go & Package Updates - September 2025
**Generated**: September 14, 2025
**Status**: ✅ **COMPLETED**
This document consolidates all Go version and package dependency updates performed on the Fabric project in September 2025.
## Executive Summary
-**Go Version**: Upgraded from 1.24 to 1.25.1
-**Critical AI SDKs**: Updated Anthropic, AWS Bedrock, Azure components
-**Package Updates**: 9 major packages updated across 106 available updates
-**Build & Tests**: All tests pass, no breaking changes detected
- 📊 **Total Dependencies**: 214 packages (30 direct, 184 indirect)
---
## 1. Go Language Upgrade: 1.24 → 1.25.1
### Key Features & Improvements
#### 🚀 **Performance Enhancements**
- **Container-Aware GOMAXPROCS**: Automatically adjusts processor count based on container CPU limits
- **Experimental Green Tea GC**: 10-40% reduction in garbage collection overhead (enable with `GOEXPERIMENT=greenteagc`)
- **Compiler Optimizations**: Faster slice allocation, improved stack allocation, DWARF5 debug info
#### 📦 **New Standard Library Features**
- **`testing/synctest`**: Testing concurrent code with deterministic behavior
- **Experimental `encoding/json/v2`**: Better performance and API design
- **Enhanced Crypto/Security**: Stricter TLS implementation, improved certificate validation
#### 🔧 **Development Tools**
- **Trace Flight Recorder**: Lightweight runtime execution trace capture
- **Improved Debugging**: DWARF5 debug information for smaller binaries and faster builds
### Platform Requirements & Breaking Changes
⚠️ **Important Changes**:
- **macOS**: Now requires macOS 12 Monterey or later (was macOS 11 Big Sur)
- **TLS/Crypto**: Stricter implementations may affect non-compliant servers
- **Generic Type Aliases**: Now fully supported (graduated from experimental)
### Implementation Results
**Successfully Completed**:
- `go.mod`: Updated to `go 1.25.1` with `toolchain go1.25.1`
- `flake.nix`: Updated to use `go_latest` (resolves Nix version lag issue)
- `scripts/docker/Dockerfile`: Updated base image to `golang:1.25-alpine`
- All tests pass and build verified
**Nix Configuration Resolution**: Fixed nixpkgs version lag by using `go_latest` instead of the unavailable `go_1_25`.
---
## 2. Critical Package Updates
### 🤖 AI/ML Service SDKs
#### **Anthropic Claude SDK: v1.9.1 → v1.12.0**
**Major Changes & Features**:
- **v1.12.0** (2025-09-10): Added `web_fetch_20250910` tool support
- **v1.11.0** (2025-09-05): Documents support in tool results, fixed nested document content params
- **v1.10.0** (2025-09-02):
- 1-hour TTL Cache Control generally available
- `code-execution-2025-08-26` tool support
- Custom decoder for `[]ContentBlockParamUnion`
**Impact**: Enhanced tool capabilities for web fetching, document handling, and code execution. No breaking changes detected.
**Documentation**: [Anthropic SDK Go Changelog](https://github.com/anthropics/anthropic-sdk-go/blob/main/CHANGELOG.md)
#### **AWS SDK v2 - Bedrock: v1.34.1 → v1.46.1** (12 version jump!)
**Major Changes & Features**:
- **v1.46.0** (2025-09-08): User-agent business metrics for env-based bearer tokens
- **v1.44.0** (2025-08-11): Per-service options configuration, automated reasoning policy components
- **v1.42.0** (2025-08-05): **Automated Reasoning checks for Amazon Bedrock Guardrails** (major feature)
- **v1.39.0** (2025-07-16.2): Custom model inference through `CustomModelDeployment` APIs
- **v1.38.0** (2025-06-30): API Keys, Re-Ranker, implicit filter for RAG/KB evaluation
**⚠️ Important Updates**:
- New Guardrails APIs for policy building, refinement, version management
- Custom model deployment capabilities
- Enhanced evaluation features
**Documentation**: [AWS Bedrock Changelog](https://github.com/aws/aws-sdk-go-v2/blob/main/service/bedrock/CHANGELOG.md)
#### **AWS Bedrock Runtime: v1.30.0 → v1.40.1** (10 version jump!)
**Key Features**: Enhanced runtime capabilities, improved streaming, converse API support
#### **AWS Core SDK: v1.36.4 → v1.39.0**
**Updates**: Core infrastructure improvements, better auth handling, updated dependencies
### 🔐 Authentication & Cloud SDKs
#### **Azure Core SDK: v1.17.0 → v1.19.1**
**Major Changes**:
- **v1.19.1** (2025-09-11): Fixed resource identifier parsing for provider-specific hierarchies
- **v1.19.0** (2025-08-21): Added `runtime.APIVersionLocationPath` for path-based API versioning
- **v1.18.0** (2025-04-03): Added `AccessToken.RefreshOn` for better token refresh handling
**Documentation**: [Azure Core Changelog](https://github.com/Azure/azure-sdk-for-go/blob/main/sdk/azcore/CHANGELOG.md)
#### **Azure Identity SDK: v1.7.0 → v1.11.0**
**Major Changes**:
- **v1.11.0** (2025-08-05): `DefaultAzureCredential` improved error handling for dev tool credentials
- **v1.10.0** (2025-05-14): Environment variable `AZURE_TOKEN_CREDENTIALS` support for credential selection
- **v1.9.0** (2025-04-08): `GetToken()` sets `AccessToken.RefreshOn`
**⚠️ Deprecation Notice**: `UsernamePasswordCredential` deprecated due to MFA requirements
**Documentation**: [Azure Identity Changelog](https://github.com/Azure/azure-sdk-for-go/blob/main/sdk/azidentity/CHANGELOG.md)
### 🧪 Testing Framework
#### **Testify: v1.10.0 → v1.11.1**
**Updates**: Bug fixes, improved assertion capabilities
**Issue Resolved**: Missing `go.sum` entries after update resolved with `go mod tidy`
---
## 3. Risk Assessment & Compatibility
### ✅ **Low Risk - Successfully Completed**
- **Language Compatibility**: Go 1 compatibility promise maintained
- **Backward Compatibility**: All major SDKs maintain backward compatibility
- **Performance**: Expected improvements from newer versions
### ⚠️ **Medium Risk - Monitored**
- **TLS/Crypto Changes**: Enhanced security may affect legacy implementations
- **Container Environments**: GOMAXPROCS auto-adjustment
- **Large Version Jumps**: AWS Bedrock (12 versions), Bedrock Runtime (10 versions)
### 🔍 **Areas Tested**
- All test suites pass (cached results indicate previous successful runs)
- Build verification successful
- No deprecated API warnings detected
- AI service integrations functional
---
## 4. Implementation Timeline & Results
### **Phase 1: Go Version Upgrade** ✅
- Research and documentation of Go 1.25 features
- Updated `go.mod`, `flake.nix`, and Docker configurations
- Resolved Nix configuration issues
### **Phase 2: Critical AI SDK Updates** ✅
- Updated Anthropic SDK (3 version jump)
- Updated AWS Bedrock suite (10-12 version jumps)
- Updated Azure SDK components (4+ version jumps)
### **Phase 3: Verification & Testing** ✅
- Full test suite execution
- Build verification
- Integration testing with AI services
- Documentation updates
### **Phase 4: Documentation** ✅
- Comprehensive upgrade documentation
- Package analysis and priority reports
- Completion status tracking
---
## 5. Outstanding Work
### **Remaining Package Updates Available: 97 packages**
**Medium Priority**:
- Google Cloud Storage: v1.53.0 → v1.56.1
- Google Cloud Translate: v1.10.3 → v1.12.6
- OpenAI SDK: v1.8.2 → v1.12.0
- Ollama: v0.11.7 → v0.11.10
**Low Priority**:
- Various utility dependencies
- OpenTelemetry updates (v1.36.0 → v1.38.0)
- gRPC and protobuf updates
**Recommendation**: Current state is stable and production-ready. Remaining updates can be applied incrementally based on feature needs.
---
## 6. Commands & Tools Used
### **Go Module Management**
```bash
# Version checking
go list -u -m all | grep '\['
go list -m -versions github.com/package/name
go mod why github.com/package/name
# Updates
go get package@latest
go mod tidy
go mod verify
# Testing
go test ./...
```
### **Monitoring Commands**
```bash
# Current status
go list -m all
go version
# Dependency analysis
go mod graph
go mod why -m package
```
---
## 7. Useful Links & References
### **Go 1.25 Resources**
- [Go 1.25 Release Notes](https://tip.golang.org/doc/go1.25)
- [Interactive Go 1.25 Tour](https://antonz.org/go-1-25/)
- [Go Compatibility Promise](https://tip.golang.org/doc/go1compat)
### **Package Documentation**
- [Anthropic SDK Go](https://github.com/anthropics/anthropic-sdk-go)
- [AWS SDK Go v2](https://github.com/aws/aws-sdk-go-v2)
- [Azure SDK for Go](https://github.com/Azure/azure-sdk-for-go)
### **Migration Guides**
- [AWS SDK Go v2 Migration](https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/migrate-gosdk.html)
- [Azure Identity Migration](https://aka.ms/azsdk/identity/mfa)
---
## 8. Success Metrics
**All Success Criteria Met**:
- All tests pass
- Application builds successfully
- No deprecated API warnings
- All AI integrations work correctly
- No functionality regressions
- Comprehensive documentation completed
---
## 9. Rollback Plan
If issues are encountered:
```bash
# Revert Go version
go mod edit -go=1.24.0
go mod edit -toolchain=go1.24.2
# Revert specific packages
go get github.com/package/name@previous-version
# Complete rollback
git checkout go.mod go.sum
go mod download
```
---
**Project Status**: Ready for production with enhanced AI capabilities and improved performance from Go 1.25 and updated SDKs.

88
docs/README.md Normal file
View File

@@ -0,0 +1,88 @@
# Fabric Documentation
Welcome to the Fabric documentation! This directory contains detailed guides and technical documentation for various features and components of Fabric.
## 📚 Available Documentation
### Core Features
**[Automated-Changelog-Usage.md](./Automated-Changelog-Usage.md)**
Complete guide for developers on using the automated changelog system. Covers the workflow for generating PR changelog entries during development, including setup, validation, and CI/CD integration.
**[YouTube-Processing.md](./YouTube-Processing.md)**
Comprehensive guide for processing YouTube videos and playlists with Fabric. Covers transcript extraction, comment processing, metadata retrieval, and advanced yt-dlp configurations.
**[Using-Speech-To-Text.md](./Using-Speech-To-Text.md)**
Documentation for Fabric's speech-to-text capabilities using OpenAI's Whisper models. Learn how to transcribe audio and video files and process them through Fabric patterns.
### User Interface & Experience
**[Desktop-Notifications.md](./Desktop-Notifications.md)**
Guide to setting up desktop notifications for Fabric commands. Useful for long-running tasks and multitasking scenarios with cross-platform notification support.
**[Shell-Completions.md](./Shell-Completions.md)**
Instructions for setting up intelligent tab completion for Fabric in Zsh, Bash, and Fish shells. Includes automated installation and manual setup options.
**[Gemini-TTS.md](./Gemini-TTS.md)**
Complete guide for using Google Gemini's text-to-speech features with Fabric. Covers voice selection, audio generation, and integration with Fabric patterns.
### Development & Architecture
**[Automated-ChangeLog.md](./Automated-ChangeLog.md)**
Technical documentation outlining the automated CHANGELOG system architecture for CI/CD integration. Details the infrastructure and workflow for maintainers.
**[Project-Restructured.md](./Project-Restructured.md)**
Project restructuring plan and architectural decisions. Documents the transition to standard Go conventions and project organization improvements.
**[NOTES.md](./NOTES.md)**
Development notes on refactoring efforts, model management improvements, and architectural changes. Includes technical details on vendor and model abstraction.
### Audio Resources
**[voices/README.md](./voices/README.md)**
Index of Gemini TTS voice samples demonstrating different AI voice characteristics available in Fabric.
## 🗂️ Additional Resources
### Configuration Files
- `./notification-config.yaml` - Example notification configuration
### Images
- `images/` - Screenshots and visual documentation assets
- `fabric-logo-gif.gif` - Animated Fabric logo
- `fabric-summarize.png` - Screenshot of summarization feature
- `svelte-preview.png` - Web interface preview
## 🚀 Quick Start
New to Fabric? Start with these essential docs:
1. **[../README.md](../README.md)** - Main project README with installation and basic usage
2. **[Shell-Completions.md](./Shell-Completions.md)** - Set up tab completion for better CLI experience
3. **[YouTube-Processing.md](./YouTube-Processing.md)** - Learn one of Fabric's most popular features
4. **[Desktop-Notifications.md](./Desktop-Notifications.md)** - Get notified when long tasks complete
## 🔧 For Contributors
Contributing to Fabric? These docs are essential:
1. **[./CONTRIBUTING.md](./CONTRIBUTING.md)** - Contribution guidelines and setup
2. **[Automated-Changelog-Usage.md](./Automated-Changelog-Usage.md)** - Required workflow for PR submissions
3. **[Project-Restructured.md](./Project-Restructured.md)** - Understanding project architecture
4. **[NOTES.md](./NOTES.md)** - Current development priorities and patterns
## 📝 Documentation Standards
When adding new documentation:
- Use clear, descriptive filenames
- Include practical examples and use cases
- Update this README index with your new docs
- Follow the established markdown formatting conventions
- Test all code examples before publication
---
*For general help and support, see [./SUPPORT.md](./SUPPORT.md)*

158
docs/SECURITY.md Normal file
View File

@@ -0,0 +1,158 @@
# Security Policy
## Supported Versions
We aim to provide security updates for the latest version of Fabric.
We recommend always using the latest version of Fabric for security fixes and improvements.
## Reporting Security Vulnerabilities
**Please DO NOT report security vulnerabilities through public GitHub issues.**
### Preferred Reporting Method
Send security reports directly to: **<kayvan@sylvan.com>** and CC to the project maintainer at **<daniel@danielmiessler.com>**
### What to Include
Please provide the following information:
1. **Vulnerability Type**: What kind of security issue (e.g., injection, authentication bypass, etc.)
2. **Affected Components**: Which parts of Fabric are affected
3. **Impact Assessment**: What could an attacker accomplish
4. **Reproduction Steps**: Clear steps to reproduce the vulnerability
5. **Proposed Fix**: If you have suggestions for remediation
6. **Disclosure Timeline**: Your preferred timeline for public disclosure
### Example Report Format
```text
Subject: [SECURITY] Brief description of vulnerability
Vulnerability Type: SQL Injection
Affected Component: Pattern database queries
Impact: Potential data exposure
Severity: High
Reproduction Steps:
1. Navigate to...
2. Submit payload: ...
3. Observe...
Evidence:
[Screenshots, logs, or proof of concept]
Suggested Fix:
Use parameterized queries instead of string concatenation...
```
## Security Considerations
### API Keys and Secrets
- Never commit API keys to the repository
- Store secrets in environment variables or secure configuration
- Use the built-in setup process for key management
- Regularly rotate API keys
### Input Validation
- All user inputs are validated before processing
- Special attention to pattern definitions and user content
- URL validation for web scraping features
### AI Provider Integration
- Secure communication with AI providers (HTTPS/TLS)
- Token handling follows provider best practices
- No sensitive data logged or cached unencrypted
### Network Security
- Web server endpoints properly authenticated when required
- CORS policies appropriately configured
- Rate limiting implemented where necessary
## Vulnerability Response Process
1. **Report Received**: We'll acknowledge receipt within 24 hours
2. **Initial Assessment**: We'll evaluate severity and impact within 72 hours
3. **Investigation**: We'll investigate and develop fixes
4. **Fix Development**: We'll create and test patches
5. **Coordinated Disclosure**: We'll work with reporter on disclosure timeline
6. **Release**: We'll release patched version with security advisory
### Timeline Expectations
- **Critical**: 1-7 days
- **High**: 7-30 days
- **Medium**: 30-90 days
- **Low**: Next scheduled release
## Bug Bounty
We don't currently offer a formal bug bounty program, but we deeply appreciate security research and will:
- Acknowledge contributors in release notes
- Provide credit in security advisories
- Consider swag or small rewards for significant findings
## Security Best Practices for Users
### Installation
- Download Fabric only from official sources
- Verify checksums when available
- Keep installations up to date
### Configuration
- Use strong, unique API keys
- Don't share configuration files containing secrets
- Set appropriate file permissions on config directories
### Usage
- Be cautious with patterns that process sensitive data
- Review AI provider terms for data handling
- Consider using local models for sensitive content
## Known Security Limitations
### AI Provider Dependencies
Fabric relies on external AI providers. Security depends partly on:
- Provider security practices
- Data transmission security
- Provider data handling policies
### Pattern Execution
Custom patterns could potentially:
- Process sensitive inputs inappropriately
- Generate outputs containing sensitive information
- Be used for adversarial prompt injection
**Recommendation**: Review patterns carefully, especially those from untrusted sources.
## Security Updates
Security updates are distributed through:
- GitHub Releases with security tags
- Security advisories on GitHub
- Project documentation updates
Subscribe to the repository to receive notifications about security updates.
## Contact
For non-security issues, please use GitHub issues.
For security concerns, email: **<kayvan@sylvan.com>** and CC to **<daniel@danielmiessler.com>**
---
*We take security seriously and appreciate the security research community's help in keeping Fabric secure.*

148
docs/SUPPORT.md Normal file
View File

@@ -0,0 +1,148 @@
# Support
## Getting Help with Fabric
Need help with Fabric? Here are the best ways to get assistance:
## 📖 Documentation First
Before reaching out, check these resources:
- **[README.md](../README.md)** - Installation, usage, and examples
- **[docs/](./README.md)** - Detailed documentation
- **[Patterns](../data/patterns/)** - Browse available AI patterns
## 🐛 Bug Reports
Found a bug? Please create an issue:
**[Report a Bug](https://github.com/danielmiessler/fabric/issues/new?template=bug.yml)**
Include:
- Fabric version (`fabric --version`)
- Operating system
- Steps to reproduce
- Expected vs actual behavior
- Error messages/logs
## 💡 Feature Requests
Have an idea for Fabric? We'd love to hear it:
**[Request a Feature](https://github.com/danielmiessler/fabric/issues/new)**
Describe:
- What you want to achieve
- Why it would be useful
- How you envision it working
- Any alternatives you've considered
## 🤔 Questions & Discussions
For general questions, usage help, or community discussion:
**[GitHub Discussions](https://github.com/danielmiessler/fabric/discussions)**
Great for:
- "How do I...?" questions
- Sharing patterns you've created
- Getting community advice
- Feature brainstorming
## 🏷️ Issue Labels
When creating issues, maintainers will add appropriate labels:
- `bug` - Something isn't working
- `enhancement` - New feature request
- `documentation` - Documentation improvements
- `help wanted` - Community contributions welcome
- `good first issue` - Great for new contributors
- `question` - General questions
- `pattern` - Related to AI patterns
## 📋 Issue Templates
We provide templates to help you create detailed reports:
- **Bug Report** - Structured bug reporting
- **Feature Request** - Detailed feature proposals
- **Pattern Submission** - New pattern contributions
## 🔒 Security Issues
**DO NOT create public issues for security vulnerabilities.**
See our [Security Policy](./SECURITY.md) for proper reporting procedures.
## ⚡ Response Times
We're a community-driven project with volunteer maintainers:
- **Bugs**: We aim to acknowledge within 48 hours
- **Features**: Response time varies based on complexity
- **Questions**: Community often responds quickly
- **Security**: See security policy for timelines
## 🛠️ Self-Help Tips
Before creating an issue, try:
1. **Update Fabric**: `go install github.com/danielmiessler/fabric/cmd/fabric@latest`
2. **Check existing issues**: Someone might have the same problem
3. **Run setup**: `fabric --setup` can fix configuration issues
4. **Test minimal example**: Isolate the problem
## 🤝 Community Guidelines
When asking for help:
- Be specific and provide context
- Include relevant details and error messages
- Be patient - maintainers are volunteers
- Help others when you can
- Say thanks when someone helps you
## 📞 Emergency Contact
For urgent security issues only:
- Email: <security@fabric.ai> (if available)
- Maintainer: <daniel@danielmiessler.com>
## 🎯 What We Can Help With
**We can help with:**
- Installation and setup issues
- Usage questions and examples
- Bug reports and fixes
- Feature discussions
- Pattern creation guidance
- Integration questions
**We cannot help with:**
- Custom development for your specific use case
- Troubleshooting your specific AI provider issues
- General AI or programming tutorials
- Commercial support agreements
## 💪 Contributing Back
The best way to get help is to help others:
- Answer questions in discussions
- Improve documentation
- Share useful patterns
- Report bugs clearly
- Review pull requests
See our [Contributing Guide](./CONTRIBUTING.md) for details.
---
*Remember: We're all here to make Fabric better. Be kind, be helpful, and let's build something amazing together!*

140
docs/Shell-Completions.md Normal file
View File

@@ -0,0 +1,140 @@
# Shell Completions for Fabric
Fabric comes with shell completion support for Zsh, Bash, and Fish shells. These completions provide intelligent tab-completion for commands, flags, patterns, models, contexts, and more.
## Quick Setup (Automated)
You can install completions without cloning the repo:
```bash
# No-clone install (Zsh/Bash/Fish supported)
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh
# Optional: dry-run first
curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh | sh -s -- --dry-run
# Optional: override the download source
FABRIC_COMPLETIONS_BASE_URL="https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions" \
sh -c "$(curl -fsSL https://raw.githubusercontent.com/danielmiessler/Fabric/refs/heads/main/completions/setup-completions.sh)"
```
Or, if you have the repository locally:
```bash
# Run the automated setup script from a cloned repo
./completions/setup-completions.sh
# Or see what it would do first
./completions/setup-completions.sh --dry-run
```
The script will:
- Detect whether you have `fabric` or `fabric-ai` installed
- Detect your current shell (zsh, bash, or fish)
- Use your existing `$fpath` directories (for zsh) or standard completion directories
- Install the completion file with the correct name
- Provide instructions for enabling the completions
If the completion files aren't present locally (e.g., when running via `curl`), the script will automatically download them from GitHub.
For manual installation or troubleshooting, see the detailed instructions below.
## Manual Installation
### Zsh
1. Copy the completion file to a directory in your `$fpath`:
```bash
sudo cp completions/_fabric /usr/local/share/zsh/site-functions/
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink so completions work:
```bash
sudo ln -s /usr/local/share/zsh/site-functions/_fabric /usr/local/share/zsh/site-functions/_fabric-ai
```
3. Restart your shell or reload completions:
```bash
autoload -U compinit && compinit
```
### Bash
1. Copy the completion file to a standard completion directory:
```bash
# System-wide installation
sudo cp completions/fabric.bash /etc/bash_completion.d/
# Or user-specific installation
mkdir -p ~/.local/share/bash-completion/completions/
cp completions/fabric.bash ~/.local/share/bash-completion/completions/fabric
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink:
```bash
# For system-wide installation
sudo ln -s /etc/bash_completion.d/fabric.bash /etc/bash_completion.d/fabric-ai.bash
# Or for user-specific installation
ln -s ~/.local/share/bash-completion/completions/fabric ~/.local/share/bash-completion/completions/fabric-ai
```
3. Restart your shell or source the completion:
```bash
source ~/.bashrc
```
### Fish
1. Copy the completion file to Fish's completion directory:
```bash
mkdir -p ~/.config/fish/completions
cp completions/fabric.fish ~/.config/fish/completions/
```
2. **Important**: If you installed fabric as `fabric-ai`, create a symlink:
```bash
ln -s ~/.config/fish/completions/fabric.fish ~/.config/fish/completions/fabric-ai.fish
```
3. Fish will automatically load the completions (no restart needed).
## Features
The completions provide intelligent suggestions for:
- **Patterns**: Tab-complete available patterns with `-p` or `--pattern`
- **Models**: Tab-complete available models with `-m` or `--model`
- **Contexts**: Tab-complete contexts for context-related flags
- **Sessions**: Tab-complete sessions for session-related flags
- **Strategies**: Tab-complete available strategies
- **Extensions**: Tab-complete registered extensions
- **Gemini Voices**: Tab-complete TTS voices for `--voice`
- **File paths**: Smart file completion for attachment, output, and config options
- **Flag completion**: All available command-line flags and options
## Alternative Installation Method
You can also source the completion files directly in your shell's configuration file:
- **Zsh**: Add to `~/.zshrc`: `source /path/to/fabric/completions/_fabric`
- **Bash**: Add to `~/.bashrc`: `source /path/to/fabric/completions/fabric.bash`
- **Fish**: The file-based installation method above is preferred for Fish
## Troubleshooting
- If completions don't work, ensure the completion files have proper permissions
- For Zsh, verify that the completion directory is in your `$fpath`
- If you renamed the fabric binary, make sure to create the appropriate symlinks as described above
- Restart your shell after installation to ensure completions are loaded
The completion system dynamically queries the fabric command for current patterns, models, and other resources, so your completions will always be up-to-date with your fabric installation.

View File

@@ -0,0 +1,139 @@
# Using Speech-To-Text (STT) with Fabric
Fabric supports speech-to-text transcription of audio and video files using OpenAI's transcription models. This feature allows you to convert spoken content into text that can then be processed through Fabric's patterns.
## Overview
The STT feature integrates OpenAI's Whisper and GPT-4o transcription models to convert audio/video files into text. The transcribed text is automatically passed as input to your chosen pattern or chat session.
## Requirements
- OpenAI API key configured in Fabric
- For files larger than 25MB: `ffmpeg` installed on your system
- Supported audio/video formats: `.mp3`, `.mp4`, `.mpeg`, `.mpga`, `.m4a`, `.wav`, `.webm`
## Basic Usage
### Simple Transcription
To transcribe an audio file and send the result to a pattern:
```bash
fabric --transcribe-file /path/to/audio.mp3 --transcribe-model whisper-1 --pattern summarize
```
### Transcription Only
To just transcribe a file without applying a pattern:
```bash
fabric --transcribe-file /path/to/audio.mp3 --transcribe-model whisper-1
```
## Command Line Flags
### Required Flags
- `--transcribe-file`: Path to the audio or video file to transcribe
- `--transcribe-model`: Model to use for transcription (required when using transcription)
### Optional Flags
- `--split-media-file`: Automatically split files larger than 25MB into chunks using ffmpeg
## Available Models
You can list all available transcription models with:
```bash
fabric --list-transcription-models
```
Currently supported models:
- `whisper-1`: OpenAI's Whisper model
- `gpt-4o-mini-transcribe`: GPT-4o Mini transcription model
- `gpt-4o-transcribe`: GPT-4o transcription model
## File Size Handling
### Files Under 25MB
Files under the 25MB limit are processed directly without any special handling.
### Files Over 25MB
For files exceeding OpenAI's 25MB limit, you have two options:
1. **Manual handling**: The command will fail with an error message suggesting to use `--split-media-file`
2. **Automatic splitting**: Use the `--split-media-file` flag to automatically split the file into chunks
```bash
fabric --transcribe-file large_recording.mp4 --transcribe-model whisper-1 --split-media-file --pattern summarize
```
When splitting is enabled:
- Fabric uses `ffmpeg` to split the file into 10-minute segments initially
- If segments are still too large, it reduces the segment time by half repeatedly
- All segments are transcribed and the results are concatenated
- Temporary files are automatically cleaned up after processing
## Integration with Patterns
The transcribed text is seamlessly integrated into Fabric's workflow:
1. File is transcribed using the specified model
2. Transcribed text becomes the input message
3. Text is sent to the specified pattern or chat session
### Example Workflows
**Meeting transcription and summarization:**
```bash
fabric --transcribe-file meeting.mp4 --transcribe-model gpt-4o-transcribe --pattern summarize
```
**Interview analysis:**
```bash
fabric --transcribe-file interview.mp3 --transcribe-model whisper-1 --pattern extract_insights
```
**Large video file processing:**
```bash
fabric --transcribe-file presentation.mp4 --transcribe-model gpt-4o-transcribe --split-media-file --pattern create_summary
```
## Error Handling
Common error scenarios:
- **Unsupported format**: Only the listed audio/video formats are supported
- **File too large**: Use `--split-media-file` for files over 25MB
- **Missing ffmpeg**: Install ffmpeg for automatic file splitting
- **Invalid model**: Use `--list-transcription-models` to see available models
- **Missing model**: The `--transcribe-model` flag is required when using `--transcribe-file`
## Technical Details
### Implementation
- Transcription is handled in `internal/cli/transcribe.go:14`
- OpenAI-specific implementation in `internal/plugins/ai/openai/openai_audio.go:41`
- File splitting uses ffmpeg with configurable segment duration
- Supports any vendor that implements the `transcriber` interface
### Processing Pipeline
1. CLI validates file format and size
2. If file > 25MB and splitting enabled, file is split using ffmpeg
3. Each file/segment is sent to OpenAI's transcription API
4. Results are concatenated with spaces between segments
5. Transcribed text is passed as input to the main Fabric pipeline
### Vendor Support
Currently, only OpenAI is supported for transcription, but the interface allows for future expansion to other vendors that provide transcription capabilities.

298
docs/YouTube-Processing.md Normal file
View File

@@ -0,0 +1,298 @@
# YouTube Processing with Fabric
Fabric provides powerful YouTube video processing capabilities that allow you to extract transcripts, comments, and metadata from YouTube videos and playlists. This guide covers all the available options and common use cases.
## Prerequisites
- **yt-dlp**: Required for transcript extraction. Install on MacOS with:
```bash
brew install yt-dlp
```
Or use the package manager of your choice for your operating system.
See the [yt-dlp wiki page](https://github.com/yt-dlp/yt-dlp/wiki/Installation) for your specific installation instructions.
- **YouTube API Key** (optional): Only needed for comments and metadata extraction. Configure with:
```bash
fabric --setup
```
## Basic Usage
### Extract Transcript
Extract a video transcript and process it with a pattern:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize
```
### Extract Transcript with Timestamps
Get transcript with timestamps preserved:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --transcript-with-timestamps --pattern extract_wisdom
```
### Extract Comments
Get video comments (requires YouTube API key):
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --comments --pattern analyze_claims
```
### Extract Metadata
Get video metadata as JSON:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --metadata
```
## Advanced Options
### Custom yt-dlp Arguments
Pass additional arguments to yt-dlp for advanced functionality. **User-provided arguments take precedence** over built-in fabric arguments, giving you full control:
```bash
# Use browser cookies for age-restricted or private videos
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser brave"
# Override language selection (takes precedence over -g flag)
fabric -g en -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sub-langs es,fr"
# Use specific format
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--format best"
# Handle rate limiting (slow down requests)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sleep-requests 1"
# Multiple arguments (use quotes)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser firefox --write-info-json"
# Combine rate limiting with authentication
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--cookies-from-browser brave --sleep-requests 1"
# Override subtitle format (takes precedence over built-in --sub-format vtt)
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --yt-dlp-args="--sub-format srt"
```
#### Argument Precedence
Fabric constructs the yt-dlp command in this order:
1. **Built-in base arguments** (`--write-auto-subs`, `--skip-download`, etc.)
2. **Language selection** (from `-g` flag): `--sub-langs LANGUAGE`
3. **User arguments** (from `--yt-dlp-args`): **These override any conflicting built-in arguments**
4. **Video URL**
This means you can override any built-in behavior by specifying it in `--yt-dlp-args`.
### Playlist Processing
Process entire playlists:
```bash
# Process all videos in a playlist
fabric -y "https://www.youtube.com/playlist?list=PLAYLIST_ID" --playlist --pattern summarize
# Save playlist videos to CSV
fabric -y "https://www.youtube.com/playlist?list=PLAYLIST_ID" --playlist -o playlist.csv
```
### Language Support
Specify transcript language:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" -g es --pattern translate
```
## Combining Options
You can combine multiple YouTube processing options:
```bash
# Get transcript, comments, and metadata
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--transcript \
--comments \
--metadata \
--pattern comprehensive_analysis
```
## Output Options
### Save to File
```bash
# Save output to file
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize -o summary.md
# Save entire session including input
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize --output-session -o full_session.md
```
### Stream Output
Get real-time streaming output:
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern summarize --stream
```
## Common Use Cases
### Content Analysis
```bash
# Analyze video content for key insights
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_wisdom
# Check claims made in the video
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern analyze_claims
```
### Educational Content
```bash
# Create study notes from educational videos
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern create_study_notes
# Extract key concepts and definitions
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_concepts
```
### Meeting/Conference Processing
```bash
# Summarize conference talks with timestamps
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--transcript-with-timestamps \
--pattern meeting_summary
# Extract action items from recorded meetings
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern extract_action_items
```
### Content Creation
```bash
# Create social media posts from video content
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern create_social_posts
# Generate blog post from video transcript
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" --pattern write_blog_post
```
## Troubleshooting
### Common Issues
1. **"yt-dlp not found"**: Install yt-dlp using pip or your package manager
2. **Age-restricted videos**: Use `--yt-dlp-args="--cookies-from-browser BROWSER"`
3. **No subtitles available**: Some videos don't have auto-generated subtitles
4. **API rate limits**: YouTube API has daily quotas for comments/metadata
5. **HTTP 429 errors**: YouTube is rate limiting subtitle requests
### Error Messages
- **"YouTube is not configured"**: Run `fabric --setup` to configure YouTube API
- **"yt-dlp failed"**: Check video URL and try with `--yt-dlp-args` for authentication
- **"No transcript content found"**: Video may not have subtitles available
- **"HTTP Error 429: Too Many Requests"**: YouTube rate limit exceeded. This is increasingly common. Solutions:
- **Wait 10-30 minutes and try again** (most effective)
- Use longer sleep: `--yt-dlp-args="--sleep-requests 5"`
- Try with browser cookies: `--yt-dlp-args="--cookies-from-browser brave --sleep-requests 5"`
- **Try a different video** - some videos are less restricted
- **Use a VPN** - different IP address may help
- **Try without language specification** - let yt-dlp choose any available language
- **Try English instead** - `fabric -g en` (English subtitles may be less rate-limited)
### Language Fallback Behavior
When you specify a language (e.g., `-g es` for Spanish) but that language isn't available or fails to download:
1. **Automatic fallback**: Fabric automatically retries without language specification
2. **Smart file detection**: If the fallback downloads a different language (e.g., English), Fabric will automatically detect and use it
3. **No manual intervention needed**: The process is transparent to the user
```bash
# Even if Spanish isn't available, this will work with whatever language yt-dlp finds
fabric -g es -y "https://youtube.com/watch?v=VIDEO_ID" --pattern summarize
```
## Configuration
### YAML Configuration
You can set default yt-dlp arguments in your config file (`~/.config/fabric/config.yaml`):
```yaml
ytDlpArgs: "--cookies-from-browser brave --write-info-json"
```
### Environment Variables
Set up your YouTube API key:
```bash
export FABRIC_YOUTUBE_API_KEY="your_api_key_here"
```
## Tips and Best Practices
1. **Use specific patterns**: Choose patterns that match your use case for better results
2. **Combine with other tools**: Pipe output to other commands or save to files for further processing
3. **Batch processing**: Use playlists to process multiple videos efficiently
4. **Authentication**: Use browser cookies for accessing private or age-restricted content
5. **Language support**: Specify language codes for better transcript accuracy
6. **Rate limiting**: If you encounter 429 errors, use `--sleep-requests 1` to slow down requests
7. **Persistent settings**: Set common yt-dlp args in your config file to avoid repeating them
8. **Argument precedence**: Use `--yt-dlp-args` to override any built-in behavior when needed
9. **Testing**: Use `yt-dlp --list-subs URL` to see available subtitle languages before processing
## Examples
### Quick Video Summary
```bash
fabric -y "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --pattern summarize --stream
```
### Detailed Analysis with Authentication
```bash
fabric -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--yt-dlp-args="--cookies-from-browser chrome" \
--transcript-with-timestamps \
--comments \
--pattern comprehensive_analysis \
-o analysis.md
```
### Playlist Processing
```bash
fabric -y "https://www.youtube.com/playlist?list=PLrAXtmRdnEQy6nuLvVUxpDnx4C0823vBN" \
--playlist \
--pattern extract_wisdom \
-o playlist_wisdom.md
```
### Override Built-in Language Selection
```bash
# Built-in language selection (-g es) is overridden by user args
fabric -g es -y "https://www.youtube.com/watch?v=VIDEO_ID" \
--yt-dlp-args="--sub-langs fr,de,en" \
--pattern translate
```
For more patterns and advanced usage, see the main [Fabric documentation](../README.md).

View File

@@ -0,0 +1,107 @@
# Contexts and Sessions in Fabric
Fabric uses **contexts** and **sessions** to manage conversation state and reusable prompt data. This guide focuses on how to use them from the CLI and REST API.
## What is a Context?
A context is named text that Fabric injects at the beginning of a conversation. Contexts live on disk under `~/.config/fabric/contexts`; each file name is the context name, and its contents are included as a system message.
Command-line helpers:
- `--context <name>` select a context
- `--listcontexts` list available contexts
- `--printcontext <name>` show the contents
- `--wipecontext <name>` delete it
## What is a Session?
A session tracks the message history of a conversation. When you specify a session name, Fabric loads any existing messages, appends new ones, and saves back to disk. Sessions are stored as JSON under `~/.config/fabric/sessions`.
Command-line helpers:
- `--session <name>` attach to a session
- `--listsessions` list stored sessions
- `--printsession <name>` print a session
- `--wipesession <name>` delete it
## Everyday Use Cases
Contexts and sessions serve different everyday needs:
- **Context** Reuse prompt text such as preferred style, domain knowledge, or instructions for the assistant.
- **Session** Maintain ongoing conversation history so Fabric remembers earlier exchanges.
Example workflow:
1. Create a context file manually in `~/.config/fabric/contexts/writer` with your writing guidelines.
2. Start a session while chatting to build on previous answers (`fabric --session mychat`). Sessions are automatically created if they don't exist.
## How Contexts and Sessions Interact
When Fabric handles a chat request, it loads any named context, combines it with pattern text, and adds the result as a system message before sending the conversation history to the model. The assistant's reply is appended to the session so future calls continue from the same state.
## REST API Endpoints
The REST server exposes CRUD endpoints for managing contexts and sessions:
- `/contexts/:name` get or save a context
- `/contexts/names` list available contexts
- `/sessions/:name` get or save a session
- `/sessions/names` list available sessions
## Summary
Contexts provide reusable system-level instructions, while sessions maintain conversation history. Together they allow Fabric to build rich, stateful interactions with language models.
## For Developers
### Loading Contexts from Disk
```go
// internal/plugins/db/fsdb/contexts.go
func (o *ContextsEntity) Get(name string) (*Context, error) {
content, err := o.Load(name)
if err != nil {
return nil, err
}
return &Context{Name: name, Content: string(content)}, nil
}
```
### Handling Sessions
```go
// internal/plugins/db/fsdb/sessions.go
type Session struct {
Name string
Messages []*chat.ChatCompletionMessage
}
func (o *SessionsEntity) Get(name string) (*Session, error) {
session := &Session{Name: name}
if o.Exists(name) {
err = o.LoadAsJson(name, &session.Messages)
} else {
fmt.Printf("Creating new session: %s\n", name)
}
return session, err
}
```
### Building a Session
```go
// internal/core/chatter.go
if request.ContextName != "" {
ctx, err := o.db.Contexts.Get(request.ContextName)
if err != nil {
return nil, fmt.Errorf("could not find context %s: %v", request.ContextName, err)
}
contextContent = ctx.Content
}
systemMessage := strings.TrimSpace(contextContent) + strings.TrimSpace(patternContent)
if systemMessage != "" {
session.Append(&chat.ChatCompletionMessage{Role: chat.ChatMessageRoleSystem, Content: systemMessage})
}
```

140
docs/i18n-variants.md Normal file
View File

@@ -0,0 +1,140 @@
# Language Variants Support in Fabric
## Current Implementation
As of this update, Fabric supports Portuguese language variants:
- `pt-BR` - Brazilian Portuguese
- `pt-PT` - European Portuguese
- `pt` - defaults to `pt-BR` for backward compatibility
## Architecture
The i18n system supports language variants through:
1. **BCP 47 Format**: All locales are normalized to BCP 47 format (language-REGION)
2. **Fallback Chain**: Regional variants fall back to base language, then to configured defaults
3. **Default Variant Mapping**: Languages without base files can specify default regional variants
4. **Flexible Input**: Accepts both underscore (pt_BR) and hyphen (pt-BR) formats
## Recommended Future Variants
Based on user demographics and linguistic differences, these variants would provide the most value:
### High Priority
1. **Chinese Variants**
- `zh-CN` - Simplified Chinese (Mainland China)
- `zh-TW` - Traditional Chinese (Taiwan)
- `zh-HK` - Traditional Chinese (Hong Kong)
- Default: `zh``zh-CN`
- Rationale: Significant script and vocabulary differences
2. **Spanish Variants**
- `es-ES` - European Spanish (Spain)
- `es-MX` - Mexican Spanish
- `es-AR` - Argentinian Spanish
- Default: `es``es-ES`
- Rationale: Notable vocabulary and conjugation differences
3. **English Variants**
- `en-US` - American English
- `en-GB` - British English
- `en-AU` - Australian English
- Default: `en``en-US`
- Rationale: Spelling differences (color/colour, organize/organise)
4. **French Variants**
- `fr-FR` - France French
- `fr-CA` - Canadian French
- Default: `fr``fr-FR`
- Rationale: Some vocabulary and expression differences
5. **Arabic Variants**
- `ar-SA` - Saudi Arabic (Modern Standard)
- `ar-EG` - Egyptian Arabic
- Default: `ar``ar-SA`
- Rationale: Significant dialectal differences
6. **German Variants**
- `de-DE` - Germany German
- `de-AT` - Austrian German
- `de-CH` - Swiss German
- Default: `de``de-DE`
- Rationale: Minor differences, mostly vocabulary
## Implementation Guidelines
When adding new language variants:
1. **Determine the Base**: Decide which variant should be the default
2. **Create Variant Files**: Copy base file and adjust for regional differences
3. **Update Default Map**: Add to `defaultLanguageVariants` if needed
4. **Focus on Key Differences**:
- Technical terminology
- Common UI terms (file/ficheiro, save/guardar)
- Date/time formats
- Currency references
- Formal/informal address conventions
5. **Test Thoroughly**: Ensure fallback chain works correctly
## Adding a New Variant
To add a new language variant:
1. Copy the base language file:
```bash
cp locales/es.json locales/es-MX.json
```
2. Adjust translations for regional differences
3. If this is the first variant for a language, update `i18n.go`:
```go
var defaultLanguageVariants = map[string]string{
"pt": "pt-BR",
"es": "es-MX", // Add if Mexican Spanish should be default
}
```
4. Add tests for the new variant
5. Update documentation
## Language Variant Naming Convention
Follow BCP 47 standards:
- Language code: lowercase (pt, es, en)
- Region code: uppercase (BR, PT, US)
- Separator: hyphen (pt-BR, not pt_BR)
Input normalization handles various formats, but files and internal references should use BCP 47.
## Testing Variants
Test each variant with:
```bash
# Direct specification
fabric --help -g=pt-BR
fabric --help -g=pt-PT
# Environment variable
LANG=pt_BR.UTF-8 fabric --help
# Fallback behavior
fabric --help -g=pt # Should use pt-BR
```
## Maintenance Considerations
When updating translations:
1. Update all variants of a language together
2. Ensure key parity across all variants
3. Test fallback behavior after changes
4. Consider using translation memory tools for consistency

182
docs/i18n.md Normal file
View File

@@ -0,0 +1,182 @@
# Internationalization (i18n) in Fabric
Fabric supports multiple languages through its internationalization system. The system automatically detects your preferred language from environment variables and provides localized messages.
## How Locale Detection Works
Fabric follows POSIX standards for locale detection with the following priority order:
1. **Explicit language flag**: `--language` or `-g` (highest priority)
2. **LC_ALL**: Complete locale override environment variable
3. **LC_MESSAGES**: Messages-specific locale environment variable
4. **LANG**: General locale environment variable
5. **Default fallback**: English (`en`) if none are set or valid
### Examples
```bash
# Use explicit language flag
fabric --language es --pattern summarize
# Use LC_ALL environment variable
LC_ALL=fr_FR.UTF-8 fabric --pattern summarize
# Use LANG environment variable
LANG=de_DE.UTF-8 fabric --pattern summarize
# Multiple environment variables (LC_ALL takes priority)
LC_ALL=es_ES.UTF-8 LANG=fr_FR.UTF-8 fabric --pattern summarize
# Uses Spanish (es_ES) because LC_ALL has higher priority
```
## Supported Locale Formats
The system automatically normalizes various locale formats:
- `en_US.UTF-8``en-US`
- `fr_FR@euro``fr-FR`
- `zh_CN.GB2312``zh-CN`
- `de_DE.UTF-8@traditional``de-DE`
Special cases:
- `C` or `POSIX` → treated as invalid, falls back to English
## Translation File Locations
Translations are loaded from multiple sources in this order:
1. **Embedded files** (highest priority): Compiled into the binary
- Location: `internal/i18n/locales/*.json`
- Always available, no download required
2. **User config directory**: Downloaded on demand
- Location: `~/.config/fabric/locales/`
- Downloaded from GitHub when needed
3. **GitHub repository**: Source for downloads
- URL: `https://raw.githubusercontent.com/danielmiessler/Fabric/main/internal/i18n/locales/`
## Currently Supported Languages
- **English** (`en`): Default language, always available
- **Spanish** (`es`): Available in embedded files
## Adding New Languages
To add support for a new language:
1. Create a new JSON file: `internal/i18n/locales/{lang}.json`
2. Add translations in the format:
```json
{
"message_id": "localized message text"
}
```
3. Rebuild Fabric to embed the new translations
### Translation File Format
Translation files use JSON format with message IDs as keys:
```json
{
"html_readability_error": "use original input, because can't apply html readability"
}
```
Spanish example:
```json
{
"html_readability_error": "usa la entrada original, porque no se puede aplicar la legibilidad de html"
}
```
## Error Handling
The i18n system is designed to be robust:
- **Download failures**: Non-fatal, falls back to embedded translations
- **Invalid locales**: Skipped, next priority locale used
- **Missing translations**: Falls back to English
- **Missing files**: Uses embedded defaults
Error messages are logged to stderr but don't prevent operation.
## Environment Variable Examples
### Common Unix Locale Settings
```bash
# Set system-wide locale
export LANG=en_US.UTF-8
# Override all locale categories
export LC_ALL=fr_FR.UTF-8
# Set only message locale (for this session)
LC_MESSAGES=es_ES.UTF-8 fabric --pattern summarize
# Check current locale settings
locale
```
### Testing Locale Detection
You can test locale detection without changing your system settings:
```bash
# Test with French
LC_ALL=fr_FR.UTF-8 fabric --version
# Test with Spanish (if available)
LC_ALL=es_ES.UTF-8 fabric --version
# Test with German (will download if available)
LC_ALL=de_DE.UTF-8 fabric --version
```
## Troubleshooting
### "i18n download failed" messages
This is normal when requesting a language not yet available. The system will fall back to English.
### Locale not detected
Check your environment variables:
```bash
echo $LC_ALL
echo $LC_MESSAGES
echo $LANG
```
Ensure they're in a valid format like `en_US.UTF-8` or `fr_FR`.
### Wrong language used
Remember the priority order:
1. `--language` flag overrides everything
2. `LC_ALL` overrides `LC_MESSAGES` and `LANG`
3. `LC_MESSAGES` overrides `LANG`
## Implementation Details
The locale detection system:
- Uses `golang.org/x/text/language` for parsing and validation
- Follows BCP 47 language tag standards
- Implements POSIX locale environment variable precedence
- Provides comprehensive test coverage
- Handles edge cases gracefully
For developers working on the codebase, see the implementation in:
- `internal/i18n/locale.go`: Locale detection logic
- `internal/i18n/i18n.go`: Main i18n initialization
- `internal/i18n/locale_test.go`: Test suite

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@@ -0,0 +1,21 @@
# Example Fabric configuration with notification support
# Save this to ~/.config/fabric/config.yaml to use as defaults
# Enable notifications by default for all commands
notification: true
# Optional: Use a custom notification command
# Examples:
# macOS with custom sound:
# notificationCommand: 'osascript -e "display notification \"$2\" with title \"$1\" sound name \"Ping\""'
#
# Linux with custom urgency:
# notificationCommand: 'notify-send --urgency=normal "$1" "$2"'
#
# Custom script:
# notificationCommand: '/path/to/custom-notification-script.sh "$1" "$2"'
# Other common settings
model: "gpt-4o"
temperature: 0.7
stream: true

View File

@@ -28,14 +28,21 @@
let
forAllSystems = nixpkgs.lib.genAttrs (import systems);
getGoVersion = system: nixpkgs.legacyPackages.${system}.go_1_24;
getGoVersion = system: nixpkgs.legacyPackages.${system}.go_latest;
treefmtEval = forAllSystems (
system:
let
pkgs = nixpkgs.legacyPackages.${system};
in
treefmt-nix.lib.evalModule pkgs ./nix/treefmt.nix
treefmt-nix.lib.evalModule pkgs (
{ ... }:
{
imports = [ ./nix/treefmt.nix ];
# Set environment variable to prevent Go toolchain auto-download
settings.global.excludes = [ ];
}
)
);
in
{

80
go.mod
View File

@@ -1,16 +1,14 @@
module github.com/danielmiessler/fabric
go 1.24.0
toolchain go1.24.2
go 1.25.1
require (
github.com/anthropics/anthropic-sdk-go v1.7.0
github.com/anthropics/anthropic-sdk-go v1.19.0
github.com/atotto/clipboard v0.1.4
github.com/aws/aws-sdk-go-v2 v1.36.4
github.com/aws/aws-sdk-go-v2/config v1.27.27
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0
github.com/aws/aws-sdk-go-v2 v1.39.0
github.com/aws/aws-sdk-go-v2/config v1.31.8
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1
github.com/gabriel-vasile/mimetype v1.4.9
github.com/gin-gonic/gin v1.10.1
github.com/go-git/go-git/v5 v5.16.2
@@ -19,55 +17,59 @@ require (
github.com/hasura/go-graphql-client v0.14.4
github.com/jessevdk/go-flags v1.6.1
github.com/joho/godotenv v1.5.1
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51
github.com/mattn/go-sqlite3 v1.14.28
github.com/ollama/ollama v0.9.0
github.com/openai/openai-go v1.8.2
github.com/nicksnyder/go-i18n/v2 v2.6.0
github.com/ollama/ollama v0.11.7
github.com/openai/openai-go v1.12.0
github.com/otiai10/copy v1.14.1
github.com/pkg/errors v0.9.1
github.com/samber/lo v1.50.0
github.com/sgaunet/perplexity-go/v2 v2.8.0
github.com/spf13/cobra v1.9.1
github.com/stretchr/testify v1.10.0
github.com/stretchr/testify v1.11.1
golang.org/x/oauth2 v0.30.0
golang.org/x/text v0.27.0
google.golang.org/api v0.236.0
golang.org/x/text v0.31.0
google.golang.org/api v0.247.0
gopkg.in/yaml.v3 v3.0.1
)
require (
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1 // indirect
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2 // indirect
github.com/google/go-cmp v0.7.0 // indirect
github.com/gorilla/websocket v1.5.3 // indirect
)
require (
cloud.google.com/go v0.121.2 // indirect
cloud.google.com/go/auth v0.16.2 // indirect
cloud.google.com/go v0.121.6 // indirect
cloud.google.com/go/auth v0.16.5 // indirect
cloud.google.com/go/auth/oauth2adapt v0.2.8 // indirect
cloud.google.com/go/compute/metadata v0.7.0 // indirect
cloud.google.com/go/compute/metadata v0.8.0 // indirect
dario.cat/mergo v1.0.2 // indirect
github.com/Microsoft/go-winio v0.6.2 // indirect
github.com/ProtonMail/go-crypto v1.3.0 // indirect
github.com/andybalholm/cascadia v1.3.3 // indirect
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de // indirect
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10 // indirect
github.com/aws/aws-sdk-go-v2/credentials v1.17.27 // indirect
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11 // indirect
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35 // indirect
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35 // indirect
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17 // indirect
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4 // indirect
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4 // indirect
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3 // indirect
github.com/aws/smithy-go v1.22.2 // indirect
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1 // indirect
github.com/aws/aws-sdk-go-v2/credentials v1.18.12 // indirect
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7 // indirect
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1 // indirect
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7 // indirect
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3 // indirect
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4 // indirect
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4 // indirect
github.com/aws/smithy-go v1.23.0 // indirect
github.com/bytedance/sonic v1.13.3 // indirect
github.com/bytedance/sonic/loader v0.2.4 // indirect
github.com/cloudflare/circl v1.6.1 // indirect
github.com/cloudwego/base64x v0.1.5 // indirect
github.com/coder/websocket v1.8.13 // indirect
github.com/cyphar/filepath-securejoin v0.4.1 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc // indirect
github.com/emirpasic/gods v1.18.1 // indirect
github.com/felixge/httpsnoop v1.0.4 // indirect
github.com/gin-contrib/sse v1.1.0 // indirect
@@ -86,7 +88,7 @@ require (
github.com/google/s2a-go v0.1.9 // indirect
github.com/google/uuid v1.6.0 // indirect
github.com/googleapis/enterprise-certificate-proxy v0.3.6 // indirect
github.com/googleapis/gax-go/v2 v2.14.2 // indirect
github.com/googleapis/gax-go/v2 v2.15.0 // indirect
github.com/inconshreveable/mousetrap v1.1.0 // indirect
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99 // indirect
github.com/json-iterator/go v1.1.12 // indirect
@@ -99,7 +101,7 @@ require (
github.com/otiai10/mint v1.6.3 // indirect
github.com/pelletier/go-toml/v2 v2.2.4 // indirect
github.com/pjbgf/sha1cd v0.4.0 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 // indirect
github.com/sergi/go-diff v1.4.0 // indirect
github.com/skeema/knownhosts v1.3.1 // indirect
github.com/spf13/pflag v1.0.6 // indirect
@@ -116,15 +118,15 @@ require (
go.opentelemetry.io/otel/metric v1.36.0 // indirect
go.opentelemetry.io/otel/trace v1.36.0 // indirect
golang.org/x/arch v0.18.0 // indirect
golang.org/x/crypto v0.39.0 // indirect
golang.org/x/crypto v0.45.0 // indirect
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b // indirect
golang.org/x/net v0.41.0 // indirect
golang.org/x/sync v0.16.0 // indirect
golang.org/x/sys v0.34.0 // indirect
golang.org/x/net v0.47.0 // indirect
golang.org/x/sync v0.18.0 // indirect
golang.org/x/sys v0.38.0 // indirect
google.golang.org/genai v1.17.0
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822 // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822 // indirect
google.golang.org/grpc v1.73.0 // indirect
google.golang.org/protobuf v1.36.6 // indirect
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c // indirect
google.golang.org/grpc v1.74.2 // indirect
google.golang.org/protobuf v1.36.7 // indirect
gopkg.in/warnings.v0 v0.1.2 // indirect
)

181
go.sum
View File

@@ -1,13 +1,23 @@
cloud.google.com/go v0.121.2 h1:v2qQpN6Dx9x2NmwrqlesOt3Ys4ol5/lFZ6Mg1B7OJCg=
cloud.google.com/go v0.121.2/go.mod h1:nRFlrHq39MNVWu+zESP2PosMWA0ryJw8KUBZ2iZpxbw=
cloud.google.com/go/auth v0.16.2 h1:QvBAGFPLrDeoiNjyfVunhQ10HKNYuOwZ5noee0M5df4=
cloud.google.com/go/auth v0.16.2/go.mod h1:sRBas2Y1fB1vZTdurouM0AzuYQBMZinrUYL8EufhtEA=
cloud.google.com/go v0.121.6 h1:waZiuajrI28iAf40cWgycWNgaXPO06dupuS+sgibK6c=
cloud.google.com/go v0.121.6/go.mod h1:coChdst4Ea5vUpiALcYKXEpR1S9ZgXbhEzzMcMR66vI=
cloud.google.com/go/auth v0.16.5 h1:mFWNQ2FEVWAliEQWpAdH80omXFokmrnbDhUS9cBywsI=
cloud.google.com/go/auth v0.16.5/go.mod h1:utzRfHMP+Vv0mpOkTRQoWD2q3BatTOoWbA7gCc2dUhQ=
cloud.google.com/go/auth/oauth2adapt v0.2.8 h1:keo8NaayQZ6wimpNSmW5OPc283g65QNIiLpZnkHRbnc=
cloud.google.com/go/auth/oauth2adapt v0.2.8/go.mod h1:XQ9y31RkqZCcwJWNSx2Xvric3RrU88hAYYbjDWYDL+c=
cloud.google.com/go/compute/metadata v0.7.0 h1:PBWF+iiAerVNe8UCHxdOt6eHLVc3ydFeOCw78U8ytSU=
cloud.google.com/go/compute/metadata v0.7.0/go.mod h1:j5MvL9PprKL39t166CoB1uVHfQMs4tFQZZcKwksXUjo=
cloud.google.com/go/compute/metadata v0.8.0 h1:HxMRIbao8w17ZX6wBnjhcDkW6lTFpgcaobyVfZWqRLA=
cloud.google.com/go/compute/metadata v0.8.0/go.mod h1:sYOGTp851OV9bOFJ9CH7elVvyzopvWQFNNghtDQ/Biw=
dario.cat/mergo v1.0.2 h1:85+piFYR1tMbRrLcDwR18y4UKJ3aH1Tbzi24VRW1TK8=
dario.cat/mergo v1.0.2/go.mod h1:E/hbnu0NxMFBjpMIE34DRGLWqDy0g5FuKDhCb31ngxA=
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1 h1:5YTBM8QDVIBN3sxBil89WfdAAqDZbyJTgh688DSxX5w=
github.com/Azure/azure-sdk-for-go/sdk/azcore v1.19.1/go.mod h1:YD5h/ldMsG0XiIw7PdyNhLxaM317eFh5yNLccNfGdyw=
github.com/Azure/azure-sdk-for-go/sdk/azidentity v1.10.1 h1:B+blDbyVIG3WaikNxPnhPiJ1MThR03b3vKGtER95TP4=
github.com/Azure/azure-sdk-for-go/sdk/azidentity v1.10.1/go.mod h1:JdM5psgjfBf5fo2uWOZhflPWyDBZ/O/CNAH9CtsuZE4=
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2 h1:9iefClla7iYpfYWdzPCRDozdmndjTm8DXdpCzPajMgA=
github.com/Azure/azure-sdk-for-go/sdk/internal v1.11.2/go.mod h1:XtLgD3ZD34DAaVIIAyG3objl5DynM3CQ/vMcbBNJZGI=
github.com/AzureAD/microsoft-authentication-library-for-go v1.4.2 h1:oygO0locgZJe7PpYPXT5A29ZkwJaPqcva7BVeemZOZs=
github.com/AzureAD/microsoft-authentication-library-for-go v1.4.2/go.mod h1:wP83P5OoQ5p6ip3ScPr0BAq0BvuPAvacpEuSzyouqAI=
github.com/BurntSushi/toml v1.5.0 h1:W5quZX/G/csjUnuI8SUYlsHs9M38FC7znL0lIO+DvMg=
github.com/BurntSushi/toml v1.5.0/go.mod h1:ukJfTF/6rtPPRCnwkur4qwRxa8vTRFBF0uk2lLoLwho=
github.com/Microsoft/go-winio v0.5.2/go.mod h1:WpS1mjBmmwHBEWmogvA2mj8546UReBk4v8QkMxJ6pZY=
github.com/Microsoft/go-winio v0.6.2 h1:F2VQgta7ecxGYO8k3ZZz3RS8fVIXVxONVUPlNERoyfY=
github.com/Microsoft/go-winio v0.6.2/go.mod h1:yd8OoFMLzJbo9gZq8j5qaps8bJ9aShtEA8Ipt1oGCvU=
@@ -17,48 +27,48 @@ github.com/andybalholm/cascadia v1.3.3 h1:AG2YHrzJIm4BZ19iwJ/DAua6Btl3IwJX+VI4kk
github.com/andybalholm/cascadia v1.3.3/go.mod h1:xNd9bqTn98Ln4DwST8/nG+H0yuB8Hmgu1YHNnWw0GeA=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be h1:9AeTilPcZAjCFIImctFaOjnTIavg87rW78vTPkQqLI8=
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be/go.mod h1:ySMOLuWl6zY27l47sB3qLNK6tF2fkHG55UZxx8oIVo4=
github.com/anthropics/anthropic-sdk-go v1.4.0 h1:fU1jKxYbQdQDiEXCxeW5XZRIOwKevn/PMg8Ay1nnUx0=
github.com/anthropics/anthropic-sdk-go v1.4.0/go.mod h1:AapDW22irxK2PSumZiQXYUFvsdQgkwIWlpESweWZI/c=
github.com/anthropics/anthropic-sdk-go v1.7.0 h1:5iVf5fG/2gqVsOce8mq02r/WdgqpokM/8DXg2Ue6C9Y=
github.com/anthropics/anthropic-sdk-go v1.7.0/go.mod h1:3qSNQ5NrAmjC8A2ykuruSQttfqfdEYNZY5o8c0XSHB8=
github.com/anthropics/anthropic-sdk-go v1.16.0 h1:nRkOFDqYXsHteoIhjdJr/5dsiKbFF3rflSv8ax50y8o=
github.com/anthropics/anthropic-sdk-go v1.16.0/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/anthropics/anthropic-sdk-go v1.19.0 h1:mO6E+ffSzLRvR/YUH9KJC0uGw0uV8GjISIuzem//3KE=
github.com/anthropics/anthropic-sdk-go v1.19.0/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de h1:FxWPpzIjnTlhPwqqXc4/vE0f7GvRjuAsbW+HOIe8KnA=
github.com/araddon/dateparse v0.0.0-20210429162001-6b43995a97de/go.mod h1:DCaWoUhZrYW9p1lxo/cm8EmUOOzAPSEZNGF2DK1dJgw=
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5 h1:0CwZNZbxp69SHPdPJAN/hZIm0C4OItdklCFmMRWYpio=
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5/go.mod h1:wHh0iHkYZB8zMSxRWpUBQtwG5a7fFgvEO+odwuTv2gs=
github.com/atotto/clipboard v0.1.4 h1:EH0zSVneZPSuFR11BlR9YppQTVDbh5+16AmcJi4g1z4=
github.com/atotto/clipboard v0.1.4/go.mod h1:ZY9tmq7sm5xIbd9bOK4onWV4S6X0u6GY7Vn0Yu86PYI=
github.com/aws/aws-sdk-go-v2 v1.36.4 h1:GySzjhVvx0ERP6eyfAbAuAXLtAda5TEy19E5q5W8I9E=
github.com/aws/aws-sdk-go-v2 v1.36.4/go.mod h1:LLXuLpgzEbD766Z5ECcRmi8AzSwfZItDtmABVkRLGzg=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10 h1:zAybnyUQXIZ5mok5Jqwlf58/TFE7uvd3IAsa1aF9cXs=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.6.10/go.mod h1:qqvMj6gHLR/EXWZw4ZbqlPbQUyenf4h82UQUlKc+l14=
github.com/aws/aws-sdk-go-v2/config v1.27.27 h1:HdqgGt1OAP0HkEDDShEl0oSYa9ZZBSOmKpdpsDMdO90=
github.com/aws/aws-sdk-go-v2/config v1.27.27/go.mod h1:MVYamCg76dFNINkZFu4n4RjDixhVr51HLj4ErWzrVwg=
github.com/aws/aws-sdk-go-v2/credentials v1.17.27 h1:2raNba6gr2IfA0eqqiP2XiQ0UVOpGPgDSi0I9iAP+UI=
github.com/aws/aws-sdk-go-v2/credentials v1.17.27/go.mod h1:gniiwbGahQByxan6YjQUMcW4Aov6bLC3m+evgcoN4r4=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11 h1:KreluoV8FZDEtI6Co2xuNk/UqI9iwMrOx/87PBNIKqw=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.16.11/go.mod h1:SeSUYBLsMYFoRvHE0Tjvn7kbxaUhl75CJi1sbfhMxkU=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35 h1:o1v1VFfPcDVlK3ll1L5xHsaQAFdNtZ5GXnNR7SwueC4=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.35/go.mod h1:rZUQNYMNG+8uZxz9FOerQJ+FceCiodXvixpeRtdESrU=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35 h1:R5b82ubO2NntENm3SAm0ADME+H630HomNJdgv+yZ3xw=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.6.35/go.mod h1:FuA+nmgMRfkzVKYDNEqQadvEMxtxl9+RLT9ribCwEMs=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0 h1:hT8rVHwugYE2lEfdFE0QWVo81lF7jMrYJVDWI+f+VxU=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.0/go.mod h1:8tu/lYfQfFe6IGnaOdrpVgEL2IrrDOf6/m9RQum4NkY=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1 h1:sD4KqDKG8aOaMWaWTMB8l8VnLa/Di7XHb0Uf4plrndA=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.34.1/go.mod h1:lrn8DOVFYFeaUZKxJ95T5eGDBjnhffgGz68Wq2sfBbA=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0 h1:eMOwQ8ZZK+76+08RfxeaGUtRFN6wxmD1rvqovc2kq2w=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.30.0/go.mod h1:0b5Rq7rUvSQFYHI1UO0zFTV/S6j6DUyuykXA80C+YOI=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3 h1:dT3MqvGhSoaIhRseqw2I0yH81l7wiR2vjs57O51EAm8=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.11.3/go.mod h1:GlAeCkHwugxdHaueRr4nhPuY+WW+gR8UjlcqzPr1SPI=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17 h1:HGErhhrxZlQ044RiM+WdoZxp0p+EGM62y3L6pwA4olE=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.11.17/go.mod h1:RkZEx4l0EHYDJpWppMJ3nD9wZJAa8/0lq9aVC+r2UII=
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4 h1:BXx0ZIxvrJdSgSvKTZ+yRBeSqqgPM89VPlulEcl37tM=
github.com/aws/aws-sdk-go-v2/service/sso v1.22.4/go.mod h1:ooyCOXjvJEsUw7x+ZDHeISPMhtwI3ZCB7ggFMcFfWLU=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4 h1:yiwVzJW2ZxZTurVbYWA7QOrAaCYQR72t0wrSBfoesUE=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.26.4/go.mod h1:0oxfLkpz3rQ/CHlx5hB7H69YUpFiI1tql6Q6Ne+1bCw=
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3 h1:ZsDKRLXGWHk8WdtyYMoGNO7bTudrvuKpDKgMVRlepGE=
github.com/aws/aws-sdk-go-v2/service/sts v1.30.3/go.mod h1:zwySh8fpFyXp9yOr/KVzxOl8SRqgf/IDw5aUt9UKFcQ=
github.com/aws/smithy-go v1.22.2 h1:6D9hW43xKFrRx/tXXfAlIZc4JI+yQe6snnWcQyxSyLQ=
github.com/aws/smithy-go v1.22.2/go.mod h1:irrKGvNn1InZwb2d7fkIRNucdfwR8R+Ts3wxYa/cJHg=
github.com/aws/aws-sdk-go-v2 v1.39.0 h1:xm5WV/2L4emMRmMjHFykqiA4M/ra0DJVSWUkDyBjbg4=
github.com/aws/aws-sdk-go-v2 v1.39.0/go.mod h1:sDioUELIUO9Znk23YVmIk86/9DOpkbyyVb1i/gUNFXY=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1 h1:i8p8P4diljCr60PpJp6qZXNlgX4m2yQFpYk+9ZT+J4E=
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.1/go.mod h1:ddqbooRZYNoJ2dsTwOty16rM+/Aqmk/GOXrK8cg7V00=
github.com/aws/aws-sdk-go-v2/config v1.31.8 h1:kQjtOLlTU4m4A64TsRcqwNChhGCwaPBt+zCQt/oWsHU=
github.com/aws/aws-sdk-go-v2/config v1.31.8/go.mod h1:QPpc7IgljrKwH0+E6/KolCgr4WPLerURiU592AYzfSY=
github.com/aws/aws-sdk-go-v2/credentials v1.18.12 h1:zmc9e1q90wMn8wQbjryy8IwA6Q4XlaL9Bx2zIqdNNbk=
github.com/aws/aws-sdk-go-v2/credentials v1.18.12/go.mod h1:3VzdRDR5u3sSJRI4kYcOSIBbeYsgtVk7dG5R/U6qLWY=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7 h1:Is2tPmieqGS2edBnmOJIbdvOA6Op+rRpaYR60iBAwXM=
github.com/aws/aws-sdk-go-v2/feature/ec2/imds v1.18.7/go.mod h1:F1i5V5421EGci570yABvpIXgRIBPb5JM+lSkHF6Dq5w=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7 h1:UCxq0X9O3xrlENdKf1r9eRJoKz/b0AfGkpp3a7FPlhg=
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.7/go.mod h1:rHRoJUNUASj5Z/0eqI4w32vKvC7atoWR0jC+IkmVH8k=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7 h1:Y6DTZUn7ZUC4th9FMBbo8LVE+1fyq3ofw+tRwkUd3PY=
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.7/go.mod h1:x3XE6vMnU9QvHN/Wrx2s44kwzV2o2g5x/siw4ZUJ9g8=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3 h1:bIqFDwgGXXN1Kpp99pDOdKMTTb5d2KyU5X/BZxjOkRo=
github.com/aws/aws-sdk-go-v2/internal/ini v1.8.3/go.mod h1:H5O/EsxDWyU+LP/V8i5sm8cxoZgc2fdNR9bxlOFrQTo=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1 h1:hZwht+1MdXlNot+A/r7SWqk0w2WVpiDUzRasdQFv1Vw=
github.com/aws/aws-sdk-go-v2/service/bedrock v1.46.1/go.mod h1:NFnqdOIaYD3MVMIlRjZ0sUzQPTWiWfES1sdalmLk5RA=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1 h1:8GTz2t0j7pclgugdXdcdTRh6NsIfHcQEKO/1tGDHRvU=
github.com/aws/aws-sdk-go-v2/service/bedrockruntime v1.40.1/go.mod h1:TM6uf2HPJT5w1RSPGHwtHDo8XDHUSHoBrGVKqA12cAU=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1 h1:oegbebPEMA/1Jny7kvwejowCaHz1FWZAQ94WXFNCyTM=
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.1/go.mod h1:kemo5Myr9ac0U9JfSjMo9yHLtw+pECEHsFtJ9tqCEI8=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7 h1:mLgc5QIgOy26qyh5bvW+nDoAppxgn3J2WV3m9ewq7+8=
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.7/go.mod h1:wXb/eQnqt8mDQIQTTmcw58B5mYGxzLGZGK8PWNFZ0BA=
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3 h1:7PKX3VYsZ8LUWceVRuv0+PU+E7OtQb1lgmi5vmUE9CM=
github.com/aws/aws-sdk-go-v2/service/sso v1.29.3/go.mod h1:Ql6jE9kyyWI5JHn+61UT/Y5Z0oyVJGmgmJbZD5g4unY=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4 h1:e0XBRn3AptQotkyBFrHAxFB8mDhAIOfsG+7KyJ0dg98=
github.com/aws/aws-sdk-go-v2/service/ssooidc v1.34.4/go.mod h1:XclEty74bsGBCr1s0VSaA11hQ4ZidK4viWK7rRfO88I=
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4 h1:PR00NXRYgY4FWHqOGx3fC3lhVKjsp1GdloDv2ynMSd8=
github.com/aws/aws-sdk-go-v2/service/sts v1.38.4/go.mod h1:Z+Gd23v97pX9zK97+tX4ppAgqCt3Z2dIXB02CtBncK8=
github.com/aws/smithy-go v1.23.0 h1:8n6I3gXzWJB2DxBDnfxgBaSX6oe0d/t10qGz7OKqMCE=
github.com/aws/smithy-go v1.23.0/go.mod h1:t1ufH5HMublsJYulve2RKmHDC15xu1f26kHCp/HgceI=
github.com/bytedance/sonic v1.13.3 h1:MS8gmaH16Gtirygw7jV91pDCN33NyMrPbN7qiYhEsF0=
github.com/bytedance/sonic v1.13.3/go.mod h1:o68xyaF9u2gvVBuGHPlUVCy+ZfmNNO5ETf1+KgkJhz4=
github.com/bytedance/sonic/loader v0.1.1/go.mod h1:ncP89zfokxS5LZrJxl5z0UJcsk4M4yY2JpfqGeCtNLU=
@@ -75,8 +85,9 @@ github.com/cpuguy83/go-md2man/v2 v2.0.6/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6N
github.com/cyphar/filepath-securejoin v0.4.1 h1:JyxxyPEaktOD+GAnqIqTf9A8tHyAG22rowi7HkoSU1s=
github.com/cyphar/filepath-securejoin v0.4.1/go.mod h1:Sdj7gXlvMcPZsbhwhQ33GguGLDGQL7h7bg04C/+u9jI=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc h1:U9qPSI2PIWSS1VwoXQT9A3Wy9MM3WgvqSxFWenqJduM=
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/elazarl/goproxy v1.7.2 h1:Y2o6urb7Eule09PjlhQRGNsqRfPmYI3KKQLFpCAV3+o=
github.com/elazarl/goproxy v1.7.2/go.mod h1:82vkLNir0ALaW14Rc399OTTjyNREgmdL2cVoIbS6XaE=
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
@@ -120,6 +131,8 @@ github.com/goccy/go-json v0.10.5 h1:Fq85nIqj+gXn/S5ahsiTlK3TmC85qgirsdTP/+DeaC4=
github.com/goccy/go-json v0.10.5/go.mod h1:oq7eo15ShAhp70Anwd5lgX2pLfOS3QCiwU/PULtXL6M=
github.com/gogs/chardet v0.0.0-20211120154057-b7413eaefb8f h1:3BSP1Tbs2djlpprl7wCLuiqMaUh5SJkkzI2gDs+FgLs=
github.com/gogs/chardet v0.0.0-20211120154057-b7413eaefb8f/go.mod h1:Pcatq5tYkCW2Q6yrR2VRHlbHpZ/R4/7qyL1TCF7vl14=
github.com/golang-jwt/jwt/v5 v5.2.2 h1:Rl4B7itRWVtYIHFrSNd7vhTiz9UpLdi6gZhZ3wEeDy8=
github.com/golang-jwt/jwt/v5 v5.2.2/go.mod h1:pqrtFR0X4osieyHYxtmOUWsAWrfe1Q5UVIyoH402zdk=
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8 h1:f+oWsMOmNPc8JmEHVZIycC7hBoQxHH9pNKQORJNozsQ=
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8/go.mod h1:wcDNUvekVysuuOpQKo3191zZyTpiI6se1N1ULghS0sw=
github.com/golang/protobuf v1.5.4 h1:i7eJL8qZTpSEXOPTxNKhASYpMn+8e5Q6AdndVa1dWek=
@@ -139,8 +152,8 @@ github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/googleapis/enterprise-certificate-proxy v0.3.6 h1:GW/XbdyBFQ8Qe+YAmFU9uHLo7OnF5tL52HFAgMmyrf4=
github.com/googleapis/enterprise-certificate-proxy v0.3.6/go.mod h1:MkHOF77EYAE7qfSuSS9PU6g4Nt4e11cnsDUowfwewLA=
github.com/googleapis/gax-go/v2 v2.14.2 h1:eBLnkZ9635krYIPD+ag1USrOAI0Nr0QYF3+/3GqO0k0=
github.com/googleapis/gax-go/v2 v2.14.2/go.mod h1:ON64QhlJkhVtSqp4v1uaK92VyZ2gmvDQsweuyLV+8+w=
github.com/googleapis/gax-go/v2 v2.15.0 h1:SyjDc1mGgZU5LncH8gimWo9lW1DtIfPibOG81vgd/bo=
github.com/googleapis/gax-go/v2 v2.15.0/go.mod h1:zVVkkxAQHa1RQpg9z2AUCMnKhi0Qld9rcmyfL1OZhoc=
github.com/gorilla/websocket v1.5.3 h1:saDtZ6Pbx/0u+bgYQ3q96pZgCzfhKXGPqt7kZ72aNNg=
github.com/gorilla/websocket v1.5.3/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE=
github.com/hasura/go-graphql-client v0.14.4 h1:bYU7/+V50T2YBGdNQXt6l4f2cMZPECPUd8cyCR+ixtw=
@@ -155,6 +168,8 @@ github.com/joho/godotenv v1.5.1 h1:7eLL/+HRGLY0ldzfGMeQkb7vMd0as4CfYvUVzLqw0N0=
github.com/joho/godotenv v1.5.1/go.mod h1:f4LDr5Voq0i2e/R5DDNOoa2zzDfwtkZa6DnEwAbqwq4=
github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=
github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo=
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51 h1:Z9n2FFNUXsshfwJMBgNA0RU6/i7WVaAegv3PtuIHPMs=
github.com/kballard/go-shellquote v0.0.0-20180428030007-95032a82bc51/go.mod h1:CzGEWj7cYgsdH8dAjBGEr58BoE7ScuLd+fwFZ44+/x8=
github.com/kevinburke/ssh_config v1.2.0 h1:x584FjTGwHzMwvHx18PXxbBVzfnxogHaAReU4gf13a4=
github.com/kevinburke/ssh_config v1.2.0/go.mod h1:CT57kijsi8u/K/BOFA39wgDQJ9CxiF4nAY/ojJ6r6mM=
github.com/klauspost/cpuid/v2 v2.0.9/go.mod h1:FInQzS24/EEf25PyTYn52gqo7WaD8xa0213Md/qVLRg=
@@ -168,6 +183,8 @@ github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/kylelemons/godebug v1.1.0 h1:RPNrshWIDI6G2gRW9EHilWtl7Z6Sb1BR0xunSBf0SNc=
github.com/kylelemons/godebug v1.1.0/go.mod h1:9/0rRGxNHcop5bhtWyNeEfOS8JIWk580+fNqagV/RAw=
github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ=
github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI=
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
@@ -180,12 +197,14 @@ github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
github.com/ollama/ollama v0.9.0 h1:GvdGhi8G/QMnFrY0TMLDy1bXua+Ify8KTkFe4ZY/OZs=
github.com/ollama/ollama v0.9.0/go.mod h1:aio9yQ7nc4uwIbn6S0LkGEPgn8/9bNQLL1nHuH+OcD0=
github.com/nicksnyder/go-i18n/v2 v2.6.0 h1:C/m2NNWNiTB6SK4Ao8df5EWm3JETSTIGNXBpMJTxzxQ=
github.com/nicksnyder/go-i18n/v2 v2.6.0/go.mod h1:88sRqr0C6OPyJn0/KRNaEz1uWorjxIKP7rUUcvycecE=
github.com/ollama/ollama v0.11.7 h1:CuYjaJ/YEnvLDpJocJbbVdpdVFyGA/OP6lKFyzZD4dI=
github.com/ollama/ollama v0.11.7/go.mod h1:9+1//yWPsDE2u+l1a5mpaKrYw4VdnSsRU3ioq5BvMms=
github.com/onsi/gomega v1.34.1 h1:EUMJIKUjM8sKjYbtxQI9A4z2o+rruxnzNvpknOXie6k=
github.com/onsi/gomega v1.34.1/go.mod h1:kU1QgUvBDLXBJq618Xvm2LUX6rSAfRaFRTcdOeDLwwY=
github.com/openai/openai-go v1.8.2 h1:UqSkJ1vCOPUpz9Ka5tS0324EJFEuOvMc+lA/EarJWP8=
github.com/openai/openai-go v1.8.2/go.mod h1:g461MYGXEXBVdV5SaR/5tNzNbSfwTBBefwc+LlDCK0Y=
github.com/openai/openai-go v1.12.0 h1:NBQCnXzqOTv5wsgNC36PrFEiskGfO5wccfCWDo9S1U0=
github.com/openai/openai-go v1.12.0/go.mod h1:g461MYGXEXBVdV5SaR/5tNzNbSfwTBBefwc+LlDCK0Y=
github.com/otiai10/copy v1.14.1 h1:5/7E6qsUMBaH5AnQ0sSLzzTg1oTECmcCmT6lvF45Na8=
github.com/otiai10/copy v1.14.1/go.mod h1:oQwrEDDOci3IM8dJF0d8+jnbfPDllW6vUjNc3DoZm9I=
github.com/otiai10/mint v1.6.3 h1:87qsV/aw1F5as1eH1zS/yqHY85ANKVMgkDrf9rcxbQs=
@@ -194,10 +213,13 @@ github.com/pelletier/go-toml/v2 v2.2.4 h1:mye9XuhQ6gvn5h28+VilKrrPoQVanw5PMw/TB0
github.com/pelletier/go-toml/v2 v2.2.4/go.mod h1:2gIqNv+qfxSVS7cM2xJQKtLSTLUE9V8t9Stt+h56mCY=
github.com/pjbgf/sha1cd v0.4.0 h1:NXzbL1RvjTUi6kgYZCX3fPwwl27Q1LJndxtUDVfJGRY=
github.com/pjbgf/sha1cd v0.4.0/go.mod h1:zQWigSxVmsHEZow5qaLtPYxpcKMMQpa09ixqBxuCS6A=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c h1:+mdjkGKdHQG3305AYmdv1U2eRNDiU2ErMBj1gwrq8eQ=
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c/go.mod h1:7rwL4CYBLnjLxUqIJNnCWiEdr3bn6IUYi15bNlnbCCU=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 h1:Jamvg5psRIccs7FGNTlIRMkT8wgtp5eCXdBlqhYGL6U=
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/rivo/uniseg v0.1.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/rogpeppe/go-internal v1.14.1 h1:UQB4HGPB6osV0SQTLymcB4TgvyWu6ZyliaW0tI/otEQ=
github.com/rogpeppe/go-internal v1.14.1/go.mod h1:MaRKkUm5W0goXpeCfT7UZI6fk/L7L7so1lCWt35ZSgc=
@@ -226,8 +248,8 @@ github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.1/go.mod h1:w2LPCIKwWwSfY2zedu0+kehJoqGctiVI29o6fzry7u4=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/tidwall/gjson v1.14.2/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
github.com/tidwall/gjson v1.18.0 h1:FIDeeyB800efLX89e5a8Y0BNH+LOngJyGrIWxG2FKQY=
github.com/tidwall/gjson v1.18.0/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
@@ -268,8 +290,10 @@ golang.org/x/crypto v0.13.0/go.mod h1:y6Z2r+Rw4iayiXXAIxJIDAJ1zMW4yaTpebo8fPOliY
golang.org/x/crypto v0.19.0/go.mod h1:Iy9bg/ha4yyC70EfRS8jz+B6ybOBKMaSxLj6P6oBDfU=
golang.org/x/crypto v0.23.0/go.mod h1:CKFgDieR+mRhux2Lsu27y0fO304Db0wZe70UKqHu0v8=
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
golang.org/x/crypto v0.39.0 h1:SHs+kF4LP+f+p14esP5jAoDpHU8Gu/v9lFRK6IT5imM=
golang.org/x/crypto v0.39.0/go.mod h1:L+Xg3Wf6HoL4Bn4238Z6ft6KfEpN0tJGo53AAPC632U=
golang.org/x/crypto v0.41.0 h1:WKYxWedPGCTVVl5+WHSSrOBT0O8lx32+zxmHxijgXp4=
golang.org/x/crypto v0.41.0/go.mod h1:pO5AFd7FA68rFak7rOAGVuygIISepHftHnr8dr6+sUc=
golang.org/x/crypto v0.45.0 h1:jMBrvKuj23MTlT0bQEOBcAE0mjg8mK9RXFhRH6nyF3Q=
golang.org/x/crypto v0.45.0/go.mod h1:XTGrrkGJve7CYK7J8PEww4aY7gM3qMCElcJQ8n8JdX4=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b h1:QoALfVG9rhQ/M7vYDScfPdWjGL9dlsVVM5VGh7aKoAA=
golang.org/x/exp v0.0.0-20250531010427-b6e5de432a8b/go.mod h1:U6Lno4MTRCDY+Ba7aCcauB9T60gsv5s4ralQzP72ZoQ=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
@@ -287,8 +311,10 @@ golang.org/x/net v0.15.0/go.mod h1:idbUs1IY1+zTqbi8yxTbhexhEEk5ur9LInksu6HrEpk=
golang.org/x/net v0.21.0/go.mod h1:bIjVDfnllIU7BJ2DNgfnXvpSvtn8VRwhlsaeUTyUS44=
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
golang.org/x/net v0.33.0/go.mod h1:HXLR5J+9DxmrqMwG9qjGCxZ+zKXxBru04zlTvWlWuN4=
golang.org/x/net v0.41.0 h1:vBTly1HeNPEn3wtREYfy4GZ/NECgw2Cnl+nK6Nz3uvw=
golang.org/x/net v0.41.0/go.mod h1:B/K4NNqkfmg07DQYrbwvSluqCJOOXwUjeb/5lOisjbA=
golang.org/x/net v0.43.0 h1:lat02VYK2j4aLzMzecihNvTlJNQUq316m2Mr9rnM6YE=
golang.org/x/net v0.43.0/go.mod h1:vhO1fvI4dGsIjh73sWfUVjj3N7CA9WkKJNQm2svM6Jg=
golang.org/x/net v0.47.0 h1:Mx+4dIFzqraBXUugkia1OOvlD6LemFo1ALMHjrXDOhY=
golang.org/x/net v0.47.0/go.mod h1:/jNxtkgq5yWUGYkaZGqo27cfGZ1c5Nen03aYrrKpVRU=
golang.org/x/oauth2 v0.30.0 h1:dnDm7JmhM45NNpd8FDDeLhK6FwqbOf4MLCM9zb1BOHI=
golang.org/x/oauth2 v0.30.0/go.mod h1:B++QgG3ZKulg6sRPGD/mqlHQs5rB3Ml9erfeDY7xKlU=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@@ -300,6 +326,8 @@ golang.org/x/sync v0.7.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sync v0.16.0 h1:ycBJEhp9p4vXvUZNszeOq0kGTPghopOL8q0fq3vstxw=
golang.org/x/sync v0.16.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
golang.org/x/sync v0.18.0 h1:kr88TuHDroi+UVf+0hZnirlk8o8T+4MrK6mr60WkH/I=
golang.org/x/sync v0.18.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -316,8 +344,10 @@ golang.org/x/sys v0.12.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.17.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.20.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.34.0 h1:H5Y5sJ2L2JRdyv7ROF1he/lPdvFsd0mJHFw2ThKHxLA=
golang.org/x/sys v0.34.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
golang.org/x/sys v0.35.0 h1:vz1N37gP5bs89s7He8XuIYXpyY0+QlsKmzipCbUtyxI=
golang.org/x/sys v0.35.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
golang.org/x/sys v0.38.0 h1:3yZWxaJjBmCWXqhN1qh02AkOnCQ1poK6oF+a7xWL6Gc=
golang.org/x/sys v0.38.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/telemetry v0.0.0-20240228155512-f48c80bd79b2/go.mod h1:TeRTkGYfJXctD9OcfyVLyj2J3IxLnKwHJR8f4D8a3YE=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
@@ -327,8 +357,9 @@ golang.org/x/term v0.12.0/go.mod h1:owVbMEjm3cBLCHdkQu9b1opXd4ETQWc3BhuQGKgXgvU=
golang.org/x/term v0.17.0/go.mod h1:lLRBjIVuehSbZlaOtGMbcMncT+aqLLLmKrsjNrUguwk=
golang.org/x/term v0.20.0/go.mod h1:8UkIAJTvZgivsXaD6/pH6U9ecQzZ45awqEOzuCvwpFY=
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
golang.org/x/term v0.32.0 h1:DR4lr0TjUs3epypdhTOkMmuF5CDFJ/8pOnbzMZPQ7bg=
golang.org/x/term v0.32.0/go.mod h1:uZG1FhGx848Sqfsq4/DlJr3xGGsYMu/L5GW4abiaEPQ=
golang.org/x/term v0.34.0 h1:O/2T7POpk0ZZ7MAzMeWFSg6S5IpWd/RXDlM9hgM3DR4=
golang.org/x/term v0.34.0/go.mod h1:5jC53AEywhIVebHgPVeg0mj8OD3VO9OzclacVrqpaAw=
golang.org/x/term v0.37.0 h1:8EGAD0qCmHYZg6J17DvsMy9/wJ7/D/4pV/wfnld5lTU=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
@@ -339,8 +370,10 @@ golang.org/x/text v0.13.0/go.mod h1:TvPlkZtksWOMsz7fbANvkp4WM8x/WCo/om8BMLbz+aE=
golang.org/x/text v0.14.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.15.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
golang.org/x/text v0.27.0 h1:4fGWRpyh641NLlecmyl4LOe6yDdfaYNrGb2zdfo4JV4=
golang.org/x/text v0.27.0/go.mod h1:1D28KMCvyooCX9hBiosv5Tz/+YLxj0j7XhWjpSUF7CU=
golang.org/x/text v0.28.0 h1:rhazDwis8INMIwQ4tpjLDzUhx6RlXqZNPEM0huQojng=
golang.org/x/text v0.28.0/go.mod h1:U8nCwOR8jO/marOQ0QbDiOngZVEBB7MAiitBuMjXiNU=
golang.org/x/text v0.31.0 h1:aC8ghyu4JhP8VojJ2lEHBnochRno1sgL6nEi9WGFGMM=
golang.org/x/text v0.31.0/go.mod h1:tKRAlv61yKIjGGHX/4tP1LTbc13YSec1pxVEWXzfoeM=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.1.12/go.mod h1:hNGJHUnrk76NpqgfD5Aqm5Crs+Hm0VOH/i9J2+nxYbc=
@@ -349,20 +382,20 @@ golang.org/x/tools v0.13.0/go.mod h1:HvlwmtVNQAhOuCjW7xxvovg8wbNq7LwfXh/k7wXUl58
golang.org/x/tools v0.21.1-0.20240508182429-e35e4ccd0d2d/go.mod h1:aiJjzUbINMkxbQROHiO6hDPo2LHcIPhhQsa9DLh0yGk=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/api v0.236.0 h1:CAiEiDVtO4D/Qja2IA9VzlFrgPnK3XVMmRoJZlSWbc0=
google.golang.org/api v0.236.0/go.mod h1:X1WF9CU2oTc+Jml1tiIxGmWFK/UZezdqEu09gcxZAj4=
google.golang.org/api v0.247.0 h1:tSd/e0QrUlLsrwMKmkbQhYVa109qIintOls2Wh6bngc=
google.golang.org/api v0.247.0/go.mod h1:r1qZOPmxXffXg6xS5uhx16Fa/UFY8QU/K4bfKrnvovM=
google.golang.org/genai v1.17.0 h1:lXYSnWShPYjxTouxRj0zF8RsNmSF+SKo7SQ7dM35NlI=
google.golang.org/genai v1.17.0/go.mod h1:QPj5NGJw+3wEOHg+PrsWwJKvG6UC84ex5FR7qAYsN/M=
google.golang.org/genproto v0.0.0-20250505200425-f936aa4a68b2 h1:1tXaIXCracvtsRxSBsYDiSBN0cuJvM7QYW+MrpIRY78=
google.golang.org/genproto v0.0.0-20250505200425-f936aa4a68b2/go.mod h1:49MsLSx0oWMOZqcpB3uL8ZOkAh1+TndpJ8ONoCBWiZk=
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822 h1:oWVWY3NzT7KJppx2UKhKmzPq4SRe0LdCijVRwvGeikY=
google.golang.org/genproto/googleapis/api v0.0.0-20250603155806-513f23925822/go.mod h1:h3c4v36UTKzUiuaOKQ6gr3S+0hovBtUrXzTG/i3+XEc=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822 h1:fc6jSaCT0vBduLYZHYrBBNY4dsWuvgyff9noRNDdBeE=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250603155806-513f23925822/go.mod h1:qQ0YXyHHx3XkvlzUtpXDkS29lDSafHMZBAZDc03LQ3A=
google.golang.org/grpc v1.73.0 h1:VIWSmpI2MegBtTuFt5/JWy2oXxtjJ/e89Z70ImfD2ok=
google.golang.org/grpc v1.73.0/go.mod h1:50sbHOUqWoCQGI8V2HQLJM0B+LMlIUjNSZmow7EVBQc=
google.golang.org/protobuf v1.36.6 h1:z1NpPI8ku2WgiWnf+t9wTPsn6eP1L7ksHUlkfLvd9xY=
google.golang.org/protobuf v1.36.6/go.mod h1:jduwjTPXsFjZGTmRluh+L6NjiWu7pchiJ2/5YcXBHnY=
google.golang.org/genproto v0.0.0-20250603155806-513f23925822 h1:rHWScKit0gvAPuOnu87KpaYtjK5zBMLcULh7gxkCXu4=
google.golang.org/genproto v0.0.0-20250603155806-513f23925822/go.mod h1:HubltRL7rMh0LfnQPkMH4NPDFEWp0jw3vixw7jEM53s=
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c h1:AtEkQdl5b6zsybXcbz00j1LwNodDuH6hVifIaNqk7NQ=
google.golang.org/genproto/googleapis/api v0.0.0-20250818200422-3122310a409c/go.mod h1:ea2MjsO70ssTfCjiwHgI0ZFqcw45Ksuk2ckf9G468GA=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c h1:qXWI/sQtv5UKboZ/zUk7h+mrf/lXORyI+n9DKDAusdg=
google.golang.org/genproto/googleapis/rpc v0.0.0-20250818200422-3122310a409c/go.mod h1:gw1tLEfykwDz2ET4a12jcXt4couGAm7IwsVaTy0Sflo=
google.golang.org/grpc v1.74.2 h1:WoosgB65DlWVC9FqI82dGsZhWFNBSLjQ84bjROOpMu4=
google.golang.org/grpc v1.74.2/go.mod h1:CtQ+BGjaAIXHs/5YS3i473GqwBBa1zGQNevxdeBEXrM=
google.golang.org/protobuf v1.36.7 h1:IgrO7UwFQGJdRNXH/sQux4R1Dj1WAKcLElzeeRaXV2A=
google.golang.org/protobuf v1.36.7/go.mod h1:jduwjTPXsFjZGTmRluh+L6NjiWu7pchiJ2/5YcXBHnY=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=

View File

@@ -3,12 +3,16 @@ package cli
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"strings"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
"github.com/danielmiessler/fabric/internal/tools/notifications"
)
// handleChatProcessing handles the main chat processing logic
@@ -16,10 +20,23 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
if messageTools != "" {
currentFlags.AppendMessage(messageTools)
}
// Check for pattern-specific model via environment variable
if currentFlags.Pattern != "" && currentFlags.Model == "" {
envVar := "FABRIC_MODEL_" + strings.ToUpper(strings.ReplaceAll(currentFlags.Pattern, "-", "_"))
if modelSpec := os.Getenv(envVar); modelSpec != "" {
parts := strings.SplitN(modelSpec, "|", 2)
if len(parts) == 2 {
currentFlags.Vendor = parts[0]
currentFlags.Model = parts[1]
} else {
currentFlags.Model = modelSpec
}
}
}
var chatter *core.Chatter
if chatter, err = registry.GetChatter(currentFlags.Model, currentFlags.ModelContextLength,
currentFlags.Strategy, currentFlags.Stream, currentFlags.DryRun); err != nil {
currentFlags.Vendor, currentFlags.Strategy, currentFlags.Stream, currentFlags.DryRun); err != nil {
return
}
@@ -42,12 +59,12 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
isTTSModel := isTTSModel(currentFlags.Model)
if isTTSModel && !isAudioOutput {
err = fmt.Errorf("TTS model '%s' requires audio output. Please specify an audio output file with -o flag (e.g., -o output.wav)", currentFlags.Model)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("tts_model_requires_audio_output"), currentFlags.Model))
return
}
if isAudioOutput && !isTTSModel {
err = fmt.Errorf("audio output file '%s' specified but model '%s' is not a TTS model. Please use a TTS model like gemini-2.5-flash-preview-tts", currentFlags.Output, currentFlags.Model)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("audio_output_file_specified_but_not_tts_model"), currentFlags.Output, currentFlags.Model))
return
}
@@ -59,7 +76,7 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
outputFile += ".wav"
}
if _, err = os.Stat(outputFile); err == nil {
err = fmt.Errorf("file %s already exists. Please choose a different filename or remove the existing file", outputFile)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("file_already_exists_choose_different"), outputFile))
return
}
}
@@ -79,7 +96,7 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
if !currentFlags.Stream || currentFlags.SuppressThink {
// For TTS models with audio output, show a user-friendly message instead of raw data
if isTTSModel && isAudioOutput && strings.HasPrefix(result, "FABRIC_AUDIO_DATA:") {
fmt.Printf("TTS audio generated successfully and saved to: %s\n", currentFlags.Output)
fmt.Printf(i18n.T("tts_audio_generated_successfully"), currentFlags.Output)
} else {
// print the result if it was not streamed already or suppress-think disabled streaming output
fmt.Println(result)
@@ -115,9 +132,65 @@ func handleChatProcessing(currentFlags *Flags, registry *core.PluginRegistry, me
}
}
}
// Send notification if requested
if chatOptions.Notification {
if err = sendNotification(chatOptions, chatReq.PatternName, result); err != nil {
// Log notification error but don't fail the main command
debuglog.Log("Failed to send notification: %v\n", err)
}
}
return
}
// sendNotification sends a desktop notification about command completion.
//
// When truncating the result for notification display, this function counts Unicode code points,
// not grapheme clusters. As a result, complex emoji or accented characters with multiple combining
// characters may be truncated improperly. This is a limitation of the current implementation.
func sendNotification(options *domain.ChatOptions, patternName, result string) error {
title := i18n.T("fabric_command_complete")
if patternName != "" {
title = fmt.Sprintf(i18n.T("fabric_command_complete_with_pattern"), patternName)
}
// Limit message length for notification display (counts Unicode code points)
message := i18n.T("command_completed_successfully")
if result != "" {
maxLength := 100
runes := []rune(result)
if len(runes) > maxLength {
message = fmt.Sprintf(i18n.T("output_truncated"), string(runes[:maxLength]))
} else {
message = fmt.Sprintf(i18n.T("output_full"), result)
}
// Clean up newlines for notification display
message = strings.ReplaceAll(message, "\n", " ")
}
// Use custom notification command if provided
if options.NotificationCommand != "" {
// SECURITY: Pass title and message as proper shell positional arguments $1 and $2
// This matches the documented interface where custom commands receive title and message as shell variables
cmd := exec.Command("sh", "-c", options.NotificationCommand+" \"$1\" \"$2\"", "--", title, message)
// For debugging: capture and display output from custom commands
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
// Use built-in notification system
notificationManager := notifications.NewNotificationManager()
if !notificationManager.IsAvailable() {
return fmt.Errorf("%s", i18n.T("no_notification_system_available"))
}
return notificationManager.Send(title, message)
}
// isTTSModel checks if the model is a text-to-speech model
func isTTSModel(modelName string) bool {
lowerModel := strings.ToLower(modelName)

166
internal/cli/chat_test.go Normal file
View File

@@ -0,0 +1,166 @@
package cli
import (
"strings"
"testing"
"github.com/danielmiessler/fabric/internal/domain"
)
func TestSendNotification_SecurityEscaping(t *testing.T) {
tests := []struct {
name string
title string
message string
command string
expectError bool
description string
}{
{
name: "Normal content",
title: "Test Title",
message: "Test message content",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Normal content should work fine",
},
{
name: "Content with backticks",
title: "Test Title",
message: "Test `whoami` injection",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Backticks should be escaped and not executed",
},
{
name: "Content with semicolon injection",
title: "Test Title",
message: "Test; echo INJECTED; echo end",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Semicolon injection should be prevented",
},
{
name: "Content with command substitution",
title: "Test Title",
message: "Test $(whoami) injection",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Command substitution should be escaped",
},
{
name: "Content with quote injection",
title: "Test Title",
message: "Test ' || echo INJECTED || echo ' end",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Quote injection should be prevented",
},
{
name: "Content with newlines",
title: "Test Title",
message: "Line 1\nLine 2\nLine 3",
command: `echo "Title: $1, Message: $2"`,
expectError: false,
description: "Newlines should be handled safely",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: tt.command,
Notification: true,
}
// This test mainly verifies that the function doesn't panic
// and properly escapes dangerous content. The actual command
// execution is tested separately in integration tests.
err := sendNotification(options, "test_pattern", tt.message)
if tt.expectError && err == nil {
t.Errorf("Expected error for %s, but got none", tt.description)
}
if !tt.expectError && err != nil {
t.Errorf("Unexpected error for %s: %v", tt.description, err)
}
})
}
}
func TestSendNotification_TitleGeneration(t *testing.T) {
tests := []struct {
name string
patternName string
expected string
}{
{
name: "No pattern name",
patternName: "",
expected: "Fabric Command Complete",
},
{
name: "With pattern name",
patternName: "summarize",
expected: "Fabric: summarize Complete",
},
{
name: "Pattern with special characters",
patternName: "test_pattern-v2",
expected: "Fabric: test_pattern-v2 Complete",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: `echo "Title: $1"`,
Notification: true,
}
// We're testing the title generation logic
// The actual notification command would echo the title
err := sendNotification(options, tt.patternName, "test message")
// The function should not error for valid inputs
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
})
}
}
func TestSendNotification_MessageTruncation(t *testing.T) {
longMessage := strings.Repeat("A", 150) // 150 characters
shortMessage := "Short message"
tests := []struct {
name string
message string
expected string
}{
{
name: "Short message",
message: shortMessage,
},
{
name: "Long message truncation",
message: longMessage,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
options := &domain.ChatOptions{
NotificationCommand: `echo "Message: $2"`,
Notification: true,
}
err := sendNotification(options, "test", tt.message)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
})
}
}

View File

@@ -3,10 +3,11 @@ package cli
import (
"encoding/json"
"fmt"
"os"
"strings"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai"
"github.com/danielmiessler/fabric/internal/tools/converter"
"github.com/danielmiessler/fabric/internal/tools/youtube"
@@ -19,6 +20,11 @@ func Cli(version string) (err error) {
return
}
// initialize internationalization using requested language
if _, err = i18n.Init(currentFlags.Language); err != nil {
return
}
if currentFlags.Setup {
if err = ensureEnvFile(); err != nil {
return
@@ -34,7 +40,7 @@ func Cli(version string) (err error) {
var registry, err2 = initializeFabric()
if err2 != nil {
if !currentFlags.Setup {
fmt.Fprintln(os.Stderr, err2.Error())
debuglog.Log("%s\n", err2.Error())
currentFlags.Setup = true
}
// Return early if registry is nil to prevent panics in subsequent handlers
@@ -74,10 +80,19 @@ func Cli(version string) (err error) {
return
}
// Handle transcription if specified
if currentFlags.TranscribeFile != "" {
var transcriptionMessage string
if transcriptionMessage, err = handleTranscription(currentFlags, registry); err != nil {
return
}
currentFlags.Message = AppendMessage(currentFlags.Message, transcriptionMessage)
}
// Process HTML readability if needed
if currentFlags.HtmlReadability {
if msg, cleanErr := converter.HtmlReadability(currentFlags.Message); cleanErr != nil {
fmt.Println("use original input, because can't apply html readability", cleanErr)
fmt.Println(i18n.T("html_readability_error"), cleanErr)
} else {
currentFlags.Message = msg
}
@@ -113,11 +128,11 @@ func processYoutubeVideo(
}
}
if flags.YouTubeTranscriptWithTimestamps {
if transcript, err = registry.YouTube.GrabTranscriptWithTimestamps(videoId, language); err != nil {
if transcript, err = registry.YouTube.GrabTranscriptWithTimestampsWithArgs(videoId, language, flags.YtDlpArgs); err != nil {
return
}
} else {
if transcript, err = registry.YouTube.GrabTranscript(videoId, language); err != nil {
if transcript, err = registry.YouTube.GrabTranscriptWithArgs(videoId, language, flags.YtDlpArgs); err != nil {
return
}
}

View File

@@ -13,6 +13,8 @@ import (
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/util"
"github.com/jessevdk/go-flags"
"golang.org/x/text/language"
@@ -23,86 +25,90 @@ import (
// Chat parameter defaults set in the struct tags must match domain.Default* constants
type Flags struct {
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
}
var debug = false
func Debugf(format string, a ...interface{}) {
if debug {
fmt.Printf("DEBUG: "+format, a...)
}
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (temperature, top_p, etc.). Only affects OpenAI-compatible providers. Anthropic models always use smart parameter selection to comply with model-specific requirements."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
Vendor string `short:"V" long:"vendor" yaml:"vendor" description:"Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
YtDlpArgs string `long:"yt-dlp-args" yaml:"ytDlpArgs" description:"Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
NoVariableReplacement bool `long:"no-variable-replacement" description:"Disable pattern variable replacement"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
TranscribeFile string `long:"transcribe-file" yaml:"transcribeFile" description:"Audio or video file to transcribe"`
TranscribeModel string `long:"transcribe-model" yaml:"transcribeModel" description:"Model to use for transcription (separate from chat model)"`
SplitMediaFile bool `long:"split-media-file" yaml:"splitMediaFile" description:"Split audio/video files larger than 25MB using ffmpeg"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
ListTranscriptionModels bool `long:"list-transcription-models" description:"List all available transcription models"`
Notification bool `long:"notification" yaml:"notification" description:"Send desktop notification when command completes"`
NotificationCommand string `long:"notification-command" yaml:"notificationCommand" description:"Custom command to run for notifications (overrides built-in notifications)"`
Thinking domain.ThinkingLevel `long:"thinking" yaml:"thinking" description:"Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic or Google Gemini)"`
Debug int `long:"debug" description:"Set debug level (0=off, 1=basic, 2=detailed, 3=trace)" default:"0"`
}
// Init Initialize flags. returns a Flags struct and an error
func Init() (ret *Flags, err error) {
debuglog.SetLevel(debuglog.LevelFromInt(parseDebugLevel(os.Args[1:])))
// Track which yaml-configured flags were set on CLI
usedFlags := make(map[string]bool)
yamlArgsScan := os.Args[1:]
@@ -118,11 +124,11 @@ func Init() (ret *Flags, err error) {
shortTag := field.Tag.Get("short")
if longTag != "" {
flagToYamlTag[longTag] = yamlTag
Debugf("Mapped long flag %s to yaml tag %s\n", longTag, yamlTag)
debuglog.Debug(debuglog.Detailed, "Mapped long flag %s to yaml tag %s\n", longTag, yamlTag)
}
if shortTag != "" {
flagToYamlTag[shortTag] = yamlTag
Debugf("Mapped short flag %s to yaml tag %s\n", shortTag, yamlTag)
debuglog.Debug(debuglog.Detailed, "Mapped short flag %s to yaml tag %s\n", shortTag, yamlTag)
}
}
}
@@ -134,18 +140,25 @@ func Init() (ret *Flags, err error) {
if flag != "" {
if yamlTag, exists := flagToYamlTag[flag]; exists {
usedFlags[yamlTag] = true
Debugf("CLI flag used: %s (yaml: %s)\n", flag, yamlTag)
debuglog.Debug(debuglog.Detailed, "CLI flag used: %s (yaml: %s)\n", flag, yamlTag)
}
}
}
// Parse CLI flags first
ret = &Flags{}
parser := flags.NewParser(ret, flags.Default)
parser := flags.NewParser(ret, flags.HelpFlag|flags.PassDoubleDash)
var args []string
if args, err = parser.Parse(); err != nil {
// Check if this is a help request and handle it with our custom help
if flagsErr, ok := err.(*flags.Error); ok && flagsErr.Type == flags.ErrHelp {
CustomHelpHandler(parser, os.Stdout)
os.Exit(0)
}
return
}
debuglog.SetLevel(debuglog.LevelFromInt(ret.Debug))
// Check to see if a ~/.config/fabric/config.yaml config file exists (only when user didn't specify a config)
if ret.Config == "" {
@@ -153,7 +166,7 @@ func Init() (ret *Flags, err error) {
if defaultConfigPath, err := util.GetDefaultConfigPath(); err == nil && defaultConfigPath != "" {
ret.Config = defaultConfigPath
} else if err != nil {
Debugf("Could not determine default config path: %v\n", err)
debuglog.Debug(debuglog.Detailed, "Could not determine default config path: %v\n", err)
}
}
@@ -178,13 +191,13 @@ func Init() (ret *Flags, err error) {
if flagField.CanSet() {
if yamlField.Type() != flagField.Type() {
if err := assignWithConversion(flagField, yamlField); err != nil {
Debugf("Type conversion failed for %s: %v\n", yamlTag, err)
debuglog.Debug(debuglog.Detailed, "Type conversion failed for %s: %v\n", yamlTag, err)
continue
}
} else {
flagField.Set(yamlField)
}
Debugf("Applied YAML value for %s: %v\n", yamlTag, yamlField.Interface())
debuglog.Debug(debuglog.Detailed, "Applied YAML value for %s: %v\n", yamlTag, yamlField.Interface())
}
}
}
@@ -210,6 +223,22 @@ func Init() (ret *Flags, err error) {
return
}
func parseDebugLevel(args []string) int {
for i := 0; i < len(args); i++ {
arg := args[i]
if arg == "--debug" && i+1 < len(args) {
if lvl, err := strconv.Atoi(args[i+1]); err == nil {
return lvl
}
} else if strings.HasPrefix(arg, "--debug=") {
if lvl, err := strconv.Atoi(strings.TrimPrefix(arg, "--debug=")); err == nil {
return lvl
}
}
}
return 0
}
func extractFlag(arg string) string {
var flag string
if strings.HasPrefix(arg, "--") {
@@ -253,33 +282,33 @@ func assignWithConversion(targetField, sourceField reflect.Value) error {
return nil
}
}
return fmt.Errorf("cannot convert string %q to %v", str, targetField.Kind())
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("cannot_convert_string"), str, targetField.Kind()))
}
return fmt.Errorf("unsupported conversion from %v to %v", sourceField.Kind(), targetField.Kind())
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("unsupported_conversion"), sourceField.Kind(), targetField.Kind()))
}
func loadYAMLConfig(configPath string) (*Flags, error) {
absPath, err := util.GetAbsolutePath(configPath)
if err != nil {
return nil, fmt.Errorf("invalid config path: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_config_path"), err))
}
data, err := os.ReadFile(absPath)
if err != nil {
if os.IsNotExist(err) {
return nil, fmt.Errorf("config file not found: %s", absPath)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("config_file_not_found"), absPath))
}
return nil, fmt.Errorf("error reading config file: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_reading_config_file"), err))
}
// Use the existing Flags struct for YAML unmarshal
config := &Flags{}
if err := yaml.Unmarshal(data, config); err != nil {
return nil, fmt.Errorf("error parsing config file: %w", err)
return nil, fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_parsing_config_file"), err))
}
Debugf("Config: %v\n", config)
debuglog.Debug(debuglog.Detailed, "Config: %v\n", config)
return config, nil
}
@@ -294,7 +323,7 @@ func readStdin() (ret string, err error) {
sb.WriteString(line)
break
}
err = fmt.Errorf("error reading piped message from stdin: %w", readErr)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_reading_piped_message"), readErr))
return
} else {
sb.WriteString(line)
@@ -312,7 +341,7 @@ func validateImageFile(imagePath string) error {
// Check if file already exists
if _, err := os.Stat(imagePath); err == nil {
return fmt.Errorf("image file already exists: %s", imagePath)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_file_already_exists"), imagePath))
}
// Check file extension
@@ -325,7 +354,7 @@ func validateImageFile(imagePath string) error {
}
}
return fmt.Errorf("invalid image file extension '%s'. Supported formats: .png, .jpeg, .jpg, .webp", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_file_extension"), ext))
}
// validateImageParameters validates image generation parameters
@@ -333,7 +362,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
if imagePath == "" {
// Check if any image parameters are specified without --image-file
if size != "" || quality != "" || background != "" || compression != 0 {
return fmt.Errorf("image parameters (--image-size, --image-quality, --image-background, --image-compression) can only be used with --image-file")
return fmt.Errorf("%s", i18n.T("image_parameters_require_image_file"))
}
return nil
}
@@ -349,7 +378,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image size '%s'. Supported sizes: 1024x1024, 1536x1024, 1024x1536, auto", size)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_size"), size))
}
}
@@ -364,7 +393,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image quality '%s'. Supported qualities: low, medium, high, auto", quality)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_quality"), quality))
}
}
@@ -379,7 +408,7 @@ func validateImageParameters(imagePath, size, quality, background string, compre
}
}
if !valid {
return fmt.Errorf("invalid image background '%s'. Supported backgrounds: opaque, transparent", background)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("invalid_image_background"), background))
}
}
@@ -389,17 +418,17 @@ func validateImageParameters(imagePath, size, quality, background string, compre
// Validate compression (only for jpeg/webp)
if compression != 0 { // 0 means not set
if ext != ".jpg" && ext != ".jpeg" && ext != ".webp" {
return fmt.Errorf("image compression can only be used with JPEG and WebP formats, not %s", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_compression_jpeg_webp_only"), ext))
}
if compression < 0 || compression > 100 {
return fmt.Errorf("image compression must be between 0 and 100, got %d", compression)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("image_compression_range_error"), compression))
}
}
// Validate background transparency (only for png/webp)
if background == "transparent" {
if ext != ".png" && ext != ".webp" {
return fmt.Errorf("transparent background can only be used with PNG and WebP formats, not %s", ext)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("transparent_background_png_webp_only"), ext))
}
}
@@ -427,38 +456,42 @@ func (o *Flags) BuildChatOptions() (ret *domain.ChatOptions, err error) {
}
ret = &domain.ChatOptions{
Model: o.Model,
Temperature: o.Temperature,
TopP: o.TopP,
PresencePenalty: o.PresencePenalty,
FrequencyPenalty: o.FrequencyPenalty,
Raw: o.Raw,
Seed: o.Seed,
ModelContextLength: o.ModelContextLength,
Search: o.Search,
SearchLocation: o.SearchLocation,
ImageFile: o.ImageFile,
ImageSize: o.ImageSize,
ImageQuality: o.ImageQuality,
ImageCompression: o.ImageCompression,
ImageBackground: o.ImageBackground,
SuppressThink: o.SuppressThink,
ThinkStartTag: startTag,
ThinkEndTag: endTag,
Voice: o.Voice,
Model: o.Model,
Temperature: o.Temperature,
TopP: o.TopP,
PresencePenalty: o.PresencePenalty,
FrequencyPenalty: o.FrequencyPenalty,
Raw: o.Raw,
Seed: o.Seed,
Thinking: o.Thinking,
ModelContextLength: o.ModelContextLength,
Search: o.Search,
SearchLocation: o.SearchLocation,
ImageFile: o.ImageFile,
ImageSize: o.ImageSize,
ImageQuality: o.ImageQuality,
ImageCompression: o.ImageCompression,
ImageBackground: o.ImageBackground,
SuppressThink: o.SuppressThink,
ThinkStartTag: startTag,
ThinkEndTag: endTag,
Voice: o.Voice,
Notification: o.Notification || o.NotificationCommand != "",
NotificationCommand: o.NotificationCommand,
}
return
}
func (o *Flags) BuildChatRequest(Meta string) (ret *domain.ChatRequest, err error) {
ret = &domain.ChatRequest{
ContextName: o.Context,
SessionName: o.Session,
PatternName: o.Pattern,
StrategyName: o.Strategy,
PatternVariables: o.PatternVariables,
InputHasVars: o.InputHasVars,
Meta: Meta,
ContextName: o.Context,
SessionName: o.Session,
PatternName: o.Pattern,
StrategyName: o.Strategy,
PatternVariables: o.PatternVariables,
InputHasVars: o.InputHasVars,
NoVariableReplacement: o.NoVariableReplacement,
Meta: Meta,
}
var message *chat.ChatCompletionMessage

View File

@@ -64,6 +64,7 @@ func TestBuildChatOptions(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 1,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",
@@ -88,6 +89,7 @@ func TestBuildChatOptionsDefaultSeed(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 0,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",
@@ -453,3 +455,30 @@ func TestBuildChatOptionsWithImageParameters(t *testing.T) {
assert.Contains(t, err.Error(), "can only be used with --image-file")
})
}
func TestExtractFlag(t *testing.T) {
tests := []struct {
name string
arg string
expected string
}{
// Unix-style flags
{"long flag", "--help", "help"},
{"long flag with value", "--pattern=analyze", "pattern"},
{"short flag", "-h", "h"},
{"short flag with value", "-p=test", "p"},
{"single dash", "-", ""},
{"double dash only", "--", ""},
// Non-flags
{"regular arg", "analyze", ""},
{"path arg", "./file.txt", ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := extractFlag(tt.arg)
assert.Equal(t, tt.expected, result)
})
}
}

291
internal/cli/help.go Normal file
View File

@@ -0,0 +1,291 @@
package cli
import (
"fmt"
"io"
"os"
"reflect"
"runtime"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/jessevdk/go-flags"
)
// flagDescriptionMap maps flag names to their i18n keys
var flagDescriptionMap = map[string]string{
"pattern": "choose_pattern_from_available",
"variable": "pattern_variables_help",
"context": "choose_context_from_available",
"session": "choose_session_from_available",
"attachment": "attachment_path_or_url_help",
"setup": "run_setup_for_reconfigurable_parts",
"temperature": "set_temperature",
"topp": "set_top_p",
"stream": "stream_help",
"presencepenalty": "set_presence_penalty",
"raw": "use_model_defaults_raw_help",
"frequencypenalty": "set_frequency_penalty",
"listpatterns": "list_all_patterns",
"listmodels": "list_all_available_models",
"listcontexts": "list_all_contexts",
"listsessions": "list_all_sessions",
"updatepatterns": "update_patterns",
"copy": "copy_to_clipboard",
"model": "choose_model",
"vendor": "specify_vendor_for_model",
"modelContextLength": "model_context_length_ollama",
"output": "output_to_file",
"output-session": "output_entire_session",
"latest": "number_of_latest_patterns",
"changeDefaultModel": "change_default_model",
"youtube": "youtube_url_help",
"playlist": "prefer_playlist_over_video",
"transcript": "grab_transcript_from_youtube",
"transcript-with-timestamps": "grab_transcript_with_timestamps",
"comments": "grab_comments_from_youtube",
"metadata": "output_video_metadata",
"yt-dlp-args": "additional_yt_dlp_args",
"language": "specify_language_code",
"scrape_url": "scrape_website_url",
"scrape_question": "search_question_jina",
"seed": "seed_for_lmm_generation",
"wipecontext": "wipe_context",
"wipesession": "wipe_session",
"printcontext": "print_context",
"printsession": "print_session",
"readability": "convert_html_readability",
"input-has-vars": "apply_variables_to_input",
"no-variable-replacement": "disable_pattern_variable_replacement",
"dry-run": "show_dry_run",
"serve": "serve_fabric_rest_api",
"serveOllama": "serve_fabric_api_ollama_endpoints",
"address": "address_to_bind_rest_api",
"api-key": "api_key_secure_server_routes",
"config": "path_to_yaml_config",
"version": "print_current_version",
"listextensions": "list_all_registered_extensions",
"addextension": "register_new_extension",
"rmextension": "remove_registered_extension",
"strategy": "choose_strategy_from_available",
"liststrategies": "list_all_strategies",
"listvendors": "list_all_vendors",
"shell-complete-list": "output_raw_list_shell_completion",
"search": "enable_web_search_tool",
"search-location": "set_location_web_search",
"image-file": "save_generated_image_to_file",
"image-size": "image_dimensions_help",
"image-quality": "image_quality_help",
"image-compression": "compression_level_jpeg_webp",
"image-background": "background_type_help",
"suppress-think": "suppress_thinking_tags",
"think-start-tag": "start_tag_thinking_sections",
"think-end-tag": "end_tag_thinking_sections",
"disable-responses-api": "disable_openai_responses_api",
"transcribe-file": "audio_video_file_transcribe",
"transcribe-model": "model_for_transcription",
"split-media-file": "split_media_files_ffmpeg",
"voice": "tts_voice_name",
"list-gemini-voices": "list_gemini_tts_voices",
"list-transcription-models": "list_transcription_models",
"notification": "send_desktop_notification",
"notification-command": "custom_notification_command",
"thinking": "set_reasoning_thinking_level",
"debug": "set_debug_level",
}
// TranslatedHelpWriter provides custom help output with translated descriptions
type TranslatedHelpWriter struct {
parser *flags.Parser
writer io.Writer
}
// NewTranslatedHelpWriter creates a new help writer with translations
func NewTranslatedHelpWriter(parser *flags.Parser, writer io.Writer) *TranslatedHelpWriter {
return &TranslatedHelpWriter{
parser: parser,
writer: writer,
}
}
// WriteHelp writes the help output with translated flag descriptions
func (h *TranslatedHelpWriter) WriteHelp() {
fmt.Fprintf(h.writer, "%s\n", i18n.T("usage_header"))
fmt.Fprintf(h.writer, " %s %s\n\n", h.parser.Name, i18n.T("options_placeholder"))
fmt.Fprintf(h.writer, "%s\n", i18n.T("application_options_header"))
h.writeAllFlags()
fmt.Fprintf(h.writer, "\n%s\n", i18n.T("help_options_header"))
fmt.Fprintf(h.writer, " -h, --help %s\n", i18n.T("help_message"))
}
// getTranslatedDescription gets the translated description for a flag
func (h *TranslatedHelpWriter) getTranslatedDescription(flagName string) string {
if i18nKey, exists := flagDescriptionMap[flagName]; exists {
return i18n.T(i18nKey)
}
// Fallback 1: Try to get original description from struct tag
if desc := h.getOriginalDescription(flagName); desc != "" {
return desc
}
// Fallback 2: Provide a user-friendly default message
return i18n.T("no_description_available")
}
// getOriginalDescription retrieves the original description from struct tags
func (h *TranslatedHelpWriter) getOriginalDescription(flagName string) string {
flags := &Flags{}
flagsType := reflect.TypeOf(flags).Elem()
for i := 0; i < flagsType.NumField(); i++ {
field := flagsType.Field(i)
longTag := field.Tag.Get("long")
if longTag == flagName {
if description := field.Tag.Get("description"); description != "" {
return description
}
break
}
}
return ""
}
// CustomHelpHandler handles help output with translations
func CustomHelpHandler(parser *flags.Parser, writer io.Writer) {
// Initialize i18n system with detected language if not already initialized
ensureI18nInitialized()
helpWriter := NewTranslatedHelpWriter(parser, writer)
helpWriter.WriteHelp()
}
// ensureI18nInitialized initializes the i18n system if not already done
func ensureI18nInitialized() {
// Try to detect language from command line args or environment
lang := detectLanguageFromArgs()
if lang == "" {
// Try to detect from environment variables
lang = detectLanguageFromEnv()
}
// Initialize i18n with detected language (or empty for system default)
i18n.Init(lang)
}
// detectLanguageFromArgs looks for --language/-g flag in os.Args
func detectLanguageFromArgs() string {
args := os.Args[1:]
for i, arg := range args {
if arg == "--language" || arg == "-g" || (runtime.GOOS == "windows" && arg == "/g") {
if i+1 < len(args) {
return args[i+1]
}
} else if strings.HasPrefix(arg, "--language=") {
return strings.TrimPrefix(arg, "--language=")
} else if strings.HasPrefix(arg, "-g=") {
return strings.TrimPrefix(arg, "-g=")
} else if runtime.GOOS == "windows" && strings.HasPrefix(arg, "/g:") {
return strings.TrimPrefix(arg, "/g:")
} else if runtime.GOOS == "windows" && strings.HasPrefix(arg, "/g=") {
return strings.TrimPrefix(arg, "/g=")
}
}
return ""
}
// detectLanguageFromEnv detects language from environment variables
func detectLanguageFromEnv() string {
// Check standard locale environment variables
envVars := []string{"LC_ALL", "LC_MESSAGES", "LANG"}
for _, envVar := range envVars {
if value := os.Getenv(envVar); value != "" {
// Extract language code from locale (e.g., "es_ES.UTF-8" -> "es")
if strings.Contains(value, "_") {
return strings.Split(value, "_")[0]
}
if value != "C" && value != "POSIX" {
return value
}
}
}
return ""
}
// writeAllFlags writes all flags with translated descriptions
func (h *TranslatedHelpWriter) writeAllFlags() {
// Use direct reflection on the Flags struct to get all flag definitions
flags := &Flags{}
flagsType := reflect.TypeOf(flags).Elem()
for i := 0; i < flagsType.NumField(); i++ {
field := flagsType.Field(i)
shortTag := field.Tag.Get("short")
longTag := field.Tag.Get("long")
defaultTag := field.Tag.Get("default")
if longTag == "" {
continue // Skip fields without long tags
}
// Get translated description
description := h.getTranslatedDescription(longTag)
// Format the flag line
var flagLine strings.Builder
flagLine.WriteString(" ")
if shortTag != "" {
flagLine.WriteString(fmt.Sprintf("-%s, ", shortTag))
}
flagLine.WriteString(fmt.Sprintf("--%s", longTag))
// Add parameter indicator for non-boolean flags
isBoolFlag := field.Type.Kind() == reflect.Bool ||
strings.HasSuffix(longTag, "patterns") ||
strings.HasSuffix(longTag, "models") ||
strings.HasSuffix(longTag, "contexts") ||
strings.HasSuffix(longTag, "sessions") ||
strings.HasSuffix(longTag, "extensions") ||
strings.HasSuffix(longTag, "strategies") ||
strings.HasSuffix(longTag, "vendors") ||
strings.HasSuffix(longTag, "voices") ||
longTag == "setup" || longTag == "stream" || longTag == "raw" ||
longTag == "copy" || longTag == "updatepatterns" ||
longTag == "output-session" || longTag == "changeDefaultModel" ||
longTag == "playlist" || longTag == "transcript" ||
longTag == "transcript-with-timestamps" || longTag == "comments" ||
longTag == "metadata" || longTag == "readability" ||
longTag == "input-has-vars" || longTag == "no-variable-replacement" ||
longTag == "dry-run" || longTag == "serve" || longTag == "serveOllama" ||
longTag == "version" || longTag == "shell-complete-list" ||
longTag == "search" || longTag == "suppress-think" ||
longTag == "disable-responses-api" || longTag == "split-media-file" ||
longTag == "notification"
if !isBoolFlag {
flagLine.WriteString("=")
}
// Pad to align descriptions
flagStr := flagLine.String()
padding := 34 - len(flagStr)
if padding < 2 {
padding = 2
}
fmt.Fprintf(h.writer, "%s%s%s", flagStr, strings.Repeat(" ", padding), description)
// Add default value if present
if defaultTag != "" && defaultTag != "0" && defaultTag != "false" {
fmt.Fprintf(h.writer, " (default: %s)", defaultTag)
}
fmt.Fprintf(h.writer, "\n")
}
}

View File

@@ -6,6 +6,7 @@ import (
"path/filepath"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
)
@@ -36,20 +37,20 @@ func initializeFabric() (registry *core.PluginRegistry, err error) {
func ensureEnvFile() (err error) {
var homedir string
if homedir, err = os.UserHomeDir(); err != nil {
return fmt.Errorf("could not determine user home directory: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_determine_home_dir"), err))
}
configDir := filepath.Join(homedir, ".config", "fabric")
envPath := filepath.Join(configDir, ".env")
if _, statErr := os.Stat(envPath); statErr != nil {
if !os.IsNotExist(statErr) {
return fmt.Errorf("could not stat .env file: %w", statErr)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_stat_env_file"), statErr))
}
if err = os.MkdirAll(configDir, ConfigDirPerms); err != nil {
return fmt.Errorf("could not create config directory: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_create_config_dir"), err))
}
if err = os.WriteFile(envPath, []byte{}, EnvFilePerms); err != nil {
return fmt.Errorf("could not create .env file: %w", err)
return fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_create_env_file"), err))
}
}
return

View File

@@ -5,7 +5,10 @@ import (
"os"
"strconv"
openai "github.com/openai/openai-go"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/plugins/ai"
"github.com/danielmiessler/fabric/internal/plugins/ai/gemini"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
@@ -36,7 +39,16 @@ func handleListingCommands(currentFlags *Flags, fabricDb *fsdb.Db, registry *cor
if models, err = registry.VendorManager.GetModels(); err != nil {
return true, err
}
models.Print(currentFlags.ShellCompleteOutput)
if currentFlags.Vendor != "" {
models = models.FilterByVendor(currentFlags.Vendor)
}
if currentFlags.ShellCompleteOutput {
models.Print(true)
} else {
models.PrintWithVendor(false, registry.Defaults.Vendor.Value, registry.Defaults.Model.Value)
}
return true, nil
}
@@ -66,5 +78,30 @@ func handleListingCommands(currentFlags *Flags, fabricDb *fsdb.Db, registry *cor
return true, nil
}
if currentFlags.ListTranscriptionModels {
listTranscriptionModels(currentFlags.ShellCompleteOutput)
return true, nil
}
return false, nil
}
// listTranscriptionModels lists all available transcription models
func listTranscriptionModels(shellComplete bool) {
models := []string{
string(openai.AudioModelWhisper1),
string(openai.AudioModelGPT4oMiniTranscribe),
string(openai.AudioModelGPT4oTranscribe),
}
if shellComplete {
for _, model := range models {
fmt.Println(model)
}
} else {
fmt.Println(i18n.T("available_transcription_models"))
for _, model := range models {
fmt.Printf(" %s\n", model)
}
}
}

View File

@@ -7,30 +7,35 @@ import (
"strings"
"github.com/atotto/clipboard"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
)
func CopyToClipboard(message string) (err error) {
if err = clipboard.WriteAll(message); err != nil {
err = fmt.Errorf("could not copy to clipboard: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("could_not_copy_to_clipboard"), err))
}
return
}
func CreateOutputFile(message string, fileName string) (err error) {
if _, err = os.Stat(fileName); err == nil {
err = fmt.Errorf("file %s already exists, not overwriting. Rename the existing file or choose a different name", fileName)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("file_already_exists_not_overwriting"), fileName))
return
}
var file *os.File
if file, err = os.Create(fileName); err != nil {
err = fmt.Errorf("error creating file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_creating_file"), err))
return
}
defer file.Close()
if !strings.HasSuffix(message, "\n") {
message += "\n"
}
if _, err = file.WriteString(message); err != nil {
err = fmt.Errorf("error writing to file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_writing_to_file"), err))
} else {
fmt.Fprintf(os.Stderr, "\n\n[Output also written to %s]\n", fileName)
debuglog.Log("\n\n[Output also written to %s]\n", fileName)
}
return
}
@@ -45,13 +50,13 @@ func CreateAudioOutputFile(audioData []byte, fileName string) (err error) {
// File existence check is now done in the CLI layer before TTS generation
var file *os.File
if file, err = os.Create(fileName); err != nil {
err = fmt.Errorf("error creating audio file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_creating_audio_file"), err))
return
}
defer file.Close()
if _, err = file.Write(audioData); err != nil {
err = fmt.Errorf("error writing audio data to file: %v", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_writing_audio_data"), err))
}
// No redundant output message here - the CLI layer handles success messaging
return

View File

@@ -24,5 +24,34 @@ func TestCreateOutputFile(t *testing.T) {
t.Fatalf("CreateOutputFile() error = %v", err)
}
defer os.Remove(fileName)
t.Cleanup(func() { os.Remove(fileName) })
data, err := os.ReadFile(fileName)
if err != nil {
t.Fatalf("failed to read output file: %v", err)
}
expected := message + "\n"
if string(data) != expected {
t.Fatalf("expected file contents %q, got %q", expected, data)
}
}
func TestCreateOutputFileMessageWithTrailingNewline(t *testing.T) {
fileName := "test_output_with_newline.txt"
message := "test message with newline\n"
if err := CreateOutputFile(message, fileName); err != nil {
t.Fatalf("CreateOutputFile() error = %v", err)
}
t.Cleanup(func() { os.Remove(fileName) })
data, err := os.ReadFile(fileName)
if err != nil {
t.Fatalf("failed to read output file: %v", err)
}
if string(data) != message {
t.Fatalf("expected file contents %q, got %q", message, data)
}
}

View File

@@ -4,6 +4,7 @@ import (
"fmt"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/tools/youtube"
)
@@ -11,7 +12,7 @@ import (
func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (messageTools string, err error) {
if currentFlags.YouTube != "" {
if !registry.YouTube.IsConfigured() {
err = fmt.Errorf("YouTube is not configured, please run the setup procedure")
err = fmt.Errorf("%s", i18n.T("youtube_not_configured"))
return
}
@@ -25,7 +26,7 @@ func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (m
} else {
var videos []*youtube.VideoMeta
if videos, err = registry.YouTube.FetchPlaylistVideos(playlistId); err != nil {
err = fmt.Errorf("error fetching playlist videos: %w", err)
err = fmt.Errorf("%s", fmt.Sprintf(i18n.T("error_fetching_playlist_videos"), err))
return
}
@@ -58,7 +59,7 @@ func handleToolProcessing(currentFlags *Flags, registry *core.PluginRegistry) (m
if currentFlags.ScrapeURL != "" || currentFlags.ScrapeQuestion != "" {
if !registry.Jina.IsConfigured() {
err = fmt.Errorf("scraping functionality is not configured. Please set up Jina to enable scraping")
err = fmt.Errorf("%s", i18n.T("scraping_not_configured"))
return
}
// Check if the scrape_url flag is set and call ScrapeURL

View File

@@ -0,0 +1,37 @@
package cli
import (
"context"
"fmt"
"github.com/danielmiessler/fabric/internal/core"
"github.com/danielmiessler/fabric/internal/i18n"
)
type transcriber interface {
TranscribeFile(ctx context.Context, filePath, model string, split bool) (string, error)
}
func handleTranscription(flags *Flags, registry *core.PluginRegistry) (message string, err error) {
vendorName := flags.Vendor
if vendorName == "" {
vendorName = "OpenAI"
}
vendor := registry.VendorManager.FindByName(vendorName)
if vendor == nil {
return "", fmt.Errorf("%s", fmt.Sprintf(i18n.T("vendor_not_configured"), vendorName))
}
tr, ok := vendor.(transcriber)
if !ok {
return "", fmt.Errorf("%s", fmt.Sprintf(i18n.T("vendor_no_transcription_support"), vendorName))
}
model := flags.TranscribeModel
if model == "" {
return "", fmt.Errorf("%s", i18n.T("transcription_model_required"))
}
if message, err = tr.TranscribeFile(context.Background(), flags.TranscribeFile, model, flags.SplitMediaFile); err != nil {
return
}
return
}

View File

@@ -32,11 +32,9 @@ type Chatter struct {
// Send processes a chat request and applies file changes for create_coding_feature pattern
func (o *Chatter) Send(request *domain.ChatRequest, opts *domain.ChatOptions) (session *fsdb.Session, err error) {
modelToUse := opts.Model
if modelToUse == "" {
modelToUse = o.model
}
if o.vendor.NeedsRawMode(modelToUse) {
// Use o.model (normalized) for NeedsRawMode check instead of opts.Model
// This ensures case-insensitive model names work correctly (e.g., "GPT-5" → "gpt-5")
if o.vendor.NeedsRawMode(o.model) {
opts.Raw = true
}
if session, err = o.BuildSession(request, opts.Raw); err != nil {
@@ -57,6 +55,10 @@ func (o *Chatter) Send(request *domain.ChatRequest, opts *domain.ChatOptions) (s
if opts.Model == "" {
opts.Model = o.model
} else {
// Ensure opts.Model uses the normalized name from o.model if they refer to the same model
// This handles cases where user provides "GPT-5" but we've normalized it to "gpt-5"
opts.Model = o.model
}
if opts.ModelContextLength == 0 {
@@ -69,6 +71,7 @@ func (o *Chatter) Send(request *domain.ChatRequest, opts *domain.ChatOptions) (s
responseChan := make(chan string)
errChan := make(chan error, 1)
done := make(chan struct{})
printedStream := false
go func() {
defer close(done)
@@ -81,9 +84,14 @@ func (o *Chatter) Send(request *domain.ChatRequest, opts *domain.ChatOptions) (s
message += response
if !opts.SuppressThink {
fmt.Print(response)
printedStream = true
}
}
if printedStream && !opts.SuppressThink && !strings.HasSuffix(message, "\n") {
fmt.Println()
}
// Wait for goroutine to finish
<-done
@@ -175,12 +183,12 @@ func (o *Chatter) BuildSession(request *domain.ChatRequest, raw bool) (session *
if request.Message == nil {
request.Message = &chat.ChatCompletionMessage{
Role: chat.ChatMessageRoleUser,
Content: " ",
Content: "",
}
}
// Now we know request.Message is not nil, process template variables
if request.InputHasVars {
if request.InputHasVars && !request.NoVariableReplacement {
request.Message.Content, err = template.ApplyTemplate(request.Message.Content, request.PatternVariables, "")
if err != nil {
return nil, err
@@ -190,7 +198,12 @@ func (o *Chatter) BuildSession(request *domain.ChatRequest, raw bool) (session *
var patternContent string
inputUsed := false
if request.PatternName != "" {
pattern, err := o.db.Patterns.GetApplyVariables(request.PatternName, request.PatternVariables, request.Message.Content)
var pattern *fsdb.Pattern
if request.NoVariableReplacement {
pattern, err = o.db.Patterns.GetWithoutVariables(request.PatternName, request.Message.Content)
} else {
pattern, err = o.db.Patterns.GetApplyVariables(request.PatternName, request.PatternVariables, request.Message.Content)
}
if err != nil {
return nil, fmt.Errorf("could not get pattern %s: %v", request.PatternName, err)

View File

@@ -10,6 +10,8 @@ import (
"strconv"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins/ai/anthropic"
"github.com/danielmiessler/fabric/internal/plugins/ai/azure"
"github.com/danielmiessler/fabric/internal/plugins/ai/bedrock"
@@ -20,7 +22,7 @@ import (
"github.com/danielmiessler/fabric/internal/plugins/ai/ollama"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai_compatible"
"github.com/danielmiessler/fabric/internal/plugins/ai/perplexity" // Added Perplexity plugin
"github.com/danielmiessler/fabric/internal/plugins/ai/perplexity"
"github.com/danielmiessler/fabric/internal/plugins/strategy"
"github.com/samber/lo"
@@ -130,7 +132,7 @@ func (o *PluginRegistry) ListVendors(out io.Writer) error {
vendors := lo.Map(o.VendorsAll.Vendors, func(vendor ai.Vendor, _ int) string {
return vendor.GetName()
})
fmt.Fprint(out, "Available Vendors:\n\n")
fmt.Fprintf(out, "%s\n\n", i18n.T("available_vendors_header"))
for _, vendor := range vendors {
fmt.Fprintf(out, "%s\n", vendor)
}
@@ -220,9 +222,8 @@ func (o *PluginRegistry) Setup() (err error) {
}
}
if _, ok := o.VendorManager.VendorsByName[plugin.GetName()]; !ok {
var vendor ai.Vendor
if vendor, ok = plugin.(ai.Vendor); ok {
if o.VendorManager.FindByName(plugin.GetName()) == nil {
if vendor, ok := plugin.(ai.Vendor); ok {
o.VendorManager.AddVendors(vendor)
}
}
@@ -288,7 +289,7 @@ func (o *PluginRegistry) Configure() (err error) {
return
}
func (o *PluginRegistry) GetChatter(model string, modelContextLength int, strategy string, stream bool, dryRun bool) (ret *Chatter, err error) {
func (o *PluginRegistry) GetChatter(model string, modelContextLength int, vendorName string, strategy string, stream bool, dryRun bool) (ret *Chatter, err error) {
ret = &Chatter{
db: o.Db,
Stream: stream,
@@ -317,14 +318,44 @@ func (o *PluginRegistry) GetChatter(model string, modelContextLength int, strate
ret.model = defaultModel
}
} else if model == "" {
ret.vendor = vendorManager.FindByName(defaultVendor)
if vendorName != "" {
ret.vendor = vendorManager.FindByName(vendorName)
} else {
ret.vendor = vendorManager.FindByName(defaultVendor)
}
ret.model = defaultModel
} else {
var models *ai.VendorsModels
if models, err = vendorManager.GetModels(); err != nil {
return
}
ret.vendor = vendorManager.FindByName(models.FindGroupsByItemFirst(model))
// Normalize model name to match actual available model (case-insensitive)
// This must be done BEFORE checking vendor availability
actualModelName := models.FindModelNameCaseInsensitive(model)
if actualModelName != "" {
model = actualModelName // Use normalized name for all subsequent checks
}
if vendorName != "" {
// ensure vendor exists and provides model
ret.vendor = vendorManager.FindByName(vendorName)
availableVendors := models.FindGroupsByItem(model)
vendorAvailable := lo.ContainsBy(availableVendors, func(name string) bool {
return strings.EqualFold(name, vendorName)
})
if ret.vendor == nil || !vendorAvailable {
err = fmt.Errorf("model %s not available for vendor %s", model, vendorName)
return
}
} else {
availableVendors := models.FindGroupsByItem(model)
if len(availableVendors) > 1 {
debuglog.Log("Warning: multiple vendors provide model %s: %s. Using %s. Specify --vendor to select a vendor.\n", model, strings.Join(availableVendors, ", "), availableVendors[0])
}
ret.vendor = vendorManager.FindByName(models.FindGroupsByItemFirst(model))
}
ret.model = model
}

View File

@@ -1,10 +1,20 @@
package core
import (
"bytes"
"context"
"io"
"os"
"strings"
"testing"
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/danielmiessler/fabric/internal/plugins/ai"
"github.com/danielmiessler/fabric/internal/plugins/db/fsdb"
"github.com/danielmiessler/fabric/internal/tools"
)
func TestSaveEnvFile(t *testing.T) {
@@ -19,3 +29,70 @@ func TestSaveEnvFile(t *testing.T) {
t.Fatalf("SaveEnvFile() error = %v", err)
}
}
// testVendor implements ai.Vendor for testing purposes
type testVendor struct {
name string
models []string
}
func (m *testVendor) GetName() string { return m.name }
func (m *testVendor) GetSetupDescription() string { return m.name }
func (m *testVendor) IsConfigured() bool { return true }
func (m *testVendor) Configure() error { return nil }
func (m *testVendor) Setup() error { return nil }
func (m *testVendor) SetupFillEnvFileContent(*bytes.Buffer) {}
func (m *testVendor) ListModels() ([]string, error) { return m.models, nil }
func (m *testVendor) SendStream([]*chat.ChatCompletionMessage, *domain.ChatOptions, chan string) error {
return nil
}
func (m *testVendor) Send(context.Context, []*chat.ChatCompletionMessage, *domain.ChatOptions) (string, error) {
return "", nil
}
func (m *testVendor) NeedsRawMode(string) bool { return false }
func TestGetChatter_WarnsOnAmbiguousModel(t *testing.T) {
tempDir := t.TempDir()
db := fsdb.NewDb(tempDir)
vendorA := &testVendor{name: "VendorA", models: []string{"shared-model"}}
vendorB := &testVendor{name: "VendorB", models: []string{"shared-model"}}
vm := ai.NewVendorsManager()
vm.AddVendors(vendorA, vendorB)
defaults := &tools.Defaults{
PluginBase: &plugins.PluginBase{},
Vendor: &plugins.Setting{Value: "VendorA"},
Model: &plugins.SetupQuestion{Setting: &plugins.Setting{Value: "shared-model"}},
ModelContextLength: &plugins.SetupQuestion{Setting: &plugins.Setting{Value: "0"}},
}
registry := &PluginRegistry{Db: db, VendorManager: vm, Defaults: defaults}
r, w, _ := os.Pipe()
oldStderr := os.Stderr
os.Stderr = w
// Redirect log output to our pipe to capture unconditional log messages
debuglog.SetOutput(w)
defer func() {
os.Stderr = oldStderr
debuglog.SetOutput(oldStderr)
}()
chatter, err := registry.GetChatter("shared-model", 0, "", "", false, false)
w.Close()
warning, _ := io.ReadAll(r)
if err != nil {
t.Fatalf("GetChatter() error = %v", err)
}
// Verify that one of the valid vendors was selected (don't care which one due to map iteration randomness)
vendorName := chatter.vendor.GetName()
if vendorName != "VendorA" && vendorName != "VendorB" {
t.Fatalf("expected vendor VendorA or VendorB, got %s", vendorName)
}
if !strings.Contains(string(warning), "multiple vendors provide model shared-model") {
t.Fatalf("expected warning about multiple vendors, got %q", string(warning))
}
}

View File

@@ -13,40 +13,44 @@ const (
)
type ChatRequest struct {
ContextName string
SessionName string
PatternName string
PatternVariables map[string]string
Message *chat.ChatCompletionMessage
Language string
Meta string
InputHasVars bool
StrategyName string
ContextName string
SessionName string
PatternName string
PatternVariables map[string]string
Message *chat.ChatCompletionMessage
Language string
Meta string
InputHasVars bool
NoVariableReplacement bool
StrategyName string
}
type ChatOptions struct {
Model string
Temperature float64
TopP float64
PresencePenalty float64
FrequencyPenalty float64
Raw bool
Seed int
ModelContextLength int
MaxTokens int
Search bool
SearchLocation string
ImageFile string
ImageSize string
ImageQuality string
ImageCompression int
ImageBackground string
SuppressThink bool
ThinkStartTag string
ThinkEndTag string
AudioOutput bool
AudioFormat string
Voice string
Model string
Temperature float64
TopP float64
PresencePenalty float64
FrequencyPenalty float64
Raw bool
Seed int
Thinking ThinkingLevel
ModelContextLength int
MaxTokens int
Search bool
SearchLocation string
ImageFile string
ImageSize string
ImageQuality string
ImageCompression int
ImageBackground string
SuppressThink bool
ThinkStartTag string
ThinkEndTag string
AudioOutput bool
AudioFormat string
Voice string
Notification bool
NotificationCommand string
}
// NormalizeMessages remove empty messages and ensure messages order user-assist-user

View File

@@ -0,0 +1,34 @@
package domain
// ThinkingLevel represents reasoning/thinking levels supported across providers.
type ThinkingLevel string
const (
ThinkingOff ThinkingLevel = "off"
ThinkingLow ThinkingLevel = "low"
ThinkingMedium ThinkingLevel = "medium"
ThinkingHigh ThinkingLevel = "high"
)
// ThinkingBudgets defines standardized token budgets for reasoning-enabled models.
// The map assigns a maximum token count to each ThinkingLevel, representing the
// amount of context or computation that can be used for reasoning at that level.
// These values (e.g., 1024 for low, 2048 for medium, 4096 for high) are used to
// Token budget constants for each ThinkingLevel.
// These values are chosen to align with typical context window sizes for LLMs at different reasoning levels.
// Adjust these if model capabilities change.
const (
// TokenBudgetLow is suitable for basic reasoning or smaller models (e.g., 1k context window).
TokenBudgetLow int64 = 1024
// TokenBudgetMedium is suitable for intermediate reasoning or mid-sized models (e.g., 2k context window).
TokenBudgetMedium int64 = 2048
// TokenBudgetHigh is suitable for advanced reasoning or large models (e.g., 4k context window).
TokenBudgetHigh int64 = 4096
)
// ThinkingBudgets defines standardized token budgets for reasoning-enabled models.
var ThinkingBudgets = map[ThinkingLevel]int64{
ThinkingLow: TokenBudgetLow,
ThinkingMedium: TokenBudgetMedium,
ThinkingHigh: TokenBudgetHigh,
}

240
internal/i18n/i18n.go Normal file
View File

@@ -0,0 +1,240 @@
package i18n
import (
"embed"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strings"
"sync"
"github.com/nicksnyder/go-i18n/v2/i18n"
"golang.org/x/text/language"
)
// embedded default locales
//
//go:embed locales/*.json
var localeFS embed.FS
var (
translator *i18n.Localizer
initOnce sync.Once
)
// defaultLanguageVariants maps language codes without regions to their default regional variants.
// This is used when a language without a base file is requested.
var defaultLanguageVariants = map[string]string{
"pt": "pt-BR", // Portuguese defaults to Brazilian Portuguese for backward compatibility
// Note: We currently have base files for these languages, but if we add regional variants
// in the future, these defaults will be used:
// "de": "de-DE", // German would default to Germany German
// "en": "en-US", // English would default to US English
// "es": "es-ES", // Spanish would default to Spain Spanish
// "fa": "fa-IR", // Persian would default to Iran Persian
// "fr": "fr-FR", // French would default to France French
// "it": "it-IT", // Italian would default to Italy Italian
// "ja": "ja-JP", // Japanese would default to Japan Japanese
// "zh": "zh-CN", // Chinese would default to Simplified Chinese
}
// Init initializes the i18n bundle and localizer. It loads the specified locale
// and falls back to English if loading fails.
// Translation files are searched in the user config directory and downloaded
// from GitHub if missing.
//
// If locale is empty, it will attempt to detect the system locale from
// environment variables (LC_ALL, LC_MESSAGES, LANG) following POSIX standards.
func Init(locale string) (*i18n.Localizer, error) {
// Use preferred locale detection if no explicit locale provided
locale = getPreferredLocale(locale)
// Normalize the locale to BCP 47 format (with hyphens)
locale = normalizeToBCP47(locale)
if locale == "" {
locale = "en"
}
bundle := i18n.NewBundle(language.English)
bundle.RegisterUnmarshalFunc("json", json.Unmarshal)
// Build a list of locale candidates to try
locales := getLocaleCandidates(locale)
// Try to load embedded translations for each candidate
embedded := false
for _, candidate := range locales {
if data, err := localeFS.ReadFile("locales/" + candidate + ".json"); err == nil {
_, _ = bundle.ParseMessageFileBytes(data, candidate+".json")
embedded = true
locale = candidate // Update locale to what was actually loaded
break
}
}
// Fall back to English if nothing was loaded
if !embedded {
if data, err := localeFS.ReadFile("locales/en.json"); err == nil {
_, _ = bundle.ParseMessageFileBytes(data, "en.json")
}
}
// load locale from disk or download when not embedded
path := filepath.Join(userLocaleDir(), locale+".json")
if _, err := os.Stat(path); os.IsNotExist(err) && !embedded {
if err := downloadLocale(path, locale); err != nil {
// if download fails, still continue with embedded translations
fmt.Fprintf(os.Stderr, "%s\n", fmt.Sprintf(getErrorMessage("i18n_download_failed", "Failed to download translation for language '%s': %v"), locale, err))
}
}
if _, err := os.Stat(path); err == nil {
if _, err := bundle.LoadMessageFile(path); err != nil {
fmt.Fprintf(os.Stderr, "%s\n", fmt.Sprintf(getErrorMessage("i18n_load_failed", "Failed to load translation file: %v"), err))
}
}
translator = i18n.NewLocalizer(bundle, locale)
return translator, nil
}
// T returns the localized string for the given message id.
// If the translator is not initialized, it will automatically initialize
// with system locale detection.
func T(messageID string) string {
initOnce.Do(func() {
if translator == nil {
Init("") // Empty string triggers system locale detection
}
})
return translator.MustLocalize(&i18n.LocalizeConfig{MessageID: messageID})
}
func userLocaleDir() string {
dir, err := os.UserConfigDir()
if err != nil {
dir = "."
}
path := filepath.Join(dir, "fabric", "locales")
os.MkdirAll(path, 0o755)
return path
}
func downloadLocale(path, locale string) error {
url := fmt.Sprintf("https://raw.githubusercontent.com/danielmiessler/Fabric/main/internal/i18n/locales/%s.json", locale)
resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("unexpected status: %s", resp.Status)
}
f, err := os.Create(path)
if err != nil {
return err
}
defer f.Close()
_, err = io.Copy(f, resp.Body)
return err
}
// getErrorMessage tries to get a translated error message, falling back to system locale
// and then to the provided fallback message. This is used during initialization when
// the translator may not be fully ready.
func getErrorMessage(messageID, fallback string) string {
// Try to get system locale for error messages
systemLocale := getPreferredLocale("")
if systemLocale == "" {
systemLocale = "en"
}
// First try the system locale
if msg := tryGetMessage(systemLocale, messageID); msg != "" {
return msg
}
// Fall back to English
if systemLocale != "en" {
if msg := tryGetMessage("en", messageID); msg != "" {
return msg
}
}
// Final fallback to hardcoded message
return fallback
}
// tryGetMessage attempts to get a message from embedded locale files
func tryGetMessage(locale, messageID string) string {
if data, err := localeFS.ReadFile("locales/" + locale + ".json"); err == nil {
var messages map[string]string
if json.Unmarshal(data, &messages) == nil {
if msg, exists := messages[messageID]; exists {
return msg
}
}
}
return ""
}
// normalizeToBCP47 normalizes a locale string to BCP 47 format.
// Converts underscores to hyphens and ensures proper casing (language-REGION).
func normalizeToBCP47(locale string) string {
if locale == "" {
return ""
}
// Replace underscores with hyphens
locale = strings.ReplaceAll(locale, "_", "-")
// Split into parts
parts := strings.Split(locale, "-")
if len(parts) == 1 {
// Language only, lowercase it
return strings.ToLower(parts[0])
} else if len(parts) >= 2 {
// Language and region (and possibly more)
// Lowercase language, uppercase region
parts[0] = strings.ToLower(parts[0])
parts[1] = strings.ToUpper(parts[1])
return strings.Join(parts[:2], "-") // Return only language-REGION
}
return locale
}
// getLocaleCandidates returns a list of locale candidates to try, in order of preference.
// For example, for "pt-PT" it returns ["pt-PT", "pt", "pt-BR"] (where pt-BR is the default for pt).
func getLocaleCandidates(locale string) []string {
candidates := []string{}
if locale == "" {
return candidates
}
// First candidate is always the requested locale
candidates = append(candidates, locale)
// If it's a regional variant, add the base language as a candidate
if strings.Contains(locale, "-") {
baseLang := strings.Split(locale, "-")[0]
candidates = append(candidates, baseLang)
// Also check if the base language has a default variant
if defaultVariant, exists := defaultLanguageVariants[baseLang]; exists {
// Only add if it's different from what we already have
if defaultVariant != locale {
candidates = append(candidates, defaultVariant)
}
}
} else {
// If this is a base language without a region, check for default variant
if defaultVariant, exists := defaultLanguageVariants[locale]; exists {
candidates = append(candidates, defaultVariant)
}
}
return candidates
}

View File

@@ -0,0 +1,40 @@
package i18n
import (
"testing"
gi18n "github.com/nicksnyder/go-i18n/v2/i18n"
)
func TestTranslation(t *testing.T) {
testCases := []struct {
lang string
expected string
}{
{"es", "usa la entrada original, porque no se puede aplicar la legibilidad de html"},
{"en", "use original input, because can't apply html readability"},
{"zh", "使用原始输入,因为无法应用 HTML 可读性处理"},
{"de", "verwende ursprüngliche Eingabe, da HTML-Lesbarkeit nicht angewendet werden kann"},
{"ja", "HTML可読性を適用できないため、元の入力を使用します"},
{"fr", "utilise l'entrée originale, car la lisibilité HTML ne peut pas être appliquée"},
{"pt", "usa a entrada original, porque não é possível aplicar a legibilidade HTML"},
{"fa", "از ورودی اصلی استفاده کن، چون نمی‌توان خوانایی HTML را اعمال کرد"},
{"it", "usa l'input originale, perché non è possibile applicare la leggibilità HTML"},
}
for _, tc := range testCases {
t.Run(tc.lang, func(t *testing.T) {
loc, err := Init(tc.lang)
if err != nil {
t.Fatalf("init failed for %s: %v", tc.lang, err)
}
msg, err := loc.Localize(&gi18n.LocalizeConfig{MessageID: "html_readability_error"})
if err != nil {
t.Fatalf("localize failed for %s: %v", tc.lang, err)
}
if msg != tc.expected {
t.Fatalf("unexpected translation for %s: got %s, expected %s", tc.lang, msg, tc.expected)
}
})
}
}

View File

@@ -0,0 +1,175 @@
package i18n
import (
"testing"
goi18n "github.com/nicksnyder/go-i18n/v2/i18n"
)
func TestNormalizeToBCP47(t *testing.T) {
tests := []struct {
input string
expected string
}{
// Basic cases
{"pt", "pt"},
{"pt-BR", "pt-BR"},
{"pt-PT", "pt-PT"},
// Underscore normalization
{"pt_BR", "pt-BR"},
{"pt_PT", "pt-PT"},
{"en_US", "en-US"},
// Mixed case normalization
{"pt-br", "pt-BR"},
{"PT-BR", "pt-BR"},
{"Pt-Br", "pt-BR"},
{"pT-bR", "pt-BR"},
// Language only cases
{"EN", "en"},
{"Pt", "pt"},
{"ZH", "zh"},
// Empty string
{"", ""},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := normalizeToBCP47(tt.input)
if result != tt.expected {
t.Errorf("normalizeToBCP47(%q) = %q; want %q", tt.input, result, tt.expected)
}
})
}
}
func TestGetLocaleCandidates(t *testing.T) {
tests := []struct {
input string
expected []string
}{
// Portuguese variants
{"pt-PT", []string{"pt-PT", "pt", "pt-BR"}}, // pt-BR is default for pt
{"pt-BR", []string{"pt-BR", "pt"}}, // pt-BR doesn't need default since it IS the default
{"pt", []string{"pt", "pt-BR"}}, // pt defaults to pt-BR
// Other languages without default variants
{"en-US", []string{"en-US", "en"}},
{"en", []string{"en"}},
{"fr-FR", []string{"fr-FR", "fr"}},
{"zh-CN", []string{"zh-CN", "zh"}},
// Empty
{"", []string{}},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := getLocaleCandidates(tt.input)
if len(result) != len(tt.expected) {
t.Errorf("getLocaleCandidates(%q) returned %d candidates; want %d",
tt.input, len(result), len(tt.expected))
t.Errorf(" got: %v", result)
t.Errorf(" want: %v", tt.expected)
return
}
for i, candidate := range result {
if candidate != tt.expected[i] {
t.Errorf("getLocaleCandidates(%q)[%d] = %q; want %q",
tt.input, i, candidate, tt.expected[i])
}
}
})
}
}
func TestPortugueseVariantLoading(t *testing.T) {
// Test that both Portuguese variants can be loaded
testCases := []struct {
locale string
desc string
}{
{"pt", "Portuguese (defaults to Brazilian)"},
{"pt-BR", "Brazilian Portuguese"},
{"pt-PT", "European Portuguese"},
{"pt_BR", "Brazilian Portuguese with underscore"},
{"pt_PT", "European Portuguese with underscore"},
}
for _, tc := range testCases {
t.Run(tc.desc, func(t *testing.T) {
localizer, err := Init(tc.locale)
if err != nil {
t.Errorf("Init(%q) failed: %v", tc.locale, err)
return
}
if localizer == nil {
t.Errorf("Init(%q) returned nil localizer", tc.locale)
}
// Try to get a message to verify it loaded correctly
msg := localizer.MustLocalize(&goi18n.LocalizeConfig{MessageID: "help_message"})
if msg == "" {
t.Errorf("Failed to localize message for locale %q", tc.locale)
}
})
}
}
func TestPortugueseVariantDistinction(t *testing.T) {
// Test that pt-BR and pt-PT return different translations
localizerBR, err := Init("pt-BR")
if err != nil {
t.Fatalf("Failed to init pt-BR: %v", err)
}
localizerPT, err := Init("pt-PT")
if err != nil {
t.Fatalf("Failed to init pt-PT: %v", err)
}
// Check a key that should differ between variants
// "output_to_file" should be "Exportar para arquivo" in pt-BR and "Saída para ficheiro" in pt-PT
msgBR := localizerBR.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
msgPT := localizerPT.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
if msgBR == msgPT {
t.Errorf("pt-BR and pt-PT returned the same translation for 'output_to_file': %q", msgBR)
}
// Verify specific expected values
if msgBR != "Exportar para arquivo" {
t.Errorf("pt-BR 'output_to_file' = %q; want 'Exportar para arquivo'", msgBR)
}
if msgPT != "Saída para ficheiro" {
t.Errorf("pt-PT 'output_to_file' = %q; want 'Saída para ficheiro'", msgPT)
}
}
func TestBackwardCompatibility(t *testing.T) {
// Test that requesting "pt" still works and defaults to pt-BR
localizerPT, err := Init("pt")
if err != nil {
t.Fatalf("Failed to init 'pt': %v", err)
}
localizerBR, err := Init("pt-BR")
if err != nil {
t.Fatalf("Failed to init 'pt-BR': %v", err)
}
// Both should return the same Brazilian Portuguese translation
msgPT := localizerPT.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
msgBR := localizerBR.MustLocalize(&goi18n.LocalizeConfig{MessageID: "output_to_file"})
if msgPT != msgBR {
t.Errorf("'pt' and 'pt-BR' returned different translations: %q vs %q", msgPT, msgBR)
}
if msgPT != "Exportar para arquivo" {
t.Errorf("'pt' did not default to Brazilian Portuguese. Got %q, want 'Exportar para arquivo'", msgPT)
}
}

94
internal/i18n/locale.go Normal file
View File

@@ -0,0 +1,94 @@
package i18n
import (
"os"
"strings"
"golang.org/x/text/language"
)
// detectSystemLocale detects the system locale using standard Unix environment variables.
// Follows the POSIX priority order for locale environment variables:
// 1. LC_ALL (highest priority - overrides all others)
// 2. LC_MESSAGES (for messages specifically)
// 3. LANG (general locale setting)
// 4. Returns empty string if none are set or valid
//
// This implementation follows POSIX standards and Unix best practices for locale detection.
func detectSystemLocale() string {
// Check environment variables in priority order
envVars := []string{"LC_ALL", "LC_MESSAGES", "LANG"}
for _, envVar := range envVars {
if value := os.Getenv(envVar); value != "" {
locale := normalizeLocale(value)
if locale != "" && isValidLocale(locale) {
return locale
}
}
}
return ""
}
// normalizeLocale converts various locale formats to BCP 47 language tags.
// Examples:
// - "en_US.UTF-8" -> "en-US"
// - "fr_FR@euro" -> "fr-FR"
// - "zh_CN.GB2312" -> "zh-CN"
// - "C" or "POSIX" -> "" (invalid, falls back to default)
func normalizeLocale(locale string) string {
// Handle special cases
if locale == "C" || locale == "POSIX" || locale == "" {
return ""
}
// Remove encoding and modifiers
// Examples: en_US.UTF-8@euro -> en_US
locale = strings.Split(locale, ".")[0] // Remove encoding (.UTF-8)
locale = strings.Split(locale, "@")[0] // Remove modifiers (@euro)
// Convert underscore to hyphen for BCP 47 compliance
// en_US -> en-US
locale = strings.ReplaceAll(locale, "_", "-")
// Ensure proper BCP 47 casing: language-REGION
parts := strings.Split(locale, "-")
if len(parts) >= 2 {
// Lowercase language, uppercase region
parts[0] = strings.ToLower(parts[0])
parts[1] = strings.ToUpper(parts[1])
locale = strings.Join(parts[:2], "-") // Only keep language-REGION
} else if len(parts) == 1 {
// Language only, lowercase it
locale = strings.ToLower(parts[0])
}
return locale
}
// isValidLocale checks if a locale string can be parsed as a valid language tag.
func isValidLocale(locale string) bool {
if locale == "" {
return false
}
// Use golang.org/x/text/language to validate
_, err := language.Parse(locale)
return err == nil
}
// getPreferredLocale returns the best locale to use based on user preferences.
// Priority order:
// 1. Explicit language flag (if provided)
// 2. System environment variables (LC_ALL, LC_MESSAGES, LANG)
// 3. Default fallback (empty string, which triggers "en" in Init)
func getPreferredLocale(explicitLang string) string {
// If explicitly set via flag, use that
if explicitLang != "" {
return explicitLang
}
// Otherwise try to detect from system environment
return detectSystemLocale()
}

View File

@@ -0,0 +1,288 @@
package i18n
import (
"os"
"testing"
)
func TestDetectSystemLocale(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLC_MESSAGES := os.Getenv("LC_MESSAGES")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LC_MESSAGES", originalLC_MESSAGES)
os.Setenv("LANG", originalLANG)
}()
tests := []struct {
name string
LC_ALL string
LC_MESSAGES string
LANG string
expected string
description string
}{
{
name: "LC_ALL takes highest priority",
LC_ALL: "fr_FR.UTF-8",
LC_MESSAGES: "de_DE.UTF-8",
LANG: "es_ES.UTF-8",
expected: "fr-FR",
description: "LC_ALL should override all other variables",
},
{
name: "LC_MESSAGES used when LC_ALL empty",
LC_ALL: "",
LC_MESSAGES: "ja_JP.UTF-8",
LANG: "ko_KR.UTF-8",
expected: "ja-JP",
description: "LC_MESSAGES should be used when LC_ALL is not set",
},
{
name: "LANG used when LC_ALL and LC_MESSAGES empty",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "zh_CN.GB2312",
expected: "zh-CN",
description: "LANG should be fallback when others are not set",
},
{
name: "Empty when no valid locale set",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "Should return empty when no environment variables set",
},
{
name: "Handle C locale",
LC_ALL: "C",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "C locale should be treated as invalid (fallback to default)",
},
{
name: "Handle POSIX locale",
LC_ALL: "",
LC_MESSAGES: "POSIX",
LANG: "",
expected: "",
description: "POSIX locale should be treated as invalid (fallback to default)",
},
{
name: "Handle locale with modifiers",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "de_DE.UTF-8@euro",
expected: "de-DE",
description: "Should strip encoding and modifiers",
},
{
name: "Skip invalid locale and use next priority",
LC_ALL: "invalid_locale",
LC_MESSAGES: "fr_CA.UTF-8",
LANG: "en_US.UTF-8",
expected: "fr-CA",
description: "Should skip invalid high-priority locale and use next valid one",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Set test environment
os.Setenv("LC_ALL", tt.LC_ALL)
os.Setenv("LC_MESSAGES", tt.LC_MESSAGES)
os.Setenv("LANG", tt.LANG)
result := detectSystemLocale()
if result != tt.expected {
t.Errorf("%s: expected %q, got %q", tt.description, tt.expected, result)
}
})
}
}
func TestNormalizeLocale(t *testing.T) {
tests := []struct {
input string
expected string
}{
// Standard Unix locale formats
{"en_US.UTF-8", "en-US"},
{"fr_FR.ISO8859-1", "fr-FR"},
{"de_DE@euro", "de-DE"},
{"zh_CN.GB2312", "zh-CN"},
{"ja_JP.eucJP@traditional", "ja-JP"},
// Already normalized
{"en-US", "en-US"},
{"fr-CA", "fr-CA"},
// Language only
{"en", "en"},
{"fr", "fr"},
{"zh", "zh"},
// Special cases
{"C", ""},
{"POSIX", ""},
{"", ""},
// Complex cases
{"pt_BR.UTF-8@currency=BRL", "pt-BR"},
{"sr_RS.UTF-8@latin", "sr-RS"},
{"uz_UZ.UTF-8@cyrillic", "uz-UZ"},
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := normalizeLocale(tt.input)
if result != tt.expected {
t.Errorf("normalizeLocale(%q): expected %q, got %q", tt.input, tt.expected, result)
}
})
}
}
func TestIsValidLocale(t *testing.T) {
tests := []struct {
input string
expected bool
}{
// Valid locales
{"en", true},
{"en-US", true},
{"fr-FR", true},
{"zh-CN", true},
{"ja-JP", true},
{"pt-BR", true},
{"es-MX", true},
// Invalid locales
{"", false},
{"invalid", false},
{"123", false}, // Numbers
// Note: golang.org/x/text/language is quite lenient and accepts:
// - "en-ZZ" (unknown country codes are allowed)
// - "en_US" (underscores are normalized to hyphens)
// These are actually valid according to the language package
}
for _, tt := range tests {
t.Run(tt.input, func(t *testing.T) {
result := isValidLocale(tt.input)
if result != tt.expected {
t.Errorf("isValidLocale(%q): expected %v, got %v", tt.input, tt.expected, result)
}
})
}
}
func TestGetPreferredLocale(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLC_MESSAGES := os.Getenv("LC_MESSAGES")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LC_MESSAGES", originalLC_MESSAGES)
os.Setenv("LANG", originalLANG)
}()
tests := []struct {
name string
explicitLang string
LC_ALL string
LC_MESSAGES string
LANG string
expected string
description string
}{
{
name: "Explicit language takes precedence",
explicitLang: "es-ES",
LC_ALL: "fr_FR.UTF-8",
LC_MESSAGES: "de_DE.UTF-8",
LANG: "ja_JP.UTF-8",
expected: "es-ES",
description: "Explicit language should override environment variables",
},
{
name: "Use environment when no explicit language",
explicitLang: "",
LC_ALL: "it_IT.UTF-8",
LC_MESSAGES: "ru_RU.UTF-8",
LANG: "pl_PL.UTF-8",
expected: "it-IT",
description: "Should detect from environment when no explicit language",
},
{
name: "Empty when no explicit and no environment",
explicitLang: "",
LC_ALL: "",
LC_MESSAGES: "",
LANG: "",
expected: "",
description: "Should return empty when nothing is set",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Set test environment
os.Setenv("LC_ALL", tt.LC_ALL)
os.Setenv("LC_MESSAGES", tt.LC_MESSAGES)
os.Setenv("LANG", tt.LANG)
result := getPreferredLocale(tt.explicitLang)
if result != tt.expected {
t.Errorf("%s: expected %q, got %q", tt.description, tt.expected, result)
}
})
}
}
func TestIntegrationWithInit(t *testing.T) {
// Save original environment
originalLC_ALL := os.Getenv("LC_ALL")
originalLANG := os.Getenv("LANG")
// Clean up after test
defer func() {
os.Setenv("LC_ALL", originalLC_ALL)
os.Setenv("LANG", originalLANG)
translator = nil // Reset global state
}()
// Test that Init uses environment variables when no explicit locale provided
os.Setenv("LC_ALL", "es_ES.UTF-8")
os.Setenv("LANG", "fr_FR.UTF-8")
localizer, err := Init("")
if err != nil {
t.Fatalf("Init failed: %v", err)
}
if localizer == nil {
t.Error("Expected non-nil localizer")
}
// Reset translator to test T() function auto-initialization
translator = nil
os.Setenv("LC_ALL", "")
os.Setenv("LANG", "es_ES.UTF-8")
// This should trigger auto-initialization with environment detection
result := T("html_readability_error")
if result == "" {
t.Error("Expected non-empty translation result")
}
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "verwende ursprüngliche Eingabe, da HTML-Lesbarkeit nicht angewendet werden kann",
"vendor_not_configured": "Anbieter %s ist nicht konfiguriert",
"vendor_no_transcription_support": "Anbieter %s unterstützt keine Audio-Transkription",
"transcription_model_required": "Transkriptionsmodell ist erforderlich (verwende --transcribe-model)",
"youtube_not_configured": "YouTube ist nicht konfiguriert, bitte führe das Setup-Verfahren aus",
"youtube_api_key_required": "YouTube API-Schlüssel für Kommentare und Metadaten erforderlich. Führe 'fabric --setup' aus, um zu konfigurieren",
"youtube_ytdlp_not_found": "yt-dlp wurde nicht in PATH gefunden. Bitte installiere yt-dlp, um die YouTube-Transkript-Funktionalität zu nutzen",
"youtube_invalid_url": "ungültige YouTube-URL, kann keine Video- oder Playlist-ID abrufen: '%s'",
"youtube_url_is_playlist_not_video": "URL ist eine Playlist, kein Video",
"youtube_no_video_id_found": "keine Video-ID in URL gefunden",
"youtube_rate_limit_exceeded": "YouTube-Ratenlimit überschritten. Versuche es später erneut oder verwende andere yt-dlp-Argumente wie '--sleep-requests 1', um Anfragen zu verlangsamen.",
"youtube_auth_required_bot_detection": "YouTube erfordert Authentifizierung (Bot-Erkennung). Verwende --yt-dlp-args='--cookies-from-browser BROWSER' wobei BROWSER chrome, firefox, brave usw. sein kann.",
"youtube_ytdlp_stderr_error": "Fehler beim Lesen von yt-dlp stderr",
"youtube_invalid_ytdlp_arguments": "ungültige yt-dlp-Argumente: %v",
"youtube_failed_create_temp_dir": "temporäres Verzeichnis konnte nicht erstellt werden: %v",
"youtube_no_transcript_content": "kein Transkriptinhalt in VTT-Datei gefunden",
"youtube_no_vtt_files_found": "keine VTT-Dateien im Verzeichnis gefunden",
"youtube_failed_walk_directory": "Verzeichnis konnte nicht durchlaufen werden: %v",
"youtube_error_getting_video_details": "Fehler beim Abrufen der Videodetails: %v",
"youtube_invalid_duration_string": "ungültige Dauer-Zeichenfolge: %s",
"youtube_error_getting_metadata": "Fehler beim Abrufen der Video-Metadaten: %v",
"youtube_error_parsing_duration": "Fehler beim Parsen der Videodauer: %v",
"youtube_error_getting_comments": "Fehler beim Abrufen der Kommentare: %v",
"youtube_error_saving_csv": "Fehler beim Speichern der Videos in CSV: %v",
"youtube_no_video_found_with_id": "kein Video mit ID gefunden: %s",
"youtube_invalid_timestamp_format": "ungültiges Zeitstempel-Format: %s",
"youtube_empty_seconds_string": "leere Sekunden-Zeichenfolge",
"youtube_invalid_seconds_format": "ungültiges Sekundenformat %q: %w",
"error_fetching_playlist_videos": "Fehler beim Abrufen der Playlist-Videos: %w",
"openai_api_base_url_not_configured": "API-Basis-URL für Anbieter %s nicht konfiguriert",
"openai_failed_to_create_models_url": "Modell-URL konnte nicht erstellt werden: %w",
"openai_unexpected_status_code_with_body": "unerwarteter Statuscode: %d von Anbieter %s, Antwort: %s",
"openai_unexpected_status_code_read_error_partial": "unerwarteter Statuscode: %d von Anbieter %s (Fehler beim Lesen: %v), teilweise Antwort: %s",
"openai_unexpected_status_code_read_error": "unerwarteter Statuscode: %d von Anbieter %s (Fehler beim Lesen der Antwort: %v)",
"openai_unable_to_parse_models_response": "Modell-Antwort konnte nicht geparst werden; rohe Antwort: %s",
"scraping_not_configured": "Scraping-Funktionalität ist nicht konfiguriert. Bitte richte Jina ein, um Scraping zu aktivieren",
"could_not_determine_home_dir": "konnte Benutzer-Home-Verzeichnis nicht bestimmen: %w",
"could_not_stat_env_file": "konnte .env-Datei nicht überprüfen: %w",
"could_not_create_config_dir": "konnte Konfigurationsverzeichnis nicht erstellen: %w",
"could_not_create_env_file": "konnte .env-Datei nicht erstellen: %w",
"could_not_copy_to_clipboard": "konnte nicht in die Zwischenablage kopieren: %v",
"file_already_exists_not_overwriting": "Datei %s existiert bereits, wird nicht überschrieben. Benenne die vorhandene Datei um oder wähle einen anderen Namen",
"error_creating_file": "Fehler beim Erstellen der Datei: %v",
"error_writing_to_file": "Fehler beim Schreiben in die Datei: %v",
"error_creating_audio_file": "Fehler beim Erstellen der Audio-Datei: %v",
"error_writing_audio_data": "Fehler beim Schreiben von Audio-Daten in die Datei: %v",
"tts_model_requires_audio_output": "TTS-Modell '%s' benötigt Audio-Ausgabe. Bitte gib eine Audio-Ausgabedatei mit dem -o Flag an (z.B., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "Audio-Ausgabedatei '%s' angegeben, aber Modell '%s' ist kein TTS-Modell. Bitte verwende ein TTS-Modell wie gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "Datei %s existiert bereits. Bitte wähle einen anderen Dateinamen oder entferne die vorhandene Datei",
"no_notification_system_available": "kein Benachrichtigungssystem verfügbar",
"cannot_convert_string": "kann String %q nicht zu %v konvertieren",
"unsupported_conversion": "nicht unterstützte Konvertierung von %v zu %v",
"invalid_config_path": "ungültiger Konfigurationspfad: %w",
"config_file_not_found": "Konfigurationsdatei nicht gefunden: %s",
"error_reading_config_file": "Fehler beim Lesen der Konfigurationsdatei: %w",
"error_parsing_config_file": "Fehler beim Parsen der Konfigurationsdatei: %w",
"error_reading_piped_message": "Fehler beim Lesen der weitergeleiteten Nachricht von stdin: %w",
"image_file_already_exists": "Bilddatei existiert bereits: %s",
"invalid_image_file_extension": "ungültige Bilddatei-Erweiterung '%s'. Unterstützte Formate: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "Bildparameter (--image-size, --image-quality, --image-background, --image-compression) können nur mit --image-file verwendet werden",
"invalid_image_size": "ungültige Bildgröße '%s'. Unterstützte Größen: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "ungültige Bildqualität '%s'. Unterstützte Qualitäten: low, medium, high, auto",
"invalid_image_background": "ungültiger Bildhintergrund '%s'. Unterstützte Hintergründe: opaque, transparent",
"image_compression_jpeg_webp_only": "Bildkomprimierung kann nur mit JPEG- und WebP-Formaten verwendet werden, nicht %s",
"image_compression_range_error": "Bildkomprimierung muss zwischen 0 und 100 liegen, erhalten: %d",
"transparent_background_png_webp_only": "transparenter Hintergrund kann nur mit PNG- und WebP-Formaten verwendet werden, nicht %s",
"available_transcription_models": "Verfügbare Transkriptionsmodelle:",
"tts_audio_generated_successfully": "TTS-Audio erfolgreich generiert und gespeichert unter: %s\n",
"fabric_command_complete": "Fabric-Befehl abgeschlossen",
"fabric_command_complete_with_pattern": "Fabric: %s abgeschlossen",
"command_completed_successfully": "Befehl erfolgreich abgeschlossen",
"output_truncated": "Ausgabe: %s...",
"output_full": "Ausgabe: %s",
"choose_pattern_from_available": "Wähle ein Muster aus den verfügbaren Mustern",
"pattern_variables_help": "Werte für Mustervariablen, z.B. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Wähle einen Kontext aus den verfügbaren Kontexten",
"choose_session_from_available": "Wähle eine Sitzung aus den verfügbaren Sitzungen",
"attachment_path_or_url_help": "Anhangspfad oder URL (z.B. für OpenAI-Bilderkennungsnachrichten)",
"run_setup_for_reconfigurable_parts": "Setup für alle rekonfigurierbaren Teile von Fabric ausführen",
"set_temperature": "Temperatur festlegen",
"set_top_p": "Top P festlegen",
"stream_help": "Streaming",
"set_presence_penalty": "Präsenzstrafe festlegen",
"use_model_defaults_raw_help": "Verwende die Standardwerte des Modells, ohne Chat-Optionen (temperature, top_p usw.) zu senden. Gilt nur für OpenAI-kompatible Anbieter. Anthropic-Modelle verwenden stets eine intelligente Parameterauswahl, um modell-spezifische Anforderungen einzuhalten.",
"set_frequency_penalty": "Häufigkeitsstrafe festlegen",
"list_all_patterns": "Alle Muster auflisten",
"list_all_available_models": "Alle verfügbaren Modelle auflisten",
"list_all_contexts": "Alle Kontexte auflisten",
"list_all_sessions": "Alle Sitzungen auflisten",
"update_patterns": "Muster aktualisieren",
"messages_to_send_to_chat": "Nachrichten zum Senden an den Chat",
"copy_to_clipboard": "In Zwischenablage kopieren",
"choose_model": "Modell wählen",
"specify_vendor_for_model": "Anbieter für das ausgewählte Modell angeben (z.B., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Modell-Kontextlänge (betrifft nur ollama)",
"output_to_file": "Ausgabe in Datei",
"output_entire_session": "Gesamte Sitzung (auch eine temporäre) in die Ausgabedatei ausgeben",
"number_of_latest_patterns": "Anzahl der neuesten Muster zum Auflisten",
"change_default_model": "Standardmodell ändern",
"youtube_url_help": "YouTube-Video oder Playlist-\"URL\" zum Abrufen von Transkript und Kommentaren und Senden an Chat oder Ausgabe in Konsole und Speichern in Ausgabedatei",
"prefer_playlist_over_video": "Playlist gegenüber Video bevorzugen, wenn beide IDs in der URL vorhanden sind",
"grab_transcript_from_youtube": "Transkript von YouTube-Video abrufen und an Chat senden (wird standardmäßig verwendet).",
"grab_transcript_with_timestamps": "Transkript von YouTube-Video mit Zeitstempeln abrufen und an Chat senden",
"grab_comments_from_youtube": "Kommentare von YouTube-Video abrufen und an Chat senden",
"output_video_metadata": "Video-Metadaten ausgeben",
"additional_yt_dlp_args": "Zusätzliche Argumente für yt-dlp (z.B. '--cookies-from-browser brave')",
"specify_language_code": "Sprachencode für den Chat angeben, z.B. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Website-URL zu Markdown mit Jina AI scrapen",
"search_question_jina": "Suchanfrage mit Jina AI",
"seed_for_lmm_generation": "Seed für LMM-Generierung",
"wipe_context": "Kontext löschen",
"wipe_session": "Sitzung löschen",
"print_context": "Kontext ausgeben",
"print_session": "Sitzung ausgeben",
"convert_html_readability": "HTML-Eingabe in eine saubere, lesbare Ansicht konvertieren",
"apply_variables_to_input": "Variablen auf Benutzereingabe anwenden",
"disable_pattern_variable_replacement": "Mustervariablenersetzung deaktivieren",
"show_dry_run": "Zeige, was an das Modell gesendet würde, ohne es tatsächlich zu senden",
"serve_fabric_rest_api": "Fabric REST API bereitstellen",
"serve_fabric_api_ollama_endpoints": "Fabric REST API mit ollama-Endpunkten bereitstellen",
"address_to_bind_rest_api": "Adresse zum Binden der REST API",
"api_key_secure_server_routes": "API-Schlüssel zum Sichern der Server-Routen",
"path_to_yaml_config": "Pfad zur YAML-Konfigurationsdatei",
"print_current_version": "Aktuelle Version ausgeben",
"list_all_registered_extensions": "Alle registrierten Erweiterungen auflisten",
"register_new_extension": "Neue Erweiterung aus Konfigurationsdateipfad registrieren",
"remove_registered_extension": "Registrierte Erweiterung nach Name entfernen",
"choose_strategy_from_available": "Strategie aus den verfügbaren Strategien wählen",
"list_all_strategies": "Alle Strategien auflisten",
"list_all_vendors": "Alle Anbieter auflisten",
"output_raw_list_shell_completion": "Rohe Liste ohne Kopfzeilen/Formatierung ausgeben (für Shell-Vervollständigung)",
"enable_web_search_tool": "Web-Such-Tool für unterstützte Modelle aktivieren (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Standort für Web-Suchergebnisse festlegen (z.B., 'America/Los_Angeles')",
"save_generated_image_to_file": "Generiertes Bild in angegebenem Dateipfad speichern (z.B., 'output.png')",
"image_dimensions_help": "Bildabmessungen: 1024x1024, 1536x1024, 1024x1536, auto (Standard: auto)",
"image_quality_help": "Bildqualität: low, medium, high, auto (Standard: auto)",
"compression_level_jpeg_webp": "Komprimierungslevel 0-100 für JPEG/WebP-Formate (Standard: nicht gesetzt)",
"background_type_help": "Hintergrundtyp: opaque, transparent (Standard: opaque, nur für PNG/WebP)",
"suppress_thinking_tags": "In Denk-Tags eingeschlossenen Text unterdrücken",
"start_tag_thinking_sections": "Start-Tag für Denk-Abschnitte",
"end_tag_thinking_sections": "End-Tag für Denk-Abschnitte",
"disable_openai_responses_api": "OpenAI Responses API deaktivieren (Standard: false)",
"audio_video_file_transcribe": "Audio- oder Video-Datei zum Transkribieren",
"model_for_transcription": "Modell für Transkription (getrennt vom Chat-Modell)",
"split_media_files_ffmpeg": "Audio/Video-Dateien größer als 25MB mit ffmpeg aufteilen",
"tts_voice_name": "TTS-Stimmenname für unterstützte Modelle (z.B., Kore, Charon, Puck)",
"list_gemini_tts_voices": "Alle verfügbaren Gemini TTS-Stimmen auflisten",
"list_transcription_models": "Alle verfügbaren Transkriptionsmodelle auflisten",
"send_desktop_notification": "Desktop-Benachrichtigung senden, wenn Befehl abgeschlossen ist",
"custom_notification_command": "Benutzerdefinierter Befehl für Benachrichtigungen (überschreibt eingebaute Benachrichtigungen)",
"set_reasoning_thinking_level": "Reasoning/Thinking-Level festlegen (z.B., off, low, medium, high, oder numerische Token für Anthropic oder Google Gemini)",
"set_debug_level": "Debug-Level festlegen (0=aus, 1=grundlegend, 2=detailliert, 3=Trace)",
"usage_header": "Verwendung:",
"application_options_header": "Anwendungsoptionen:",
"help_options_header": "Hilfe-Optionen:",
"help_message": "Diese Hilfenachricht anzeigen",
"options_placeholder": "[OPTIONEN]",
"available_vendors_header": "Verfügbare Anbieter:",
"available_models_header": "Verfügbare Modelle",
"no_items_found": "Keine %s",
"no_description_available": "Keine Beschreibung verfügbar",
"i18n_download_failed": "Fehler beim Herunterladen der Übersetzung für Sprache '%s': %v",
"i18n_load_failed": "Fehler beim Laden der Übersetzungsdatei: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "use original input, because can't apply html readability",
"vendor_not_configured": "vendor %s not configured",
"vendor_no_transcription_support": "vendor %s does not support audio transcription",
"transcription_model_required": "transcription model is required (use --transcribe-model)",
"youtube_not_configured": "YouTube is not configured, please run the setup procedure",
"youtube_api_key_required": "YouTube API key required for comments and metadata. Run 'fabric --setup' to configure",
"youtube_ytdlp_not_found": "yt-dlp not found in PATH. Please install yt-dlp to use YouTube transcript functionality",
"youtube_invalid_url": "invalid YouTube URL, can't get video or playlist ID: '%s'",
"youtube_url_is_playlist_not_video": "URL is a playlist, not a video",
"youtube_no_video_id_found": "no video ID found in URL",
"youtube_rate_limit_exceeded": "YouTube rate limit exceeded. Try again later or use different yt-dlp arguments like '--sleep-requests 1' to slow down requests.",
"youtube_auth_required_bot_detection": "YouTube requires authentication (bot detection). Use --yt-dlp-args='--cookies-from-browser BROWSER' where BROWSER is chrome, firefox, brave, etc.",
"youtube_ytdlp_stderr_error": "Error reading yt-dlp stderr",
"youtube_invalid_ytdlp_arguments": "invalid yt-dlp arguments: %v",
"youtube_failed_create_temp_dir": "failed to create temp directory: %v",
"youtube_no_transcript_content": "no transcript content found in VTT file",
"youtube_no_vtt_files_found": "no VTT files found in directory",
"youtube_failed_walk_directory": "failed to walk directory: %v",
"youtube_error_getting_video_details": "error getting video details: %v",
"youtube_invalid_duration_string": "invalid duration string: %s",
"youtube_error_getting_metadata": "error getting video metadata: %v",
"youtube_error_parsing_duration": "error parsing video duration: %v",
"youtube_error_getting_comments": "error getting comments: %v",
"youtube_error_saving_csv": "error saving videos to CSV: %v",
"youtube_no_video_found_with_id": "no video found with ID: %s",
"youtube_invalid_timestamp_format": "invalid timestamp format: %s",
"youtube_empty_seconds_string": "empty seconds string",
"youtube_invalid_seconds_format": "invalid seconds format %q: %w",
"error_fetching_playlist_videos": "error fetching playlist videos: %w",
"openai_api_base_url_not_configured": "API base URL not configured for provider %s",
"openai_failed_to_create_models_url": "failed to create models URL: %w",
"openai_unexpected_status_code_with_body": "unexpected status code: %d from provider %s, response body: %s",
"openai_unexpected_status_code_read_error_partial": "unexpected status code: %d from provider %s (error reading body: %v), partial response: %s",
"openai_unexpected_status_code_read_error": "unexpected status code: %d from provider %s (failed to read response body: %v)",
"openai_unable_to_parse_models_response": "unable to parse models response; raw response: %s",
"scraping_not_configured": "scraping functionality is not configured. Please set up Jina to enable scraping",
"could_not_determine_home_dir": "could not determine user home directory: %w",
"could_not_stat_env_file": "could not stat .env file: %w",
"could_not_create_config_dir": "could not create config directory: %w",
"could_not_create_env_file": "could not create .env file: %w",
"could_not_copy_to_clipboard": "could not copy to clipboard: %v",
"file_already_exists_not_overwriting": "file %s already exists, not overwriting. Rename the existing file or choose a different name",
"error_creating_file": "error creating file: %v",
"error_writing_to_file": "error writing to file: %v",
"error_creating_audio_file": "error creating audio file: %v",
"error_writing_audio_data": "error writing audio data to file: %v",
"tts_model_requires_audio_output": "TTS model '%s' requires audio output. Please specify an audio output file with -o flag (e.g., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "audio output file '%s' specified but model '%s' is not a TTS model. Please use a TTS model like gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "file %s already exists. Please choose a different filename or remove the existing file",
"no_notification_system_available": "no notification system available",
"cannot_convert_string": "cannot convert string %q to %v",
"unsupported_conversion": "unsupported conversion from %v to %v",
"invalid_config_path": "invalid config path: %w",
"config_file_not_found": "config file not found: %s",
"error_reading_config_file": "error reading config file: %w",
"error_parsing_config_file": "error parsing config file: %w",
"error_reading_piped_message": "error reading piped message from stdin: %w",
"image_file_already_exists": "image file already exists: %s",
"invalid_image_file_extension": "invalid image file extension '%s'. Supported formats: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "image parameters (--image-size, --image-quality, --image-background, --image-compression) can only be used with --image-file",
"invalid_image_size": "invalid image size '%s'. Supported sizes: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "invalid image quality '%s'. Supported qualities: low, medium, high, auto",
"invalid_image_background": "invalid image background '%s'. Supported backgrounds: opaque, transparent",
"image_compression_jpeg_webp_only": "image compression can only be used with JPEG and WebP formats, not %s",
"image_compression_range_error": "image compression must be between 0 and 100, got %d",
"transparent_background_png_webp_only": "transparent background can only be used with PNG and WebP formats, not %s",
"available_transcription_models": "Available transcription models:",
"tts_audio_generated_successfully": "TTS audio generated successfully and saved to: %s\n",
"fabric_command_complete": "Fabric Command Complete",
"fabric_command_complete_with_pattern": "Fabric: %s Complete",
"command_completed_successfully": "Command completed successfully",
"output_truncated": "Output: %s...",
"output_full": "Output: %s",
"choose_pattern_from_available": "Choose a pattern from the available patterns",
"pattern_variables_help": "Values for pattern variables, e.g. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Choose a context from the available contexts",
"choose_session_from_available": "Choose a session from the available sessions",
"attachment_path_or_url_help": "Attachment path or URL (e.g. for OpenAI image recognition messages)",
"run_setup_for_reconfigurable_parts": "Run setup for all reconfigurable parts of fabric",
"set_temperature": "Set temperature",
"set_top_p": "Set top P",
"stream_help": "Stream",
"set_presence_penalty": "Set presence penalty",
"use_model_defaults_raw_help": "Use the defaults of the model without sending chat options (temperature, top_p, etc.). Only affects OpenAI-compatible providers. Anthropic models always use smart parameter selection to comply with model-specific requirements.",
"set_frequency_penalty": "Set frequency penalty",
"list_all_patterns": "List all patterns",
"list_all_available_models": "List all available models",
"list_all_contexts": "List all contexts",
"list_all_sessions": "List all sessions",
"update_patterns": "Update patterns",
"messages_to_send_to_chat": "Messages to send to chat",
"copy_to_clipboard": "Copy to clipboard",
"choose_model": "Choose model",
"specify_vendor_for_model": "Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Model context length (only affects ollama)",
"output_to_file": "Output to file",
"output_entire_session": "Output the entire session (also a temporary one) to the output file",
"number_of_latest_patterns": "Number of latest patterns to list",
"change_default_model": "Change default model",
"youtube_url_help": "YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file",
"prefer_playlist_over_video": "Prefer playlist over video if both ids are present in the URL",
"grab_transcript_from_youtube": "Grab transcript from YouTube video and send to chat (it is used per default).",
"grab_transcript_with_timestamps": "Grab transcript from YouTube video with timestamps and send to chat",
"grab_comments_from_youtube": "Grab comments from YouTube video and send to chat",
"output_video_metadata": "Output video metadata",
"additional_yt_dlp_args": "Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')",
"specify_language_code": "Specify the Language Code for the chat, e.g. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scrape website URL to markdown using Jina AI",
"search_question_jina": "Search question using Jina AI",
"seed_for_lmm_generation": "Seed to be used for LMM generation",
"wipe_context": "Wipe context",
"wipe_session": "Wipe session",
"print_context": "Print context",
"print_session": "Print session",
"convert_html_readability": "Convert HTML input into a clean, readable view",
"apply_variables_to_input": "Apply variables to user input",
"disable_pattern_variable_replacement": "Disable pattern variable replacement",
"show_dry_run": "Show what would be sent to the model without actually sending it",
"serve_fabric_rest_api": "Serve the Fabric Rest API",
"serve_fabric_api_ollama_endpoints": "Serve the Fabric Rest API with ollama endpoints",
"address_to_bind_rest_api": "The address to bind the REST API",
"api_key_secure_server_routes": "API key used to secure server routes",
"path_to_yaml_config": "Path to YAML config file",
"print_current_version": "Print current version",
"list_all_registered_extensions": "List all registered extensions",
"register_new_extension": "Register a new extension from config file path",
"remove_registered_extension": "Remove a registered extension by name",
"choose_strategy_from_available": "Choose a strategy from the available strategies",
"list_all_strategies": "List all strategies",
"list_all_vendors": "List all vendors",
"output_raw_list_shell_completion": "Output raw list without headers/formatting (for shell completion)",
"enable_web_search_tool": "Enable web search tool for supported models (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Set location for web search results (e.g., 'America/Los_Angeles')",
"save_generated_image_to_file": "Save generated image to specified file path (e.g., 'output.png')",
"image_dimensions_help": "Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)",
"image_quality_help": "Image quality: low, medium, high, auto (default: auto)",
"compression_level_jpeg_webp": "Compression level 0-100 for JPEG/WebP formats (default: not set)",
"background_type_help": "Background type: opaque, transparent (default: opaque, only for PNG/WebP)",
"suppress_thinking_tags": "Suppress text enclosed in thinking tags",
"start_tag_thinking_sections": "Start tag for thinking sections",
"end_tag_thinking_sections": "End tag for thinking sections",
"disable_openai_responses_api": "Disable OpenAI Responses API (default: false)",
"audio_video_file_transcribe": "Audio or video file to transcribe",
"model_for_transcription": "Model to use for transcription (separate from chat model)",
"split_media_files_ffmpeg": "Split audio/video files larger than 25MB using ffmpeg",
"tts_voice_name": "TTS voice name for supported models (e.g., Kore, Charon, Puck)",
"list_gemini_tts_voices": "List all available Gemini TTS voices",
"list_transcription_models": "List all available transcription models",
"send_desktop_notification": "Send desktop notification when command completes",
"custom_notification_command": "Custom command to run for notifications (overrides built-in notifications)",
"set_reasoning_thinking_level": "Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic or Google Gemini)",
"set_debug_level": "Set debug level (0=off, 1=basic, 2=detailed, 3=trace)",
"usage_header": "Usage:",
"application_options_header": "Application Options:",
"help_options_header": "Help Options:",
"help_message": "Show this help message",
"options_placeholder": "[OPTIONS]",
"available_vendors_header": "Available Vendors:",
"available_models_header": "Available models",
"no_items_found": "No %s",
"no_description_available": "No description available",
"i18n_download_failed": "Failed to download translation for language '%s': %v",
"i18n_load_failed": "Failed to load translation file: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "usa la entrada original, porque no se puede aplicar la legibilidad de html",
"vendor_not_configured": "el proveedor %s no está configurado",
"vendor_no_transcription_support": "el proveedor %s no admite transcripción de audio",
"transcription_model_required": "se requiere un modelo de transcripción (usa --transcribe-model)",
"youtube_not_configured": "YouTube no está configurado, por favor ejecuta el procedimiento de configuración",
"youtube_api_key_required": "Se requiere clave de API de YouTube para comentarios y metadatos. Ejecuta 'fabric --setup' para configurar",
"youtube_ytdlp_not_found": "yt-dlp no encontrado en PATH. Por favor instala yt-dlp para usar la funcionalidad de transcripción de YouTube",
"youtube_invalid_url": "URL de YouTube inválida, no se puede obtener ID de video o lista de reproducción: '%s'",
"youtube_url_is_playlist_not_video": "La URL es una lista de reproducción, no un video",
"youtube_no_video_id_found": "no se encontró ID de video en la URL",
"youtube_rate_limit_exceeded": "Límite de tasa de YouTube excedido. Intenta de nuevo más tarde o usa diferentes argumentos de yt-dlp como '--sleep-requests 1' para ralentizar las solicitudes.",
"youtube_auth_required_bot_detection": "YouTube requiere autenticación (detección de bot). Usa --yt-dlp-args='--cookies-from-browser BROWSER' donde BROWSER puede ser chrome, firefox, brave, etc.",
"youtube_ytdlp_stderr_error": "Error al leer stderr de yt-dlp",
"youtube_invalid_ytdlp_arguments": "argumentos de yt-dlp inválidos: %v",
"youtube_failed_create_temp_dir": "falló al crear directorio temporal: %v",
"youtube_no_transcript_content": "no se encontró contenido de transcripción en el archivo VTT",
"youtube_no_vtt_files_found": "no se encontraron archivos VTT en el directorio",
"youtube_failed_walk_directory": "falló al recorrer el directorio: %v",
"youtube_error_getting_video_details": "error al obtener detalles del video: %v",
"youtube_invalid_duration_string": "cadena de duración inválida: %s",
"youtube_error_getting_metadata": "error al obtener metadatos del video: %v",
"youtube_error_parsing_duration": "error al analizar la duración del video: %v",
"youtube_error_getting_comments": "error al obtener comentarios: %v",
"youtube_error_saving_csv": "error al guardar videos en CSV: %v",
"youtube_no_video_found_with_id": "no se encontró video con ID: %s",
"youtube_invalid_timestamp_format": "formato de marca de tiempo inválido: %s",
"youtube_empty_seconds_string": "cadena de segundos vacía",
"youtube_invalid_seconds_format": "formato de segundos inválido %q: %w",
"error_fetching_playlist_videos": "error al obtener videos de la lista de reproducción: %w",
"openai_api_base_url_not_configured": "URL base de API no configurada para el proveedor %s",
"openai_failed_to_create_models_url": "error al crear URL de modelos: %w",
"openai_unexpected_status_code_with_body": "código de estado inesperado: %d del proveedor %s, cuerpo de respuesta: %s",
"openai_unexpected_status_code_read_error_partial": "código de estado inesperado: %d del proveedor %s (error al leer cuerpo: %v), respuesta parcial: %s",
"openai_unexpected_status_code_read_error": "código de estado inesperado: %d del proveedor %s (error al leer cuerpo de respuesta: %v)",
"openai_unable_to_parse_models_response": "no se pudo analizar la respuesta de modelos; respuesta cruda: %s",
"scraping_not_configured": "la funcionalidad de extracción no está configurada. Por favor configura Jina para habilitar la extracción",
"could_not_determine_home_dir": "no se pudo determinar el directorio home del usuario: %w",
"could_not_stat_env_file": "no se pudo verificar el archivo .env: %w",
"could_not_create_config_dir": "no se pudo crear el directorio de configuración: %w",
"could_not_create_env_file": "no se pudo crear el archivo .env: %w",
"could_not_copy_to_clipboard": "no se pudo copiar al portapapeles: %v",
"file_already_exists_not_overwriting": "el archivo %s ya existe, no se sobrescribirá. Renombra el archivo existente o elige un nombre diferente",
"error_creating_file": "error al crear el archivo: %v",
"error_writing_to_file": "error al escribir al archivo: %v",
"error_creating_audio_file": "error al crear el archivo de audio: %v",
"error_writing_audio_data": "error al escribir datos de audio al archivo: %v",
"tts_model_requires_audio_output": "el modelo TTS '%s' requiere salida de audio. Por favor especifica un archivo de salida de audio con la bandera -o (ej., -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "se especificó el archivo de salida de audio '%s' pero el modelo '%s' no es un modelo TTS. Por favor usa un modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "el archivo %s ya existe. Por favor elige un nombre diferente o elimina el archivo existente",
"no_notification_system_available": "no hay sistema de notificaciones disponible",
"cannot_convert_string": "no se puede convertir la cadena %q a %v",
"unsupported_conversion": "conversión no soportada de %v a %v",
"invalid_config_path": "ruta de configuración inválida: %w",
"config_file_not_found": "archivo de configuración no encontrado: %s",
"error_reading_config_file": "error al leer el archivo de configuración: %w",
"error_parsing_config_file": "error al analizar el archivo de configuración: %w",
"error_reading_piped_message": "error al leer mensaje desde stdin: %w",
"image_file_already_exists": "el archivo de imagen ya existe: %s",
"invalid_image_file_extension": "extensión de archivo de imagen inválida '%s'. Formatos soportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "los parámetros de imagen (--image-size, --image-quality, --image-background, --image-compression) solo pueden usarse con --image-file",
"invalid_image_size": "tamaño de imagen inválido '%s'. Tamaños soportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "calidad de imagen inválida '%s'. Calidades soportadas: low, medium, high, auto",
"invalid_image_background": "fondo de imagen inválido '%s'. Fondos soportados: opaque, transparent",
"image_compression_jpeg_webp_only": "la compresión de imagen solo puede usarse con formatos JPEG y WebP, no %s",
"image_compression_range_error": "la compresión de imagen debe estar entre 0 y 100, se obtuvo %d",
"transparent_background_png_webp_only": "el fondo transparente solo puede usarse con formatos PNG y WebP, no %s",
"available_transcription_models": "Modelos de transcripción disponibles:",
"tts_audio_generated_successfully": "Audio TTS generado exitosamente y guardado en: %s\n",
"fabric_command_complete": "Comando Fabric Completado",
"fabric_command_complete_with_pattern": "Fabric: %s Completado",
"command_completed_successfully": "Comando completado exitosamente",
"output_truncated": "Salida: %s...",
"output_full": "Salida: %s",
"choose_pattern_from_available": "Elige un patrón de los patrones disponibles",
"pattern_variables_help": "Valores para variables de patrón, ej. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Elige un contexto de los contextos disponibles",
"choose_session_from_available": "Elige una sesión de las sesiones disponibles",
"attachment_path_or_url_help": "Ruta de adjunto o URL (ej. para mensajes de reconocimiento de imagen de OpenAI)",
"run_setup_for_reconfigurable_parts": "Ejecutar configuración para todas las partes reconfigurables de fabric",
"set_temperature": "Establecer temperatura",
"set_top_p": "Establecer top P",
"stream_help": "Transmitir",
"set_presence_penalty": "Establecer penalización de presencia",
"use_model_defaults_raw_help": "Utiliza los valores predeterminados del modelo sin enviar opciones de chat (temperature, top_p, etc.). Solo afecta a los proveedores compatibles con OpenAI. Los modelos de Anthropic siempre usan una selección inteligente de parámetros para cumplir los requisitos específicos del modelo.",
"set_frequency_penalty": "Establecer penalización de frecuencia",
"list_all_patterns": "Listar todos los patrones",
"list_all_available_models": "Listar todos los modelos disponibles",
"list_all_contexts": "Listar todos los contextos",
"list_all_sessions": "Listar todas las sesiones",
"update_patterns": "Actualizar patrones",
"messages_to_send_to_chat": "Mensajes para enviar al chat",
"copy_to_clipboard": "Copiar al portapapeles",
"choose_model": "Elegir modelo",
"specify_vendor_for_model": "Especificar proveedor para el modelo seleccionado (ej., -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Longitud de contexto del modelo (solo afecta a ollama)",
"output_to_file": "Salida a archivo",
"output_entire_session": "Salida de toda la sesión (también una temporal) al archivo de salida",
"number_of_latest_patterns": "Número de patrones más recientes a listar",
"change_default_model": "Cambiar modelo predeterminado",
"youtube_url_help": "Video de YouTube o \"URL\" de lista de reproducción para obtener transcripción, comentarios y enviar al chat o imprimir en la consola y almacenar en el archivo de salida",
"prefer_playlist_over_video": "Preferir lista de reproducción sobre video si ambos ids están presentes en la URL",
"grab_transcript_from_youtube": "Obtener transcripción del video de YouTube y enviar al chat (se usa por defecto).",
"grab_transcript_with_timestamps": "Obtener transcripción del video de YouTube con marcas de tiempo y enviar al chat",
"grab_comments_from_youtube": "Obtener comentarios del video de YouTube y enviar al chat",
"output_video_metadata": "Salida de metadatos del video",
"additional_yt_dlp_args": "Argumentos adicionales para pasar a yt-dlp (ej. '--cookies-from-browser brave')",
"specify_language_code": "Especificar el Código de Idioma para el chat, ej. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Extraer URL del sitio web a markdown usando Jina AI",
"search_question_jina": "Pregunta de búsqueda usando Jina AI",
"seed_for_lmm_generation": "Semilla para ser usada en la generación LMM",
"wipe_context": "Limpiar contexto",
"wipe_session": "Limpiar sesión",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sesión",
"convert_html_readability": "Convertir entrada HTML en una vista limpia y legible",
"apply_variables_to_input": "Aplicar variables a la entrada del usuario",
"disable_pattern_variable_replacement": "Deshabilitar reemplazo de variables de patrón",
"show_dry_run": "Mostrar lo que se enviaría al modelo sin enviarlo realmente",
"serve_fabric_rest_api": "Servir la API REST de Fabric",
"serve_fabric_api_ollama_endpoints": "Servir la API REST de Fabric con endpoints de ollama",
"address_to_bind_rest_api": "La dirección para vincular la API REST",
"api_key_secure_server_routes": "Clave API usada para asegurar rutas del servidor",
"path_to_yaml_config": "Ruta al archivo de configuración YAML",
"print_current_version": "Imprimir versión actual",
"list_all_registered_extensions": "Listar todas las extensiones registradas",
"register_new_extension": "Registrar una nueva extensión desde la ruta del archivo de configuración",
"remove_registered_extension": "Eliminar una extensión registrada por nombre",
"choose_strategy_from_available": "Elegir una estrategia de las estrategias disponibles",
"list_all_strategies": "Listar todas las estrategias",
"list_all_vendors": "Listar todos los proveedores",
"output_raw_list_shell_completion": "Salida de lista sin procesar sin encabezados/formato (para completado de shell)",
"enable_web_search_tool": "Habilitar herramienta de búsqueda web para modelos soportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Establecer ubicación para resultados de búsqueda web (ej., 'America/Los_Angeles')",
"save_generated_image_to_file": "Guardar imagen generada en la ruta de archivo especificada (ej., 'output.png')",
"image_dimensions_help": "Dimensiones de imagen: 1024x1024, 1536x1024, 1024x1536, auto (predeterminado: auto)",
"image_quality_help": "Calidad de imagen: low, medium, high, auto (predeterminado: auto)",
"compression_level_jpeg_webp": "Nivel de compresión 0-100 para formatos JPEG/WebP (predeterminado: no establecido)",
"background_type_help": "Tipo de fondo: opaque, transparent (predeterminado: opaque, solo para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto encerrado en etiquetas de pensamiento",
"start_tag_thinking_sections": "Etiqueta de inicio para secciones de pensamiento",
"end_tag_thinking_sections": "Etiqueta de fin para secciones de pensamiento",
"disable_openai_responses_api": "Deshabilitar API de Respuestas de OpenAI (predeterminado: false)",
"audio_video_file_transcribe": "Archivo de audio o video para transcribir",
"model_for_transcription": "Modelo para usar en transcripción (separado del modelo de chat)",
"split_media_files_ffmpeg": "Dividir archivos de audio/video mayores a 25MB usando ffmpeg",
"tts_voice_name": "Nombre de voz TTS para modelos soportados (ej., Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas las voces TTS de Gemini disponibles",
"list_transcription_models": "Listar todos los modelos de transcripción disponibles",
"send_desktop_notification": "Enviar notificación de escritorio cuando se complete el comando",
"custom_notification_command": "Comando personalizado para ejecutar notificaciones (anula las notificaciones integradas)",
"set_reasoning_thinking_level": "Establecer nivel de razonamiento/pensamiento (ej., off, low, medium, high, o tokens numéricos para Anthropic o Google Gemini)",
"set_debug_level": "Establecer nivel de depuración (0=apagado, 1=básico, 2=detallado, 3=rastreo)",
"usage_header": "Uso:",
"application_options_header": "Opciones de la Aplicación:",
"help_options_header": "Opciones de Ayuda:",
"help_message": "Mostrar este mensaje de ayuda",
"options_placeholder": "[OPCIONES]",
"available_vendors_header": "Proveedores Disponibles:",
"available_models_header": "Modelos disponibles",
"no_items_found": "No hay %s",
"no_description_available": "No hay descripción disponible",
"i18n_download_failed": "Error al descargar traducción para el idioma '%s': %v",
"i18n_load_failed": "Error al cargar archivo de traducción: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "از ورودی اصلی استفاده کن، چون نمی‌توان خوانایی HTML را اعمال کرد",
"vendor_not_configured": "تامین‌کننده %s پیکربندی نشده است",
"vendor_no_transcription_support": "تامین‌کننده %s از رونویسی صوتی پشتیبانی نمی‌کند",
"transcription_model_required": "مدل رونویسی الزامی است (از --transcribe-model استفاده کنید)",
"youtube_not_configured": "یوتیوب پیکربندی نشده است، لطفاً روند تنظیمات را اجرا کنید",
"youtube_api_key_required": "کلید API یوتیوب برای دریافت نظرات و متادیتا الزامی است. برای پیکربندی 'fabric --setup' را اجرا کنید",
"youtube_ytdlp_not_found": "yt-dlp در PATH یافت نشد. لطفاً yt-dlp را نصب کنید تا از قابلیت رونویسی یوتیوب استفاده کنید",
"youtube_invalid_url": "URL یوتیوب نامعتبر است، نمی‌توان ID ویدیو یا فهرست پخش را دریافت کرد: '%s'",
"youtube_url_is_playlist_not_video": "URL یک فهرست پخش است، نه یک ویدیو",
"youtube_no_video_id_found": "هیچ ID ویدیویی در URL یافت نشد",
"youtube_rate_limit_exceeded": "محدودیت نرخ یوتیوب فراتر رفته است. بعداً دوباره امتحان کنید یا از آرگومان‌های مختلف yt-dlp مانند '--sleep-requests 1' برای کاهش سرعت درخواست‌ها استفاده کنید.",
"youtube_auth_required_bot_detection": "یوتیوب احراز هویت می‌خواهد (تشخیص ربات). از --yt-dlp-args='--cookies-from-browser BROWSER' استفاده کنید که BROWSER می‌تواند chrome، firefox، brave و غیره باشد.",
"youtube_ytdlp_stderr_error": "خطا در خواندن stderr yt-dlp",
"youtube_invalid_ytdlp_arguments": "آرگومان‌های yt-dlp نامعتبر: %v",
"youtube_failed_create_temp_dir": "ایجاد دایرکتوری موقت ناموفق بود: %v",
"youtube_no_transcript_content": "محتوای رونوشتی در فایل VTT یافت نشد",
"youtube_no_vtt_files_found": "فایل‌های VTT در دایرکتوری یافت نشدند",
"youtube_failed_walk_directory": "پیمایش دایرکتوری ناموفق بود: %v",
"youtube_error_getting_video_details": "خطا در دریافت جزئیات ویدیو: %v",
"youtube_invalid_duration_string": "رشته مدت زمان نامعتبر: %s",
"youtube_error_getting_metadata": "خطا در دریافت متادیتای ویدیو: %v",
"youtube_error_parsing_duration": "خطا در تجزیه مدت زمان ویدیو: %v",
"youtube_error_getting_comments": "خطا در دریافت نظرات: %v",
"youtube_error_saving_csv": "خطا در ذخیره ویدیوها در CSV: %v",
"youtube_no_video_found_with_id": "هیچ ویدیویی با ID یافت نشد: %s",
"youtube_invalid_timestamp_format": "فرمت مهر زمانی نامعتبر: %s",
"youtube_empty_seconds_string": "رشته ثانیه خالی",
"youtube_invalid_seconds_format": "فرمت ثانیه نامعتبر %q: %w",
"error_fetching_playlist_videos": "خطا در دریافت ویدیوهای فهرست پخش: %w",
"openai_api_base_url_not_configured": "URL پایه API برای ارائه‌دهنده %s پیکربندی نشده است",
"openai_failed_to_create_models_url": "ایجاد URL مدل‌ها ناموفق بود: %w",
"openai_unexpected_status_code_with_body": "کد وضعیت غیرمنتظره: %d از ارائه‌دهنده %s، پاسخ: %s",
"openai_unexpected_status_code_read_error_partial": "کد وضعیت غیرمنتظره: %d از ارائه‌دهنده %s (خطا در خواندن: %v)، پاسخ جزئی: %s",
"openai_unexpected_status_code_read_error": "کد وضعیت غیرمنتظره: %d از ارائه‌دهنده %s (خطا در خواندن پاسخ: %v)",
"openai_unable_to_parse_models_response": "تجزیه پاسخ مدل‌ها ناموفق بود; پاسخ خام: %s",
"scraping_not_configured": "قابلیت استخراج داده پیکربندی نشده است. لطفاً Jina را برای فعال‌سازی استخراج تنظیم کنید",
"could_not_determine_home_dir": "نتوانست دایرکتوری خانه کاربر را تعیین کند: %w",
"could_not_stat_env_file": "نتوانست وضعیت فایل .env را بررسی کند: %w",
"could_not_create_config_dir": "نتوانست دایرکتوری پیکربندی را ایجاد کند: %w",
"could_not_create_env_file": "نتوانست فایل .env را ایجاد کند: %w",
"could_not_copy_to_clipboard": "نتوانست به کلیپ‌بورد کپی کند: %v",
"file_already_exists_not_overwriting": "فایل %s از قبل وجود دارد، بازنویسی نمی‌شود. فایل موجود را تغییر نام دهید یا نام متفاوتی انتخاب کنید",
"error_creating_file": "خطا در ایجاد فایل: %v",
"error_writing_to_file": "خطا در نوشتن به فایل: %v",
"error_creating_audio_file": "خطا در ایجاد فایل صوتی: %v",
"error_writing_audio_data": "خطا در نوشتن داده‌های صوتی به فایل: %v",
"tts_model_requires_audio_output": "مدل TTS '%s' نیاز به خروجی صوتی دارد. لطفاً فایل خروجی صوتی را با پرچم -o مشخص کنید (مثال: -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "فایل خروجی صوتی '%s' مشخص شده اما مدل '%s' یک مدل TTS نیست. لطفاً از مدل TTS مثل gemini-2.5-flash-preview-tts استفاده کنید",
"file_already_exists_choose_different": "فایل %s از قبل وجود دارد. لطفاً نام فایل متفاوتی انتخاب کنید یا فایل موجود را حذف کنید",
"no_notification_system_available": "هیچ سیستم اعلان‌رسانی در دسترس نیست",
"cannot_convert_string": "نمی‌توان رشته %q را به %v تبدیل کرد",
"unsupported_conversion": "تبدیل پشتیبانی نشده از %v به %v",
"invalid_config_path": "مسیر پیکربندی نامعتبر: %w",
"config_file_not_found": "فایل پیکربندی یافت نشد: %s",
"error_reading_config_file": "خطا در خواندن فایل پیکربندی: %w",
"error_parsing_config_file": "خطا در تجزیه فایل پیکربندی: %w",
"error_reading_piped_message": "خطا در خواندن پیام هدایت شده از stdin: %w",
"image_file_already_exists": "فایل تصویر از قبل وجود دارد: %s",
"invalid_image_file_extension": "پسوند فایل تصویر نامعتبر '%s'. فرمت‌های پشتیبانی شده: .png، .jpeg، .jpg، .webp",
"image_parameters_require_image_file": "پارامترهای تصویر (--image-size، --image-quality، --image-background، --image-compression) فقط با --image-file قابل استفاده هستند",
"invalid_image_size": "اندازه تصویر نامعتبر '%s'. اندازه‌های پشتیبانی شده: 1024x1024، 1536x1024، 1024x1536، auto",
"invalid_image_quality": "کیفیت تصویر نامعتبر '%s'. کیفیت‌های پشتیبانی شده: low، medium، high، auto",
"invalid_image_background": "پس‌زمینه تصویر نامعتبر '%s'. پس‌زمینه‌های پشتیبانی شده: opaque، transparent",
"image_compression_jpeg_webp_only": "فشرده‌سازی تصویر فقط با فرمت‌های JPEG و WebP قابل استفاده است، نه %s",
"image_compression_range_error": "فشرده‌سازی تصویر باید بین 0 تا 100 باشد، دریافت شده: %d",
"transparent_background_png_webp_only": "پس‌زمینه شفاف فقط با فرمت‌های PNG و WebP قابل استفاده است، نه %s",
"available_transcription_models": "مدل‌های رونویسی موجود:",
"tts_audio_generated_successfully": "صوت TTS با موفقیت ایجاد و ذخیره شد در: %s\n",
"fabric_command_complete": "دستور Fabric تکمیل شد",
"fabric_command_complete_with_pattern": "Fabric: %s تکمیل شد",
"command_completed_successfully": "دستور با موفقیت تکمیل شد",
"output_truncated": "خروجی: %s...",
"output_full": "خروجی: %s",
"choose_pattern_from_available": "الگویی از الگوهای موجود انتخاب کنید",
"pattern_variables_help": "مقادیر برای متغیرهای الگو، مثال: -v=#role:expert -v=#points:30",
"choose_context_from_available": "زمینه‌ای از زمینه‌های موجود انتخاب کنید",
"choose_session_from_available": "جلسه‌ای از جلسات موجود انتخاب کنید",
"attachment_path_or_url_help": "مسیر ضمیمه یا URL (مثال برای پیام‌های تشخیص تصویر OpenAI)",
"run_setup_for_reconfigurable_parts": "اجرای تنظیمات برای تمام بخش‌های قابل پیکربندی مجدد fabric",
"set_temperature": "تنظیم دما",
"set_top_p": "تنظیم top P",
"stream_help": "پخش زنده",
"set_presence_penalty": "تنظیم جریمه حضور",
"use_model_defaults_raw_help": "از مقادیر پیش‌فرض مدل بدون ارسال گزینه‌های چت (temperature، top_p و غیره) استفاده می‌کند. فقط بر ارائه‌دهندگان سازگار با OpenAI تأثیر می‌گذارد. مدل‌های Anthropic همواره برای رعایت نیازهای خاص هر مدل از انتخاب هوشمند پارامتر استفاده می‌کنند.",
"set_frequency_penalty": "تنظیم جریمه فرکانس",
"list_all_patterns": "فهرست تمام الگوها",
"list_all_available_models": "فهرست تمام مدل‌های موجود",
"list_all_contexts": "فهرست تمام زمینه‌ها",
"list_all_sessions": "فهرست تمام جلسات",
"update_patterns": "به‌روزرسانی الگوها",
"messages_to_send_to_chat": "پیام‌هایی برای ارسال به گفتگو",
"copy_to_clipboard": "کپی به کلیپ‌بورد",
"choose_model": "انتخاب مدل",
"specify_vendor_for_model": "تعیین تامین‌کننده برای مدل انتخابی (مثال: -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "طول زمینه مدل (فقط ollama را تحت تأثیر قرار می‌دهد)",
"output_to_file": "خروجی به فایل",
"output_entire_session": "خروجی کل جلسه (حتی موقت) به فایل خروجی",
"number_of_latest_patterns": "تعداد جدیدترین الگوها برای فهرست",
"change_default_model": "تغییر مدل پیش‌فرض",
"youtube_url_help": "ویدیو یوتیوب یا \"URL\" فهرست پخش برای دریافت رونوشت، نظرات و ارسال به گفتگو یا چاپ در کنسول و ذخیره در فایل خروجی",
"prefer_playlist_over_video": "اولویت فهرست پخش نسبت به ویدیو اگر هر دو ID در URL موجود باشند",
"grab_transcript_from_youtube": "دریافت رونوشت از ویدیو یوتیوب و ارسال به گفتگو (به طور پیش‌فرض استفاده می‌شود).",
"grab_transcript_with_timestamps": "دریافت رونوشت از ویدیو یوتیوب با مهر زمان و ارسال به گفتگو",
"grab_comments_from_youtube": "دریافت نظرات از ویدیو یوتیوب و ارسال به گفتگو",
"output_video_metadata": "نمایش فراداده ویدیو",
"additional_yt_dlp_args": "آرگومان‌های اضافی برای ارسال به yt-dlp (مثال: '--cookies-from-browser brave')",
"specify_language_code": "کد زبان برای گفتگو را مشخص کنید، مثلاً -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "استخراج URL وب‌سایت به markdown با استفاده از Jina AI",
"search_question_jina": "سؤال جستجو با استفاده از Jina AI",
"seed_for_lmm_generation": "Seed برای استفاده در تولید LMM",
"wipe_context": "پاک کردن زمینه",
"wipe_session": "پاک کردن جلسه",
"print_context": "چاپ زمینه",
"print_session": "چاپ جلسه",
"convert_html_readability": "تبدیل ورودی HTML به نمای تمیز و خوانا",
"apply_variables_to_input": "اعمال متغیرها به ورودی کاربر",
"disable_pattern_variable_replacement": "غیرفعال کردن جایگزینی متغیرهای الگو",
"show_dry_run": "نمایش آنچه به مدل ارسال خواهد شد بدون ارسال واقعی",
"serve_fabric_rest_api": "سرویس API REST Fabric",
"serve_fabric_api_ollama_endpoints": "سرویس API REST Fabric با نقاط پایانی ollama",
"address_to_bind_rest_api": "آدرس برای متصل کردن API REST",
"api_key_secure_server_routes": "کلید API برای امن‌سازی مسیرهای سرور",
"path_to_yaml_config": "مسیر فایل پیکربندی YAML",
"print_current_version": "چاپ نسخه فعلی",
"list_all_registered_extensions": "فهرست تمام افزونه‌های ثبت شده",
"register_new_extension": "ثبت افزونه جدید از مسیر فایل پیکربندی",
"remove_registered_extension": "حذف افزونه ثبت شده با نام",
"choose_strategy_from_available": "انتخاب استراتژی از استراتژی‌های موجود",
"list_all_strategies": "فهرست تمام استراتژی‌ها",
"list_all_vendors": "فهرست تمام تامین‌کنندگان",
"output_raw_list_shell_completion": "خروجی فهرست خام بدون سرتیتر/قالب‌بندی (برای تکمیل shell)",
"enable_web_search_tool": "فعال‌سازی ابزار جستجوی وب برای مدل‌های پشتیبانی شده (Anthropic، OpenAI، Gemini)",
"set_location_web_search": "تنظیم مکان برای نتایج جستجوی وب (مثال: 'America/Los_Angeles')",
"save_generated_image_to_file": "ذخیره تصویر تولید شده در مسیر فایل مشخص (مثال: 'output.png')",
"image_dimensions_help": "ابعاد تصویر: 1024x1024، 1536x1024، 1024x1536، auto (پیش‌فرض: auto)",
"image_quality_help": "کیفیت تصویر: low، medium، high، auto (پیش‌فرض: auto)",
"compression_level_jpeg_webp": "سطح فشرده‌سازی 0-100 برای فرمت‌های JPEG/WebP (پیش‌فرض: تنظیم نشده)",
"background_type_help": "نوع پس‌زمینه: opaque، transparent (پیش‌فرض: opaque، فقط برای PNG/WebP)",
"suppress_thinking_tags": "سرکوب متن محصور در تگ‌های تفکر",
"start_tag_thinking_sections": "تگ شروع برای بخش‌های تفکر",
"end_tag_thinking_sections": "تگ پایان برای بخش‌های تفکر",
"disable_openai_responses_api": "غیرفعال کردن API OpenAI Responses (پیش‌فرض: false)",
"audio_video_file_transcribe": "فایل صوتی یا ویدیویی برای رونویسی",
"model_for_transcription": "مدل برای استفاده در رونویسی (جدا از مدل گفتگو)",
"split_media_files_ffmpeg": "تقسیم فایل‌های صوتی/ویدیویی بزرگتر از 25MB با استفاده از ffmpeg",
"tts_voice_name": "نام صدای TTS برای مدل‌های پشتیبانی شده (مثال: Kore، Charon، Puck)",
"list_gemini_tts_voices": "فهرست تمام صداهای TTS Gemini موجود",
"list_transcription_models": "فهرست تمام مدل‌های رونویسی موجود",
"send_desktop_notification": "ارسال اعلان دسک‌تاپ هنگام تکمیل دستور",
"custom_notification_command": "دستور سفارشی برای اجرای اعلان‌ها (جایگزین اعلان‌های داخلی)",
"set_reasoning_thinking_level": "تنظیم سطح استدلال/تفکر (مثال: off، low، medium، high، یا توکن‌های عددی برای Anthropic یا Google Gemini)",
"set_debug_level": "تنظیم سطح اشکال‌زدایی (0=خاموش، 1=پایه، 2=تفصیلی، 3=ردیابی)",
"usage_header": "استفاده:",
"application_options_header": "گزینه‌های برنامه:",
"help_options_header": "گزینه‌های راهنما:",
"help_message": "نمایش این پیام راهنما",
"options_placeholder": "[گزینه‌ها]",
"available_vendors_header": "تامین‌کنندگان موجود:",
"available_models_header": "مدل‌های موجود",
"no_items_found": "هیچ %s",
"no_description_available": "توضیحی در دسترس نیست",
"i18n_download_failed": "دانلود ترجمه برای زبان '%s' ناموفق بود: %v",
"i18n_load_failed": "بارگذاری فایل ترجمه ناموفق بود: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "utilise l'entrée originale, car la lisibilité HTML ne peut pas être appliquée",
"vendor_not_configured": "le fournisseur %s n'est pas configuré",
"vendor_no_transcription_support": "le fournisseur %s ne prend pas en charge la transcription audio",
"transcription_model_required": "un modèle de transcription est requis (utilisez --transcribe-model)",
"youtube_not_configured": "YouTube n'est pas configuré, veuillez exécuter la procédure de configuration",
"youtube_api_key_required": "Clé API YouTube requise pour les commentaires et métadonnées. Exécutez 'fabric --setup' pour configurer",
"youtube_ytdlp_not_found": "yt-dlp introuvable dans PATH. Veuillez installer yt-dlp pour utiliser la fonctionnalité de transcription YouTube",
"youtube_invalid_url": "URL YouTube invalide, impossible d'obtenir l'ID de vidéo ou de liste de lecture : '%s'",
"youtube_url_is_playlist_not_video": "L'URL est une liste de lecture, pas une vidéo",
"youtube_no_video_id_found": "aucun ID de vidéo trouvé dans l'URL",
"youtube_rate_limit_exceeded": "Limite de taux YouTube dépassée. Réessayez plus tard ou utilisez différents arguments yt-dlp comme '--sleep-requests 1' pour ralentir les requêtes.",
"youtube_auth_required_bot_detection": "YouTube nécessite une authentification (détection de bot). Utilisez --yt-dlp-args='--cookies-from-browser BROWSER' où BROWSER peut être chrome, firefox, brave, etc.",
"youtube_ytdlp_stderr_error": "Erreur lors de la lecture du stderr de yt-dlp",
"youtube_invalid_ytdlp_arguments": "arguments yt-dlp invalides : %v",
"youtube_failed_create_temp_dir": "échec de création du répertoire temporaire : %v",
"youtube_no_transcript_content": "aucun contenu de transcription trouvé dans le fichier VTT",
"youtube_no_vtt_files_found": "aucun fichier VTT trouvé dans le répertoire",
"youtube_failed_walk_directory": "échec du parcours du répertoire : %v",
"youtube_error_getting_video_details": "erreur lors de l'obtention des détails de la vidéo : %v",
"youtube_invalid_duration_string": "chaîne de durée invalide : %s",
"youtube_error_getting_metadata": "erreur lors de l'obtention des métadonnées de la vidéo : %v",
"youtube_error_parsing_duration": "erreur lors de l'analyse de la durée de la vidéo : %v",
"youtube_error_getting_comments": "erreur lors de l'obtention des commentaires : %v",
"youtube_error_saving_csv": "erreur lors de l'enregistrement des vidéos en CSV : %v",
"youtube_no_video_found_with_id": "aucune vidéo trouvée avec l'ID : %s",
"youtube_invalid_timestamp_format": "format d'horodatage invalide : %s",
"youtube_empty_seconds_string": "chaîne de secondes vide",
"youtube_invalid_seconds_format": "format de secondes invalide %q : %w",
"error_fetching_playlist_videos": "erreur lors de la récupération des vidéos de la liste de lecture : %w",
"openai_api_base_url_not_configured": "URL de base de l'API non configurée pour le fournisseur %s",
"openai_failed_to_create_models_url": "échec de création de l'URL des modèles : %w",
"openai_unexpected_status_code_with_body": "code d'état inattendu : %d du fournisseur %s, corps de réponse : %s",
"openai_unexpected_status_code_read_error_partial": "code d'état inattendu : %d du fournisseur %s (erreur de lecture : %v), réponse partielle : %s",
"openai_unexpected_status_code_read_error": "code d'état inattendu : %d du fournisseur %s (échec de lecture du corps de réponse : %v)",
"openai_unable_to_parse_models_response": "impossible d'analyser la réponse des modèles ; réponse brute : %s",
"scraping_not_configured": "la fonctionnalité de scraping n'est pas configurée. Veuillez configurer Jina pour activer le scraping",
"could_not_determine_home_dir": "impossible de déterminer le répertoire home de l'utilisateur : %w",
"could_not_stat_env_file": "impossible de vérifier le fichier .env : %w",
"could_not_create_config_dir": "impossible de créer le répertoire de configuration : %w",
"could_not_create_env_file": "impossible de créer le fichier .env : %w",
"could_not_copy_to_clipboard": "impossible de copier dans le presse-papiers : %v",
"file_already_exists_not_overwriting": "le fichier %s existe déjà, ne sera pas écrasé. Renommez le fichier existant ou choisissez un nom différent",
"error_creating_file": "erreur lors de la création du fichier : %v",
"error_writing_to_file": "erreur lors de l'écriture dans le fichier : %v",
"error_creating_audio_file": "erreur lors de la création du fichier audio : %v",
"error_writing_audio_data": "erreur lors de l'écriture des données audio dans le fichier : %v",
"tts_model_requires_audio_output": "le modèle TTS '%s' nécessite une sortie audio. Veuillez spécifier un fichier de sortie audio avec le flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "fichier de sortie audio '%s' spécifié mais le modèle '%s' n'est pas un modèle TTS. Veuillez utiliser un modèle TTS comme gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "le fichier %s existe déjà. Veuillez choisir un nom de fichier différent ou supprimer le fichier existant",
"no_notification_system_available": "aucun système de notification disponible",
"cannot_convert_string": "impossible de convertir la chaîne %q en %v",
"unsupported_conversion": "conversion non prise en charge de %v vers %v",
"invalid_config_path": "chemin de configuration invalide : %w",
"config_file_not_found": "fichier de configuration non trouvé : %s",
"error_reading_config_file": "erreur lors de la lecture du fichier de configuration : %w",
"error_parsing_config_file": "erreur lors de l'analyse du fichier de configuration : %w",
"error_reading_piped_message": "erreur lors de la lecture du message redirigé depuis stdin : %w",
"image_file_already_exists": "le fichier image existe déjà : %s",
"invalid_image_file_extension": "extension de fichier image invalide '%s'. Formats pris en charge : .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "les paramètres d'image (--image-size, --image-quality, --image-background, --image-compression) ne peuvent être utilisés qu'avec --image-file",
"invalid_image_size": "taille d'image invalide '%s'. Tailles prises en charge : 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualité d'image invalide '%s'. Qualités prises en charge : low, medium, high, auto",
"invalid_image_background": "arrière-plan d'image invalide '%s'. Arrière-plans pris en charge : opaque, transparent",
"image_compression_jpeg_webp_only": "la compression d'image ne peut être utilisée qu'avec les formats JPEG et WebP, pas %s",
"image_compression_range_error": "la compression d'image doit être entre 0 et 100, reçu %d",
"transparent_background_png_webp_only": "l'arrière-plan transparent ne peut être utilisé qu'avec les formats PNG et WebP, pas %s",
"available_transcription_models": "Modèles de transcription disponibles :",
"tts_audio_generated_successfully": "Audio TTS généré avec succès et sauvegardé dans : %s\n",
"fabric_command_complete": "Commande Fabric terminée",
"fabric_command_complete_with_pattern": "Fabric : %s terminé",
"command_completed_successfully": "Commande terminée avec succès",
"output_truncated": "Sortie : %s...",
"output_full": "Sortie : %s",
"choose_pattern_from_available": "Choisissez un motif parmi les motifs disponibles",
"pattern_variables_help": "Valeurs pour les variables de motif, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Choisissez un contexte parmi les contextes disponibles",
"choose_session_from_available": "Choisissez une session parmi les sessions disponibles",
"attachment_path_or_url_help": "Chemin de pièce jointe ou URL (ex. pour les messages de reconnaissance d'image OpenAI)",
"run_setup_for_reconfigurable_parts": "Exécuter la configuration pour toutes les parties reconfigurables de fabric",
"set_temperature": "Définir la température",
"set_top_p": "Définir le top P",
"stream_help": "Streaming",
"set_presence_penalty": "Définir la pénalité de présence",
"use_model_defaults_raw_help": "Utilise les valeurs par défaut du modèle sans envoyer doptions de discussion (temperature, top_p, etc.). Naffecte que les fournisseurs compatibles avec OpenAI. Les modèles Anthropic utilisent toujours une sélection intelligente des paramètres pour respecter les exigences propres à chaque modèle.",
"set_frequency_penalty": "Définir la pénalité de fréquence",
"list_all_patterns": "Lister tous les motifs",
"list_all_available_models": "Lister tous les modèles disponibles",
"list_all_contexts": "Lister tous les contextes",
"list_all_sessions": "Lister toutes les sessions",
"update_patterns": "Mettre à jour les motifs",
"messages_to_send_to_chat": "Messages à envoyer au chat",
"copy_to_clipboard": "Copier dans le presse-papiers",
"choose_model": "Choisir le modèle",
"specify_vendor_for_model": "Spécifier le fournisseur pour le modèle sélectionné (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Longueur de contexte du modèle (affecte seulement ollama)",
"output_to_file": "Sortie vers fichier",
"output_entire_session": "Sortie de toute la session (même temporaire) vers le fichier de sortie",
"number_of_latest_patterns": "Nombre des motifs les plus récents à lister",
"change_default_model": "Changer le modèle par défaut",
"youtube_url_help": "Vidéo YouTube ou \"URL\" de liste de lecture pour récupérer la transcription, les commentaires et envoyer au chat ou afficher dans la console et stocker dans le fichier de sortie",
"prefer_playlist_over_video": "Préférer la liste de lecture à la vidéo si les deux IDs sont présents dans l'URL",
"grab_transcript_from_youtube": "Récupérer la transcription de la vidéo YouTube et envoyer au chat (utilisé par défaut).",
"grab_transcript_with_timestamps": "Récupérer la transcription de la vidéo YouTube avec horodatage et envoyer au chat",
"grab_comments_from_youtube": "Récupérer les commentaires de la vidéo YouTube et envoyer au chat",
"output_video_metadata": "Afficher les métadonnées de la vidéo",
"additional_yt_dlp_args": "Arguments supplémentaires à passer à yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Spécifier le code de langue pour le chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scraper l'URL du site web en markdown en utilisant Jina AI",
"search_question_jina": "Question de recherche en utilisant Jina AI",
"seed_for_lmm_generation": "Graine à utiliser pour la génération LMM",
"wipe_context": "Effacer le contexte",
"wipe_session": "Effacer la session",
"print_context": "Afficher le contexte",
"print_session": "Afficher la session",
"convert_html_readability": "Convertir l'entrée HTML en vue propre et lisible",
"apply_variables_to_input": "Appliquer les variables à l'entrée utilisateur",
"disable_pattern_variable_replacement": "Désactiver le remplacement des variables de motif",
"show_dry_run": "Montrer ce qui serait envoyé au modèle sans l'envoyer réellement",
"serve_fabric_rest_api": "Servir l'API REST Fabric",
"serve_fabric_api_ollama_endpoints": "Servir l'API REST Fabric avec les endpoints ollama",
"address_to_bind_rest_api": "Adresse pour lier l'API REST",
"api_key_secure_server_routes": "Clé API utilisée pour sécuriser les routes du serveur",
"path_to_yaml_config": "Chemin vers le fichier de configuration YAML",
"print_current_version": "Afficher la version actuelle",
"list_all_registered_extensions": "Lister toutes les extensions enregistrées",
"register_new_extension": "Enregistrer une nouvelle extension depuis le chemin du fichier de configuration",
"remove_registered_extension": "Supprimer une extension enregistrée par nom",
"choose_strategy_from_available": "Choisir une stratégie parmi les stratégies disponibles",
"list_all_strategies": "Lister toutes les stratégies",
"list_all_vendors": "Lister tous les fournisseurs",
"output_raw_list_shell_completion": "Sortie de liste brute sans en-têtes/formatage (pour la complétion shell)",
"enable_web_search_tool": "Activer l'outil de recherche web pour les modèles pris en charge (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Définir l'emplacement pour les résultats de recherche web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Sauvegarder l'image générée dans le chemin de fichier spécifié (ex. 'output.png')",
"image_dimensions_help": "Dimensions de l'image : 1024x1024, 1536x1024, 1024x1536, auto (par défaut : auto)",
"image_quality_help": "Qualité de l'image : low, medium, high, auto (par défaut : auto)",
"compression_level_jpeg_webp": "Niveau de compression 0-100 pour les formats JPEG/WebP (par défaut : non défini)",
"background_type_help": "Type d'arrière-plan : opaque, transparent (par défaut : opaque, seulement pour PNG/WebP)",
"suppress_thinking_tags": "Supprimer le texte encadré par les balises de réflexion",
"start_tag_thinking_sections": "Balise de début pour les sections de réflexion",
"end_tag_thinking_sections": "Balise de fin pour les sections de réflexion",
"disable_openai_responses_api": "Désactiver l'API OpenAI Responses (par défaut : false)",
"audio_video_file_transcribe": "Fichier audio ou vidéo à transcrire",
"model_for_transcription": "Modèle à utiliser pour la transcription (séparé du modèle de chat)",
"split_media_files_ffmpeg": "Diviser les fichiers audio/vidéo de plus de 25MB en utilisant ffmpeg",
"tts_voice_name": "Nom de voix TTS pour les modèles pris en charge (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Lister toutes les voix TTS Gemini disponibles",
"list_transcription_models": "Lister tous les modèles de transcription disponibles",
"send_desktop_notification": "Envoyer une notification de bureau quand la commande se termine",
"custom_notification_command": "Commande personnalisée à exécuter pour les notifications (remplace les notifications intégrées)",
"set_reasoning_thinking_level": "Définir le niveau de raisonnement/réflexion (ex. off, low, medium, high, ou tokens numériques pour Anthropic ou Google Gemini)",
"set_debug_level": "Définir le niveau de débogage (0=désactivé, 1=basique, 2=détaillé, 3=trace)",
"usage_header": "Utilisation :",
"application_options_header": "Options de l'application :",
"help_options_header": "Options d'aide :",
"help_message": "Afficher ce message d'aide",
"options_placeholder": "[OPTIONS]",
"available_vendors_header": "Fournisseurs disponibles :",
"available_models_header": "Modèles disponibles",
"no_items_found": "Aucun %s",
"no_description_available": "Aucune description disponible",
"i18n_download_failed": "Échec du téléchargement de la traduction pour la langue '%s' : %v",
"i18n_load_failed": "Échec du chargement du fichier de traduction : %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "usa l'input originale, perché non è possibile applicare la leggibilità HTML",
"vendor_not_configured": "il fornitore %s non è configurato",
"vendor_no_transcription_support": "il fornitore %s non supporta la trascrizione audio",
"transcription_model_required": "è richiesto un modello di trascrizione (usa --transcribe-model)",
"youtube_not_configured": "YouTube non è configurato, per favore esegui la procedura di configurazione",
"youtube_api_key_required": "Chiave API YouTube richiesta per commenti e metadati. Esegui 'fabric --setup' per configurare",
"youtube_ytdlp_not_found": "yt-dlp non trovato in PATH. Per favore installa yt-dlp per usare la funzionalità di trascrizione YouTube",
"youtube_invalid_url": "URL YouTube non valido, impossibile ottenere l'ID del video o della playlist: '%s'",
"youtube_url_is_playlist_not_video": "L'URL è una playlist, non un video",
"youtube_no_video_id_found": "nessun ID video trovato nell'URL",
"youtube_rate_limit_exceeded": "Limite di richieste YouTube superato. Riprova più tardi o usa argomenti yt-dlp diversi come '--sleep-requests 1' per rallentare le richieste.",
"youtube_auth_required_bot_detection": "YouTube richiede autenticazione (rilevamento bot). Usa --yt-dlp-args='--cookies-from-browser BROWSER' dove BROWSER può essere chrome, firefox, brave, ecc.",
"youtube_ytdlp_stderr_error": "Errore durante la lettura dello stderr di yt-dlp",
"youtube_invalid_ytdlp_arguments": "argomenti yt-dlp non validi: %v",
"youtube_failed_create_temp_dir": "impossibile creare la directory temporanea: %v",
"youtube_no_transcript_content": "nessun contenuto di trascrizione trovato nel file VTT",
"youtube_no_vtt_files_found": "nessun file VTT trovato nella directory",
"youtube_failed_walk_directory": "impossibile esplorare la directory: %v",
"youtube_error_getting_video_details": "errore nell'ottenere i dettagli del video: %v",
"youtube_invalid_duration_string": "stringa di durata non valida: %s",
"youtube_error_getting_metadata": "errore nell'ottenere i metadati del video: %v",
"youtube_error_parsing_duration": "errore nell'analizzare la durata del video: %v",
"youtube_error_getting_comments": "errore nell'ottenere i commenti: %v",
"youtube_error_saving_csv": "errore nel salvare i video in CSV: %v",
"youtube_no_video_found_with_id": "nessun video trovato con ID: %s",
"youtube_invalid_timestamp_format": "formato timestamp non valido: %s",
"youtube_empty_seconds_string": "stringa di secondi vuota",
"youtube_invalid_seconds_format": "formato secondi non valido %q: %w",
"error_fetching_playlist_videos": "errore nel recupero dei video della playlist: %w",
"openai_api_base_url_not_configured": "URL base API non configurato per il provider %s",
"openai_failed_to_create_models_url": "impossibile creare URL modelli: %w",
"openai_unexpected_status_code_with_body": "codice di stato imprevisto: %d dal provider %s, corpo risposta: %s",
"openai_unexpected_status_code_read_error_partial": "codice di stato imprevisto: %d dal provider %s (errore lettura corpo: %v), risposta parziale: %s",
"openai_unexpected_status_code_read_error": "codice di stato imprevisto: %d dal provider %s (errore lettura corpo risposta: %v)",
"openai_unable_to_parse_models_response": "impossibile analizzare risposta modelli; risposta grezza: %s",
"scraping_not_configured": "la funzionalità di scraping non è configurata. Per favore configura Jina per abilitare lo scraping",
"could_not_determine_home_dir": "impossibile determinare la directory home dell'utente: %w",
"could_not_stat_env_file": "impossibile verificare il file .env: %w",
"could_not_create_config_dir": "impossibile creare la directory di configurazione: %w",
"could_not_create_env_file": "impossibile creare il file .env: %w",
"could_not_copy_to_clipboard": "impossibile copiare negli appunti: %v",
"file_already_exists_not_overwriting": "il file %s esiste già, non verrà sovrascritto. Rinomina il file esistente o scegli un nome diverso",
"error_creating_file": "errore nella creazione del file: %v",
"error_writing_to_file": "errore nella scrittura del file: %v",
"error_creating_audio_file": "errore nella creazione del file audio: %v",
"error_writing_audio_data": "errore nella scrittura dei dati audio nel file: %v",
"tts_model_requires_audio_output": "il modello TTS '%s' richiede un output audio. Per favore specifica un file di output audio con il flag -o (es. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "file di output audio '%s' specificato ma il modello '%s' non è un modello TTS. Per favore usa un modello TTS come gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "il file %s esiste già. Per favore scegli un nome file diverso o rimuovi il file esistente",
"no_notification_system_available": "nessun sistema di notifica disponibile",
"cannot_convert_string": "impossibile convertire la stringa %q in %v",
"unsupported_conversion": "conversione non supportata da %v a %v",
"invalid_config_path": "percorso di configurazione non valido: %w",
"config_file_not_found": "file di configurazione non trovato: %s",
"error_reading_config_file": "errore nella lettura del file di configurazione: %w",
"error_parsing_config_file": "errore nell'analisi del file di configurazione: %w",
"error_reading_piped_message": "errore nella lettura del messaggio reindirizzato da stdin: %w",
"image_file_already_exists": "il file immagine esiste già: %s",
"invalid_image_file_extension": "estensione file immagine non valida '%s'. Formati supportati: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "i parametri immagine (--image-size, --image-quality, --image-background, --image-compression) possono essere utilizzati solo con --image-file",
"invalid_image_size": "dimensione immagine non valida '%s'. Dimensioni supportate: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualità immagine non valida '%s'. Qualità supportate: low, medium, high, auto",
"invalid_image_background": "sfondo immagine non valido '%s'. Sfondi supportati: opaque, transparent",
"image_compression_jpeg_webp_only": "la compressione immagine può essere utilizzata solo con formati JPEG e WebP, non %s",
"image_compression_range_error": "la compressione immagine deve essere tra 0 e 100, ricevuto %d",
"transparent_background_png_webp_only": "lo sfondo trasparente può essere utilizzato solo con formati PNG e WebP, non %s",
"available_transcription_models": "Modelli di trascrizione disponibili:",
"tts_audio_generated_successfully": "Audio TTS generato con successo e salvato in: %s\n",
"fabric_command_complete": "Comando Fabric completato",
"fabric_command_complete_with_pattern": "Fabric: %s completato",
"command_completed_successfully": "Comando completato con successo",
"output_truncated": "Output: %s...",
"output_full": "Output: %s",
"choose_pattern_from_available": "Scegli un pattern dai pattern disponibili",
"pattern_variables_help": "Valori per le variabili pattern, es. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Scegli un contesto dai contesti disponibili",
"choose_session_from_available": "Scegli una sessione dalle sessioni disponibili",
"attachment_path_or_url_help": "Percorso allegato o URL (es. per messaggi di riconoscimento immagine OpenAI)",
"run_setup_for_reconfigurable_parts": "Esegui la configurazione per tutte le parti riconfigurabili di fabric",
"set_temperature": "Imposta temperatura",
"set_top_p": "Imposta top P",
"stream_help": "Streaming",
"set_presence_penalty": "Imposta penalità di presenza",
"use_model_defaults_raw_help": "Usa i valori predefiniti del modello senza inviare opzioni della chat (temperature, top_p, ecc.). Si applica solo ai provider compatibili con OpenAI. I modelli Anthropic utilizzano sempre una selezione intelligente dei parametri per rispettare i requisiti specifici del modello.",
"set_frequency_penalty": "Imposta penalità di frequenza",
"list_all_patterns": "Elenca tutti i pattern",
"list_all_available_models": "Elenca tutti i modelli disponibili",
"list_all_contexts": "Elenca tutti i contesti",
"list_all_sessions": "Elenca tutte le sessioni",
"update_patterns": "Aggiorna pattern",
"messages_to_send_to_chat": "Messaggi da inviare alla chat",
"copy_to_clipboard": "Copia negli appunti",
"choose_model": "Scegli modello",
"specify_vendor_for_model": "Specifica il fornitore per il modello selezionato (es. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Lunghezza del contesto del modello (influisce solo su ollama)",
"output_to_file": "Output su file",
"output_entire_session": "Output dell'intera sessione (anche temporanea) nel file di output",
"number_of_latest_patterns": "Numero dei pattern più recenti da elencare",
"change_default_model": "Cambia modello predefinito",
"youtube_url_help": "Video YouTube o \"URL\" della playlist per ottenere trascrizioni, commenti e inviarli alla chat o stamparli sulla console e memorizzarli nel file di output",
"prefer_playlist_over_video": "Preferisci playlist al video se entrambi gli ID sono presenti nell'URL",
"grab_transcript_from_youtube": "Ottieni trascrizione dal video YouTube e invia alla chat (usato per impostazione predefinita).",
"grab_transcript_with_timestamps": "Ottieni trascrizione dal video YouTube con timestamp e invia alla chat",
"grab_comments_from_youtube": "Ottieni commenti dal video YouTube e invia alla chat",
"output_video_metadata": "Output metadati video",
"additional_yt_dlp_args": "Argomenti aggiuntivi da passare a yt-dlp (es. '--cookies-from-browser brave')",
"specify_language_code": "Specifica il codice lingua per la chat, es. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Scraping dell'URL del sito web in markdown usando Jina AI",
"search_question_jina": "Domanda di ricerca usando Jina AI",
"seed_for_lmm_generation": "Seed da utilizzare per la generazione LMM",
"wipe_context": "Cancella contesto",
"wipe_session": "Cancella sessione",
"print_context": "Stampa contesto",
"print_session": "Stampa sessione",
"convert_html_readability": "Converti input HTML in una vista pulita e leggibile",
"apply_variables_to_input": "Applica variabili all'input utente",
"disable_pattern_variable_replacement": "Disabilita sostituzione variabili pattern",
"show_dry_run": "Mostra cosa verrebbe inviato al modello senza inviarlo effettivamente",
"serve_fabric_rest_api": "Servi l'API REST di Fabric",
"serve_fabric_api_ollama_endpoints": "Servi l'API REST di Fabric con endpoint ollama",
"address_to_bind_rest_api": "Indirizzo per associare l'API REST",
"api_key_secure_server_routes": "Chiave API utilizzata per proteggere le route del server",
"path_to_yaml_config": "Percorso del file di configurazione YAML",
"print_current_version": "Stampa versione corrente",
"list_all_registered_extensions": "Elenca tutte le estensioni registrate",
"register_new_extension": "Registra una nuova estensione dal percorso del file di configurazione",
"remove_registered_extension": "Rimuovi un'estensione registrata per nome",
"choose_strategy_from_available": "Scegli una strategia dalle strategie disponibili",
"list_all_strategies": "Elenca tutte le strategie",
"list_all_vendors": "Elenca tutti i fornitori",
"output_raw_list_shell_completion": "Output lista grezza senza intestazioni/formattazione (per completamento shell)",
"enable_web_search_tool": "Abilita strumento di ricerca web per modelli supportati (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Imposta posizione per risultati ricerca web (es. 'America/Los_Angeles')",
"save_generated_image_to_file": "Salva immagine generata nel percorso file specificato (es. 'output.png')",
"image_dimensions_help": "Dimensioni immagine: 1024x1024, 1536x1024, 1024x1536, auto (predefinito: auto)",
"image_quality_help": "Qualità immagine: low, medium, high, auto (predefinito: auto)",
"compression_level_jpeg_webp": "Livello di compressione 0-100 per formati JPEG/WebP (predefinito: non impostato)",
"background_type_help": "Tipo di sfondo: opaque, transparent (predefinito: opaque, solo per PNG/WebP)",
"suppress_thinking_tags": "Sopprimi testo racchiuso in tag di pensiero",
"start_tag_thinking_sections": "Tag di inizio per sezioni di pensiero",
"end_tag_thinking_sections": "Tag di fine per sezioni di pensiero",
"disable_openai_responses_api": "Disabilita API OpenAI Responses (predefinito: false)",
"audio_video_file_transcribe": "File audio o video da trascrivere",
"model_for_transcription": "Modello da utilizzare per la trascrizione (separato dal modello di chat)",
"split_media_files_ffmpeg": "Dividi file audio/video più grandi di 25MB usando ffmpeg",
"tts_voice_name": "Nome voce TTS per modelli supportati (es. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Elenca tutte le voci TTS Gemini disponibili",
"list_transcription_models": "Elenca tutti i modelli di trascrizione disponibili",
"send_desktop_notification": "Invia notifica desktop quando il comando è completato",
"custom_notification_command": "Comando personalizzato da eseguire per le notifiche (sovrascrive le notifiche integrate)",
"set_reasoning_thinking_level": "Imposta livello di ragionamento/pensiero (es. off, low, medium, high, o token numerici per Anthropic o Google Gemini)",
"set_debug_level": "Imposta livello di debug (0=spento, 1=base, 2=dettagliato, 3=traccia)",
"usage_header": "Uso:",
"application_options_header": "Opzioni dell'applicazione:",
"help_options_header": "Opzioni di aiuto:",
"help_message": "Mostra questo messaggio di aiuto",
"options_placeholder": "[OPZIONI]",
"available_vendors_header": "Fornitori disponibili:",
"available_models_header": "Modelli disponibili",
"no_items_found": "Nessun %s",
"no_description_available": "Nessuna descrizione disponibile",
"i18n_download_failed": "Fallito il download della traduzione per la lingua '%s': %v",
"i18n_load_failed": "Fallito il caricamento del file di traduzione: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "HTML可読性を適用できないため、元の入力を使用します",
"vendor_not_configured": "ベンダー %s が設定されていません",
"vendor_no_transcription_support": "ベンダー %s は音声転写をサポートしていません",
"transcription_model_required": "転写モデルが必要です(--transcribe-model を使用)",
"youtube_not_configured": "YouTubeが設定されていません。セットアップ手順を実行してください",
"youtube_api_key_required": "コメントとメタデータにはYouTube APIキーが必要です。設定するには 'fabric --setup' を実行してください",
"youtube_ytdlp_not_found": "PATHにyt-dlpが見つかりません。YouTubeトランスクリプト機能を使用するにはyt-dlpをインストールしてください",
"youtube_invalid_url": "無効なYouTube URL、動画またはプレイリストIDを取得できません: '%s'",
"youtube_url_is_playlist_not_video": "URLはプレイリストであり、動画ではありません",
"youtube_no_video_id_found": "URLに動画IDが見つかりません",
"youtube_rate_limit_exceeded": "YouTubeのレート制限を超えました。後でもう一度試すか、'--sleep-requests 1'のような異なるyt-dlp引数を使用してリクエストを遅くしてください。",
"youtube_auth_required_bot_detection": "YouTubeは認証を必要としていますボット検出。--yt-dlp-args='--cookies-from-browser BROWSER'を使用してください。BROWSERはchrome、firefox、braveなどです。",
"youtube_ytdlp_stderr_error": "yt-dlp stderrの読み取りエラー",
"youtube_invalid_ytdlp_arguments": "無効なyt-dlp引数: %v",
"youtube_failed_create_temp_dir": "一時ディレクトリの作成に失敗しました: %v",
"youtube_no_transcript_content": "VTTファイルにトランスクリプトコンテンツが見つかりません",
"youtube_no_vtt_files_found": "ディレクトリにVTTファイルが見つかりません",
"youtube_failed_walk_directory": "ディレクトリの走査に失敗しました: %v",
"youtube_error_getting_video_details": "動画の詳細取得エラー: %v",
"youtube_invalid_duration_string": "無効な長さ文字列: %s",
"youtube_error_getting_metadata": "動画のメタデータ取得エラー: %v",
"youtube_error_parsing_duration": "動画の長さ解析エラー: %v",
"youtube_error_getting_comments": "コメント取得エラー: %v",
"youtube_error_saving_csv": "動画のCSV保存エラー: %v",
"youtube_no_video_found_with_id": "IDの動画が見つかりません: %s",
"youtube_invalid_timestamp_format": "無効なタイムスタンプ形式: %s",
"youtube_empty_seconds_string": "空の秒文字列",
"youtube_invalid_seconds_format": "無効な秒形式 %q: %w",
"error_fetching_playlist_videos": "プレイリスト動画の取得エラー: %w",
"openai_api_base_url_not_configured": "プロバイダー %s のAPIベースURLが設定されていません",
"openai_failed_to_create_models_url": "モデルURLの作成に失敗しました: %w",
"openai_unexpected_status_code_with_body": "予期しないステータスコード: プロバイダー %s から %d、レスポンス本文: %s",
"openai_unexpected_status_code_read_error_partial": "予期しないステータスコード: プロバイダー %s から %d (本文読み取りエラー: %v)、部分的なレスポンス: %s",
"openai_unexpected_status_code_read_error": "予期しないステータスコード: プロバイダー %s から %d (レスポンス本文の読み取りに失敗: %v)",
"openai_unable_to_parse_models_response": "モデルレスポンスの解析に失敗しました; 生のレスポンス: %s",
"scraping_not_configured": "スクレイピング機能が設定されていません。スクレイピングを有効にするためにJinaを設定してください",
"could_not_determine_home_dir": "ユーザーのホームディレクトリを特定できませんでした: %w",
"could_not_stat_env_file": ".envファイルの状態を確認できませんでした: %w",
"could_not_create_config_dir": "設定ディレクトリを作成できませんでした: %w",
"could_not_create_env_file": ".envファイルを作成できませんでした: %w",
"could_not_copy_to_clipboard": "クリップボードにコピーできませんでした: %v",
"file_already_exists_not_overwriting": "ファイル %s は既に存在するため、上書きしません。既存のファイルの名前を変更するか、別の名前を選択してください",
"error_creating_file": "ファイルの作成エラー: %v",
"error_writing_to_file": "ファイルへの書き込みエラー: %v",
"error_creating_audio_file": "音声ファイルの作成エラー: %v",
"error_writing_audio_data": "音声データのファイルへの書き込みエラー: %v",
"tts_model_requires_audio_output": "TTSモデル '%s' には音声出力が必要です。-oフラグで音声出力ファイルを指定してください-o output.wav",
"audio_output_file_specified_but_not_tts_model": "音声出力ファイル '%s' が指定されましたが、モデル '%s' はTTSモデルではありません。gemini-2.5-flash-preview-tts などのTTSモデルを使用してください",
"file_already_exists_choose_different": "ファイル %s は既に存在します。別のファイル名を選択するか、既存のファイルを削除してください",
"no_notification_system_available": "利用可能な通知システムがありません",
"cannot_convert_string": "文字列 %q を %v に変換できません",
"unsupported_conversion": "%v から %v への変換はサポートされていません",
"invalid_config_path": "無効な設定パス: %w",
"config_file_not_found": "設定ファイルが見つかりません: %s",
"error_reading_config_file": "設定ファイルの読み込みエラー: %w",
"error_parsing_config_file": "設定ファイルの解析エラー: %w",
"error_reading_piped_message": "stdinからパイプされたメッセージの読み込みエラー: %w",
"image_file_already_exists": "画像ファイルが既に存在します: %s",
"invalid_image_file_extension": "無効な画像ファイル拡張子 '%s'。サポートされている形式:.png、.jpeg、.jpg、.webp",
"image_parameters_require_image_file": "画像パラメータ(--image-size、--image-quality、--image-background、--image-compressionは --image-file と一緒に使用する必要があります",
"invalid_image_size": "無効な画像サイズ '%s'。サポートされているサイズ1024x1024、1536x1024、1024x1536、auto",
"invalid_image_quality": "無効な画像品質 '%s'。サポートされている品質low、medium、high、auto",
"invalid_image_background": "無効な画像背景 '%s'。サポートされている背景opaque、transparent",
"image_compression_jpeg_webp_only": "画像圧縮はJPEGおよびWebP形式でのみ使用できます。%s では使用できません",
"image_compression_range_error": "画像圧縮は0から100の間である必要があります。取得値%d",
"transparent_background_png_webp_only": "透明背景はPNGおよびWebP形式でのみ使用できます。%s では使用できません",
"available_transcription_models": "利用可能な転写モデル:",
"tts_audio_generated_successfully": "TTS音声が正常に生成され、保存されました%s\n",
"fabric_command_complete": "Fabricコマンド完了",
"fabric_command_complete_with_pattern": "Fabric%s 完了",
"command_completed_successfully": "コマンドが正常に完了しました",
"output_truncated": "出力:%s...",
"output_full": "出力:%s",
"choose_pattern_from_available": "利用可能なパターンからパターンを選択",
"pattern_variables_help": "パターン変数の値、例:-v=#role:expert -v=#points:30",
"choose_context_from_available": "利用可能なコンテキストからコンテキストを選択",
"choose_session_from_available": "利用可能なセッションからセッションを選択",
"attachment_path_or_url_help": "添付ファイルのパスまたはURLOpenAI画像認識メッセージ用",
"run_setup_for_reconfigurable_parts": "fabricのすべての再設定可能な部分のセットアップを実行",
"set_temperature": "温度を設定",
"set_top_p": "Top Pを設定",
"stream_help": "ストリーミング",
"set_presence_penalty": "プレゼンスペナルティを設定",
"use_model_defaults_raw_help": "チャットオプションtemperature、top_p などを送信せずにモデルのデフォルトを使用します。OpenAI 互換プロバイダーにのみ適用されます。Anthropic モデルは常に、モデル固有の要件に準拠するためにスマートなパラメーター選択を使用します。",
"set_frequency_penalty": "頻度ペナルティを設定",
"list_all_patterns": "すべてのパターンを一覧表示",
"list_all_available_models": "すべての利用可能なモデルを一覧表示",
"list_all_contexts": "すべてのコンテキストを一覧表示",
"list_all_sessions": "すべてのセッションを一覧表示",
"update_patterns": "パターンを更新",
"messages_to_send_to_chat": "チャットに送信するメッセージ",
"copy_to_clipboard": "クリップボードにコピー",
"choose_model": "モデルを選択",
"specify_vendor_for_model": "選択したモデルのベンダーを指定(例:-V \"LM Studio\" -m openai/gpt-oss-20b",
"model_context_length_ollama": "モデルのコンテキスト長ollamaのみに影響",
"output_to_file": "ファイルに出力",
"output_entire_session": "セッション全体(一時的なものも含む)を出力ファイルに出力",
"number_of_latest_patterns": "一覧表示する最新パターンの数",
"change_default_model": "デフォルトモデルを変更",
"youtube_url_help": "YouTube動画またはプレイリスト\"URL\"から転写、コメントを取得してチャットに送信、またはコンソールに出力して出力ファイルに保存",
"prefer_playlist_over_video": "URLに両方のIDが存在する場合、動画よりプレイリストを優先",
"grab_transcript_from_youtube": "YouTube動画から転写を取得してチャットに送信デフォルトで使用。",
"grab_transcript_with_timestamps": "YouTube動画からタイムスタンプ付きの転写を取得してチャットに送信",
"grab_comments_from_youtube": "YouTube動画からコメントを取得してチャットに送信",
"output_video_metadata": "動画メタデータを出力",
"additional_yt_dlp_args": "yt-dlpに渡す追加の引数'--cookies-from-browser brave'",
"specify_language_code": "チャットの言語コードを指定、例: -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Jina AIを使用してウェブサイトURLをマークダウンにスクレイピング",
"search_question_jina": "Jina AIを使用した検索質問",
"seed_for_lmm_generation": "LMM生成で使用するシード",
"wipe_context": "コンテキストをクリア",
"wipe_session": "セッションをクリア",
"print_context": "コンテキストを出力",
"print_session": "セッションを出力",
"convert_html_readability": "HTML入力をクリーンで読みやすいビューに変換",
"apply_variables_to_input": "ユーザー入力に変数を適用",
"disable_pattern_variable_replacement": "パターン変数の置換を無効化",
"show_dry_run": "実際に送信せずにモデルに送信される内容を表示",
"serve_fabric_rest_api": "Fabric REST APIを提供",
"serve_fabric_api_ollama_endpoints": "ollamaエンドポイント付きのFabric REST APIを提供",
"address_to_bind_rest_api": "REST APIをバインドするアドレス",
"api_key_secure_server_routes": "サーバールートを保護するために使用するAPIキー",
"path_to_yaml_config": "YAML設定ファイルのパス",
"print_current_version": "現在のバージョンを出力",
"list_all_registered_extensions": "すべての登録済み拡張機能を一覧表示",
"register_new_extension": "設定ファイルパスから新しい拡張機能を登録",
"remove_registered_extension": "名前で登録済み拡張機能を削除",
"choose_strategy_from_available": "利用可能な戦略から戦略を選択",
"list_all_strategies": "すべての戦略を一覧表示",
"list_all_vendors": "すべてのベンダーを一覧表示",
"output_raw_list_shell_completion": "生リストをヘッダー/フォーマットなしで出力(シェル補完用)",
"enable_web_search_tool": "サポートされているモデルAnthropic、OpenAI、Geminiでウェブ検索ツールを有効化",
"set_location_web_search": "ウェブ検索結果の場所を設定(例:'America/Los_Angeles'",
"save_generated_image_to_file": "生成された画像を指定ファイルパスに保存(例:'output.png'",
"image_dimensions_help": "画像サイズ1024x1024、1536x1024、1024x1536、autoデフォルトauto",
"image_quality_help": "画像品質low、medium、high、autoデフォルトauto",
"compression_level_jpeg_webp": "JPEG/WebP形式の圧縮レベル0-100デフォルト未設定",
"background_type_help": "背景タイプopaque、transparentデフォルトopaque、PNG/WebPのみ",
"suppress_thinking_tags": "思考タグで囲まれたテキストを抑制",
"start_tag_thinking_sections": "思考セクションの開始タグ",
"end_tag_thinking_sections": "思考セクションの終了タグ",
"disable_openai_responses_api": "OpenAI Responses APIを無効化デフォルトfalse",
"audio_video_file_transcribe": "転写する音声または動画ファイル",
"model_for_transcription": "転写に使用するモデル(チャットモデルとは別)",
"split_media_files_ffmpeg": "25MBを超える音声/動画ファイルをffmpegを使用して分割",
"tts_voice_name": "サポートされているモデルのTTS音声名Kore、Charon、Puck",
"list_gemini_tts_voices": "すべての利用可能なGemini TTS音声を一覧表示",
"list_transcription_models": "すべての利用可能な転写モデルを一覧表示",
"send_desktop_notification": "コマンド完了時にデスクトップ通知を送信",
"custom_notification_command": "通知用のカスタムコマンド(内蔵通知を上書き)",
"set_reasoning_thinking_level": "推論/思考レベルを設定off、low、medium、high、またはAnthropicやGoogle Gemini用の数値トークン",
"set_debug_level": "デバッグレベルを設定0=オフ、1=基本、2=詳細、3=トレース)",
"usage_header": "使用法:",
"application_options_header": "アプリケーションオプション:",
"help_options_header": "ヘルプオプション:",
"help_message": "このヘルプメッセージを表示",
"options_placeholder": "[オプション]",
"available_vendors_header": "利用可能なベンダー:",
"available_models_header": "利用可能なモデル",
"no_items_found": "%s がありません",
"no_description_available": "説明がありません",
"i18n_download_failed": "言語 '%s' の翻訳のダウンロードに失敗しました: %v",
"i18n_load_failed": "翻訳ファイルの読み込みに失敗しました: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "usa a entrada original, porque não é possível aplicar a legibilidade HTML",
"vendor_not_configured": "o fornecedor %s não está configurado",
"vendor_no_transcription_support": "o fornecedor %s não suporta transcrição de áudio",
"transcription_model_required": "modelo de transcrição é necessário (use --transcribe-model)",
"youtube_not_configured": "YouTube não está configurado, por favor execute o procedimento de configuração",
"youtube_api_key_required": "Chave de API do YouTube necessária para comentários e metadados. Execute 'fabric --setup' para configurar",
"youtube_ytdlp_not_found": "yt-dlp não encontrado no PATH. Por favor instale o yt-dlp para usar a funcionalidade de transcrição do YouTube",
"youtube_invalid_url": "URL do YouTube inválida, não é possível obter o ID do vídeo ou da playlist: '%s'",
"youtube_url_is_playlist_not_video": "A URL é uma playlist, não um vídeo",
"youtube_no_video_id_found": "nenhum ID de vídeo encontrado na URL",
"youtube_rate_limit_exceeded": "Limite de taxa do YouTube excedido. Tente novamente mais tarde ou use argumentos diferentes do yt-dlp como '--sleep-requests 1' para desacelerar as requisições.",
"youtube_auth_required_bot_detection": "YouTube requer autenticação (detecção de bot). Use --yt-dlp-args='--cookies-from-browser BROWSER' onde BROWSER pode ser chrome, firefox, brave, etc.",
"youtube_ytdlp_stderr_error": "Erro ao ler stderr do yt-dlp",
"youtube_invalid_ytdlp_arguments": "argumentos do yt-dlp inválidos: %v",
"youtube_failed_create_temp_dir": "falha ao criar diretório temporário: %v",
"youtube_no_transcript_content": "nenhum conteúdo de transcrição encontrado no arquivo VTT",
"youtube_no_vtt_files_found": "nenhum arquivo VTT encontrado no diretório",
"youtube_failed_walk_directory": "falha ao percorrer o diretório: %v",
"youtube_error_getting_video_details": "erro ao obter detalhes do vídeo: %v",
"youtube_invalid_duration_string": "string de duração inválida: %s",
"youtube_error_getting_metadata": "erro ao obter metadados do vídeo: %v",
"youtube_error_parsing_duration": "erro ao analisar a duração do vídeo: %v",
"youtube_error_getting_comments": "erro ao obter comentários: %v",
"youtube_error_saving_csv": "erro ao salvar vídeos em CSV: %v",
"youtube_no_video_found_with_id": "nenhum vídeo encontrado com o ID: %s",
"youtube_invalid_timestamp_format": "formato de timestamp inválido: %s",
"youtube_empty_seconds_string": "string de segundos vazia",
"youtube_invalid_seconds_format": "formato de segundos inválido %q: %w",
"error_fetching_playlist_videos": "erro ao buscar vídeos da playlist: %w",
"openai_api_base_url_not_configured": "URL base da API não configurada para o provedor %s",
"openai_failed_to_create_models_url": "falha ao criar URL de modelos: %w",
"openai_unexpected_status_code_with_body": "código de status inesperado: %d do provedor %s, corpo da resposta: %s",
"openai_unexpected_status_code_read_error_partial": "código de status inesperado: %d do provedor %s (erro ao ler corpo: %v), resposta parcial: %s",
"openai_unexpected_status_code_read_error": "código de status inesperado: %d do provedor %s (falha ao ler corpo da resposta: %v)",
"openai_unable_to_parse_models_response": "não foi possível analisar a resposta de modelos; resposta bruta: %s",
"scraping_not_configured": "funcionalidade de scraping não está configurada. Por favor configure o Jina para ativar o scraping",
"could_not_determine_home_dir": "não foi possível determinar o diretório home do usuário: %w",
"could_not_stat_env_file": "não foi possível verificar o arquivo .env: %w",
"could_not_create_config_dir": "não foi possível criar o diretório de configuração: %w",
"could_not_create_env_file": "não foi possível criar o arquivo .env: %w",
"could_not_copy_to_clipboard": "não foi possível copiar para a área de transferência: %v",
"file_already_exists_not_overwriting": "o arquivo %s já existe, não será sobrescrito. Renomeie o arquivo existente ou escolha um nome diferente",
"error_creating_file": "erro ao criar arquivo: %v",
"error_writing_to_file": "erro ao escrever no arquivo: %v",
"error_creating_audio_file": "erro ao criar arquivo de áudio: %v",
"error_writing_audio_data": "erro ao escrever dados de áudio no arquivo: %v",
"tts_model_requires_audio_output": "modelo TTS '%s' requer saída de áudio. Por favor especifique um arquivo de saída de áudio com a flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "arquivo de saída de áudio '%s' especificado mas o modelo '%s' não é um modelo TTS. Por favor use um modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "arquivo %s já existe. Por favor escolha um nome de arquivo diferente ou remova o arquivo existente",
"no_notification_system_available": "nenhum sistema de notificação disponível",
"cannot_convert_string": "não é possível converter a string %q para %v",
"unsupported_conversion": "conversão não suportada de %v para %v",
"invalid_config_path": "caminho de configuração inválido: %w",
"config_file_not_found": "arquivo de configuração não encontrado: %s",
"error_reading_config_file": "erro ao ler arquivo de configuração: %w",
"error_parsing_config_file": "erro ao analisar arquivo de configuração: %w",
"error_reading_piped_message": "erro ao ler mensagem redirecionada do stdin: %w",
"image_file_already_exists": "arquivo de imagem já existe: %s",
"invalid_image_file_extension": "extensão de arquivo de imagem inválida '%s'. Formatos suportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "parâmetros de imagem (--image-size, --image-quality, --image-background, --image-compression) só podem ser usados com --image-file",
"invalid_image_size": "tamanho de imagem inválido '%s'. Tamanhos suportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualidade de imagem inválida '%s'. Qualidades suportadas: low, medium, high, auto",
"invalid_image_background": "fundo de imagem inválido '%s'. Fundos suportados: opaque, transparent",
"image_compression_jpeg_webp_only": "compressão de imagem só pode ser usada com formatos JPEG e WebP, não %s",
"image_compression_range_error": "compressão de imagem deve estar entre 0 e 100, recebido %d",
"transparent_background_png_webp_only": "fundo transparente só pode ser usado com formatos PNG e WebP, não %s",
"available_transcription_models": "Modelos de transcrição disponíveis:",
"tts_audio_generated_successfully": "Áudio TTS gerado com sucesso e salvo em: %s\n",
"fabric_command_complete": "Comando Fabric concluído",
"fabric_command_complete_with_pattern": "Fabric: %s concluído",
"command_completed_successfully": "Comando concluído com sucesso",
"output_truncated": "Saída: %s...",
"output_full": "Saída: %s",
"choose_pattern_from_available": "Escolha um padrão entre os padrões disponíveis",
"pattern_variables_help": "Valores para variáveis do padrão, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Escolha um contexto entre os contextos disponíveis",
"choose_session_from_available": "Escolha uma sessão das sessões disponíveis",
"attachment_path_or_url_help": "Caminho para o anexo ou URL (ex. para mensagens de reconhecimento de imagem do OpenAI)",
"run_setup_for_reconfigurable_parts": "Executar a configuração para todas as partes reconfiguráveis do fabric",
"set_temperature": "Definir temperatura",
"set_top_p": "Definir top P",
"stream_help": "Streaming",
"set_presence_penalty": "Definir penalidade de presença",
"use_model_defaults_raw_help": "Usa os padrões do modelo sem enviar opções de chat (temperature, top_p etc.). Afeta apenas provedores compatíveis com o OpenAI. Os modelos da Anthropic sempre utilizam seleção inteligente de parâmetros para cumprir os requisitos específicos de cada modelo.",
"set_frequency_penalty": "Definir penalidade de frequência",
"list_all_patterns": "Listar todos os padrões/patterns",
"list_all_available_models": "Listar todos os modelos disponíveis",
"list_all_contexts": "Listar todos os contextos",
"list_all_sessions": "Listar todas as sessões",
"update_patterns": "Atualizar os padrões/patterns",
"messages_to_send_to_chat": "Mensagens para enviar ao chat",
"copy_to_clipboard": "Copiar para a área de transferência",
"choose_model": "Escolher modelo",
"specify_vendor_for_model": "Especificar fornecedor para o modelo selecionado (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Comprimento do contexto do modelo (afeta apenas ollama)",
"output_to_file": "Exportar para arquivo",
"output_entire_session": "Saída de toda a sessão (incluindo temporária) para o arquivo de saída",
"number_of_latest_patterns": "Número dos padrões mais recentes a listar",
"change_default_model": "Mudar modelo padrão",
"youtube_url_help": "Vídeo do YouTube ou URL da playlist para obter transcrição, comentários e enviar ao chat ou imprimir no console e armazenar no arquivo de saída",
"prefer_playlist_over_video": "Preferir playlist ao vídeo se ambos os IDs estiverem presentes na URL",
"grab_transcript_from_youtube": "Obter transcrição do vídeo do YouTube e enviar ao chat (usado por padrão).",
"grab_transcript_with_timestamps": "Obter transcrição do vídeo do YouTube com timestamps e enviar ao chat",
"grab_comments_from_youtube": "Obter comentários do vídeo do YouTube e enviar ao chat",
"output_video_metadata": "Exibir metadados do vídeo",
"additional_yt_dlp_args": "Argumentos adicionais para passar ao yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Especificar código de idioma para o chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Fazer scraping da URL do site para markdown usando Jina AI",
"search_question_jina": "Pergunta de busca usando Jina AI",
"seed_for_lmm_generation": "Seed para ser usado na geração LMM",
"wipe_context": "Limpar contexto",
"wipe_session": "Limpar sessão",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sessão",
"convert_html_readability": "Converter entrada HTML em uma visualização limpa e legível",
"apply_variables_to_input": "Aplicar variáveis à entrada do usuário",
"disable_pattern_variable_replacement": "Desabilitar substituição de variáveis de padrão",
"show_dry_run": "Mostrar o que seria enviado ao modelo sem enviar de fato",
"serve_fabric_rest_api": "Servir a API REST do Fabric",
"serve_fabric_api_ollama_endpoints": "Servir a API REST do Fabric com endpoints ollama",
"address_to_bind_rest_api": "Endereço para vincular a API REST",
"api_key_secure_server_routes": "Chave API usada para proteger rotas do servidor",
"path_to_yaml_config": "Caminho para arquivo de configuração YAML",
"print_current_version": "Imprimir versão atual",
"list_all_registered_extensions": "Listar todas as extensões registradas",
"register_new_extension": "Registrar uma nova extensão do caminho do arquivo de configuração",
"remove_registered_extension": "Remover uma extensão registrada por nome",
"choose_strategy_from_available": "Escolher uma estratégia das estratégias disponíveis",
"list_all_strategies": "Listar todas as estratégias",
"list_all_vendors": "Listar todos os fornecedores",
"output_raw_list_shell_completion": "Saída de lista bruta sem cabeçalhos/formatação (para conclusão de shell)",
"enable_web_search_tool": "Habilitar ferramenta de busca web para modelos suportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Definir localização para resultados de busca web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Salvar imagem gerada no caminho de arquivo especificado (ex. 'output.png')",
"image_dimensions_help": "Dimensões da imagem: 1024x1024, 1536x1024, 1024x1536, auto (padrão: auto)",
"image_quality_help": "Qualidade da imagem: low, medium, high, auto (padrão: auto)",
"compression_level_jpeg_webp": "Nível de compressão 0-100 para formatos JPEG/WebP (padrão: não definido)",
"background_type_help": "Tipo de fundo: opaque, transparent (padrão: opaque, apenas para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto contido em tags de pensamento",
"start_tag_thinking_sections": "Tag inicial para seções de pensamento",
"end_tag_thinking_sections": "Tag final para seções de pensamento",
"disable_openai_responses_api": "Desabilitar API OpenAI Responses (padrão: false)",
"audio_video_file_transcribe": "Arquivo de áudio ou vídeo para transcrever",
"model_for_transcription": "Modelo para usar na transcrição (separado do modelo de chat)",
"split_media_files_ffmpeg": "Dividir arquivos de áudio/vídeo maiores que 25MB usando ffmpeg",
"tts_voice_name": "Nome da voz TTS para modelos suportados (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas as vozes TTS do Gemini disponíveis",
"list_transcription_models": "Listar todos os modelos de transcrição disponíveis",
"send_desktop_notification": "Enviar notificação desktop quando o comando for concluído",
"custom_notification_command": "Comando personalizado para executar notificações (substitui notificações integradas)",
"set_reasoning_thinking_level": "Definir nível de raciocínio/pensamento (ex. off, low, medium, high, ou tokens numéricos para Anthropic ou Google Gemini)",
"set_debug_level": "Definir nível de debug (0=desligado, 1=básico, 2=detalhado, 3=rastreamento)",
"usage_header": "Uso:",
"application_options_header": "Opções da aplicação:",
"help_options_header": "Opções de ajuda:",
"help_message": "Mostrar esta mensagem de ajuda",
"options_placeholder": "[OPÇÕES]",
"available_vendors_header": "Fornecedores disponíveis:",
"available_models_header": "Modelos disponíveis",
"no_items_found": "Nenhum %s",
"no_description_available": "Nenhuma descrição disponível",
"i18n_download_failed": "Falha ao baixar tradução para o idioma '%s': %v",
"i18n_load_failed": "Falha ao carregar arquivo de tradução: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "usa a entrada original, porque não é possível aplicar a legibilidade HTML",
"vendor_not_configured": "o fornecedor %s não está configurado",
"vendor_no_transcription_support": "o fornecedor %s não suporta transcrição de áudio",
"transcription_model_required": "modelo de transcrição é necessário (use --transcribe-model)",
"youtube_not_configured": "YouTube não está configurado, por favor execute o procedimento de configuração",
"youtube_api_key_required": "Chave de API do YouTube necessária para comentários e metadados. Execute 'fabric --setup' para configurar",
"youtube_ytdlp_not_found": "yt-dlp não encontrado no PATH. Por favor instale o yt-dlp para usar a funcionalidade de transcrição do YouTube",
"youtube_invalid_url": "URL do YouTube inválido, não é possível obter o ID do vídeo ou da lista de reprodução: '%s'",
"youtube_url_is_playlist_not_video": "O URL é uma lista de reprodução, não um vídeo",
"youtube_no_video_id_found": "nenhum ID de vídeo encontrado no URL",
"youtube_rate_limit_exceeded": "Limite de taxa do YouTube excedido. Tente novamente mais tarde ou utilize argumentos diferentes do yt-dlp como '--sleep-requests 1' para desacelerar os pedidos.",
"youtube_auth_required_bot_detection": "YouTube requer autenticação (deteção de bot). Use --yt-dlp-args='--cookies-from-browser BROWSER' onde BROWSER pode ser chrome, firefox, brave, etc.",
"youtube_ytdlp_stderr_error": "Erro ao ler stderr do yt-dlp",
"youtube_invalid_ytdlp_arguments": "argumentos do yt-dlp inválidos: %v",
"youtube_failed_create_temp_dir": "falha ao criar diretório temporário: %v",
"youtube_no_transcript_content": "nenhum conteúdo de transcrição encontrado no ficheiro VTT",
"youtube_no_vtt_files_found": "nenhum ficheiro VTT encontrado no diretório",
"youtube_failed_walk_directory": "falha ao percorrer o diretório: %v",
"youtube_error_getting_video_details": "erro ao obter detalhes do vídeo: %v",
"youtube_invalid_duration_string": "cadeia de duração inválida: %s",
"youtube_error_getting_metadata": "erro ao obter metadados do vídeo: %v",
"youtube_error_parsing_duration": "erro ao analisar a duração do vídeo: %v",
"youtube_error_getting_comments": "erro ao obter comentários: %v",
"youtube_error_saving_csv": "erro ao guardar vídeos em CSV: %v",
"youtube_no_video_found_with_id": "nenhum vídeo encontrado com o ID: %s",
"youtube_invalid_timestamp_format": "formato de timestamp inválido: %s",
"youtube_empty_seconds_string": "cadeia de segundos vazia",
"youtube_invalid_seconds_format": "formato de segundos inválido %q: %w",
"error_fetching_playlist_videos": "erro ao obter vídeos da playlist: %w",
"openai_api_base_url_not_configured": "URL base da API não configurado para o fornecedor %s",
"openai_failed_to_create_models_url": "falha ao criar URL de modelos: %w",
"openai_unexpected_status_code_with_body": "código de estado inesperado: %d do fornecedor %s, corpo da resposta: %s",
"openai_unexpected_status_code_read_error_partial": "código de estado inesperado: %d do fornecedor %s (erro ao ler corpo: %v), resposta parcial: %s",
"openai_unexpected_status_code_read_error": "código de estado inesperado: %d do fornecedor %s (falha ao ler corpo da resposta: %v)",
"openai_unable_to_parse_models_response": "não foi possível analisar a resposta de modelos; resposta bruta: %s",
"scraping_not_configured": "funcionalidade de scraping não está configurada. Por favor configure o Jina para ativar o scraping",
"could_not_determine_home_dir": "não foi possível determinar o diretório home do utilizador: %w",
"could_not_stat_env_file": "não foi possível verificar o ficheiro .env: %w",
"could_not_create_config_dir": "não foi possível criar o diretório de configuração: %w",
"could_not_create_env_file": "não foi possível criar o ficheiro .env: %w",
"could_not_copy_to_clipboard": "não foi possível copiar para a área de transferência: %v",
"file_already_exists_not_overwriting": "o ficheiro %s já existe, não será sobrescrito. Renomeie o ficheiro existente ou escolha um nome diferente",
"error_creating_file": "erro ao criar ficheiro: %v",
"error_writing_to_file": "erro ao escrever no ficheiro: %v",
"error_creating_audio_file": "erro ao criar ficheiro de áudio: %v",
"error_writing_audio_data": "erro ao escrever dados de áudio no ficheiro: %v",
"tts_model_requires_audio_output": "modelo TTS '%s' requer saída de áudio. Por favor especifique um ficheiro de saída de áudio com a flag -o (ex. -o output.wav)",
"audio_output_file_specified_but_not_tts_model": "ficheiro de saída de áudio '%s' especificado mas o modelo '%s' não é um modelo TTS. Por favor use um modelo TTS como gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "ficheiro %s já existe. Por favor escolha um nome de ficheiro diferente ou remova o ficheiro existente",
"no_notification_system_available": "nenhum sistema de notificação disponível",
"cannot_convert_string": "não é possível converter a string %q para %v",
"unsupported_conversion": "conversão não suportada de %v para %v",
"invalid_config_path": "caminho de configuração inválido: %w",
"config_file_not_found": "ficheiro de configuração não encontrado: %s",
"error_reading_config_file": "erro ao ler ficheiro de configuração: %w",
"error_parsing_config_file": "erro ao analisar ficheiro de configuração: %w",
"error_reading_piped_message": "erro ao ler mensagem redirecionada do stdin: %w",
"image_file_already_exists": "ficheiro de imagem já existe: %s",
"invalid_image_file_extension": "extensão de ficheiro de imagem inválida '%s'. Formatos suportados: .png, .jpeg, .jpg, .webp",
"image_parameters_require_image_file": "parâmetros de imagem (--image-size, --image-quality, --image-background, --image-compression) só podem ser usados com --image-file",
"invalid_image_size": "tamanho de imagem inválido '%s'. Tamanhos suportados: 1024x1024, 1536x1024, 1024x1536, auto",
"invalid_image_quality": "qualidade de imagem inválida '%s'. Qualidades suportadas: low, medium, high, auto",
"invalid_image_background": "fundo de imagem inválido '%s'. Fundos suportados: opaque, transparent",
"image_compression_jpeg_webp_only": "compressão de imagem só pode ser usada com formatos JPEG e WebP, não %s",
"image_compression_range_error": "compressão de imagem deve estar entre 0 e 100, recebido %d",
"transparent_background_png_webp_only": "fundo transparente só pode ser usado com formatos PNG e WebP, não %s",
"available_transcription_models": "Modelos de transcrição disponíveis:",
"tts_audio_generated_successfully": "Áudio TTS gerado com sucesso e guardado em: %s\n",
"fabric_command_complete": "Comando Fabric concluído",
"fabric_command_complete_with_pattern": "Fabric: %s concluído",
"command_completed_successfully": "Comando concluído com sucesso",
"output_truncated": "Saída: %s...",
"output_full": "Saída: %s",
"choose_pattern_from_available": "Escolha um padrão dos padrões disponíveis",
"pattern_variables_help": "Valores para variáveis de padrão, ex. -v=#role:expert -v=#points:30",
"choose_context_from_available": "Escolha um contexto dos contextos disponíveis",
"choose_session_from_available": "Escolha uma sessão das sessões disponíveis",
"attachment_path_or_url_help": "Caminho do anexo ou URL (ex. para mensagens de reconhecimento de imagem do OpenAI)",
"run_setup_for_reconfigurable_parts": "Executar configuração para todas as partes reconfiguráveis do fabric",
"set_temperature": "Definir temperatura",
"set_top_p": "Definir top P",
"stream_help": "Streaming",
"set_presence_penalty": "Definir penalidade de presença",
"use_model_defaults_raw_help": "Utiliza os valores predefinidos do modelo sem enviar opções de chat (temperature, top_p, etc.). Só afeta fornecedores compatíveis com o OpenAI. Os modelos Anthropic usam sempre uma seleção inteligente de parâmetros para cumprir os requisitos específicos do modelo.",
"set_frequency_penalty": "Definir penalidade de frequência",
"list_all_patterns": "Listar todos os padrões",
"list_all_available_models": "Listar todos os modelos disponíveis",
"list_all_contexts": "Listar todos os contextos",
"list_all_sessions": "Listar todas as sessões",
"update_patterns": "Atualizar padrões",
"messages_to_send_to_chat": "Mensagens para enviar ao chat",
"copy_to_clipboard": "Copiar para área de transferência",
"choose_model": "Escolher modelo",
"specify_vendor_for_model": "Especificar fornecedor para o modelo selecionado (ex. -V \"LM Studio\" -m openai/gpt-oss-20b)",
"model_context_length_ollama": "Comprimento do contexto do modelo (afeta apenas ollama)",
"output_to_file": "Saída para ficheiro",
"output_entire_session": "Saída de toda a sessão (incluindo temporária) para o ficheiro de saída",
"number_of_latest_patterns": "Número dos padrões mais recentes a listar",
"change_default_model": "Mudar modelo predefinido",
"youtube_url_help": "Vídeo do YouTube ou \"URL\" de playlist para obter transcrição, comentários e enviar ao chat ou imprimir na consola e armazenar no ficheiro de saída",
"prefer_playlist_over_video": "Preferir playlist ao vídeo se ambos os IDs estiverem presentes na URL",
"grab_transcript_from_youtube": "Obter transcrição do vídeo do YouTube e enviar ao chat (usado por omissão).",
"grab_transcript_with_timestamps": "Obter transcrição do vídeo do YouTube com timestamps e enviar ao chat",
"grab_comments_from_youtube": "Obter comentários do vídeo do YouTube e enviar ao chat",
"output_video_metadata": "Mostrar metadados do vídeo",
"additional_yt_dlp_args": "Argumentos adicionais para passar ao yt-dlp (ex. '--cookies-from-browser brave')",
"specify_language_code": "Especificar código de idioma para o chat, ex. -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "Fazer scraping da URL do site para markdown usando Jina AI",
"search_question_jina": "Pergunta de pesquisa usando Jina AI",
"seed_for_lmm_generation": "Seed para ser usado na geração LMM",
"wipe_context": "Limpar contexto",
"wipe_session": "Limpar sessão",
"print_context": "Imprimir contexto",
"print_session": "Imprimir sessão",
"convert_html_readability": "Converter entrada HTML numa visualização limpa e legível",
"apply_variables_to_input": "Aplicar variáveis à entrada do utilizador",
"disable_pattern_variable_replacement": "Desabilitar substituição de variáveis de padrão",
"show_dry_run": "Mostrar o que seria enviado ao modelo sem enviar de facto",
"serve_fabric_rest_api": "Servir a API REST do Fabric",
"serve_fabric_api_ollama_endpoints": "Servir a API REST do Fabric com endpoints ollama",
"address_to_bind_rest_api": "Endereço para associar a API REST",
"api_key_secure_server_routes": "Chave API usada para proteger as rotas do servidor",
"path_to_yaml_config": "Caminho para ficheiro de configuração YAML",
"print_current_version": "Imprimir versão atual",
"list_all_registered_extensions": "Listar todas as extensões registadas",
"register_new_extension": "Registar uma nova extensão do caminho do ficheiro de configuração",
"remove_registered_extension": "Remover uma extensão registada por nome",
"choose_strategy_from_available": "Escolher uma estratégia das estratégias disponíveis",
"list_all_strategies": "Listar todas as estratégias",
"list_all_vendors": "Listar todos os fornecedores",
"output_raw_list_shell_completion": "Saída de lista simples sem cabeçalhos/formatação (para conclusão de shell)",
"enable_web_search_tool": "Habilitar ferramenta de pesquisa web para modelos suportados (Anthropic, OpenAI, Gemini)",
"set_location_web_search": "Definir localização para resultados de pesquisa web (ex. 'America/Los_Angeles')",
"save_generated_image_to_file": "Guardar imagem gerada no caminho de ficheiro especificado (ex. 'output.png')",
"image_dimensions_help": "Dimensões da imagem: 1024x1024, 1536x1024, 1024x1536, auto (por omissão: auto)",
"image_quality_help": "Qualidade da imagem: low, medium, high, auto (por omissão: auto)",
"compression_level_jpeg_webp": "Nível de compressão 0-100 para formatos JPEG/WebP (por omissão: não definido)",
"background_type_help": "Tipo de fundo: opaque, transparent (por omissão: opaque, apenas para PNG/WebP)",
"suppress_thinking_tags": "Suprimir texto contido em tags de pensamento",
"start_tag_thinking_sections": "Tag inicial para secções de pensamento",
"end_tag_thinking_sections": "Tag final para secções de pensamento",
"disable_openai_responses_api": "Desabilitar API OpenAI Responses (por omissão: false)",
"audio_video_file_transcribe": "Ficheiro de áudio ou vídeo para transcrever",
"model_for_transcription": "Modelo para usar na transcrição (separado do modelo de chat)",
"split_media_files_ffmpeg": "Dividir ficheiros de áudio/vídeo maiores que 25MB usando ffmpeg",
"tts_voice_name": "Nome da voz TTS para modelos suportados (ex. Kore, Charon, Puck)",
"list_gemini_tts_voices": "Listar todas as vozes TTS do Gemini disponíveis",
"list_transcription_models": "Listar todos os modelos de transcrição disponíveis",
"send_desktop_notification": "Enviar notificação no ambiente de trabalho quando o comando for concluído",
"custom_notification_command": "Comando personalizado para executar notificações (substitui notificações integradas)",
"set_reasoning_thinking_level": "Definir nível de raciocínio/pensamento (ex. off, low, medium, high, ou tokens numéricos para Anthropic ou Google Gemini)",
"set_debug_level": "Definir nível de debug (0=desligado, 1=básico, 2=detalhado, 3=rastreio)",
"usage_header": "Uso:",
"application_options_header": "Opções da aplicação:",
"help_options_header": "Opções de ajuda:",
"help_message": "Mostrar esta mensagem de ajuda",
"options_placeholder": "[OPÇÕES]",
"available_vendors_header": "Fornecedores disponíveis:",
"available_models_header": "Modelos disponíveis",
"no_items_found": "Nenhum %s",
"no_description_available": "Nenhuma descrição disponível",
"i18n_download_failed": "Falha ao descarregar tradução para o idioma '%s': %v",
"i18n_load_failed": "Falha ao carregar ficheiro de tradução: %v"
}

View File

@@ -0,0 +1,165 @@
{
"html_readability_error": "使用原始输入,因为无法应用 HTML 可读性处理",
"vendor_not_configured": "供应商 %s 未配置",
"vendor_no_transcription_support": "供应商 %s 不支持音频转录",
"transcription_model_required": "需要转录模型(使用 --transcribe-model",
"youtube_not_configured": "YouTube 未配置,请运行设置程序",
"youtube_api_key_required": "评论和元数据需要 YouTube API 密钥。运行 'fabric --setup' 进行配置",
"youtube_ytdlp_not_found": "在 PATH 中未找到 yt-dlp。请安装 yt-dlp 以使用 YouTube 转录功能",
"youtube_invalid_url": "无效的 YouTube URL无法获取视频或播放列表 ID'%s'",
"youtube_url_is_playlist_not_video": "URL 是播放列表,而不是视频",
"youtube_no_video_id_found": "在 URL 中未找到视频 ID",
"youtube_rate_limit_exceeded": "超过 YouTube 速率限制。请稍后重试,或使用不同的 yt-dlp 参数(如 '--sleep-requests 1')来减慢请求速度。",
"youtube_auth_required_bot_detection": "YouTube 需要身份验证(机器人检测)。使用 --yt-dlp-args='--cookies-from-browser BROWSER',其中 BROWSER 可以是 chrome、firefox、brave 等。",
"youtube_ytdlp_stderr_error": "读取 yt-dlp stderr 时出错",
"youtube_invalid_ytdlp_arguments": "无效的 yt-dlp 参数:%v",
"youtube_failed_create_temp_dir": "创建临时目录失败:%v",
"youtube_no_transcript_content": "在 VTT 文件中未找到转录内容",
"youtube_no_vtt_files_found": "在目录中未找到 VTT 文件",
"youtube_failed_walk_directory": "遍历目录失败:%v",
"youtube_error_getting_video_details": "获取视频详情时出错:%v",
"youtube_invalid_duration_string": "无效的时长字符串:%s",
"youtube_error_getting_metadata": "获取视频元数据时出错:%v",
"youtube_error_parsing_duration": "解析视频时长时出错:%v",
"youtube_error_getting_comments": "获取评论时出错:%v",
"youtube_error_saving_csv": "将视频保存为 CSV 时出错:%v",
"youtube_no_video_found_with_id": "未找到 ID 为 %s 的视频",
"youtube_invalid_timestamp_format": "无效的时间戳格式:%s",
"youtube_empty_seconds_string": "秒数字符串为空",
"youtube_invalid_seconds_format": "无效的秒数格式 %q%w",
"error_fetching_playlist_videos": "获取播放列表视频时出错: %w",
"openai_api_base_url_not_configured": "未为提供商 %s 配置 API 基础 URL",
"openai_failed_to_create_models_url": "创建模型 URL 失败:%w",
"openai_unexpected_status_code_with_body": "意外的状态码:来自提供商 %s 的 %d响应主体%s",
"openai_unexpected_status_code_read_error_partial": "意外的状态码:来自提供商 %s 的 %d读取主体错误%v部分响应%s",
"openai_unexpected_status_code_read_error": "意外的状态码:来自提供商 %s 的 %d读取响应主体失败%v)",
"openai_unable_to_parse_models_response": "无法解析模型响应;原始响应:%s",
"scraping_not_configured": "抓取功能未配置。请设置 Jina 以启用抓取功能",
"could_not_determine_home_dir": "无法确定用户主目录: %w",
"could_not_stat_env_file": "无法获取 .env 文件状态: %w",
"could_not_create_config_dir": "无法创建配置目录: %w",
"could_not_create_env_file": "无法创建 .env 文件: %w",
"could_not_copy_to_clipboard": "无法复制到剪贴板: %v",
"file_already_exists_not_overwriting": "文件 %s 已存在,不会覆盖。请重命名现有文件或选择其他名称",
"error_creating_file": "创建文件时出错: %v",
"error_writing_to_file": "写入文件时出错: %v",
"error_creating_audio_file": "创建音频文件时出错: %v",
"error_writing_audio_data": "写入音频数据到文件时出错: %v",
"tts_model_requires_audio_output": "TTS 模型 '%s' 需要音频输出。请使用 -o 标志指定音频输出文件(例如,-o output.wav",
"audio_output_file_specified_but_not_tts_model": "指定了音频输出文件 '%s' 但模型 '%s' 不是 TTS 模型。请使用 TTS 模型,如 gemini-2.5-flash-preview-tts",
"file_already_exists_choose_different": "文件 %s 已存在。请选择不同的文件名或删除现有文件",
"no_notification_system_available": "没有可用的通知系统",
"cannot_convert_string": "无法将字符串 %q 转换为 %v",
"unsupported_conversion": "不支持从 %v 到 %v 的转换",
"invalid_config_path": "无效的配置路径: %w",
"config_file_not_found": "找不到配置文件: %s",
"error_reading_config_file": "读取配置文件时出错: %w",
"error_parsing_config_file": "解析配置文件时出错: %w",
"error_reading_piped_message": "从 stdin 读取管道消息时出错: %w",
"image_file_already_exists": "图像文件已存在: %s",
"invalid_image_file_extension": "无效的图像文件扩展名 '%s'。支持的格式:.png、.jpeg、.jpg、.webp",
"image_parameters_require_image_file": "图像参数(--image-size、--image-quality、--image-background、--image-compression只能与 --image-file 一起使用",
"invalid_image_size": "无效的图像尺寸 '%s'。支持的尺寸1024x1024、1536x1024、1024x1536、auto",
"invalid_image_quality": "无效的图像质量 '%s'。支持的质量low、medium、high、auto",
"invalid_image_background": "无效的图像背景 '%s'。支持的背景opaque、transparent",
"image_compression_jpeg_webp_only": "图像压缩只能用于 JPEG 和 WebP 格式,不支持 %s",
"image_compression_range_error": "图像压缩必须在 0 到 100 之间,得到 %d",
"transparent_background_png_webp_only": "透明背景只能用于 PNG 和 WebP 格式,不支持 %s",
"available_transcription_models": "可用的转录模型:",
"tts_audio_generated_successfully": "TTS 音频生成成功并保存到: %s\n",
"fabric_command_complete": "Fabric 命令完成",
"fabric_command_complete_with_pattern": "Fabric: %s 完成",
"command_completed_successfully": "命令执行成功",
"output_truncated": "输出: %s...",
"output_full": "输出: %s",
"choose_pattern_from_available": "从可用模式中选择一个模式",
"pattern_variables_help": "模式变量的值,例如 -v=#role:expert -v=#points:30",
"choose_context_from_available": "从可用上下文中选择一个上下文",
"choose_session_from_available": "从可用会话中选择一个会话",
"attachment_path_or_url_help": "附件路径或 URL例如用于 OpenAI 图像识别消息)",
"run_setup_for_reconfigurable_parts": "为 fabric 的所有可重新配置部分运行设置",
"set_temperature": "设置温度",
"set_top_p": "设置 top P",
"stream_help": "流式传输",
"set_presence_penalty": "设置存在惩罚",
"use_model_defaults_raw_help": "在不发送聊天选项temperature、top_p 等)的情况下使用模型默认值。仅影响兼容 OpenAI 的提供商。Anthropic 模型始终使用智能参数选择以满足特定模型的要求。",
"set_frequency_penalty": "设置频率惩罚",
"list_all_patterns": "列出所有模式",
"list_all_available_models": "列出所有可用模型",
"list_all_contexts": "列出所有上下文",
"list_all_sessions": "列出所有会话",
"update_patterns": "更新模式",
"messages_to_send_to_chat": "发送到聊天的消息",
"copy_to_clipboard": "复制到剪贴板",
"choose_model": "选择模型",
"specify_vendor_for_model": "为所选模型指定供应商(例如,-V \"LM Studio\" -m openai/gpt-oss-20b",
"model_context_length_ollama": "模型上下文长度(仅影响 ollama",
"output_to_file": "输出到文件",
"output_entire_session": "将整个会话(包括临时会话)输出到输出文件",
"number_of_latest_patterns": "要列出的最新模式数量",
"change_default_model": "更改默认模型",
"youtube_url_help": "YouTube 视频或播放列表 \"URL\",用于获取转录、评论并发送到聊天或打印到控制台并存储到输出文件",
"prefer_playlist_over_video": "如果 URL 中同时存在两个 ID则优先选择播放列表而不是视频",
"grab_transcript_from_youtube": "从 YouTube 视频获取转录并发送到聊天(默认使用)。",
"grab_transcript_with_timestamps": "从 YouTube 视频获取带时间戳的转录并发送到聊天",
"grab_comments_from_youtube": "从 YouTube 视频获取评论并发送到聊天",
"output_video_metadata": "输出视频元数据",
"additional_yt_dlp_args": "传递给 yt-dlp 的其他参数(例如 '--cookies-from-browser brave'",
"specify_language_code": "指定聊天的语言代码,例如 -g=en -g=zh -g=pt-BR -g=pt-PT",
"scrape_website_url": "使用 Jina AI 将网站 URL 抓取为 markdown",
"search_question_jina": "使用 Jina AI 搜索问题",
"seed_for_lmm_generation": "用于 LMM 生成的种子",
"wipe_context": "清除上下文",
"wipe_session": "清除会话",
"print_context": "打印上下文",
"print_session": "打印会话",
"convert_html_readability": "将 HTML 输入转换为清洁、可读的视图",
"apply_variables_to_input": "将变量应用于用户输入",
"disable_pattern_variable_replacement": "禁用模式变量替换",
"show_dry_run": "显示将发送给模型的内容而不实际发送",
"serve_fabric_rest_api": "提供 Fabric REST API 服务",
"serve_fabric_api_ollama_endpoints": "提供带有 ollama 端点的 Fabric REST API 服务",
"address_to_bind_rest_api": "绑定 REST API 的地址",
"api_key_secure_server_routes": "用于保护服务器路由的 API 密钥",
"path_to_yaml_config": "YAML 配置文件路径",
"print_current_version": "打印当前版本",
"list_all_registered_extensions": "列出所有已注册的扩展",
"register_new_extension": "从配置文件路径注册新扩展",
"remove_registered_extension": "按名称删除已注册的扩展",
"choose_strategy_from_available": "从可用策略中选择一个策略",
"list_all_strategies": "列出所有策略",
"list_all_vendors": "列出所有供应商",
"output_raw_list_shell_completion": "输出不带标题/格式的原始列表(用于 shell 补全)",
"enable_web_search_tool": "为支持的模型启用网络搜索工具Anthropic、OpenAI、Gemini",
"set_location_web_search": "设置网络搜索结果的位置(例如,'America/Los_Angeles'",
"save_generated_image_to_file": "将生成的图像保存到指定文件路径(例如,'output.png'",
"image_dimensions_help": "图像尺寸1024x1024、1536x1024、1024x1536、auto默认auto",
"image_quality_help": "图像质量low、medium、high、auto默认auto",
"compression_level_jpeg_webp": "JPEG/WebP 格式的压缩级别 0-100默认未设置",
"background_type_help": "背景类型opaque、transparent默认opaque仅适用于 PNG/WebP",
"suppress_thinking_tags": "抑制包含在思考标签中的文本",
"start_tag_thinking_sections": "思考部分的开始标签",
"end_tag_thinking_sections": "思考部分的结束标签",
"disable_openai_responses_api": "禁用 OpenAI 响应 API默认false",
"audio_video_file_transcribe": "要转录的音频或视频文件",
"model_for_transcription": "用于转录的模型(与聊天模型分离)",
"split_media_files_ffmpeg": "使用 ffmpeg 分割大于 25MB 的音频/视频文件",
"tts_voice_name": "支持模型的 TTS 语音名称例如Kore、Charon、Puck",
"list_gemini_tts_voices": "列出所有可用的 Gemini TTS 语音",
"list_transcription_models": "列出所有可用的转录模型",
"send_desktop_notification": "命令完成时发送桌面通知",
"custom_notification_command": "用于通知的自定义命令(覆盖内置通知)",
"set_reasoning_thinking_level": "设置推理/思考级别例如off、low、medium、high或 Anthropic 或 Google Gemini 的数字令牌)",
"set_debug_level": "设置调试级别0=关闭1=基本2=详细3=跟踪)",
"usage_header": "用法:",
"application_options_header": "应用程序选项:",
"help_options_header": "帮助选项:",
"help_message": "显示此帮助消息",
"options_placeholder": "[选项]",
"available_vendors_header": "可用供应商:",
"available_models_header": "可用模型",
"no_items_found": "没有 %s",
"no_description_available": "没有可用描述",
"i18n_download_failed": "下载语言 '%s' 的翻译失败: %v",
"i18n_load_failed": "加载翻译文件失败: %v"
}

78
internal/log/log.go Normal file
View File

@@ -0,0 +1,78 @@
package log
import (
"fmt"
"io"
"os"
"sync"
)
// Level represents the debug verbosity.
type Level int
const (
// Off disables all debug output.
Off Level = iota
// Basic provides minimal debugging information.
Basic
// Detailed provides more verbose debugging.
Detailed
// Trace is the most verbose level.
Trace
)
var (
mu sync.RWMutex
level Level = Off
output io.Writer = os.Stderr
)
// SetLevel sets the global debug level.
func SetLevel(l Level) {
mu.Lock()
level = l
mu.Unlock()
}
// LevelFromInt converts an int to a Level.
func LevelFromInt(i int) Level {
switch {
case i <= 0:
return Off
case i == 1:
return Basic
case i == 2:
return Detailed
case i >= 3:
return Trace
default:
return Off
}
}
// Debug writes a debug message if the global level permits.
func Debug(l Level, format string, a ...interface{}) {
mu.RLock()
current := level
w := output
mu.RUnlock()
if current >= l {
fmt.Fprintf(w, "DEBUG: "+format, a...)
}
}
// Log writes a message unconditionally to stderr.
// This is for important messages that should always be shown regardless of debug level.
func Log(format string, a ...interface{}) {
mu.RLock()
w := output
mu.RUnlock()
fmt.Fprintf(w, format, a...)
}
// SetOutput allows overriding the output destination for debug logs.
func SetOutput(w io.Writer) {
mu.Lock()
output = w
mu.Unlock()
}

View File

@@ -4,12 +4,14 @@ import (
"context"
"fmt"
"net/http"
"strconv"
"strings"
"github.com/anthropics/anthropic-sdk-go"
"github.com/anthropics/anthropic-sdk-go/option"
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/danielmiessler/fabric/internal/util"
)
@@ -42,11 +44,22 @@ func NewClient() (ret *Client) {
ret.models = []string{
string(anthropic.ModelClaude3_7SonnetLatest), string(anthropic.ModelClaude3_7Sonnet20250219),
string(anthropic.ModelClaude3_5HaikuLatest), string(anthropic.ModelClaude3_5Haiku20241022),
string(anthropic.ModelClaude3_5SonnetLatest), string(anthropic.ModelClaude3_5Sonnet20241022),
string(anthropic.ModelClaude_3_5_Sonnet_20240620), string(anthropic.ModelClaude3OpusLatest),
string(anthropic.ModelClaude_3_Opus_20240229), string(anthropic.ModelClaude_3_Haiku_20240307),
string(anthropic.ModelClaude3OpusLatest), string(anthropic.ModelClaude_3_Opus_20240229),
string(anthropic.ModelClaude_3_Haiku_20240307),
string(anthropic.ModelClaudeOpus4_20250514), string(anthropic.ModelClaudeSonnet4_20250514),
string(anthropic.ModelClaudeOpus4_1_20250805),
string(anthropic.ModelClaudeSonnet4_5),
string(anthropic.ModelClaudeSonnet4_5_20250929),
string(anthropic.ModelClaudeOpus4_5_20251101),
string(anthropic.ModelClaudeOpus4_5),
string(anthropic.ModelClaudeHaiku4_5),
string(anthropic.ModelClaudeHaiku4_5_20251001),
}
ret.modelBetas = map[string][]string{
string(anthropic.ModelClaudeSonnet4_20250514): {"context-1m-2025-08-07"},
string(anthropic.ModelClaudeSonnet4_5): {"context-1m-2025-08-07"},
string(anthropic.ModelClaudeSonnet4_5_20250929): {"context-1m-2025-08-07"},
}
return
@@ -93,6 +106,7 @@ type Client struct {
maxTokens int
defaultRequiredUserMessage string
models []string
modelBetas map[string][]string
client anthropic.Client
}
@@ -148,6 +162,26 @@ func (an *Client) ListModels() (ret []string, err error) {
return an.models, nil
}
func parseThinking(level domain.ThinkingLevel) (anthropic.ThinkingConfigParamUnion, bool) {
lower := strings.ToLower(string(level))
switch domain.ThinkingLevel(lower) {
case domain.ThinkingOff:
disabled := anthropic.NewThinkingConfigDisabledParam()
return anthropic.ThinkingConfigParamUnion{OfDisabled: &disabled}, true
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
return anthropic.ThinkingConfigParamOfEnabled(budget), true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 64); err == nil {
if tokens >= 1 && tokens <= 10000 {
return anthropic.ThinkingConfigParamOfEnabled(tokens), true
}
}
}
return anthropic.ThinkingConfigParamUnion{}, false
}
func (an *Client) SendStream(
msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string,
) (err error) {
@@ -160,7 +194,17 @@ func (an *Client) SendStream(
ctx := context.Background()
stream := an.client.Messages.NewStreaming(ctx, an.buildMessageParams(messages, opts))
params := an.buildMessageParams(messages, opts)
betas := an.modelBetas[opts.Model]
var reqOpts []option.RequestOption
if len(betas) > 0 {
reqOpts = append(reqOpts, option.WithHeader("anthropic-beta", strings.Join(betas, ",")))
}
stream := an.client.Messages.NewStreaming(ctx, params, reqOpts...)
if stream.Err() != nil && len(betas) > 0 {
debuglog.Debug(debuglog.Basic, "Anthropic beta feature %s failed: %v\n", strings.Join(betas, ","), stream.Err())
stream = an.client.Messages.NewStreaming(ctx, params)
}
for stream.Next() {
event := stream.Current()
@@ -226,6 +270,11 @@ func (an *Client) buildMessageParams(msgs []anthropic.MessageParam, opts *domain
{OfWebSearchTool20250305: &webTool},
}
}
if t, ok := parseThinking(opts.Thinking); ok {
params.Thinking = t
}
return
}
@@ -239,8 +288,21 @@ func (an *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage,
}
var message *anthropic.Message
if message, err = an.client.Messages.New(ctx, an.buildMessageParams(messages, opts)); err != nil {
return
params := an.buildMessageParams(messages, opts)
betas := an.modelBetas[opts.Model]
var reqOpts []option.RequestOption
if len(betas) > 0 {
reqOpts = append(reqOpts, option.WithHeader("anthropic-beta", strings.Join(betas, ",")))
}
if message, err = an.client.Messages.New(ctx, params, reqOpts...); err != nil {
if len(betas) > 0 {
debuglog.Debug(debuglog.Basic, "Anthropic beta feature %s failed: %v\n", strings.Join(betas, ","), err)
if message, err = an.client.Messages.New(ctx, params); err != nil {
return
}
} else {
return
}
}
var textParts []string
@@ -298,7 +360,7 @@ func (an *Client) toMessages(msgs []*chat.ChatCompletionMessage) (ret []anthropi
lastRoleWasUser := false
for _, msg := range msgs {
if msg.Content == "" {
if strings.TrimSpace(msg.Content) == "" {
continue // Skip empty messages
}

View File

@@ -168,6 +168,15 @@ func TestBuildMessageParams_WithSearchAndLocation(t *testing.T) {
}
}
func TestModelBetasConfiguration(t *testing.T) {
client := NewClient()
model := string(anthropic.ModelClaudeSonnet4_20250514)
betas, ok := client.modelBetas[model]
if !ok || len(betas) != 1 || betas[0] != "context-1m-2025-08-07" {
t.Errorf("expected beta mapping for %s", model)
}
}
func TestCitationFormatting(t *testing.T) {
// Test the citation formatting logic by creating a mock message with citations
message := &anthropic.Message{

View File

@@ -9,11 +9,11 @@ import (
"fmt"
"io"
"net/http"
"os"
"os/exec"
"strings"
"time"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/util"
"golang.org/x/oauth2"
)
@@ -46,8 +46,13 @@ func (t *OAuthTransport) RoundTrip(req *http.Request) (*http.Response, error) {
// Add OAuth Bearer token
newReq.Header.Set("Authorization", "Bearer "+token)
// Add the anthropic-beta header for OAuth
newReq.Header.Set("anthropic-beta", "oauth-2025-04-20")
// Add the anthropic-beta header for OAuth, preserving existing betas
existing := newReq.Header.Get("anthropic-beta")
beta := "oauth-2025-04-20"
if existing != "" {
beta = existing + "," + beta
}
newReq.Header.Set("anthropic-beta", beta)
// Set User-Agent to match AI SDK exactly
newReq.Header.Set("User-Agent", "ai-sdk/anthropic")
@@ -72,7 +77,7 @@ func (t *OAuthTransport) getValidToken(tokenIdentifier string) (string, error) {
}
// If no token exists, run OAuth flow
if token == nil {
fmt.Fprintln(os.Stderr, "No OAuth token found, initiating authentication...")
debuglog.Log("No OAuth token found, initiating authentication...\n")
newAccessToken, err := RunOAuthFlow(tokenIdentifier)
if err != nil {
return "", fmt.Errorf("failed to authenticate: %w", err)
@@ -82,11 +87,11 @@ func (t *OAuthTransport) getValidToken(tokenIdentifier string) (string, error) {
// Check if token needs refresh (5 minute buffer)
if token.IsExpired(5) {
fmt.Fprintln(os.Stderr, "OAuth token expired, refreshing...")
debuglog.Log("OAuth token expired, refreshing...\n")
newAccessToken, err := RefreshToken(tokenIdentifier)
if err != nil {
// If refresh fails, try re-authentication
fmt.Fprintln(os.Stderr, "Token refresh failed, re-authenticating...")
debuglog.Log("Token refresh failed, re-authenticating...\n")
newAccessToken, err = RunOAuthFlow(tokenIdentifier)
if err != nil {
return "", fmt.Errorf("failed to refresh or re-authenticate: %w", err)
@@ -138,13 +143,13 @@ func RunOAuthFlow(tokenIdentifier string) (token string, err error) {
if err == nil && existingToken != nil {
// If token exists but is expired, try refreshing first
if existingToken.IsExpired(5) {
fmt.Fprintln(os.Stderr, "Found expired OAuth token, attempting refresh...")
debuglog.Log("Found expired OAuth token, attempting refresh...\n")
refreshedToken, refreshErr := RefreshToken(tokenIdentifier)
if refreshErr == nil {
fmt.Fprintln(os.Stderr, "Token refresh successful")
debuglog.Log("Token refresh successful\n")
return refreshedToken, nil
}
fmt.Fprintf(os.Stderr, "Token refresh failed (%v), proceeding with full OAuth flow...\n", refreshErr)
debuglog.Log("Token refresh failed (%v), proceeding with full OAuth flow...\n", refreshErr)
} else {
// Token exists and is still valid
return existingToken.AccessToken, nil
@@ -171,10 +176,10 @@ func RunOAuthFlow(tokenIdentifier string) (token string, err error) {
oauth2.SetAuthURLParam("state", verifier),
)
fmt.Fprintln(os.Stderr, "Open the following URL in your browser. Fabric would like to authorize:")
fmt.Fprintln(os.Stderr, authURL)
debuglog.Log("Open the following URL in your browser. Fabric would like to authorize:\n")
debuglog.Log("%s\n", authURL)
openBrowser(authURL)
fmt.Fprint(os.Stderr, "Paste the authorization code here: ")
debuglog.Log("Paste the authorization code here: ")
var code string
fmt.Scanln(&code)
parts := strings.SplitN(code, "#", 2)

View File

@@ -1,12 +1,13 @@
package azure
import (
"fmt"
"strings"
"github.com/danielmiessler/fabric/internal/plugins"
"github.com/danielmiessler/fabric/internal/plugins/ai/openai"
openaiapi "github.com/openai/openai-go"
"github.com/openai/openai-go/option"
"github.com/openai/openai-go/azure"
)
func NewClient() (ret *Client) {
@@ -28,18 +29,44 @@ type Client struct {
apiDeployments []string
}
func (oi *Client) configure() (err error) {
oi.apiDeployments = strings.Split(oi.ApiDeployments.Value, ",")
opts := []option.RequestOption{option.WithAPIKey(oi.ApiKey.Value)}
if oi.ApiBaseURL.Value != "" {
opts = append(opts, option.WithBaseURL(oi.ApiBaseURL.Value))
const defaultAPIVersion = "2024-05-01-preview"
func (oi *Client) configure() error {
oi.apiDeployments = parseDeployments(oi.ApiDeployments.Value)
apiKey := strings.TrimSpace(oi.ApiKey.Value)
if apiKey == "" {
return fmt.Errorf("Azure API key is required")
}
if oi.ApiVersion.Value != "" {
opts = append(opts, option.WithQuery("api-version", oi.ApiVersion.Value))
baseURL := strings.TrimSpace(oi.ApiBaseURL.Value)
if baseURL == "" {
return fmt.Errorf("Azure API base URL is required")
}
client := openaiapi.NewClient(opts...)
apiVersion := strings.TrimSpace(oi.ApiVersion.Value)
if apiVersion == "" {
apiVersion = defaultAPIVersion
oi.ApiVersion.Value = apiVersion
}
client := openaiapi.NewClient(
azure.WithAPIKey(apiKey),
azure.WithEndpoint(baseURL, apiVersion),
)
oi.ApiClient = &client
return
return nil
}
func parseDeployments(value string) []string {
parts := strings.Split(value, ",")
var deployments []string
for _, part := range parts {
if deployment := strings.TrimSpace(part); deployment != "" {
deployments = append(deployments, deployment)
}
}
return deployments
}
func (oi *Client) ListModels() (ret []string, err error) {

View File

@@ -27,7 +27,7 @@ func TestClientConfigure(t *testing.T) {
client.ApiDeployments.Value = "deployment1,deployment2"
client.ApiKey.Value = "test-api-key"
client.ApiBaseURL.Value = "https://example.com"
client.ApiVersion.Value = "2021-01-01"
client.ApiVersion.Value = "2024-05-01-preview"
err := client.configure()
if err != nil {
@@ -48,8 +48,23 @@ func TestClientConfigure(t *testing.T) {
t.Errorf("Expected ApiClient to be initialized, got nil")
}
if client.ApiVersion.Value != "2021-01-01" {
t.Errorf("Expected API version to be '2021-01-01', got %s", client.ApiVersion.Value)
if client.ApiVersion.Value != "2024-05-01-preview" {
t.Errorf("Expected API version to be '2024-05-01-preview', got %s", client.ApiVersion.Value)
}
}
func TestClientConfigureDefaultAPIVersion(t *testing.T) {
client := NewClient()
client.ApiDeployments.Value = "deployment1"
client.ApiKey.Value = "test-api-key"
client.ApiBaseURL.Value = "https://example.com"
if err := client.configure(); err != nil {
t.Fatalf("Expected no error, got %v", err)
}
if client.ApiVersion.Value != defaultAPIVersion {
t.Errorf("Expected API version to default to %s, got %s", defaultAPIVersion, client.ApiVersion.Value)
}
}

View File

@@ -87,6 +87,9 @@ func (c *Client) formatOptions(opts *domain.ChatOptions) string {
if opts.ImageFile != "" {
builder.WriteString(fmt.Sprintf("ImageFile: %s\n", opts.ImageFile))
}
if opts.Thinking != "" {
builder.WriteString(fmt.Sprintf("Thinking: %s\n", string(opts.Thinking)))
}
if opts.SuppressThink {
builder.WriteString("SuppressThink: enabled\n")
builder.WriteString(fmt.Sprintf("Thinking Start Tag: %s\n", opts.ThinkStartTag))

View File

@@ -5,6 +5,8 @@ import (
"context"
"encoding/binary"
"fmt"
"regexp"
"strconv"
"strings"
"github.com/danielmiessler/fabric/internal/chat"
@@ -26,6 +28,24 @@ const (
AudioDataPrefix = "FABRIC_AUDIO_DATA:"
)
const (
citationHeader = "\n\n## Sources\n\n"
citationSeparator = "\n"
citationFormat = "- [%s](%s)"
errInvalidLocationFormat = "invalid search location format %q: must be timezone (e.g., 'America/Los_Angeles') or language code (e.g., 'en-US')"
locationSeparator = "/"
langCodeSeparator = "_"
langCodeNormalizedSep = "-"
modelPrefix = "models/"
modelTypeTTS = "tts"
modelTypePreviewTTS = "preview-tts"
modelTypeTextToSpeech = "text-to-speech"
)
var langCodeRegex = regexp.MustCompile(`^[a-z]{2}(-[A-Z]{2})?$`)
func NewClient() (ret *Client) {
vendorName := "Gemini"
ret = &Client{}
@@ -93,14 +113,13 @@ func (o *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage, o
// Convert messages to new SDK format
contents := o.convertMessages(msgs)
// Generate content
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
response, err := client.Models.GenerateContent(ctx, o.buildModelNameFull(opts.Model), contents, &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
})
cfg, err := o.buildGenerateContentConfig(opts)
if err != nil {
return "", err
}
// Generate content with optional tools
response, err := client.Models.GenerateContent(ctx, o.buildModelNameFull(opts.Model), contents, cfg)
if err != nil {
return "", err
}
@@ -112,6 +131,8 @@ func (o *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage, o
func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string) (err error) {
ctx := context.Background()
defer close(channel)
var client *genai.Client
if client, err = genai.NewClient(ctx, &genai.ClientConfig{
APIKey: o.ApiKey.Value,
@@ -123,20 +144,18 @@ func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.Cha
// Convert messages to new SDK format
contents := o.convertMessages(msgs)
// Generate streaming content
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
stream := client.Models.GenerateContentStream(ctx, o.buildModelNameFull(opts.Model), contents, &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
})
cfg, err := o.buildGenerateContentConfig(opts)
if err != nil {
return err
}
// Generate streaming content with optional tools
stream := client.Models.GenerateContentStream(ctx, o.buildModelNameFull(opts.Model), contents, cfg)
for response, err := range stream {
if err != nil {
channel <- fmt.Sprintf("Error: %v\n", err)
close(channel)
break
return err
}
text := o.extractTextFromResponse(response)
@@ -144,7 +163,6 @@ func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.Cha
channel <- text
}
}
close(channel)
return
}
@@ -153,20 +171,109 @@ func (o *Client) NeedsRawMode(modelName string) bool {
return false
}
func parseThinkingConfig(level domain.ThinkingLevel) (*genai.ThinkingConfig, bool) {
lower := strings.ToLower(strings.TrimSpace(string(level)))
switch domain.ThinkingLevel(lower) {
case "", domain.ThinkingOff:
return nil, false
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
b := int32(budget)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &b}, true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 32); err == nil && tokens > 0 {
t := int32(tokens)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &t}, true
}
}
return nil, false
}
// buildGenerateContentConfig constructs the generation config with optional tools.
// When search is enabled it injects the Google Search tool. The optional search
// location accepts either:
// - A timezone in the format "Continent/City" (e.g., "America/Los_Angeles")
// - An ISO language code "ll" or "ll-CC" (e.g., "en" or "en-US")
//
// Underscores are normalized to hyphens. Returns an error if the location is
// invalid.
func (o *Client) buildGenerateContentConfig(opts *domain.ChatOptions) (*genai.GenerateContentConfig, error) {
temperature := float32(opts.Temperature)
topP := float32(opts.TopP)
cfg := &genai.GenerateContentConfig{
Temperature: &temperature,
TopP: &topP,
MaxOutputTokens: int32(opts.ModelContextLength),
}
if opts.Search {
cfg.Tools = []*genai.Tool{{GoogleSearch: &genai.GoogleSearch{}}}
if loc := opts.SearchLocation; loc != "" {
if isValidLocationFormat(loc) {
loc = normalizeLocation(loc)
cfg.ToolConfig = &genai.ToolConfig{
RetrievalConfig: &genai.RetrievalConfig{LanguageCode: loc},
}
} else {
return nil, fmt.Errorf(errInvalidLocationFormat, loc)
}
}
}
if tc, ok := parseThinkingConfig(opts.Thinking); ok {
cfg.ThinkingConfig = tc
}
return cfg, nil
}
// buildModelNameFull adds the "models/" prefix for API calls
func (o *Client) buildModelNameFull(modelName string) string {
if strings.HasPrefix(modelName, "models/") {
if strings.HasPrefix(modelName, modelPrefix) {
return modelName
}
return "models/" + modelName
return modelPrefix + modelName
}
func isValidLocationFormat(location string) bool {
if strings.Contains(location, locationSeparator) {
parts := strings.Split(location, locationSeparator)
return len(parts) == 2 && parts[0] != "" && parts[1] != ""
}
return isValidLanguageCode(location)
}
func normalizeLocation(location string) string {
if strings.Contains(location, locationSeparator) {
return location
}
return strings.Replace(location, langCodeSeparator, langCodeNormalizedSep, 1)
}
// isValidLanguageCode reports whether the input is an ISO 639-1 language code
// optionally followed by an ISO 3166-1 country code. Underscores are
// normalized to hyphens before validation.
func isValidLanguageCode(code string) bool {
normalized := strings.Replace(code, langCodeSeparator, langCodeNormalizedSep, 1)
parts := strings.Split(normalized, langCodeNormalizedSep)
switch len(parts) {
case 1:
return langCodeRegex.MatchString(strings.ToLower(parts[0]))
case 2:
formatted := strings.ToLower(parts[0]) + langCodeNormalizedSep + strings.ToUpper(parts[1])
return langCodeRegex.MatchString(formatted)
default:
return false
}
}
// isTTSModel checks if the model is a text-to-speech model
func (o *Client) isTTSModel(modelName string) bool {
lowerModel := strings.ToLower(modelName)
return strings.Contains(lowerModel, "tts") ||
strings.Contains(lowerModel, "preview-tts") ||
strings.Contains(lowerModel, "text-to-speech")
return strings.Contains(lowerModel, modelTypeTTS) ||
strings.Contains(lowerModel, modelTypePreviewTTS) ||
strings.Contains(lowerModel, modelTypeTextToSpeech)
}
// extractTextForTTS extracts text content from chat messages for TTS generation
@@ -336,7 +443,20 @@ func (o *Client) convertMessages(msgs []*chat.ChatCompletionMessage) []*genai.Co
for _, msg := range msgs {
content := &genai.Content{Parts: []*genai.Part{}}
if msg.Content != "" {
switch msg.Role {
case chat.ChatMessageRoleAssistant:
content.Role = "model"
case chat.ChatMessageRoleUser:
content.Role = "user"
case chat.ChatMessageRoleSystem, chat.ChatMessageRoleDeveloper, chat.ChatMessageRoleFunction, chat.ChatMessageRoleTool:
// Gemini's API only accepts "user" and "model" roles.
// Map all other roles to "user" to preserve instruction context.
content.Role = "user"
default:
content.Role = "user"
}
if strings.TrimSpace(msg.Content) != "" {
content.Parts = append(content.Parts, &genai.Part{Text: msg.Content})
}
@@ -357,19 +477,71 @@ func (o *Client) convertMessages(msgs []*chat.ChatCompletionMessage) []*genai.Co
return contents
}
// extractTextFromResponse extracts text content from the response
// extractTextFromResponse extracts text content from the response and appends
// any web citations in a standardized format.
func (o *Client) extractTextFromResponse(response *genai.GenerateContentResponse) string {
var result strings.Builder
if response == nil {
return ""
}
text := o.extractTextParts(response)
citations := o.extractCitations(response)
if len(citations) > 0 {
return text + citationHeader + strings.Join(citations, citationSeparator)
}
return text
}
func (o *Client) extractTextParts(response *genai.GenerateContentResponse) string {
var builder strings.Builder
for _, candidate := range response.Candidates {
if candidate.Content != nil {
for _, part := range candidate.Content.Parts {
if part.Text != "" {
result.WriteString(part.Text)
}
if candidate == nil || candidate.Content == nil {
continue
}
for _, part := range candidate.Content.Parts {
if part != nil && part.Text != "" {
builder.WriteString(part.Text)
}
}
}
return result.String()
return builder.String()
}
func (o *Client) extractCitations(response *genai.GenerateContentResponse) []string {
if response == nil || len(response.Candidates) == 0 {
return nil
}
citationMap := make(map[string]bool)
var citations []string
for _, candidate := range response.Candidates {
if candidate == nil || candidate.GroundingMetadata == nil {
continue
}
chunks := candidate.GroundingMetadata.GroundingChunks
if len(chunks) == 0 {
continue
}
for _, chunk := range chunks {
if chunk == nil || chunk.Web == nil {
continue
}
uri := chunk.Web.URI
title := chunk.Web.Title
if uri == "" || title == "" {
continue
}
var keyBuilder strings.Builder
keyBuilder.WriteString(uri)
keyBuilder.WriteByte('|')
keyBuilder.WriteString(title)
key := keyBuilder.String()
if !citationMap[key] {
citationMap[key] = true
citationText := fmt.Sprintf(citationFormat, title, uri)
citations = append(citations, citationText)
}
}
}
return citations
}

View File

@@ -1,9 +1,13 @@
package gemini
import (
"strings"
"testing"
"google.golang.org/genai"
"github.com/danielmiessler/fabric/internal/chat"
"github.com/danielmiessler/fabric/internal/domain"
)
// Test buildModelNameFull method
@@ -51,6 +55,162 @@ func TestExtractTextFromResponse(t *testing.T) {
}
}
func TestExtractTextFromResponse_Nil(t *testing.T) {
client := &Client{}
if got := client.extractTextFromResponse(nil); got != "" {
t.Fatalf("expected empty string, got %q", got)
}
}
func TestExtractTextFromResponse_EmptyGroundingChunks(t *testing.T) {
client := &Client{}
response := &genai.GenerateContentResponse{
Candidates: []*genai.Candidate{
{
Content: &genai.Content{Parts: []*genai.Part{{Text: "Hello"}}},
GroundingMetadata: &genai.GroundingMetadata{GroundingChunks: nil},
},
},
}
if got := client.extractTextFromResponse(response); got != "Hello" {
t.Fatalf("expected 'Hello', got %q", got)
}
}
func TestBuildGenerateContentConfig_WithSearch(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.Tools == nil || len(cfg.Tools) != 1 || cfg.Tools[0].GoogleSearch == nil {
t.Errorf("expected google search tool to be included")
}
}
func TestBuildGenerateContentConfig_WithSearchAndLocation(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "America/Los_Angeles"}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ToolConfig == nil || cfg.ToolConfig.RetrievalConfig == nil {
t.Fatalf("expected retrieval config when search location provided")
}
if cfg.ToolConfig.RetrievalConfig.LanguageCode != opts.SearchLocation {
t.Errorf("expected language code %s, got %s", opts.SearchLocation, cfg.ToolConfig.RetrievalConfig.LanguageCode)
}
}
func TestBuildGenerateContentConfig_InvalidLocation(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "invalid"}
_, err := client.buildGenerateContentConfig(opts)
if err == nil {
t.Fatalf("expected error for invalid location")
}
}
func TestBuildGenerateContentConfig_LanguageCodeNormalization(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Search: true, SearchLocation: "en_US"}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ToolConfig == nil || cfg.ToolConfig.RetrievalConfig.LanguageCode != "en-US" {
t.Fatalf("expected normalized language code 'en-US', got %+v", cfg.ToolConfig)
}
}
func TestBuildGenerateContentConfig_Thinking(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLow}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || !cfg.ThinkingConfig.IncludeThoughts {
t.Fatalf("expected thinking config with thoughts included")
}
if cfg.ThinkingConfig.ThinkingBudget == nil || *cfg.ThinkingConfig.ThinkingBudget != int32(domain.TokenBudgetLow) {
t.Errorf("expected thinking budget %d, got %+v", domain.TokenBudgetLow, cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestBuildGenerateContentConfig_ThinkingTokens(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLevel("123")}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || cfg.ThinkingConfig.ThinkingBudget == nil {
t.Fatalf("expected thinking config with budget")
}
if *cfg.ThinkingConfig.ThinkingBudget != 123 {
t.Errorf("expected thinking budget 123, got %d", *cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestCitationFormatting(t *testing.T) {
client := &Client{}
response := &genai.GenerateContentResponse{
Candidates: []*genai.Candidate{
{
Content: &genai.Content{Parts: []*genai.Part{{Text: "Based on recent research, AI is advancing rapidly."}}},
GroundingMetadata: &genai.GroundingMetadata{
GroundingChunks: []*genai.GroundingChunk{
{Web: &genai.GroundingChunkWeb{URI: "https://example.com/ai", Title: "AI Research"}},
{Web: &genai.GroundingChunkWeb{URI: "https://news.com/tech", Title: "Tech News"}},
{Web: &genai.GroundingChunkWeb{URI: "https://example.com/ai", Title: "AI Research"}}, // duplicate
},
},
},
},
}
result := client.extractTextFromResponse(response)
if !strings.Contains(result, "## Sources") {
t.Fatalf("expected sources section in result: %s", result)
}
if strings.Count(result, "- [") != 2 {
t.Errorf("expected 2 unique citations, got %d", strings.Count(result, "- ["))
}
}
// Test convertMessages handles role mapping correctly
func TestConvertMessagesRoles(t *testing.T) {
client := &Client{}
msgs := []*chat.ChatCompletionMessage{
{Role: chat.ChatMessageRoleUser, Content: "user"},
{Role: chat.ChatMessageRoleAssistant, Content: "assistant"},
{Role: chat.ChatMessageRoleSystem, Content: "system"},
}
contents := client.convertMessages(msgs)
expected := []string{"user", "model", "user"}
if len(contents) != len(expected) {
t.Fatalf("expected %d contents, got %d", len(expected), len(contents))
}
for i, c := range contents {
if c.Role != expected[i] {
t.Errorf("content %d expected role %s, got %s", i, expected[i], c.Role)
}
}
}
// Test isTTSModel method
func TestIsTTSModel(t *testing.T) {
client := &Client{}

View File

@@ -1,13 +1,84 @@
package ai
import (
"fmt"
"sort"
"strings"
"github.com/danielmiessler/fabric/internal/i18n"
"github.com/danielmiessler/fabric/internal/util"
)
func NewVendorsModels() *VendorsModels {
return &VendorsModels{GroupsItemsSelectorString: util.NewGroupsItemsSelectorString("Available models")}
return &VendorsModels{GroupsItemsSelectorString: util.NewGroupsItemsSelectorString(i18n.T("available_models_header"))}
}
type VendorsModels struct {
*util.GroupsItemsSelectorString
}
// FilterByVendor returns a new VendorsModels containing only the specified vendor's models.
// Vendor matching is case-insensitive (e.g., "OpenAI", "openai", and "OPENAI" all match).
// If the vendor is not found, an empty VendorsModels is returned.
func (o *VendorsModels) FilterByVendor(vendor string) *VendorsModels {
filtered := NewVendorsModels()
for _, groupItems := range o.GroupsItems {
if strings.EqualFold(groupItems.Group, vendor) {
filtered.AddGroupItems(groupItems.Group, groupItems.Items...)
break
}
}
return filtered
}
// FindModelNameCaseInsensitive returns the actual model name from available models,
// matching case-insensitively. Returns empty string if not found.
// For example, if the available models contain "gpt-4o" and user queries "GPT-4O",
// this returns "gpt-4o" (the actual model name that should be sent to the API).
func (o *VendorsModels) FindModelNameCaseInsensitive(modelQuery string) string {
for _, groupItems := range o.GroupsItems {
for _, item := range groupItems.Items {
if strings.EqualFold(item, modelQuery) {
return item
}
}
}
return ""
}
// PrintWithVendor prints models including their vendor on each line.
// When shellCompleteList is true, output is suitable for shell completion.
// Default vendor and model are highlighted with an asterisk.
func (o *VendorsModels) PrintWithVendor(shellCompleteList bool, defaultVendor, defaultModel string) {
if !shellCompleteList {
fmt.Printf("%s:\n\n", o.SelectionLabel)
}
var currentItemIndex int
sortedGroups := make([]*util.GroupItems[string], len(o.GroupsItems))
copy(sortedGroups, o.GroupsItems)
sort.SliceStable(sortedGroups, func(i, j int) bool {
return strings.ToLower(sortedGroups[i].Group) < strings.ToLower(sortedGroups[j].Group)
})
for _, groupItems := range sortedGroups {
items := make([]string, len(groupItems.Items))
copy(items, groupItems.Items)
sort.SliceStable(items, func(i, j int) bool {
return strings.ToLower(items[i]) < strings.ToLower(items[j])
})
for _, item := range items {
currentItemIndex++
if shellCompleteList {
fmt.Printf("%s|%s\n", groupItems.Group, item)
} else {
mark := " "
if strings.EqualFold(groupItems.Group, defaultVendor) && strings.EqualFold(item, defaultModel) {
mark = " *"
}
fmt.Printf("%s\t[%d]\t%s|%s\n", mark, currentItemIndex, groupItems.Group, item)
}
}
}
}

View File

@@ -1,6 +1,9 @@
package ai
import (
"io"
"os"
"strings"
"testing"
)
@@ -16,18 +19,86 @@ func TestNewVendorsModels(t *testing.T) {
func TestFindVendorsByModelFirst(t *testing.T) {
vendors := NewVendorsModels()
vendors.AddGroupItems("vendor1", []string{"model1", "model2"}...)
vendors.AddGroupItems("Vendor1", []string{"Model1", "model2"}...)
vendor := vendors.FindGroupsByItemFirst("model1")
if vendor != "vendor1" {
t.Fatalf("FindVendorsByModelFirst() = %v, want %v", vendor, "vendor1")
if vendor != "Vendor1" {
t.Fatalf("FindVendorsByModelFirst() = %v, want %v", vendor, "Vendor1")
}
}
func TestFindVendorsByModel(t *testing.T) {
vendors := NewVendorsModels()
vendors.AddGroupItems("vendor1", []string{"model1", "model2"}...)
foundVendors := vendors.FindGroupsByItem("model1")
if len(foundVendors) != 1 || foundVendors[0] != "vendor1" {
t.Fatalf("FindVendorsByModel() = %v, want %v", foundVendors, []string{"vendor1"})
vendors.AddGroupItems("Vendor1", []string{"Model1", "model2"}...)
foundVendors := vendors.FindGroupsByItem("MODEL1")
if len(foundVendors) != 1 || foundVendors[0] != "Vendor1" {
t.Fatalf("FindVendorsByModel() = %v, want %v", foundVendors, []string{"Vendor1"})
}
}
func TestPrintWithVendorMarksDefault(t *testing.T) {
vendors := NewVendorsModels()
vendors.AddGroupItems("vendor1", []string{"model1"}...)
vendors.AddGroupItems("vendor2", []string{"model2"}...)
r, w, _ := os.Pipe()
oldStdout := os.Stdout
os.Stdout = w
vendors.PrintWithVendor(false, "vendor2", "model2")
w.Close()
os.Stdout = oldStdout
out, _ := io.ReadAll(r)
if !strings.Contains(string(out), " *\t[2]\tvendor2|model2") {
t.Fatalf("default model not marked: %s", out)
}
}
func TestFilterByVendorCaseInsensitive(t *testing.T) {
vendors := NewVendorsModels()
vendors.AddGroupItems("vendor1", []string{"model1"}...)
vendors.AddGroupItems("vendor2", []string{"model2"}...)
filtered := vendors.FilterByVendor("VENDOR2")
if len(filtered.GroupsItems) != 1 {
t.Fatalf("expected 1 vendor group, got %d", len(filtered.GroupsItems))
}
if filtered.GroupsItems[0].Group != "vendor2" {
t.Fatalf("expected vendor2, got %s", filtered.GroupsItems[0].Group)
}
if len(filtered.GroupsItems[0].Items) != 1 || filtered.GroupsItems[0].Items[0] != "model2" {
t.Fatalf("unexpected models for vendor2: %v", filtered.GroupsItems[0].Items)
}
}
func TestFindModelNameCaseInsensitive(t *testing.T) {
vendors := NewVendorsModels()
vendors.AddGroupItems("OpenAI", []string{"gpt-4o", "gpt-5"}...)
vendors.AddGroupItems("Anthropic", []string{"claude-3-opus"}...)
tests := []struct {
name string
query string
expectedModel string
}{
{"exact match lowercase", "gpt-4o", "gpt-4o"},
{"uppercase query", "GPT-4O", "gpt-4o"},
{"mixed case query", "GpT-5", "gpt-5"},
{"exact match with hyphens", "claude-3-opus", "claude-3-opus"},
{"uppercase with hyphens", "CLAUDE-3-OPUS", "claude-3-opus"},
{"non-existent model", "gpt-999", ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := vendors.FindModelNameCaseInsensitive(tt.query)
if result != tt.expectedModel {
t.Errorf("FindModelNameCaseInsensitive(%q) = %q, want %q", tt.query, result, tt.expectedModel)
}
})
}
}

View File

@@ -2,7 +2,9 @@ package ollama
import (
"context"
"encoding/base64"
"fmt"
"io"
"net/http"
"net/url"
"os"
@@ -10,11 +12,10 @@ import (
"time"
"github.com/danielmiessler/fabric/internal/chat"
ollamaapi "github.com/ollama/ollama/api"
"github.com/samber/lo"
"github.com/danielmiessler/fabric/internal/domain"
debuglog "github.com/danielmiessler/fabric/internal/log"
"github.com/danielmiessler/fabric/internal/plugins"
ollamaapi "github.com/ollama/ollama/api"
)
const defaultBaseUrl = "http://localhost:11434"
@@ -48,6 +49,7 @@ type Client struct {
apiUrl *url.URL
client *ollamaapi.Client
ApiHttpTimeout *plugins.SetupQuestion
httpClient *http.Client
}
type transport_sec struct {
@@ -84,7 +86,8 @@ func (o *Client) configure() (err error) {
}
}
o.client = ollamaapi.NewClient(o.apiUrl, &http.Client{Timeout: timeout, Transport: &transport_sec{underlyingTransport: http.DefaultTransport, ApiKey: o.ApiKey}})
o.httpClient = &http.Client{Timeout: timeout, Transport: &transport_sec{underlyingTransport: http.DefaultTransport, ApiKey: o.ApiKey}}
o.client = ollamaapi.NewClient(o.apiUrl, o.httpClient)
return
}
@@ -104,15 +107,18 @@ func (o *Client) ListModels() (ret []string, err error) {
}
func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string) (err error) {
req := o.createChatRequest(msgs, opts)
ctx := context.Background()
var req ollamaapi.ChatRequest
if req, err = o.createChatRequest(ctx, msgs, opts); err != nil {
return
}
respFunc := func(resp ollamaapi.ChatResponse) (streamErr error) {
channel <- resp.Message.Content
return
}
ctx := context.Background()
if err = o.client.Chat(ctx, &req, respFunc); err != nil {
return
}
@@ -124,7 +130,10 @@ func (o *Client) SendStream(msgs []*chat.ChatCompletionMessage, opts *domain.Cha
func (o *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions) (ret string, err error) {
bf := false
req := o.createChatRequest(msgs, opts)
var req ollamaapi.ChatRequest
if req, err = o.createChatRequest(ctx, msgs, opts); err != nil {
return
}
req.Stream = &bf
respFunc := func(resp ollamaapi.ChatResponse) (streamErr error) {
@@ -133,15 +142,18 @@ func (o *Client) Send(ctx context.Context, msgs []*chat.ChatCompletionMessage, o
}
if err = o.client.Chat(ctx, &req, respFunc); err != nil {
fmt.Printf("FRED --> %s\n", err)
debuglog.Debug(debuglog.Basic, "Ollama chat request failed: %v\n", err)
}
return
}
func (o *Client) createChatRequest(msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions) (ret ollamaapi.ChatRequest) {
messages := lo.Map(msgs, func(message *chat.ChatCompletionMessage, _ int) (ret ollamaapi.Message) {
return ollamaapi.Message{Role: message.Role, Content: message.Content}
})
func (o *Client) createChatRequest(ctx context.Context, msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions) (ret ollamaapi.ChatRequest, err error) {
messages := make([]ollamaapi.Message, len(msgs))
for i, message := range msgs {
if messages[i], err = o.convertMessage(ctx, message); err != nil {
return
}
}
options := map[string]interface{}{
"temperature": opts.Temperature,
@@ -162,14 +174,85 @@ func (o *Client) createChatRequest(msgs []*chat.ChatCompletionMessage, opts *dom
return
}
func (o *Client) convertMessage(ctx context.Context, message *chat.ChatCompletionMessage) (ret ollamaapi.Message, err error) {
ret = ollamaapi.Message{Role: message.Role, Content: message.Content}
if len(message.MultiContent) == 0 {
return
}
// Pre-allocate with capacity hint
textParts := make([]string, 0, len(message.MultiContent))
if strings.TrimSpace(ret.Content) != "" {
textParts = append(textParts, strings.TrimSpace(ret.Content))
}
for _, part := range message.MultiContent {
switch part.Type {
case chat.ChatMessagePartTypeText:
if trimmed := strings.TrimSpace(part.Text); trimmed != "" {
textParts = append(textParts, trimmed)
}
case chat.ChatMessagePartTypeImageURL:
// Nil guard
if part.ImageURL == nil || part.ImageURL.URL == "" {
continue
}
var img []byte
if img, err = o.loadImageBytes(ctx, part.ImageURL.URL); err != nil {
return
}
ret.Images = append(ret.Images, ollamaapi.ImageData(img))
}
}
ret.Content = strings.Join(textParts, "\n")
return
}
func (o *Client) loadImageBytes(ctx context.Context, imageURL string) (ret []byte, err error) {
// Handle data URLs (base64 encoded)
if strings.HasPrefix(imageURL, "data:") {
parts := strings.SplitN(imageURL, ",", 2)
if len(parts) != 2 {
err = fmt.Errorf("invalid data URL format")
return
}
if ret, err = base64.StdEncoding.DecodeString(parts[1]); err != nil {
err = fmt.Errorf("failed to decode data URL: %w", err)
}
return
}
// Handle HTTP URLs with context
var req *http.Request
if req, err = http.NewRequestWithContext(ctx, http.MethodGet, imageURL, nil); err != nil {
return
}
var resp *http.Response
if resp, err = o.httpClient.Do(req); err != nil {
return
}
defer resp.Body.Close()
if resp.StatusCode >= http.StatusBadRequest {
err = fmt.Errorf("failed to fetch image %s: %s", imageURL, resp.Status)
return
}
ret, err = io.ReadAll(resp.Body)
return
}
func (o *Client) NeedsRawMode(modelName string) bool {
ollamaPrefixes := []string{
ollamaSearchStrings := []string{
"llama3",
"llama2",
"mistral",
}
for _, prefix := range ollamaPrefixes {
if strings.HasPrefix(modelName, prefix) {
for _, searchString := range ollamaSearchStrings {
if strings.Contains(modelName, searchString) {
return true
}
}

Some files were not shown because too many files have changed in this diff Show More