Compare commits

...

1009 Commits

Author SHA1 Message Date
psychedelicious
64f3e56039 chore: bump version to v5.10.0 2025-04-17 15:08:26 +10:00
Hosted Weblate
819afab230 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
Linos
9fff064c55 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1887 of 1887 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1887 of 1887 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
Riccardo Giovanetti
1aa8d94378 translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1851 of 1887 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
RyoKoba
d78bdde2c3 translationBot(ui): update translation (Japanese)
Currently translated at 56.6% (1069 of 1887 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 50.8% (960 of 1887 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 48.4% (912 of 1882 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-04-17 11:28:02 +10:00
psychedelicious
7b663b3432 fix(ui): scrolling in builder
I am at loss as the to cause of this bug. The styles that I needed to change to fix it haven't been changed in a couple months. But these do seem to fix it.

Closes #7910
2025-04-17 11:24:54 +10:00
psychedelicious
9c4159915a feat(ui): add guardrails to prevent entity types being missed in useIsEntityTypeEnabled 2025-04-17 11:21:16 +10:00
psychedelicious
dbb5830027 fix(ui): useIsEntityTypeEnabled should use useMemo not useCallback
Typo/bug introduced in #7770
2025-04-17 11:21:16 +10:00
psychedelicious
4fc4dbb656 fix(ui): ensure query subs are reset in case of error 2025-04-17 11:13:41 +10:00
psychedelicious
d4f6d09cc9 fix(ui): never subscribe to dynamic prompts queries
If the request errors, we would never get to unsubscribe. The request would forever be marked as having a subscriber and never be cleared from memory.
2025-04-17 10:36:09 +10:00
psychedelicious
44e44602d3 feat(ui): remove keepUnusedDataFor for dynamic prompts
This query can have potentially large responses. Keeping them around for 24 hours essentially a hardcoded memory leak. Use the default for RTKQ of 60 seconds.
2025-04-17 10:36:09 +10:00
psychedelicious
36066c5f26 fix(ui): ensure dynamic prompts updates on any change to any dependent state
When users generate on the canvas or upscaling tabs, we parse prompts through dynamic prompts before invoking. Whenever the prompt or other settings change, we run dynamic prompts.

Previously, we used a redux listener to react to changes to dynamic prompts' dependent state, keeping the processed dynamic prompts synced. For example, when the user changed the prompt field, we re-processed the dynamic prompts.

This requires that all redux actions that change the dependent state be added to the listener matcher. It's easy to forget actions, though, which can result in the dynamic prompts state being stale.

For example, when resetting canvas state, we dispatch an action that resets the whole params slice, but this wasn't in the matcher. As a result, when resetting canvas, the dynamic prompts aren't updated. If the user then clicks Invoke (with an empty prompt), the last dynamic prompts state will be used.

For example:
- Generate w/ prompt "frog", get frog
- Click new canvas session
- Generate without any prompt, still get frog

To resolve this, the logic that keeps the dynamic prompts synced is moved from the listener to a hook. The way the logic is triggered is improved - it's now triggered in a useEffect, which is run when the dependent state changes. This way, it doesn't matter _how_ the dependent state changes - the changes will always be "seen", and the dynamic prompts will update.
2025-04-17 10:36:09 +10:00
psychedelicious
361c6eed4b docs: update manual install docs w/ correct pytorch indicies for v5.10.0 and later 2025-04-17 10:32:41 +10:00
psychedelicious
bb154fd40f docs: update dev env docs with correct pytorch pypi index 2025-04-17 10:32:41 +10:00
psychedelicious
cbee6e6faf fix(app): remove accidentally committed tensor cache size
I had set this to zero for testing udring the python 2.6.0 upgrade and neglected to remove it.
2025-04-17 10:12:47 +10:00
psychedelicious
6a822a52b8 chore(ui): update whats new copy 2025-04-16 07:17:52 +10:00
psychedelicious
d10dc28fc2 chore: bump version to v5.10.0rc1 2025-04-16 07:17:52 +10:00
psychedelicious
20eea18c41 chore(ui): typegen 2025-04-16 06:28:22 +10:00
skunkworxdark
566282bff0 Update metadata_linked.py
added metadata_to_string_collection, metadata_to_integer_collection, metadata_to_float_collection, metadata_to_bool_collection
2025-04-16 06:28:22 +10:00
psychedelicious
e7e874f7c3 fix(ui): increase padding when fitting layers to stage 2025-04-15 07:47:39 +10:00
Eugene Brodsky
95445c1163 chore: update pre-commit syntax; add check for uv.lock needing an update 2025-04-15 07:41:32 +10:00
psychedelicious
557e0cb3e6 chore(ui): knip 2025-04-15 07:13:25 +10:00
psychedelicious
a12bf07fb3 feat(ui): add node publish denylist 2025-04-15 07:13:25 +10:00
psychedelicious
a5bc21cf50 feat(nodes): extract LaMa model url to constant 2025-04-15 07:13:25 +10:00
psychedelicious
03ca23bec2 chore: update lockfile 2025-04-15 07:06:23 +10:00
psychedelicious
e15194a45d Revert "ci: change pyproject.toml to trigger uv lock check (it should fail)"
This reverts commit b802933190.
2025-04-15 07:06:23 +10:00
psychedelicious
e71ea309e7 ci: change pyproject.toml to trigger uv lock check (it should fail) 2025-04-15 07:06:23 +10:00
psychedelicious
2513756c25 ci: fix name of uv lock checks job 2025-04-15 07:06:23 +10:00
psychedelicious
875670f713 ci: add comment to uv-lock-checks.yml 2025-04-15 07:06:23 +10:00
psychedelicious
153b148362 ci: add check for uv lockfile consistency with pyproject.toml 2025-04-15 07:06:23 +10:00
psychedelicious
7b84f8c5e8 fix(ui): do not disable image context canvas actions based on selected base model
These actions should be accessible at any time.
2025-04-10 10:50:13 +10:00
psychedelicious
0280c9b4b9 fix(ui): generation_mode metadata not set correctly 2025-04-10 10:50:13 +10:00
psychedelicious
ae8d1f26d6 fix(app): import CogView4Transformer2DModel from the module that exports it 2025-04-10 10:50:13 +10:00
psychedelicious
170ea4fb75 fix(app): add CogView4ConditioningInfo to ObjectSerializerDisk's safe_globals
needed for torch w/ weights_only=True
2025-04-10 10:50:13 +10:00
psychedelicious
e5b0f8b985 feat(app): remove cogview4 inpaint workflow
This doesn't make sense to have as a default workflow given the trickiness of producing alpha masks.
2025-04-10 10:50:13 +10:00
psychedelicious
3f656072cf feat(app): update cogview4 t2i workflow w/ form 2025-04-10 10:50:13 +10:00
psychedelicious
1d4aa93f5e chore(ui): typegen 2025-04-10 10:50:13 +10:00
psychedelicious
b182060201 chore(ui): lint 2025-04-10 10:50:13 +10:00
psychedelicious
2b2f64b232 refactor(ui): simplify useIsEntityTypeEnabled 2025-04-10 10:50:13 +10:00
psychedelicious
df32974378 fix(ui): add checks for cogview4's dimension restrictions 2025-04-10 10:50:13 +10:00
psychedelicious
ad582c8cc5 feat(nodes): rename CogView4 nodes to match naming format 2025-04-10 10:50:13 +10:00
psychedelicious
47273135ca feat(ui): add cogview4 and inpainting tags to library 2025-04-10 10:50:13 +10:00
psychedelicious
c99e65bdab feat(app): add cogview4 default workflows 2025-04-10 10:50:13 +10:00
Mary Hipp
92b726d731 update available params for cogview4 2025-04-10 10:50:13 +10:00
Mary Hipp
8837932bad create hook for managing entity type enabledness for given base model and update usage 2025-04-10 10:50:13 +10:00
Mary Hipp
9846229e52 build graph for cogview4 2025-04-10 10:50:13 +10:00
maryhipp
305c5761d0 add generation modes for cogview linear 2025-04-10 10:50:13 +10:00
Ryan Dick
3ba399779f Fix lint error. 2025-04-10 10:50:13 +10:00
Ryan Dick
46316e43f0 typegen 2025-04-10 10:50:13 +10:00
Ryan Dick
d86cd66994 Add CogView4 VAE approximation for progress images. 2025-04-10 10:50:13 +10:00
Ryan Dick
13850271ab Add inpainting to CogView4DenoiseInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
7e894ffe83 Consolidate InpaintExtension implementations for SD3 and FLUX. 2025-04-10 10:50:13 +10:00
Ryan Dick
0939030324 Support cfg_scale list in CogView4Denoise. 2025-04-10 10:50:13 +10:00
Ryan Dick
30f19dc37a Update CogView4Denoise to support image-to-image. 2025-04-10 10:50:13 +10:00
Ryan Dick
ace5e748f4 Simplify CogView4 timesteps schedule generation in preparation for timestep schedule slipping. 2025-04-10 10:50:13 +10:00
Ryan Dick
4fae8ad163 Add CogView4ImageToLatentsInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
5e75bc570a Fix bug in CogView4 noise schedule handling that was resulting in low-quality images. 2025-04-10 10:50:13 +10:00
Ryan Dick
3166b5d2ea Switch to sequential CFG for CogView4 (for now, until I sort out the padding). 2025-04-10 10:50:13 +10:00
Ryan Dick
321c2d358c Add CogView4 model loader. And various other fixes to get a CogView4 workflow running (though quality is still below expectations). 2025-04-10 10:50:13 +10:00
Ryan Dick
0338983895 Update CogView4 starter model entry with approximate bundle size. 2025-04-10 10:50:13 +10:00
Ryan Dick
f4e00ab261 Add CogView4 to frontend. 2025-04-10 10:50:13 +10:00
Ryan Dick
e1133bc53f Fix typo in BaseModelTypo.CogView4. 2025-04-10 10:50:13 +10:00
Ryan Dick
e1ccbd5c29 typegen 2025-04-10 10:50:13 +10:00
Ryan Dick
cf76a0b575 Add CogView4ModelLoaderInvocation. (Not wired up with frontend yet.) 2025-04-10 10:50:13 +10:00
Ryan Dick
67bfd63c73 Require the cogview4 height/width are multiples of 32. This requirement is documented here: https://huggingface.co/THUDM/CogView4-6B. I haven't tracked down the underlying source of this requirement. 2025-04-10 10:50:13 +10:00
Ryan Dick
cdad8a4fd1 Add CogView4LatentsToImageInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
5d9797945b Completed first pass of CogView4Denoise. 2025-04-10 10:50:13 +10:00
Ryan Dick
78159c3200 Simplify CogView4 timestep schedule initialization. 2025-04-10 10:50:13 +10:00
Ryan Dick
1320c4fa13 WIP - CogView4DenoiseInvocation. 2025-04-10 10:50:13 +10:00
Ryan Dick
883297c809 Bump diffusers to dev version with CogView4 support. 2025-04-10 10:50:13 +10:00
Ryan Dick
bac05a7885 Add CogView4TextEncoderInvocation 2025-04-10 10:50:13 +10:00
Ryan Dick
e2c4ea8e89 Add CogView4 model probing. 2025-04-10 10:50:13 +10:00
psychedelicious
851e23d6b4 feat(ui): move size to be next to model name 2025-04-10 09:53:03 +10:00
psychedelicious
7c8c9694ce feat(ui): use filesize package to format model file size 2025-04-10 09:53:03 +10:00
Kevin Turner
52a8ad1c18 chore: rename model.size to model.file_size
to disambiguate from RAM size or pixel size
2025-04-10 09:53:03 +10:00
Kevin Turner
e537020c11 chore: cursed whitespace fight 2025-04-10 09:53:03 +10:00
Kevin Turner
c50d1d6127 test: add size field to model metadata 2025-04-10 09:53:03 +10:00
Kevin Turner
53292b3592 fix: localization for file size units 2025-04-10 09:53:03 +10:00
Kevin Turner
bcfc61b2d7 feat: show model size in model list 2025-04-10 09:53:03 +10:00
Kevin Turner
9d869fc9ce chore: typegen 2025-04-10 09:53:03 +10:00
Kevin Turner
f09aacf992 fix: ModelProbe.probe needs to return a size field 2025-04-10 09:53:03 +10:00
Kevin Turner
98260a8efc test: add size field to test model configs 2025-04-10 09:53:03 +10:00
Kevin Turner
9590e8ff39 feat: expose model storage size 2025-04-10 09:53:03 +10:00
psychedelicious
a23d90187b feat(ui): allow send-image-to-canvas to work when canvas is uninitialized
Add `useCanvasIsBusySafe()` hook. This is like `useCanvasIsBusy()`, but when the canvas is not initialized, it gracefully falls back to false instead of raising.

Because app tabs are lazy-loaded, the canvas is not initialized until the user visits that tab. If the page loads up on the workflows tab, the canvas will be uninitialized until the user clicks on it.

This graceful fallback behaviour allows actions like sending an image to canvas to work even when the canvas is not yet initialized. These actions are exposed in the image context menu, and previously were hidden when the canvas was not initialized. We can now show these actions and use them even when the canvas is uninitialized.

- Add `useCanvasIsBusySafe()` hook
- Use the new hook in the image context menu for send to canvas actions
- Do not use `<CanvasManagerProviderGate />` in the image context menu (this was hiding the actions when canvas was uninitialized)
2025-04-10 06:44:44 +10:00
psychedelicious
f655a85154 fix(ui): canvas dnd drop indicator color 2025-04-10 06:42:01 +10:00
psychedelicious
f45b494805 tidy(ui): remove extraneous calls to HTMLElement.remove()
these will be auto-gc'd when there are no more references
2025-04-09 14:00:20 +10:00
psychedelicious
d1776e0b63 feat(ui): safer use of drawImage
When calling `ctx.drawImage()`, if the image to be drawn has a width of height of 0, the call will raise.

In this change, I have carefully reviewed the call hierarchy for all of our own code that calls this method and ensured that each call has error handling.

Well, with one exception - I'm not sure how to handle errors in `invokeai/frontend/web/src/common/hooks/useClientSideUpload.ts`. But this should never be an issue in that hook - it's a Canvas problem.
2025-04-09 14:00:20 +10:00
psychedelicious
646887e3c9 feat(ui): save canvas/bbox to gallery saves basic metadata
- Positive prompt
- Negative prompt
- Seed
- Model (if set)

The rest is a bit complicated to derive as it comes from the graph building process.
2025-04-09 08:52:38 +10:00
Riccardo Giovanetti
e7e25a0c37 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1849 of 1873 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.8% (1833 of 1873 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-04-08 11:01:37 +10:00
Linos
589b849e64 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1873 of 1873 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1871 of 1871 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.2% (1857 of 1871 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1840 of 1840 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-04-08 11:01:37 +10:00
psychedelicious
aedbc9f778 chore: prep for v5.10.0a1 2025-04-08 10:59:08 +10:00
psychedelicious
a0cf9e2e80 tweak(ui): ip adapter settings layout 2025-04-08 10:33:45 +10:00
psychedelicious
5c8f1c5666 fix(ui): use flux redux influence on regional guidance 2025-04-08 10:33:45 +10:00
psychedelicious
fd37117221 chore(ui): lint 2025-04-08 10:33:45 +10:00
psychedelicious
5956f96e57 feat(ui): add flux redux image influence to canvas 2025-04-08 10:33:45 +10:00
psychedelicious
49622c37ed fix(nodes): logic bug in flux redux node 2025-04-08 10:33:45 +10:00
psychedelicious
50387c8f64 chore(ui): typegen 2025-04-08 10:33:45 +10:00
skunkworxdark
e1538af219 Update flux_redux.py
Add down sampling and weight to redux node
2025-04-08 10:33:45 +10:00
psychedelicious
e5a0010a72 fix(ui): normalize alpha value to 0-1 when picking color on canvas 2025-04-08 08:20:49 +10:00
psychedelicious
b75d1b2473 refactor(ui): move update node logic from listener to hook 2025-04-08 08:18:17 +10:00
psychedelicious
b91bb9ba9f fix(ui): remove debug logger middleware 2025-04-08 08:18:17 +10:00
psychedelicious
a7c818bcae fix(ui): rebase import issue 2025-04-08 08:18:17 +10:00
psychedelicious
a54b255718 chore(ui): lint 2025-04-08 08:18:17 +10:00
psychedelicious
3e04baa684 feat(ui): improved undo/redo history grouping for selections and postiino changes 2025-04-08 08:18:17 +10:00
psychedelicious
d23db705dd feat(ui): improved undo/redo history grouping 2025-04-08 08:18:17 +10:00
psychedelicious
96a481530d refactor(ui): merge the workflow and nodes slices
This allows undo/redo history to apply to node editor and workflow details/form.
2025-04-08 08:18:17 +10:00
psychedelicious
a0b515979a Revert "correctly set is_published when loading a workflow"
This reverts commit e4b07894fd55b3a24fc006882585b6d55fe329c3.
2025-04-08 07:05:12 +10:00
Mary Hipp
2da8ac216b add mutation for unpublishing 2025-04-08 07:05:12 +10:00
Mary Hipp
1558fe9a37 correctly set is_published when loading a workflow 2025-04-08 07:05:12 +10:00
Mary Hipp
ded080ae04 show cancel icon and not retry icon on validation run queue items 2025-04-08 07:05:12 +10:00
psychedelicious
982603e051 fix(ui): use getDefaultForm when resetting form 2025-04-08 06:54:43 +10:00
psychedelicious
a23b5c3408 refactor(ui): make workflow published status server-side state
Whether a workflow is published or not shouldn't be something stored on the client. It's properly server-side state.

This change removes the `is_published` flag from redux and updates all references to the flag to use the getWorkflow query.

It also updates the socket event listener that handles session complete events. When a validation run completes, we invalidate the tags for the getWorkflow query. We need to do a bit of juggling to avoid a race condition (documented in the code). Works well though.
2025-04-08 06:54:43 +10:00
psychedelicious
c9f93b3746 refactor(ui): workflow unsaved changes tracking
Previously, we maintained an `isTouched` flag in redux state to indicate if a workflow had unsaved changes. We manually updated this whenever we changed something on the workflow.

This was tedious and error-prone. It also didn't handle undo/redo, so if you made a change to a node and undid it, we'd still think the workflow had unsaved changes.

Moving forward, we use a simpler and more robust strategy by hashing the server's version of the workflow and comparing it to the client's version of the workflow.

The hashing uses `stable-hash`, which is both fast and, well, stable. Most importantly, the ordering of keys in hashed objects does not change the resultant hash.

- Remove `isTouched` state entirely.
- Extract the logic that builds the "preview" workflow object from redux state into its own hook. This "preview" workflow is what we send to the server when saving a workflow. This "preview" workflow is effectively the client version of the workflow.
- Add `useDoesWorkflowHaveUnsavedChanges()` hook, which compares the hash of the client workflow and server workflow (if it exists).
- Add `useIsWorkflowUntouched()` hook, which compares the hash of the client workflow and the initial workflow that you get when you click new workflow.
- Remove `reactflow` workaround in the nodes slice undo/redo filter. When we set the nodes state while loading a workflow, `reactflow` emits a nodes size/placement change event. This triggered up our `isTouched` flag logic and marked the workflow as unsaved right from the get-go. With the new strategy to track touched status, this workaround can be removed.
- Update all logic that tracked the old `isTouched` flag to use the new hooks.
2025-04-08 06:54:43 +10:00
psychedelicious
e381024cc0 fix(ui): remove debug logger middleware from store setup
Accidentally left in from prev change
2025-04-08 06:54:43 +10:00
psychedelicious
bb65884040 refactor(ui): workflow form root element is a constant
Previously, the workflow form's root element id was random. Every time we reset the workflow editor, the root id changed. This makes it difficult to check if the workflow editor is untouched (in its default state).

Now that root element's id is simply "root". I can't imagine any way that this would break anything.
2025-04-08 06:54:43 +10:00
psychedelicious
920339dbeb refactor(ui): split out the modal isolator component 2025-04-08 06:54:43 +10:00
psychedelicious
0f618bdbcb refactor(ui): split out the hook isolator component 2025-04-08 06:54:43 +10:00
psychedelicious
8294e2cdea feat(mm): support size calculation for onnx models 2025-04-07 11:37:55 +10:00
psychedelicious
7da43be4b7 docs: fix incorrect filename 2025-04-07 10:57:32 +10:00
psychedelicious
8561e9e540 docs: remove legacy scripts documentation 2025-04-07 10:57:32 +10:00
psychedelicious
b0d5e7e3d8 feat(app): restore "Using torch device" message on startup 2025-04-07 10:56:26 +10:00
Eugene Brodsky
ab2d203d5e fix(build): re-add sentencepiece which is apparently needed by gguf, but is not defined as its dependency 2025-04-04 16:26:20 -04:00
Eugene Brodsky
eae5c54091 fix(docker): another pip install is needed in docker build after copying sources 2025-04-04 16:26:20 -04:00
Mary Hipp
ee2b486e8b fix badge for validation run 2025-04-04 11:38:40 -04:00
psychedelicious
a2c7050832 docs: update README.md 2025-04-04 18:42:13 +11:00
psychedelicious
cd090eb76f build: fix path in build script 2025-04-04 18:42:13 +11:00
psychedelicious
3348755e6e ci: fix name of build hweel workflow 2025-04-04 18:42:13 +11:00
psychedelicious
d6dbdaacd1 chore: bump version to v5.10.0dev4 2025-04-04 18:42:13 +11:00
psychedelicious
1c6fa1ad18 ci: update workflows to use revised build scripts 2025-04-04 18:42:13 +11:00
psychedelicious
39bed90eda build: remove installer & convert installer build script to only build the wheel 2025-04-04 18:42:13 +11:00
psychedelicious
c0e48193a7 chore: bump version to v5.10.0dev3 2025-04-04 18:42:13 +11:00
psychedelicious
41677394c0 chore: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
405cfd46e7 build: remove pin on spandrel dependency 2025-04-04 18:42:13 +11:00
psychedelicious
9cc9a5c8b0 build: add comment about torchsde to pyproject 2025-04-04 18:42:13 +11:00
psychedelicious
ddc0461882 build: remove pin on gguf dependency
This allows it to pull in sentencepiece on its own. In 0.10.0, it didn't have this package listed as a dependency, but in recent releases it does. So we are able to remove sentencepiece as an explicit dep.
2025-04-04 18:42:13 +11:00
psychedelicious
0f09091a26 build: remove unused clip_anytorch dependency 2025-04-04 18:42:13 +11:00
psychedelicious
dedb77b6f2 build: remove unused pytorch-lightning dependency 2025-04-04 18:42:13 +11:00
psychedelicious
89f8dbee6c build: remove unused pyreadline3 dependency 2025-04-04 18:42:13 +11:00
psychedelicious
8b0dc8ce84 build: remove unused pyperclip dependency 2025-04-04 18:42:13 +11:00
psychedelicious
018121e407 build: remove unused pympler dependency 2025-04-04 18:42:13 +11:00
psychedelicious
095025b637 build: remove unused scikit-image dependency 2025-04-04 18:42:13 +11:00
psychedelicious
ed8487659e build: remove unused npyscreen dependency 2025-04-04 18:42:13 +11:00
psychedelicious
3745d2be0c build: remove unused torchmetrics dependency 2025-04-04 18:42:13 +11:00
psychedelicious
b5206e204f build: remove unused datasets dependency 2025-04-04 18:42:13 +11:00
psychedelicious
b237ccbdd8 build: remove unused click dependency 2025-04-04 18:42:13 +11:00
psychedelicious
224ebc72ae build: remove unused omegaconf dependency 2025-04-04 18:42:13 +11:00
psychedelicious
05c3d47be9 build: remove unused facexlib dependency 2025-04-04 18:42:13 +11:00
psychedelicious
a4d709c169 build: remove unused timm dependency 2025-04-04 18:42:13 +11:00
psychedelicious
5a8e95c700 chore(ui): typegen 2025-04-04 18:42:13 +11:00
psychedelicious
e630f364df chore: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
9c287038e4 build: remove unused matplotlib dep 2025-04-04 18:42:13 +11:00
psychedelicious
8d32ede082 tidy(nodes): remove matplotlib dependency
It was only used for a single color conversion function. Replaced with cv2 code, tested functionality to confirm it works the same.
2025-04-04 18:42:13 +11:00
psychedelicious
bab0b6d069 build: move humanize to test deps 2025-04-04 18:42:13 +11:00
psychedelicious
8e013ef3be build: remove unused albumentations dependency
This is not used
2025-04-04 18:42:13 +11:00
psychedelicious
8188484a40 tidy: delete unused file 2025-04-04 18:42:13 +11:00
psychedelicious
5d8fe9fb56 build: remove controlnet_aux dependency, remove pin for timm 2025-04-04 18:42:13 +11:00
psychedelicious
8d3743c6f2 tidy(nodes): rename controlnet_image_processors.py -> controlnet.py 2025-04-04 18:42:13 +11:00
psychedelicious
986b7426d2 tidy(nodes): remove unused old dw openpose detector class 2025-04-04 18:42:13 +11:00
psychedelicious
8d8150b47e tidy(nodes): remove deprecated controlnet "processor" nodes 2025-04-04 18:42:13 +11:00
psychedelicious
ae3944b4e0 build: upgrade python to 3.12 in pins 2025-04-04 18:42:13 +11:00
psychedelicious
6f0c5c9c05 build: update uv.lock 2025-04-04 18:42:13 +11:00
psychedelicious
89c999ca58 fix(backend): remove mps_fixes
The fixes in this module monkeypatched `torch` to resolve some issues with FP16 on macOS. These issues have long since been resolved.

Included in the now-removed fixes is `CustomSlicedAttentionProcessor`, which is intended to reduce memory requirements for MPS. This overrides `diffusers`' own `SlicedAttentionProcessor`.

Unfortunately, `attention_type: sliced` produces hot garbage with the fixes and black images without the fixes. So this class appears to now be a moot point.

Regardless, SDPA is supported on MPS and very efficient, so sliced attention is largely obsolete.
2025-04-04 18:42:13 +11:00
psychedelicious
89cefc6a88 chore: bump version to v5.10.0dev2
Doing a dev build so I can test the launcher.
2025-04-04 18:42:13 +11:00
psychedelicious
79e384e71c build: downgrade python to 3.11 in pins 2025-04-04 18:42:13 +11:00
psychedelicious
3ebe96765a build: restore prev setuptools config to fix wheel build 2025-04-04 18:42:13 +11:00
psychedelicious
97e158f13a ci: use py3.12 to build installer 2025-04-04 18:42:13 +11:00
psychedelicious
2b1a36ef4a experiment: add pins.json to repo
The launcher will query this file to get the pins needed for installation
2025-04-04 18:42:13 +11:00
psychedelicious
6824b4b036 chore: bump version to v5.10.0dev1
Doing a dev build so I can test the launcher.
2025-04-04 18:42:13 +11:00
psychedelicious
e8a09a5ed8 chore: update uv.lock for latest pydantic
Ran `uv lock --upgrade-package pydantic`
2025-04-04 18:42:13 +11:00
psychedelicious
c4df7d3cb9 fix(ui): handle updated schema structure during invocation parsing
In https://github.com/pydantic/pydantic/pull/10029, pydantic made an improvement to its generated JSON schemas (OpenAPI schemas). The previous and new generated schemas both meet the schema spec.

When we parse the OpenAPI schema to generate node templates, we use some typeguard to narrow schema components from generic OpenAPI schema objects to a node field schema objects. The narrower node field schema objects contain extra data.

For example, they contain a `field_kind` attribute that indicates it the field is an input field or output field. These extra attributes are not part of the OpenAPI spec (but the spec allows does allow for this extra data).

This typeguard relied on a pydantic implementation detail. This was changed in the linked pydantic PR, which released with v2.9.0. With the change, our typeguard rejects input field schema objects, causing parsing to fail with errors/warnings like `Unhandled input property` in the JS console.

In the UI, this causes many fields - mostly model fields - to not show up in the workflow editor.

The fix for this is very simple - instead of relying on an implementation detail for the typeguard, we can check if the incoming schema object has any of our invoke-specific extra attributes. Specifically, we now look for the presence of the `field_kind` attribute on the incoming schema object. If it is present, we know we are dealing with an invocation input field and can parse it appropriately.
2025-04-04 18:42:13 +11:00
psychedelicious
b9e76afbf5 chore: typegen 2025-04-04 18:42:13 +11:00
psychedelicious
dfd8b8f220 chore: remove pydantic pin 2025-04-04 18:42:13 +11:00
psychedelicious
a089e1bf5c chore(ui): typegen 2025-04-04 18:42:13 +11:00
psychedelicious
875f3fe779 tests: update tests/test_object_serializer_disk.py 2025-04-04 18:42:13 +11:00
psychedelicious
5fa2cf59e2 fix(app): add trusted classes to torch safe globals to prevent errors when loading them
In `ObjectSerializerDisk`, we use `torch.load` to load serialized objects from disk. With torch 2.6.0, torch defaults to `weights_only=True`. As a result, torch will raise when attempting to deserialize anything with an unrecognized class.

For example, our `ConditioningFieldData` class is untrusted. When we load conditioning from disk, we will get a runtime error.

Torch provides a method to add trusted classes to an allowlist. This change adds an arg to `ObjectSerializerDisk` to add a list of safe globals to the allowlist and uses it for both `ObjectSerializerDisk` instances.

Note: My first attempt inferred the class from the generic type arg that `ObjectSerializerDisk` accepts, and added that to the allowlist. Unfortunately, this doesn't work.

For example, `ConditioningFieldData` has a `conditionings` attribute that may be one some other untrusted classes representing model-specific conditioning data. So, even if we allowlist `ConditioningFieldData`, loading will fail when torch deserializes the `conditionings` attribute.
2025-04-04 18:42:13 +11:00
Eugene Brodsky
4d58c222f3 resolve conflict between timm version needed by LLaVA and controlnet-aux 2025-04-04 18:42:13 +11:00
Eugene Brodsky
c27142bb02 reintroduce GPU_DRIVER build arg in CI container build, as it has apparently been removed 2025-04-04 18:42:13 +11:00
Eugene Brodsky
e3c441fda4 remove obsoleted depenencies that were used by the CLI 2025-04-04 18:42:13 +11:00
Eugene Brodsky
6bb102f860 modify docs for python 3.12 2025-04-04 18:42:13 +11:00
Eugene Brodsky
5c45ef1a8c update nodes schema / typegen 2025-04-04 18:42:13 +11:00
Eugene Brodsky
7a218a8040 update uv.lock 2025-04-04 18:42:13 +11:00
Eugene Brodsky
929d86768f refactor Dockerfile; get rid of multi-stage build; upgrade to python 3.12 2025-04-04 18:42:13 +11:00
Eugene Brodsky
3676160496 use uv.lock to pin dependencies 2025-04-04 18:42:13 +11:00
Eugene Brodsky
8e6ebb537b upgrade pytorch and unpin some of the strict dependency pins to facilitate upgrading co-dependencies.
we will use uv.lock to ensure reproducibility
2025-04-04 18:42:13 +11:00
Chantell
2b5da91beb Update manual.md
Removed a redundancy of package specifier on step 6.
2025-04-04 16:52:04 +11:00
psychedelicious
74bede14be feat(ui): put all validatoin run data into single object 2025-04-04 11:38:04 +11:00
psychedelicious
04ea3c491a chore(ui): typegen 2025-04-04 11:38:04 +11:00
psychedelicious
38e7b23d18 feat(api): put all validatoin run data into single object 2025-04-04 11:38:04 +11:00
psychedelicious
c052846e05 feat(ui): ensure workflow id is passed when doing validation run 2025-04-04 11:38:04 +11:00
psychedelicious
af3a31dfec chore(ui): typegen 2025-04-04 11:38:04 +11:00
psychedelicious
571710fab6 feat(app): add optional published_workflow_id to enqueue payloads and queue item 2025-04-04 11:38:04 +11:00
psychedelicious
a175a5c252 feat(ui): add safeguard against accidentally loading non-library workflow as library workflow 2025-04-04 11:38:04 +11:00
psychedelicious
8b3c36c6fa refactor(ui): better UX for choosing output nodes 2025-04-04 11:38:04 +11:00
psychedelicious
b9ffacd4bf fix(ui): disable publish button when not ready to enqueue (i.e. invalid graph) 2025-04-04 11:38:04 +11:00
psychedelicious
ae45fc8a74 gh: update codeowners
- Add @psychedelicious as codeowner for docs
- Remove inactive contributors
2025-04-03 18:34:39 -04:00
psychedelicious
85db9c65e5 fix(ui): add missing tkey 2025-04-03 12:42:28 +11:00
psychedelicious
ddddaef7ca refactor(ui): use dedicated allowPublishWorkflows instead of disabledFeatures 2025-04-03 12:42:28 +11:00
psychedelicious
e4678201cb feat(ui): add conditionally-enabled workflow publishing ui
This is a squash of a lot of scattered commits that became very difficult to clean up and make individually. Sorry.

Besides the new UI, there are a number of notable changes:
- Publishing logic is disabled in OSS by default. To enable it, provided a `disabledFeatures` prop _without_ "publishWorkflow".
- Enqueuing a workflow is no longer handled in a redux listener. It was  hard to track the state of the enqueue logic in the listener. It is now in a hook. I did not migrate the canvas and upscaling tabs - their enqueue logic is still in the listener.
- When queueing a validation run, the new `useEnqueueWorkflows()` hook will update the payload with the required data for the run.
- Some logic is added to the socket event listeners to handle workflow publish runs completing.
- The workflow library side nav has a new "published" view. It is hidden when the "publishWorkflow" feature is disabled.
- I've added `Safe` and `OrThrow` versions of some workflows hooks. These hooks typically retrieve some data from redux. For example, a node. The `Safe` hooks return the node or null if it cannot be found, while the `OrThrow` hooks return the node or raise if it cannot be found. The `OrThrow` hooks should be used within one of the gate components. These components use the `Safe` hooks and render a fallback if e.g. the node isn't found. This change is required for some of the publish flow UI.
- Add support for locking the workflow editor. When locked, you can pan and zoom but that's it. Currently, it is only locked during publish flow and if a published workflow is opened.
2025-04-03 12:42:28 +11:00
psychedelicious
d66fdfde71 chore(ui): typegen 2025-04-03 12:42:28 +11:00
psychedelicious
08ee08557b feat(app): add noop api validation run stuff to routes and methods 2025-04-03 12:42:28 +11:00
psychedelicious
496f1262c6 feat(app): truncate warnings for invalid model config in db
This message is logged _every_ time we retrieve a list of models if there is an invalid model. Previously it logged the _whole_ row which can be a lot of data. Truncate the row to 64 characters to reduce log pollution.
2025-04-03 12:42:28 +11:00
psychedelicious
188d52e4a5 chore(ui): bump tsafe to latest 2025-04-03 12:42:28 +11:00
Riku
db03c196a1 translationBot(ui): update translation (German)
Currently translated at 66.8% (1230 of 1840 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-04-03 07:42:43 +11:00
Riccardo Giovanetti
6bc36b697d translationBot(ui): update translation (Italian)
Currently translated at 98.8% (1818 of 1840 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1816 of 1840 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1816 of 1839 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-04-03 07:42:43 +11:00
Linos
b7d71d3028 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1840 of 1840 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1838 of 1838 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-04-03 07:42:43 +11:00
psychedelicious
fa1ebd9d2f fix(ui): do not switch between images when focused on a tab element
Arrow keys should only navigate between tabs, not gallery images.
2025-04-03 07:40:10 +11:00
psychedelicious
eed5d02069 fix(ui): handling for invalid edges when loading workflows
Previously, reactflow appears to have handled an edge case when using its `applyChanges` utility. If a change was provided without an item, it would skip that change. For example, an "add edge" change that somehow passed `null` as the edge, instead of a valid edge.

In our workflow loading and validation logic, invalid edges were removed from the array using `delete edges[i]`. This left "holes" in the array of edges. We then asked `reactflow` to add these edges to state. When it encountered one of the "holes", it skipped over it.

In a recent release (unsure which, somewhere between the latest v11 and ~v12.4) this seems to have changed. It no longer skips over the "holes" and instead trusts the data. This can cause a couple issues:
- Error when loading the workflow if `reactflow` attempt to do anything with the nonexistent edge.
- If somehow the workflow makes it into state with "holes" in the array of edges, all sorts of other stuff breaks when our code does anything with the nonexistent edge.

Two-part fix:
- Update the invalid edge handling to not use `delete edges[i]`. Instead, as we check each edge, we add invalid ones to a set. Then, after all the checks are finished, filter out the invalid edges. The resultant edges array has no holes.
- Simplify the logic around setting nodes and edges in redux. Previously we were using `reactflow`'s `applyChanges` utils, but this does literally nothing except take extra CPU cycles. We can simply set the loaded nodes and edges directly in redux. Perhaps we were using `applyChanges` because it addressed the "holes" issue? Not sure. But we don't need it now.

Closes #7868
2025-04-03 07:37:49 +11:00
psychedelicious
3650d91045 chore(ui): bump @xyflow/react to latest 2025-04-03 07:37:49 +11:00
Eugene Brodsky
6c7d08cacb Change timm and controlnet-aux pins to fix LLaVA model support (#7846)
## Summary

`timm` below 1.0.0 prevents llava models from working (broken in
transformers). but `controlnet-aux` pins `timm` to an earlier version
because otherwise it was breaking the ZoeDepth controlnet.

we don't use ZoeDepth (replaced by depthAnything), and downgrading
controlnet-aux seems to be acceptable.

more context here:

https://github.com/huggingface/controlnet_aux/issues/106
https://github.com/huggingface/controlnet_aux/pull/101


Note that this results in some warnings on startup, stemming from
controlnet-aux:

![image](https://github.com/user-attachments/assets/fa908837-6154-42a2-a93b-eb5e363f5783)

we can probably silence the warnings as a separate enhancement

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-04-01 21:16:40 -04:00
Eugene Brodsky
bb1c40f222 Merge branch 'main' into pin-timm-for-llava 2025-04-01 21:10:30 -04:00
jazzhaiku
bfb117d0e0 Port LoRA to new classification API (#7849)
## Summary

- Port LoRA to new classification API
- Add 2 additional tests cases (ControlLora and Flux Diffusers LoRA)
- Moved `ModelOnDisk` to its own module

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-04-01 08:05:48 +11:00
jazzhaiku
b31c1022c3 Merge branch 'main' into lora-classification 2025-04-01 07:58:36 +11:00
Mary Hipp
a5851ca31c fix from leftover testing 2025-03-31 12:45:53 -04:00
Mary Hipp
77bf5c15bb GET presigned URLs directly instead of trying to use redirects 2025-03-31 12:45:53 -04:00
Eugene Brodsky
d26b7a1a12 Merge branch 'main' into pin-timm-for-llava 2025-03-31 11:37:29 -04:00
psychedelicious
595133463e feat(nodes): add methods to invalidate invocation typeadapters 2025-03-31 19:15:59 +11:00
psychedelicious
6155f9ff9e feat(nodes): move invocation/output registration to separate class 2025-03-31 19:15:59 +11:00
psychedelicious
7be87c8048 refactor(nodes): simpler logic for baseinvocation typeadapter handling 2025-03-31 19:15:59 +11:00
jazzhaiku
9868c3bfe3 Merge branch 'main' into lora-classification 2025-03-31 16:43:26 +11:00
psychedelicious
8b299d0bac chore: prep for v5.9.1 2025-03-31 13:40:07 +11:00
psychedelicious
a44bfb4658 fix(mm): handle FLUX models w/ diff in_channels keys
Before FLUX Fill was merged, we didn't do any checks for the model variant. We always returned "normal".

To determine if a model is a FLUX Fill model, we need to check the state dict for a specific key. Initially, this logic was too strict and rejected quantized FLUX models. This issue was resolved, but it turns out there is another failure mode - some fine-tunes use a different key.

This change further reduces the strictness, handling the alternate key and also falling back to "normal" if we don't see either key. This effectively restores the previous probing behaviour for all FLUX models.

Closes #7856
Closes #7859
2025-03-31 12:32:55 +11:00
psychedelicious
96fb5f6881 feat(ui): disable denoising strength when selected models flux fill 2025-03-31 11:31:02 +11:00
psychedelicious
4109ea5324 fix(nodes): expanded masks not 100% transparent outside the fade out region
The polynomial fit isn't perfect and we end up with alpha values of 1 instead of 0 when applying the mask. This in turn causes issues on canvas where outputs aren't 100% transparent and individual layer bbox calculations are incorrect.
2025-03-31 11:17:00 +11:00
jazzhaiku
f6c2ee5040 Merge branch 'main' into lora-classification 2025-03-31 09:01:16 +11:00
Billy
965753bf8b Ruff formatting 2025-03-31 08:18:00 +11:00
Billy
40c53ab95c Guard 2025-03-29 09:58:02 +11:00
psychedelicious
aaa6211625 chore(backend): ruff C420 2025-03-28 18:28:32 -04:00
psychedelicious
f6d770eac9 ci: add python 3.12 to test matrix 2025-03-28 18:28:32 -04:00
psychedelicious
47cb61cd62 ci: remove python 3.10 from test matrix 2025-03-28 18:28:32 -04:00
psychedelicious
b0fdc8ae1c ci: bump linux-cpu test runner to ubuntu 24.04 2025-03-28 18:28:32 -04:00
psychedelicious
ed9b30efda ci: bump uv to 0.6.10 2025-03-28 18:28:32 -04:00
psychedelicious
168e5eeff0 ci: use uv in typegen-checks
ci: use uv in typegen-checks to generate types

experiment: simulate typegen-checks failure

Revert "experiment: simulate typegen-checks failure"

This reverts commit f53c6876fe8311de236d974194abce93ed84930c.
2025-03-28 18:28:32 -04:00
psychedelicious
7acaa86bdf ci: get ci working with uv instead of pip
Lots of squashed experimentation heh:

ci: manually specify python version in tests

ci: whoops typo in ruff cmds

ci: specify python versions for uv python install

ci: install python verbosely

ci: try forcing python preference?

ci: try forcing python preference a different way?

ci: try in a venv?

ci: it works, but try without venv

ci: oh maybe we need --preview?

ci: poking it with a stick

ci: it works, add summary to pytest output

ci: fix pytest output

experiment: simulate test failure

Revert "experiment: simulate test failure"

This reverts commit b99ca512f6e61a2a04a1c0636d44018c11019954.

ci: just use default pytest output

cI: attempt again to use uv to install python

cI: attempt again again to use uv to install python

Revert "cI: attempt again again to use uv to install python"

This reverts commit 3cba861c90738081caeeb3eca97b60656ab63929.

Revert "cI: attempt again to use uv to install python"

This reverts commit b30f2277041dc999ed514f6c594c6d6a78f5c810.
2025-03-28 18:28:32 -04:00
psychedelicious
96c0393fe7 ci: bump ruff to 0.11.2
Need to bump both CI and pyproject.toml at the same time
2025-03-28 18:28:32 -04:00
psychedelicious
403f795c5e ci: remove linux-cuda-11_7 & linux-rocm-5_2 from test matrix
We only have CPU runners, so these tests are not doing anything useful.
2025-03-28 18:28:32 -04:00
psychedelicious
c0f88a083e ci: use uv for python-tests 2025-03-28 18:28:32 -04:00
psychedelicious
542b182899 ci: use uv for python-checks 2025-03-28 18:28:32 -04:00
Mary Hipp
3f58c68c09 fix tag invalidation 2025-03-28 10:52:27 -04:00
Mary Hipp
e50c7e5947 restore multiple key 2025-03-28 10:52:27 -04:00
Mary Hipp
4a83700fe4 if clientSideUploading is enabled, handle bulk uploads using that flow 2025-03-28 10:52:27 -04:00
Eugene Brodsky
c9992914d6 Merge branch 'main' into pin-timm-for-llava 2025-03-28 09:20:30 -04:00
jazzhaiku
c25f6d1f84 Merge branch 'main' into lora-classification 2025-03-28 12:32:22 +11:00
jazzhaiku
a53e1ccf08 Small improvements (#7842)
## Summary

- Extend `ModelOnDisk` with caching, type hints, default args
- Fail early if there is an error classifying a config

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-28 12:21:41 +11:00
jazzhaiku
1af9930951 Merge branch 'main' into small-improvements 2025-03-28 12:11:09 +11:00
Billy
c276c1cbee Comment 2025-03-28 10:57:46 +11:00
Billy
c619348f29 Extract ModelOnDisk to its own module 2025-03-28 10:35:13 +11:00
psychedelicious
c6f96613fc chore(ui): typegen 2025-03-28 08:14:06 +11:00
psychedelicious
258bf736da fix(nodes): handle zero fade size (e.g. mask blur 0)
Closes #7850
2025-03-28 08:14:06 +11:00
Billy
0d75c99476 Caching 2025-03-27 17:55:09 +11:00
Billy
323d409fb6 Make ruff happy 2025-03-27 17:47:57 +11:00
Billy
f251722f56 LoRA classification API 2025-03-27 17:47:01 +11:00
psychedelicious
7004fde41b fix(mm): vllm model calculates its own size 2025-03-27 09:36:14 +11:00
jazzhaiku
c9dc27afbb Merge branch 'main' into small-improvements 2025-03-27 08:14:48 +11:00
Billy
efd14ec0e4 Make ruff happy 2025-03-27 08:11:39 +11:00
Billy
21ee2b6251 Merge branch 'small-improvements' of github.com:invoke-ai/InvokeAI into small-improvements 2025-03-27 08:10:38 +11:00
Billy
82dd2d508f Deprecate checkpoint as file, diffusers as directory terminology 2025-03-27 08:10:12 +11:00
psychedelicious
ffb5f6c6a6 chore: bump version to v5.9.0 2025-03-27 08:08:44 +11:00
psychedelicious
5c5fff9ecb chore(ui): update whatsnew 2025-03-27 08:08:44 +11:00
psychedelicious
9ca071819b chore(nodes): remove beta/prototype flag from a lot of stable nodes 2025-03-27 08:08:44 +11:00
psychedelicious
b14d8e8192 chore(nodes): mark llava_onevision_vllm as beta 2025-03-27 08:08:44 +11:00
Eugene Brodsky
3f12a43e75 remove pin for controlnet-aux and pin timm to a version that works with llava
timm < 1.0.0 prevents llava models from working (broken in transformers). but controlnet-aux pinned it to an earlier version because otherwise it was breaking the ZoeDepth controlnet.

we don't use ZoeDepth (replaced by depthAnything), and downgrading controlnet-aux seems to be acceptable.

more context here:

https://github.com/huggingface/controlnet_aux/issues/106
https://github.com/huggingface/controlnet_aux/pull/101
2025-03-26 16:58:18 -04:00
jazzhaiku
5a59f6e3b8 Merge branch 'main' into small-improvements 2025-03-27 07:38:13 +11:00
Billy
60b5aef16a Log error -> warning 2025-03-27 06:56:22 +11:00
jazzhaiku
35222a8835 Taxonomy (#7833)
## Summary

This PR moves type definitions out of `config.py` into a new
`taxonomy.py` module.
The goal is to reduce clutter in `config.py`, and to resolve circular
import issues by isolating these types in a dedicated module with
(almost) no internal dependencies.
Because so many places import these definitions, these changes touch 73
files.

Additional changes:
- Removed star imports using "removestar" tool
- Added the commit to `.git-blame-ignore-revs` to avoid noise in git
blame history


## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-26 22:44:41 +11:00
Billy
0e8b5484d5 Error handling 2025-03-26 19:31:57 +11:00
Billy
454506c83e Type hints 2025-03-26 19:12:49 +11:00
Billy
8f6ab67376 Logs 2025-03-26 16:34:32 +11:00
Billy
5afcc7778f Redundant 2025-03-26 16:32:19 +11:00
Billy
325e07d330 Error handling 2025-03-26 16:30:45 +11:00
Billy
a016bdc159 Add todo 2025-03-26 16:17:26 +11:00
Billy
a14f0b2864 Fail early on invalid config 2025-03-26 16:10:32 +11:00
Billy
721483318a Extend ModelOnDisk 2025-03-26 16:10:00 +11:00
jazzhaiku
be04743649 Merge branch 'main' into taxonomy 2025-03-26 15:09:26 +11:00
psychedelicious
92f0c28d6c fix(ui): correctly render whitespace in strings in string generator previews
This is a visual issue - the underlying strings are not trimmed.

Closes #7830
2025-03-26 13:52:31 +11:00
Billy
a6b94e8ca4 Revert some files 2025-03-26 13:18:50 +11:00
Billy
00b11ef795 Git blame ignore revs 2025-03-26 12:56:04 +11:00
Billy
182580ff69 Imports 2025-03-26 12:55:10 +11:00
Billy
8e9d5c1187 Ruff formatting 2025-03-26 12:30:31 +11:00
Billy
99aac5870e Remove star imports 2025-03-26 12:27:00 +11:00
psychedelicious
c1b475c585 feat(ui): add getRuntimeConfig query and show it all in the about modal 2025-03-26 11:39:21 +11:00
psychedelicious
ec44e68cbf chore(ui): typegen 2025-03-26 11:39:21 +11:00
psychedelicious
73dbebbcc3 feat(api): add route to get app config and set config fields 2025-03-26 11:39:21 +11:00
psychedelicious
09f971467d feat(app): do not set port unless necessary 2025-03-26 11:39:21 +11:00
psychedelicious
2c71b0e873 fix(ui): long node titles overflow 2025-03-26 10:24:46 +11:00
Kevin Turner
92f69ac463 fix: make source location discovery more robust
The top-level `invokeai` package may have an obscured origin due to the way editible installs work, but it's much more likely that this module is from a specific file.
2025-03-26 10:12:36 +11:00
jazzhaiku
3b154df71a Import Smoke Test (#7835)
## Summary

This test imports all modules in the invokeai package and fails if there
are any exceptions.
Existing issues are excluded to avoid blocking main.

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-26 08:40:07 +11:00
Billy
64aa965160 Set ordering 2025-03-25 19:21:14 +11:00
Billy
d715c27d07 Add more known failures 2025-03-25 17:59:28 +11:00
Billy
515084577c Test all imports work 2025-03-25 17:45:22 +11:00
psychedelicious
7596c07a64 chore: prep for v5.9.0rc2 2025-03-25 10:21:23 +11:00
Kevin Turner
98fd1d949b fix: make dev_reload work for files in nodes/ 2025-03-25 10:04:17 +11:00
Linos
6312e6aa8f translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1832 of 1832 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-03-25 08:00:45 +11:00
Riccardo Giovanetti
6435f11bae translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1815 of 1838 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1809 of 1832 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-25 08:00:45 +11:00
psychedelicious
1c69b9b1fa fix(ui): restore display: flex to image viewer and node editor
This was inadventently removed in #7786 and caused some minor layout overflow.
2025-03-25 07:44:07 +11:00
psychedelicious
731970ff88 fix(ui): use expanded mask for paste-back when inpainting 2025-03-25 00:03:13 +11:00
psychedelicious
038bac1614 feat(ui): make it clearer that we are doing scale before processing in graph builders 2025-03-25 00:03:13 +11:00
jazzhaiku
ed9efe7740 Port LLaVA to new API (#7817)
## Summary

- Port LLaVA model config to new classification API
- Add 2 test cases (stripped LLaVA models variants to git-lfs)

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-24 22:50:54 +11:00
jazzhaiku
ffa0beba7a Merge branch 'main' into llava 2025-03-24 15:17:33 +11:00
psychedelicious
75d793f1c4 fix(ui): siglip model translation key 2025-03-24 13:26:38 +11:00
psychedelicious
2b086917e0 chore(ui): lint 2025-03-24 13:24:13 +11:00
psychedelicious
a9f2738086 feat(ui): layout improvements for string field collection input 2025-03-24 13:24:13 +11:00
psychedelicious
3a56799ea5 tidy(ui): remove unused code 2025-03-24 13:24:13 +11:00
psychedelicious
3162ce94dc tidy(ui): use settings for node field settings instead of config
Non-functional naming change to clarify the logic
2025-03-24 13:24:13 +11:00
psychedelicious
c0dc6ac4e1 fix(ui): issue where string drop-down options are not removed when changing component to a different type 2025-03-24 13:24:13 +11:00
psychedelicious
fed1995525 chore(ui): lint 2025-03-24 13:24:13 +11:00
psychedelicious
5006e23456 feat(ui): added reset options button 2025-03-24 13:24:13 +11:00
psychedelicious
2f063bddda fix(ui): restore field-node overlay
Accidentally removed it
2025-03-24 13:24:13 +11:00
psychedelicious
23a26422fd feat(ui): support for custom string field dropdowns in builder 2025-03-24 13:24:13 +11:00
psychedelicious
434f195a96 feat(ui): add empty string placeholder to string fields 2025-03-24 13:24:13 +11:00
psychedelicious
6a4c2d692c chore(ui): typegen 2025-03-24 12:45:46 +11:00
psychedelicious
5127a07cf9 feat(nodes): clean up lora node names
I had named them wonkily and caused some user confusion.
2025-03-24 12:45:46 +11:00
psychedelicious
0b4c6f0ab4 fix(mm): flux model variant probing
In #7780 we added FLUX Fill support, and needed the probe to be able to distinguish between "normal" FLUX models and FLUX Fill models.

Logic was added to the probe to check a particular state dict key (input channels), which should be 384 for FLUX Fill and 64 for other FLUX models.

The new logic was stricter and instead of falling back on the "normal" variant, it raised when an unexpected value for input channels was detected.

This caused failures to probe for BNB-NF4 quantized FLUX Dev/Schnell, which apparently only have 1 input channel.

After checking a variety of FLUX models, I loosened the strictness of the variant probing logic to only special-case the new FLUX Fill model, and otherwise fall back to returning the "normal" variant. This better matches the old behaviour and fixes the import errors.

Closes #7822
2025-03-24 12:36:18 +11:00
Billy
d8450033ea Fix 2025-03-21 17:46:18 +11:00
Billy
3938736bd8 Ruff formatting 2025-03-21 17:35:12 +11:00
Billy
fb2c7b9566 Defaults 2025-03-21 17:35:04 +11:00
Billy
29449ec27d Implement new api for LLaVA 2025-03-21 17:17:56 +11:00
Billy
e38f778d28 Extend ModelOnDisk 2025-03-21 17:17:15 +11:00
Billy
f5e78436a8 Update regression test 2025-03-21 17:14:02 +11:00
Billy
6a15b5d9be Add stripped models for testing llava 2025-03-21 15:34:20 +11:00
psychedelicious
a629102c87 chore(ui): update whatsnew 2025-03-21 13:09:27 +11:00
psychedelicious
848ade8ab8 chore: prep for v5.9.0rc1 2025-03-21 13:09:27 +11:00
Hosted Weblate
2110feb01c translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-03-21 12:55:07 +11:00
Riku
f3e1821957 translationBot(ui): update translation (German)
Currently translated at 67.0% (1224 of 1826 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-03-21 12:55:07 +11:00
Linos
bbcf93089a translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1827 of 1827 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1826 of 1826 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1825 of 1825 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-03-21 12:55:07 +11:00
Riccardo Giovanetti
66f41aa307 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1804 of 1827 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1803 of 1825 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-21 12:55:07 +11:00
psychedelicious
8a709766b3 feat(ui): better error for unknown fields in builder view mode 2025-03-21 12:51:12 +11:00
psychedelicious
efaa20a7a1 feat(ui): better labels for missing/unexpected fields 2025-03-21 12:51:12 +11:00
psychedelicious
3e4c808b23 refactor(ui): organise useInputFieldTemplate hooks again & add useInputFieldTemplateSafe 2025-03-21 12:51:12 +11:00
psychedelicious
00e3931af4 chore(ui): "useInputFieldLabel" -> "useInputFieldLabelSafe"
Also update docstrings
2025-03-21 12:51:12 +11:00
psychedelicious
08bea07f8b chore(ui): "useInputFieldDescription" -> "useInputFieldDescriptionSafe"
Also update docstrings
2025-03-21 12:51:12 +11:00
psychedelicious
166d2f0e39 chore(ui): "useInputFieldTemplate" -> "useInputFieldTemplateOrThrow" 2025-03-21 12:51:12 +11:00
psychedelicious
21f346717a docs(ui): add docstring to useInputFieldTemplate 2025-03-21 12:51:12 +11:00
psychedelicious
f966fb8b9c docs(ui): add docstring to useInputFieldDescription 2025-03-21 12:51:12 +11:00
psychedelicious
c2b20a5387 feat(ui): hide guidance when FLUX Fill model selected 2025-03-21 10:24:03 +11:00
psychedelicious
bed9089fe6 refactor(ui): just always set guidance to 30 when using FLUX Fill 2025-03-21 10:24:03 +11:00
psychedelicious
d34a4f765c feat(ui): better error for FLUX Fill + t2i/i2i incompatibility 2025-03-21 10:24:03 +11:00
psychedelicious
efe4708b8b feat(ui): better error message/warning for FLUX Fill w/ Control LoRA 2025-03-21 10:24:03 +11:00
psychedelicious
7cb1f61a9e feat(ui): bump FLUX guidance up to 30 if it's too low during graph building 2025-03-21 10:24:03 +11:00
psychedelicious
6e2ef34cba feat(ui): add warning for FLUX Fill + Control LoRA 2025-03-21 10:24:03 +11:00
psychedelicious
d208b99a47 feat(ui): pass the full model config throughout validation logic 2025-03-21 10:24:03 +11:00
psychedelicious
47eeafa5cb feat(ui): add selector to select the main model full config object 2025-03-21 10:24:03 +11:00
psychedelicious
0cb00fbe53 refactor(ui): use new compositing nodes for inpaint/outpaint graphs 2025-03-21 10:24:03 +11:00
psychedelicious
a7e8ed3bc2 feat(ui): add FLUX Fill graph builder util 2025-03-21 10:24:03 +11:00
psychedelicious
22eb25be48 refactor(ui): use more succient syntax to opt-out of RTKQ caching for model fetching utils 2025-03-21 10:24:03 +11:00
psychedelicious
a077f3fefc chore(ui): typegen 2025-03-21 10:24:03 +11:00
psychedelicious
c013a6e38d feat(nodes): deprecate canvas_v2_mask_and_crop 2025-03-21 10:24:03 +11:00
psychedelicious
6cfeb71bed feat(nodes): add expand_mask_with_fade to better handle canvas compositing needs
Previously we used erode/dilate and a Gaussian blur to expand and fade the edges of Canvas masks. The implementation a number of problems:
- Erode/dilate kernel sizes were not calculated correctly, and extra iterations were run to compensate. The result is the blur size, which should have been pixels, was very inaccurate and unreliable.
- What we want is to add a "soft bleed" - like a drop shadow with no offset - starting from the edge of the mask, extending out by however many pixels. But Gaussian blur does not do this. The blurred area starts _inside_ the mask and extends outside it. So it kinda blurs inwards and outwards. We compensated for this by expanding the mask.
- Using a Gaussian blur can cause banding artifacts. Gaussian blur doesn't have a "size" or "radius" parameter in the sense that you think it should. It's a convolution matrix and there are _no non-zero values in the result_. This means that, far away from the mask, once compositing completes, we have some values that are very close to zero but not quite zero. These values are quantized by HTML Canvas, resulting in banding artifacts where you'd expect the blur to have faded to 0% alpha. At least, that is my understanding of why the banding artifacts occur.

The new node uses a better strategy to expand the mask and add the fade out effect:
- Calculate the distance from each white pixel to the nearest black pixel.
- Normalize this distance by dividing by the fade size in px, then clip the values to 0 - 1. The result represents the distance of each white pixel to its nearest black pixel as a percentage of the fade size. At this point, it is a linear distribution.
- Create a polynomial to describe the fade's intensity so that we can have a smooth transition from the masked region (black) to unmasked (white). There are some magic numbers here, deterined experimentally.
- Evaluate the polynomial over the normalized distances, so we now have a matrix representing the fade intensity for every pixel
- Convert this matrix back to uint8 and apply it to the mask

This works soooo much better than the previous method. Not only does it fix the banding issues, but when we enable "output only generated regions", we get a much smaller image. Will add images to the PR to clarify.
2025-03-21 10:24:03 +11:00
psychedelicious
534f993023 feat(nodes): add apply_mask_to_image node
It simply applies the mask to an image.
2025-03-21 10:24:03 +11:00
psychedelicious
67f9b6420c fix(nodes): ensure alpha mask is opened as RGBA 2025-03-21 10:24:03 +11:00
psychedelicious
61bf065237 feat(nodes): rename "FLUX Fill" -> "FLUX Fill Conditioning" 2025-03-21 10:24:03 +11:00
psychedelicious
e78cf889ee fix(ui): clip shift-draw strokes to bbox when clip to bbox enabled
Closes #7809
2025-03-21 08:14:20 +11:00
psychedelicious
5d13f0ba15 tidy(ui): remove recommended flag from workflow (believe was for testing purposes) 2025-03-20 08:50:01 -04:00
psychedelicious
633b9afa46 fix(ui): recommended star stretches tag list layout 2025-03-20 08:50:01 -04:00
psychedelicious
f1889b259d tidy(ui): split browse workflows button into own component 2025-03-20 08:50:01 -04:00
psychedelicious
ed21d0b57e tidy(ui): remove noop useEffect 2025-03-20 08:50:01 -04:00
Mary Hipp
df90da28e1 tsc fix 2025-03-20 15:43:57 +11:00
Mary Hipp
702054aa62 make sure browse is selected 2025-03-20 15:43:57 +11:00
Mary Hipp
636ec1de6e add viewAllWorkflowsRecommended to studio init action to show library with only recomended workflows 2025-03-20 15:43:57 +11:00
Mary Hipp
063d07fd41 switch to using recommended with star insteaed of auto-selecting 2025-03-20 15:43:57 +11:00
Mary Hipp
c78eac624e update workflow tag/categories so that we can pass in 1+ selected tags to start with 2025-03-20 15:43:57 +11:00
Mary Hipp
05de3b7a84 workflow library UI updates: scrollbar to make obvious its overflowing, move deselecet all tags to be next to browse button 2025-03-20 15:43:57 +11:00
Ryan Dick
9cc2232b6f Bump FluxDenoise invocation version and typegen. 2025-03-19 14:45:18 +11:00
Ryan Dick
9fdc06b447 Add FLUX Fill input validation and error/warning reporting. 2025-03-19 14:45:18 +11:00
Ryan Dick
5ea3ec5cc8 Get FLUX Fill working. Note: To use FLUX Fill, set guidance to ~30. 2025-03-19 14:45:18 +11:00
Ryan Dick
f13a07ba6a WIP on updating FluxDenoise to support FLUX Fill. 2025-03-19 14:45:18 +11:00
Ryan Dick
a913f0163d WIP - Add FluxFillInvocation 2025-03-19 14:45:18 +11:00
Ryan Dick
f7cfbd1323 Add FLUX Fill starter model. 2025-03-19 14:45:18 +11:00
Ryan Dick
2806b60701 Add logic to probe FLUX variant (NORMAL vs INPAINT). 2025-03-19 14:45:18 +11:00
psychedelicious
d8c3af624b Use git-lfs for larger assets (#7804)
## Summary

- Integrate Git LFS to our automated Python tests in CI
- Add stripped model files with git-lfs
- `README.md` instructions to install and configure git-lfs
- Unrelated change (skip hashing to make unit test run faster)

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-19 09:53:26 +11:00
psychedelicious
feed44b68d Stripped models (#7797)
## Summary

**Problem**
We want to have automated tests for model classification/probing, but
model files are too large to include in the source.

**Proposed Solution**
Classification/probing only requires metadata (key names, tensor
shapes), not weights.
This PR introduces "stripped" models - lightweight versions that retains
only essential metadata.

- Added script to strip models
- Added stripped models to automated tests


**Model size before and after "stripping":**
```
LLaVA Onevision Qwen2 0.5b-ov-hf before: 1.8 GB, after: 11.6 MB
text_encoder before: 246.1 MB, after: 35.6 kB
llava-onevision-qwen2-7b-si-hf before: 16.1 GB, after: 11.7 MB
RealESRGAN_x2plus.pth before: 67.1 MB, after: 143.0 kB
IP Adapter SD1 before: 2.5 GB, after: 94.9 kB
Hard Edge Detection (canny) before: 722.6 MB, after: 63.6 kB
Lineart before: 722.6 MB, after: 63.6 kB
Segmentation Map before: 722.6 MB, after: 63.6 kB
EasyNegative before: 24.7 kB, after: 151 Bytes
Face Reference (IP Adapter Plus Face) before: 98.2 MB, after: 13.7 kB
Standard Reference (IP Adapter) before: 44.6 MB, after: 6.0 kB
shinkai_makoto_offset before: 151.1 MB, after: 160.0 kB
thickline_fp16 before: 151.1 MB, after: 160.0 kB
Alien Style before: 228.5 MB, after: 582.6 kB
Noodles Style before: 228.5 MB, after: 582.6 kB
Juggernaut XL v9 before: 6.9 GB, after: 3.7 MB
dreamshaper-8 before: 168.9 MB, after: 1.6 MB
```





## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-19 08:13:10 +11:00
Billy
247f3b5d67 Merge branch 'stripped-models' into git-lfs 2025-03-19 07:53:27 +11:00
Billy
8e14f9d971 Merge branch 'main' into stripped-models 2025-03-19 07:52:56 +11:00
Billy
bdb44ee48d Merge branch 'git-lfs' of github.com:invoke-ai/InvokeAI into git-lfs 2025-03-19 07:30:34 +11:00
Billy
b57f5330c5 Pin action to commit 2025-03-19 07:28:28 +11:00
jazzhaiku
ade3c015b4 Update docs/contributing/dev-environment.md
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
2025-03-19 07:23:23 +11:00
psychedelicious
7fe4d4c21a feat(app): better errors when scanning models with picklescan
Differentiate between malware detection and scan error.
2025-03-19 07:20:25 +11:00
psychedelicious
133a7fde55 Model classification api (#7742)
## Summary
The _goal_ of this PR is to make it easier to add an new config type.
This _scope_ of this PR is to integrate the API and does not include
adding new configs (outside tests) or porting existing ones.


One of the glaring issues of the existing *legacy probe* is that the
logic for each type is spread across multiple classes and intertwined
with the other configs. This means that adding a new config type (or
modifying an existing one) is complex and error prone.

This PR attempts to remedy this by providing a new API for adding
configs that:

- Is backwards compatible with the existing probe.
- Encapsulates fields and logic in a single class, keeping things
self-contained and easy to modify safely.

Below is a minimal toy example illustrating the proposed new structure:

```python
class MinimalConfigExample(ModelConfigBase):
    type: ModelType = ModelType.Main
    format: ModelFormat = ModelFormat.Checkpoint
    fun_quote: str

    @classmethod
    def matches(cls, mod: ModelOnDisk) -> bool:
        return mod.path.suffix == ".json"

    @classmethod
    def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
        with open(mod.path, "r") as f:
            contents = json.load(f)

        return {
            "fun_quote": contents["quote"],
            "base": BaseModelType.Any,
        }
```

To create a new config type, one needs to inherit from `ModelConfigBase`
and implement its interface.

The code falls back to the legacy model probe for existing models using
the old API.
This allows us to incrementally port the configs one by one.



## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-18 15:25:56 +11:00
Billy
6375214878 Merge branch 'stripped-models' into git-lfs 2025-03-18 14:57:58 +11:00
Billy
b9972be7f1 Merge branch 'model-classification-api' into stripped-models 2025-03-18 14:57:23 +11:00
Billy
e61c5a3f26 Merge 2025-03-18 14:55:11 +11:00
Billy
8c633786f6 Remove accidently included files 2025-03-18 14:16:51 +11:00
Billy
8703eea49b LFS cache 2025-03-18 14:08:21 +11:00
Billy
c8888be4c3 Formatting 2025-03-18 13:10:07 +11:00
Billy
11963a65a4 CI/CD 2025-03-18 12:56:28 +11:00
Billy
ab6422fdf7 Add to README.md 2025-03-18 12:37:32 +11:00
psychedelicious
1f8632029e fix(nodes): add validator to vllm node images field to handle single image field inputs 2025-03-18 11:53:06 +11:00
Ryan Dick
88a762474d typegen 2025-03-18 11:53:06 +11:00
Ryan Dick
e6dd721e33 Add max_length=3 to the LLaVA OneVision image input field. 2025-03-18 11:53:06 +11:00
Billy
2a09604baf Formatting 2025-03-18 11:53:06 +11:00
Billy
f94f00ede0 Ruff formatting 2025-03-18 11:53:06 +11:00
Billy
37af281299 WIP - model selection for LLaVA 2025-03-18 11:53:06 +11:00
Billy
fc82775d7a WIP - model selection for LLaVA 2025-03-18 11:53:06 +11:00
Billy
9ed46f60b7 Add LLaVA OneVision to Config dropdown in UI 2025-03-18 11:53:06 +11:00
Ryan Dick
9a389e6b93 Add a LLaVA OneVision starter model. 2025-03-18 11:53:06 +11:00
Ryan Dick
2ef1ecf381 Fix copy-paste errors. 2025-03-18 11:53:06 +11:00
Ryan Dick
41de112932 Make LLaVA Onevision node work with 0 images, and other minor improvements. 2025-03-18 11:53:06 +11:00
Ryan Dick
e9714fe476 Add LLaVA Onevision model loading and inference support. 2025-03-18 11:53:06 +11:00
Ryan Dick
3f29293e39 Add LlavaOnevision model type and probing logic. 2025-03-18 11:53:06 +11:00
Billy
db1aa38e98 Warning 2025-03-18 09:55:13 +11:00
Billy
12717d4a4d Stripped model data 2025-03-18 09:51:10 +11:00
Billy
1953f3cbcd Skip hashing to make test quicker 2025-03-18 09:50:18 +11:00
Billy
3469fc9843 Ruff 2025-03-18 09:22:16 +11:00
Billy
7cdd4187a9 Update classify script 2025-03-18 09:21:38 +11:00
Billy
ad66c101d2 Remove stripped model files 2025-03-18 09:10:37 +11:00
psychedelicious
28d3356710 chore: prep for v5.8.1 2025-03-18 09:06:47 +11:00
psychedelicious
81e70fb9d2 tidy(app): errant character 2025-03-18 08:00:51 +11:00
psychedelicious
971c425734 fix(app): incorrect values inserted when retrying queue item
In #7688 we optimized queuing preparation logic. This inadvertently broke retrying queue items.

Previously, a `NamedTuple` was used to store the values to insert in the DB when enqueuing. This handy class provides an API similar to a dataclass, where you can instantiate it with kwargs in any order. The resultant tuple re-orders the kwargs to match the order in the class definition.

For example, consider this `NamedTuple`:
```py
class SessionQueueValueToInsert(NamedTuple):
    foo: str
    bar: str
```

When instantiating it, no matter the order of the kwargs, if you make a normal tuple out of it, the tuple values are in the same order as in the class definition:

```
t1 = SessionQueueValueToInsert(foo="foo", bar="bar")
print(tuple(t1)) # -> ('foo', 'bar')

t2 = SessionQueueValueToInsert(bar="bar", foo="foo")
print(tuple(t2)) # -> ('foo', 'bar')
```

So, in the old code, when we used the `NamedTuple`, it implicitly normalized the order of the values we insert into the DB.

In the retry logic, the values of the tuple were not ordered correctly, but the use of `NamedTuple` had secretly fixed the order for us.

In the linked PR, `NamedTuple` was dropped for a normal tuple, after profiling showed `NamedTuple` to be meaningfully slower than a normal tuple.

The implicit order normalization behaviour wasn't understood, and the order wasn't fixed when changin the retry logic to use a normal tuple instead of `NamedTuple`. This results in a bug where we incorrectly create queue items in the DB. For example, we stored the `destination` in the `field_values` column.

When such an incorrectly-created queue item is dequeued, it fails pydantic validation and causes what appears to be an endless loop of errors.

The only user-facing solution is to add this line to `invokeai.yaml` and restart the app:
```yaml
clear_queue_on_startup: true
```

On next startup, the queue is forcibly cleared before the error loop is triggered. Then the user should remove this line so their queue is persisted across app launches per usual.

The solution is simple - fix the ordering of the tuple. I also added a type annotation and comment to the tuple type alias definition.

Note: The endless error loop, as a general problem, will take some thinking to fix. The queue service methods to cancel and fail a queue item still retrieve it and parse it. And the list queue items methods parse the queue items. Bit of a catch 22, maybe the solution is to simply delete totally borked queue items and log an error.
2025-03-18 08:00:51 +11:00
psychedelicious
b09008c530 feat(ui): add cancel and clear all as toggleable app feature 2025-03-18 06:48:10 +11:00
Billy
f9f99f873d More models 2025-03-17 04:18:44 +00:00
Billy
7f93f1b600 Dependencies 2025-03-17 12:57:13 +11:00
Billy
b1d336ce8a Ruff 2025-03-17 12:19:27 +11:00
Billy
40c7be8f5d Warning about missing test cases 2025-03-17 12:19:15 +11:00
Billy
24218b34bf Make ruff happy 2025-03-17 12:04:26 +11:00
Billy
d970c6d6d5 Use override fixture 2025-03-17 11:58:13 +11:00
Billy
e5308be0bb Use override fixture 2025-03-17 11:31:20 +11:00
Billy
7d5687e9ff Disable device meta for spandrel 2025-03-17 11:30:05 +11:00
Riccardo Giovanetti
7adac4581a translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1800 of 1822 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1798 of 1820 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1796 of 1818 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-17 10:49:22 +11:00
Hosted Weblate
962db86cac translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-03-17 10:49:22 +11:00
psychedelicious
d65ec0e250 feat(ui): configurable form field constraints (WIP3) 2025-03-17 10:47:01 +11:00
psychedelicious
7fdde5e84a tests(ui): fix constrainNumber 2025-03-17 10:47:01 +11:00
psychedelicious
895956bcfe chore(ui): lint 2025-03-17 10:47:01 +11:00
psychedelicious
f27d26cfa2 feat(ui): configurable form field constraints (WIP2) 2025-03-17 10:47:01 +11:00
psychedelicious
965bcba6c2 feat(ui): configurable form field constraints (WIP) 2025-03-17 10:47:01 +11:00
psychedelicious
c9f2460ff2 fix(ui): generator widget should stretch to fill when added to builder 2025-03-17 10:41:59 +11:00
psychedelicious
5abbbf4b5b feat(ui): allow pasting images on workflows tab when workflows not focused 2025-03-17 10:37:27 +11:00
psychedelicious
e66688edbf feat(ui): only paste into canvas when canvas is focused 2025-03-17 10:37:27 +11:00
joshistoast
a519483f95 refactor(ui): ♻️ memoize merged styles, simplify data attribute conditional 2025-03-17 10:34:49 +11:00
joshistoast
75c91604bb fix: 🐛 export the region wrapper
am silly
2025-03-17 10:34:49 +11:00
joshistoast
53bdaba7b6 style: 🚨 linting 2025-03-17 10:34:49 +11:00
joshistoast
f3f405ca77 refactor(ui): ♻️ remove forward ref usage 2025-03-17 10:34:49 +11:00
joshistoast
dda69950a7 refactor(ui): ♻️ apply memoization, system style objects, and data attribute to region highlight wrapper 2025-03-17 10:34:49 +11:00
joshistoast
b2198b9fa7 feat: 🔧 region highlighting disabled by default
some users may not like this
2025-03-17 10:34:49 +11:00
joshistoast
02b91e8e7b feat: highlight focused regions
adds a region wrapper with a highlight effect when that region is focused, this behavior can be toggled as a setting
2025-03-17 10:34:49 +11:00
psychedelicious
09bf7c35eb chore(ui): typegen 2025-03-17 10:32:19 +11:00
psychedelicious
deb9a65b3d chore(ui): update whats new 2025-03-17 10:32:19 +11:00
psychedelicious
5be9a7227c chore: remove all explicit image references in default workflows 2025-03-17 10:32:19 +11:00
psychedelicious
bb9f886bd4 docs: update default workflows dev docs 2025-03-17 10:32:19 +11:00
psychedelicious
46520946f8 chore: remove all explicit model references in default workflows 2025-03-17 10:32:19 +11:00
psychedelicious
830880a6fc chore(nodes): update titles of all model-specific nodes to reference their models
Also bump versions on all of them.
2025-03-17 10:32:19 +11:00
psychedelicious
63b94a8ff3 feat(ui): add sd3.5 default workflows tag 2025-03-17 10:32:19 +11:00
psychedelicious
f12924a1e1 chore: update default workflow tags & names 2025-03-17 10:32:19 +11:00
psychedelicious
f8e51c86f5 chore: bump version to v5.8.0 2025-03-17 10:32:19 +11:00
Billy
654e992630 Accept extra args 2025-03-17 10:25:16 +11:00
Billy
21f247f499 Stripped models script 2025-03-17 09:18:58 +11:00
Billy
8bcd9fe4b7 Extend ModelOnDisk 2025-03-17 09:18:51 +11:00
psychedelicious
c84a646735 ci: pin tj-actions/changed-files
Closes #7793
2025-03-17 08:36:17 +11:00
psychedelicious
b52f8121af fix(ui): duplicate edges on reconnect
Closes #7127
2025-03-15 10:12:50 +11:00
psychedelicious
05bed3fddd fix(ui): do not mark workflow as touched when setting form field initial values 2025-03-15 10:10:21 +11:00
psychedelicious
87ea20192f chore(ui): knip 2025-03-14 20:54:58 +11:00
psychedelicious
2f9c95c462 fix(ui): return early in error-selecting hooks
Prevent an error when a node is deleted and the hook is being called
2025-03-14 20:54:58 +11:00
psychedelicious
47cadbb48e feat(ui): show field errors in tooltips 2025-03-14 20:54:58 +11:00
psychedelicious
23518b9830 feat(ui): useDebouncedAppSelector
Hook that replicates `useSelector`, but debounces calling the selector.
2025-03-14 20:54:58 +11:00
psychedelicious
94dcf391a6 tweak(ui): styling for image collection fields 2025-03-14 20:50:35 +11:00
Billy
637b93d2d8 Ruff 2025-03-14 10:18:25 +11:00
Billy
565b160060 More tests 2025-03-14 10:17:43 +11:00
psychedelicious
e7a60c01ed fix(ui): prevent vertical scrolling on row containers 2025-03-14 07:15:58 +11:00
Mary Hipp
4b54ccc29c getting started copy for workflows 2025-03-13 12:25:14 -04:00
Mary Hipp
c4183ec98c add with_hash to prevent rerenders on default 2025-03-13 10:29:22 -04:00
Mary Hipp
5a9cbe35e0 typegen fix 2025-03-13 10:29:22 -04:00
Mary Hipp
df18fe0298 make sure that recent view always sorts by opened_at even if not available as sort option in UI 2025-03-13 10:29:22 -04:00
Mary Hipp
e5591d145f allow workflow sort options to be passed in 2025-03-13 08:27:51 -04:00
psychedelicious
371c187fc3 chore: bump version to v5.8.0rc1 2025-03-13 23:00:01 +11:00
Billy
bdd0b90769 Merge branch 'model-classification-api' of github.com:invoke-ai/InvokeAI into model-classification-api 2025-03-13 13:37:15 +11:00
Billy
4377158503 Variant 2025-03-13 13:32:57 +11:00
Billy
c8c27079ed Codegen 2025-03-13 13:12:12 +11:00
Billy
d8b9a8d0dd Merge branch 'main' into model-classification-api 2025-03-13 13:03:51 +11:00
Billy
39a4608d15 Fix annotations compatability 3.11 2025-03-13 13:01:19 +11:00
jazzhaiku
cd2d5431db Merge branch 'main' into model-classification-api 2025-03-13 11:21:18 +11:00
Billy
c04cdd9779 Typegen 2025-03-13 11:00:26 +11:00
Billy
b86ac5e049 Explicit union 2025-03-13 10:28:07 +11:00
psychedelicious
e982c95687 fix(ui): respect line breaks in builder text and heading elements 2025-03-13 09:39:41 +11:00
Billy
665236bb79 Type hints 2025-03-13 09:21:58 +11:00
psychedelicious
0eeb0dd67b feat(ui): use invoke logo for thumbnail fallback for default workflows 2025-03-13 08:45:12 +11:00
psychedelicious
28c74cbe38 revert(app): remove test image from default workflow thumbnails 2025-03-13 08:45:12 +11:00
psychedelicious
7414f68acc fix(ui): save as marks workflow as not touched 2025-03-13 08:45:12 +11:00
psychedelicious
a984462b80 tweak(ui): workflow library card layout to fit 2 lines of title and 3 lines of desc 2025-03-13 08:45:12 +11:00
psychedelicious
c6c2567203 tweak(ui): workflow description shows 1 line w/ tooltip for full content 2025-03-13 08:45:12 +11:00
psychedelicious
f05c8b909f fix(ui): mark workflow touched on form builder state changes 2025-03-13 07:10:59 +11:00
psychedelicious
73330a1308 chore(ui): lint 2025-03-13 07:10:59 +11:00
psychedelicious
6f568d48ed fix(ui): studio init action workflow loading 2025-03-13 07:10:59 +11:00
psychedelicious
81a97f3796 fix(ui): load workflow from object 2025-03-13 07:10:59 +11:00
psychedelicious
3f9535d2f9 fix(ui): load workflow from graph 2025-03-13 07:10:59 +11:00
psychedelicious
83bfbdcad4 feat(ui): more workflow loading standardization
There is now a single entrypoint for loading a workflow - `useLoadWorkflowWithDialog`.

The hook:
Handles loading workflows from various sources. If there are unsaved changes, the user will be prompted to confirm before loading the workflow.

It returns  a function that:
Loads a workflow from various sources. If there are unsaved changes, the user will be prompted to confirm before loading the workflow. The workflow will be loaded immediately if there are no unsaved changes. On success, error or completion, the corresponding callback will be called.

WHEW
2025-03-13 07:10:59 +11:00
psychedelicious
729428084c feat(ui): prompt when loading workflow from file if unsaved changes 2025-03-13 07:10:59 +11:00
psychedelicious
523a932ecc feat(ui): accept button on workflow load dialog is "Load" 2025-03-13 07:10:59 +11:00
psychedelicious
21be7d7157 feat(ui): allow load workflow confirm dialog to load workflows from object instead of only id 2025-03-13 07:10:59 +11:00
psychedelicious
a29fb18c0b feat(ui): standardize and clean up workflow loading hooks and logic 2025-03-13 07:10:59 +11:00
psychedelicious
aed446f013 fix(ui): make the workflow load from file menu item work the same as the button in library
Upload and save as instead of just upload as draft.
2025-03-13 07:10:59 +11:00
Mary Hipp
e81c9b0d6e add default for opened_at 2025-03-12 14:35:34 -04:00
Billy
f45400a275 Remove hash algo 2025-03-12 18:39:29 +11:00
psychedelicious
89f457c486 fix(ui): mark workflow as opened when creating a new workflow 2025-03-12 12:11:00 +11:00
psychedelicious
30ed09a36e fix(ui): default categories for oss 2025-03-12 12:11:00 +11:00
psychedelicious
3334652acc feat(db): drop the opened_at column instead of marking deprecated 2025-03-12 12:11:00 +11:00
psychedelicious
e83536f396 chore(ui): lint 2025-03-12 12:11:00 +11:00
psychedelicious
97593f95f6 feat(ui): on first load, if the selected library view has no workflows, switch to the first view that has workflows 2025-03-12 12:11:00 +11:00
psychedelicious
7f14cee17e chore(ui): typegen 2025-03-12 12:11:00 +11:00
psychedelicious
0a836d6fc1 feat(app): add method and route to get workflow library counts by category 2025-03-12 12:11:00 +11:00
psychedelicious
54e781d5bb tidy(app): remove unused method in workflow records service 2025-03-12 12:11:00 +11:00
psychedelicious
aa71d0c817 tweak(ui): 'is_recent' -> 'has_been_opened' 2025-03-12 12:11:00 +11:00
psychedelicious
07313e429d chore(ui): typegen 2025-03-12 12:11:00 +11:00
psychedelicious
bad5023238 tweak(app): 'is_recent' -> 'has_been_opened' 2025-03-12 12:11:00 +11:00
psychedelicious
73a0d2c06c fix(ui): memo WorkflowLibraryModal 2025-03-12 12:11:00 +11:00
psychedelicious
918e9c8ccc feat(app): drop and recreate index on opened_at
Not sure if this is strictly required but doing it anyways.
2025-03-12 12:11:00 +11:00
psychedelicious
1e388e9ca4 tweak(ui): align new and upload workflow buttons 2025-03-12 12:11:00 +11:00
psychedelicious
5b84d45932 perf(ui): memoize workflow library components 2025-03-12 12:11:00 +11:00
psychedelicious
dc3f1184b2 fix(ui): other stuff borked by rebase 2025-03-12 12:11:00 +11:00
psychedelicious
87438bcad7 fix(ui): rebase broke things 2025-03-12 12:11:00 +11:00
Mary Hipp
afd894fd04 update recent workflows UI 2025-03-12 12:11:00 +11:00
Mary Hipp
df305c0b99 allow opened_at to be nullable for workflows that the user has never opened 2025-03-12 12:11:00 +11:00
psychedelicious
deecb7f3c3 feat(ui): "Reset Filters" -> "Deselect All" 2025-03-12 08:00:18 +11:00
psychedelicious
dd5f353465 revert(ui): use reverted API for workflow library 2025-03-12 08:00:18 +11:00
psychedelicious
a8759ea0a6 chore(ui): typegen 2025-03-12 08:00:18 +11:00
psychedelicious
3ff529c718 revert(app): use OR logic for workflow library filtering 2025-03-12 08:00:18 +11:00
psychedelicious
3b0fecafb0 fix(ui): URL mismatch for tag_counts_with_filter 2025-03-12 08:00:18 +11:00
psychedelicious
099011000f chore(ui): lint 2025-03-12 08:00:18 +11:00
psychedelicious
155daa3137 feat(ui): hide filters with no workflows 2025-03-12 08:00:18 +11:00
psychedelicious
c493e223cf feat(ui): "Reset Tags" -> "Reset Filters" 2025-03-12 08:00:18 +11:00
psychedelicious
124ca23f8b feat(ui): use new tag filtering for workflow library 2025-03-12 08:00:18 +11:00
psychedelicious
a8023cbcb6 chore(ui): typegen 2025-03-12 08:00:18 +11:00
psychedelicious
b733d3897e feat(app): revised workflow library filtering by tag
- Replace `get_counts` method with `get_tag_counts_with_filter` which gets the counts for a list of tags, filtering by a list of selected tags
- Update `get_many` logic to apply tag filtering with AND logic, to match the new `get_tag_counts_with_filter` method
- Update workflow library router
2025-03-12 08:00:18 +11:00
psychedelicious
ef95b37ace fix(ui): workflow library infinite query providesTags 2025-03-12 08:00:18 +11:00
psychedelicious
4feff5a185 chore(ui): bump @reduxjs/toolkit from 1.6.0 to 1.6.1
This brings in some fixes for the new infinite query support.
2025-03-12 08:00:18 +11:00
psychedelicious
6c8dc32d5c docs(ui): add comments to workflow library cache invalidation 2025-03-12 08:00:18 +11:00
psychedelicious
e5da808b2f fix(ui): updating workflow content should not invalidate the infinite query cache 2025-03-12 08:00:18 +11:00
psychedelicious
7d3434da62 fix(ui): updating workflow opened at invalidates infinite query cache 2025-03-12 08:00:18 +11:00
psychedelicious
4cc70d9f16 feat(ui): add cache tags for workflow library's infinite query 2025-03-12 08:00:18 +11:00
psychedelicious
7988bc1a59 chore(ui): remove unused WorkflowsRecent RTKQ tag
This didn't actually do anything. Will be implementing the actual functionality that you'd _think_ this tag would do in a future change.
2025-03-12 08:00:18 +11:00
psychedelicious
1756d885f6 refactor(ui): split workflow library state into separate slice
Has no business being in the workflow state slice.
2025-03-12 08:00:18 +11:00
psychedelicious
9ec4d968aa chore: bump version to v5.8.0a2 2025-03-11 13:29:26 +11:00
Riccardo Giovanetti
76c09301f9 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1794 of 1816 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-11 11:33:01 +11:00
Linos
1cf8749754 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1816 of 1816 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.9% (1815 of 1816 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-03-11 11:33:01 +11:00
Riku
5d6c468833 translationBot(ui): update translation (German)
Currently translated at 67.2% (1221 of 1816 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-03-11 11:33:01 +11:00
Hosted Weblate
80b3f44ae8 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-03-11 11:33:01 +11:00
psychedelicious
c77c12aa1d fix(ui): missing builder translations 2025-03-11 11:28:51 +11:00
psychedelicious
731992c5ec fix(ui): restore accidentally deleted line 2025-03-11 11:17:19 +11:00
psychedelicious
c259899bf4 feat(ui): support for FLUX Redux in canvas
User facing:

When a FLUX main model is selected, users may now add Regional Reference Image layers.

When switching between FLUX Redux and FLUX IP Adapter, the settings will change to match the model type. (IP Adapter has weight, begin/end step, but Redux does not.) The image will be retained when switching between the two.

Otherwise it works the same way as IP Adapter - both in Global and Regional Reference Image layers.

---

Internal state handling:

Slightly awkward, but it was easiest to make FLUX Redux a second type of IP Adapter in redux state.

Global and regional reference images still have a single `ipAdapter` field, but it can have a type of `ip_adapter` or `flux_redux`.

Ideally, this field is called `config` or `settings` or something, but we are past that point. We _could_ do a migration to rename it, but I don't think it's worth the effort.

---

Other changes:
- Updated canvas layer validators to handle FLUX Redux.
- Updated model list loading logic to un-set FLUX Redux models in Canvas if they are not in the list (e.g. if the user deletes the model in the main app).
- Updated graph builders - new `addFLUXRedux` util & updated `addRegions` util.
- Updated the `buildModelsHook` util to return a hook that accepts a filter callback. This handles a discrepancy: FLUX IP Adapter does not support regional guidance, but FLUX Redux does. The Regional Guidance settings provide the filter to filter out FLUX IP Adapter models from the combined list of IP Adapter ahd Redux models.
2025-03-11 11:17:19 +11:00
psychedelicious
f62b9ad919 chore(ui): typegen 2025-03-11 11:17:19 +11:00
psychedelicious
57533657f9 feat(nodes): remove siglip from flux_redux, dl it jit when needed if we cannot find it
This follows the same pattern for IP Adapter w/ its CLIP Vision model. The SigLIP model is unlikely to ever change and we don't want to force the user to select it anywhere. Hardcoding it is safe and makes the UX much nicer.

The alternative is a model dropdown that will likely only ever have one valid choice in it.
2025-03-11 11:17:19 +11:00
psychedelicious
e35537e60a fix(mm): move flux_redux starter model to the flux bundle, make siglip a dependency of it 2025-03-11 11:17:19 +11:00
Billy
be53b89203 Remove redundant hash_algo field 2025-03-11 09:28:57 +11:00
Billy
a215eeaabf Update schema 2025-03-11 09:22:29 +11:00
Billy
d86b392bfd Remove redundant hash_algo field 2025-03-11 09:16:59 +11:00
Billy
3e9e45b177 Update comments 2025-03-11 09:04:19 +11:00
Billy
907d960745 PR suggestions 2025-03-11 08:37:43 +11:00
Billy
bfdace6437 New API for model classification 2025-03-11 08:34:34 +11:00
psychedelicious
a89d68b93a fix(ui): hide shared on workflow library 2025-03-10 12:29:48 -04:00
psychedelicious
59a8c0d441 feat(app): less janky custom node loading
- We don't need to copy the init file. Just crawl the custom nodes dir for modules and import them all. Dunno why I didn't do this initially.
- Pass the logger in as an arg. There was a race condition where if we got the logger directly in the load_custom_nodes function, the config would not have been loaded fully yet and we'd end up with the wrong custom nodes path!
- Remove permissions-setting logic, I do not believe it is relevant for custom nodes
- Minor cleanup of the utility
2025-03-08 09:42:13 +11:00
Riku
d5d08f6569 fix(ui): add webp to supported image types in toast messages 2025-03-07 20:38:16 +11:00
psychedelicious
8a4282365e chore: bump version to v5.8.0a1 2025-03-07 12:21:46 +11:00
psychedelicious
b9c7bc8b0e chore: ruff 2025-03-07 11:45:49 +11:00
psychedelicious
0f45ee04a2 tests: fix test_extract_valid_metadata_from_image to accomodate prev commit 2025-03-07 11:45:49 +11:00
psychedelicious
839a791509 fix(api): loosen graph parsing in extract_metadata_from_image
There's a pydantic thing that causes the graphs to fail validation erroneously. Details in the comments - not a high priority to fix but we should figure it out someday.
2025-03-07 11:45:49 +11:00
psychedelicious
f03a2bf03f chore(ui): typegen 2025-03-07 11:45:49 +11:00
psychedelicious
4136817d30 chore(ui): typegen 2025-03-07 11:45:49 +11:00
psychedelicious
7f0452173b feat(api): use extract_metadata_from_image in upload router 2025-03-07 11:45:49 +11:00
psychedelicious
8e46b03f09 tests: add tests for extract_metadata_from_image 2025-03-07 11:45:49 +11:00
psychedelicious
9045237bfb feat(api): add util to extract metadata from image 2025-03-07 11:45:49 +11:00
psychedelicious
58959a18cb chore: ruff 2025-03-07 08:44:15 +11:00
psychedelicious
e51588197f chore(ui): lint 2025-03-07 08:44:15 +11:00
psychedelicious
c5319ac48c feat(ui): restore new workflow button 2025-03-07 08:44:15 +11:00
psychedelicious
50657650c2 feat(ui): rough out recent workflows 2025-03-07 08:44:15 +11:00
psychedelicious
f657c95e45 chore(ui): lint 2025-03-07 08:44:15 +11:00
psychedelicious
2d3a2f9842 feat(app): add update_opened_at method for workflows
This method simply sets the `opened_at` attribute to the current time.

Previously `opened_at` was set when calling `get`, but that is not correct. We `get` workflows often, even when not opening them. So this needs to be a separate thing
2025-03-07 08:44:15 +11:00
psychedelicious
008837642e feat(ui): restore upload workflow button 2025-03-07 08:44:15 +11:00
psychedelicious
1a84a2fb7e feat(ui): restore share workflow button 2025-03-07 08:44:15 +11:00
psychedelicious
b87febcf4c chore(ui): lint 2025-03-07 08:44:15 +11:00
psychedelicious
95a9bb6c7b fix(ui): missing translation 2025-03-07 08:44:15 +11:00
psychedelicious
93ec9a048f fix(ui): workflow library overflow 2025-03-07 08:44:15 +11:00
psychedelicious
ec6cea6705 feat(ui): workflow library styling 2025-03-07 08:44:15 +11:00
psychedelicious
bfbcaad8c2 tweak(ui): workflow tag names 2025-03-07 08:44:15 +11:00
psychedelicious
3694158434 feat(ui): workflow library tags 2025-03-07 08:44:15 +11:00
psychedelicious
814fb939c0 chore: update default workflow tags 2025-03-07 08:44:15 +11:00
psychedelicious
4cb73e6c19 chore(ui): typegen 2025-03-07 08:44:15 +11:00
psychedelicious
e8aed67cf1 feat(app): add workflow library get_counts method
Get the counts of workflows for the given tags and/or categories. Made a separate method bc get_many will deserialize all matching workflows, which is unnecessary for this use case.
2025-03-07 08:44:15 +11:00
psychedelicious
f56dd01419 feat(ui): workflow library infinite scrolling 2025-03-07 08:44:15 +11:00
psychedelicious
ed9cd6a7a2 feat(ui): simpler workflow action buttons 2025-03-07 08:44:15 +11:00
psychedelicious
c44c28ec4c feat(ui): workflow library modal styling 2025-03-07 08:44:15 +11:00
psychedelicious
e1f7359171 feat(ui): set up RTKQ endpoint for infinite workflows list 2025-03-07 08:44:15 +11:00
psychedelicious
3e97d49a69 chore(ui): bump RTKQ to latest to get infinite query support 2025-03-07 08:44:15 +11:00
psychedelicious
c12585e52d fix(app): incorrect number of bindings for query 2025-03-07 08:44:15 +11:00
psychedelicious
b39774a57c feat(app): add searching by tags to workflow library APIs 2025-03-07 08:44:15 +11:00
psychedelicious
8988539cd5 feat(db): add generated column for tags in db migration 2025-03-07 08:44:15 +11:00
psychedelicious
88c68e8016 tidy(app): workflow records get_many 2025-03-07 08:44:15 +11:00
psychedelicious
5073c7d0a3 fix(app): ensure workflow record get_many stmt is terminated 2025-03-07 08:44:15 +11:00
psychedelicious
84e86819b8 chore(ui): lint 2025-03-07 08:44:15 +11:00
psychedelicious
440e3e01ac fix(ui): show workflow thumbnails in library 2025-03-07 08:44:15 +11:00
psychedelicious
c2302f7ab1 fix(ui): ts issues 2025-03-07 08:44:15 +11:00
Mary Hipp
2594eed1af add comments 2025-03-07 08:44:15 +11:00
Mary Hipp
e8db1c1d5a break out actions, start on marketplace categories 2025-03-07 08:44:15 +11:00
Mary Hipp
d5c5e8e8ed another new workflow library 2025-03-07 08:44:15 +11:00
Jonathan
518a7c941f Changed version of FluxDenoiseInvocation
A Redux field was added but the node version wasn't updated.
2025-03-07 07:33:31 +11:00
psychedelicious
bdafe53f2e repo: add @jazzhaiku to codeowners for CI, app and backend 2025-03-06 10:19:18 -05:00
psychedelicious
cf0cbaf0ae chore: ruff (more) 2025-03-06 10:57:54 +11:00
psychedelicious
ac6fc6eccb chore: ruff 2025-03-06 10:57:54 +11:00
psychedelicious
07d65b8fd1 refactor(ui): workflow loading, saving and saved status tracking
This big chungus reworks and simplifies much of the logic around loading and saving workflows. It also makes some minor changes to how store the current workflow and determine if it is a draft, user workflow or default workflow.

---

The lower-level hooks to save a workflow have been revised:
- `useSaveLibraryWorkflow`: Saves a user or project workflow that has had changes made to it.
- `useCreateNewWorkflow`: Saves a workflow as a new entity.

A new higher-level hook `useSaveOrSaveAsWorkflow` is intended to be used by components. It returns a single function that:
- Constructs the workflow payload to be sent to the server
- Checks if the workflow is an existing user workflow. If so, it immediately saves (updates) that workflow.
- If it's not an existing user workflow, it opens the save as dialog so the user can choose a name for it and create a new workflow. This occurs for both draft workflows and loaded default workflows.

---

The logic to build the current redux state into a workflow - either to be saved as JSON, to update an existing user workflow, or save as - was a bit convoluted.

Changes to redux state triggered a debounced function to build the workflow, setting it in a global nanostores atom. Then, all of the functions that consumed the "built workflow" referenced this atom.

Now, this logic is strictly imperative. When a consumer wants to save a workflow, we build it on the spot. This removes a layer of indirection.

The logic is in the `useBuildWorkflowFast` hook.

---

The logic for loading a workflow is also revised. Previously, it happened in an RTK listener. You'd need to dispatch an action to load a workflow, and wouldn't know if it succeeded or not (though the listener would make a toast if the load failed).

This is now done in a callback, outside redux middleware. The callback is returned from the `useLoadWorkflow` hook.

---

Previously, we stripped the id from default workflows when loading them. Then, when saving the workflow, we built a workflow object from redux state and hit the API with it.

This has two issues:
- It relies on redux state never having an ID set when a default workflow is loaded. If we somehow ended up with a default workflow's ID in redux, when we go to save the workflow, we'd get and error or it wouldn't work, because you cannot save a default workflow. You can only save-as it.
- We do not know the default workflow from which the current workflow was loaded. And be cause we don't know the default workflow, we cannot show a thumbnail image.

The responsibilities have been shifted around a bit.

Now, when we load a workflow, we load it as-is. The default workflow IDs are saved in redux state. We can render the thumbnail, and if the user goes to save the workflow, we detect that it is a default workflow and save-as it.

---

In `App.tsx`, the long list of modals are moved into their own "isolator" component to ensure any re-renders there do not affect the rest of the app.

---

The save-workflow-as modal is restructured to be a bit simpler. Still works the same. On commercial, "save to project" will be enabled by default.

---

The workflow JSON tab uses a debounced version of "buildWorkflow" to build the workflow as JSON.

---

`buildWorkflowFast` is updated to deep-copy its _whole_ output, preventing issues where field types could accidentally get mutated. I don't think this has ever happened but we may as well be safe.

---

Fixed an issue where the edit button in the workflow list didn't open the workflow in edit mode.
2025-03-06 10:57:54 +11:00
psychedelicious
3c2e6378ca chore(ui): typegen 2025-03-06 10:57:54 +11:00
psychedelicious
445f122f37 fix(api): allow deleting a workflow even if the thumbnail file doesn't exist 2025-03-06 10:57:54 +11:00
psychedelicious
8c0ee9c48f fix(app): fix import of WorkflowThumbnailServiceBase 2025-03-06 10:57:54 +11:00
psychedelicious
0eb237ac64 feat(app): make category required on workflows
It's only by misunderstanding the pydantic API that this field was is typed as optional. Workflows must _always_ have a category, and indeed they do.

Fixing this allows the generated types in the frontend to be easier to work with..
2025-03-06 10:57:54 +11:00
psychedelicious
9aa04f0bea feat(app): support thumbnails for default workflow images 2025-03-06 10:57:54 +11:00
psychedelicious
76e2f41ec7 feat(app): throw as early as possible when attempting to create, update or delete a default workflow 2025-03-06 10:57:54 +11:00
psychedelicious
1353c3301a typo(app): style_preset_id -> workflow_id 2025-03-06 10:57:54 +11:00
psychedelicious
bf209663ac tidy(app): make workflow thumbnails base class an ABC, move it to own file 2025-03-06 10:57:54 +11:00
psychedelicious
04b96dd7b4 feat(app): stable default workflows
There was a bit of wonk with default workflows. On every app startup, we wiped them all out and recreated them with new IDs. This is a quick-and-dirty way to ensure default workflows are always in sync.

Unfortunately, it also means default workflows are newly-created entities on every app load. Any thumbnails associated to them will be lost (bc they have new IDs), and `updated_at` doesn't work.

This changes makes default workflows stable entities.

The workflows we bundle in the python package in JSON format are still the source of truth for default workflows, but the startup logic that syncs them to the user DB is a bit smarter.

- All bundled workflows have an ID. It is prefixed with "default_" for  clarity.
- Any default workflows in the user's DB that are not in the bundled default workflows are deleted from the DB.
- Any bundled default workflows that are not in the user's DB are added to the DB.
- If a default workflow in the user's DB does not match the content of its corresponding bundled workflow, it is updated in the DB.

The end result is that default workflows are still kept in sync for the user, but they don't change their identity.

We may now add thumbnails to default workflows, and sorting by `updated_at` is now meaningful.
2025-03-06 10:57:54 +11:00
psychedelicious
79b2c68853 fix(ui): hide workflow thumbnail for unsaved and default workflows 2025-03-06 10:41:47 +11:00
psychedelicious
aac456527e refactor(ui): make workflow thumbnail rendering more explicit 2025-03-06 10:41:47 +11:00
psychedelicious
c88b835373 fix(ui): remove unused redux action & selector 2025-03-06 10:41:47 +11:00
Mary Hipp
9da116fd3d how to only show thumbnail for saved non-default workflows 2025-03-06 10:41:47 +11:00
Mary Hipp
201d7f1fdb fix test 2025-03-06 10:41:47 +11:00
Mary Hipp
17a5b1bd28 fix test 2025-03-06 10:41:47 +11:00
Mary Hipp
a409aec00f update schema 2025-03-06 10:41:47 +11:00
Mary Hipp
b0593eda92 ruff 2025-03-06 10:41:47 +11:00
Mary Hipp
9acb24914f tsc fix 2025-03-06 10:41:47 +11:00
Mary Hipp
ab4433da2f refactor workflow thumbnails to be separate flow/endpoints 2025-03-06 10:41:47 +11:00
Mary Hipp
d4423aa16f WIP workflow thumbnails - how to add to redux state? 2025-03-06 10:41:47 +11:00
Ryan Dick
1f6430c1b0 typegen 2025-03-06 10:31:17 +11:00
Ryan Dick
8e28888bc4 Fix SigLipPipeline model size calculation. 2025-03-06 10:31:17 +11:00
Ryan Dick
b6b21dbcbf Add model selecton fields to the FluxReduxInvocation. 2025-03-06 10:31:17 +11:00
Ryan Dick
7b48ef2264 First pass at frontend integration for FLUX Redux and SigLIP model types. 2025-03-06 10:31:17 +11:00
Ryan Dick
9c542ed655 typegen 2025-03-06 10:31:17 +11:00
Ryan Dick
4c02ba908a Add support for FLUX Redux masks. 2025-03-06 10:31:17 +11:00
Ryan Dick
82293ae3b2 Add helpful error messages when FLUX Redux starter models are not installed. 2025-03-06 10:31:17 +11:00
Ryan Dick
f1fde792ee Get FLUX Redux working: model loading and inference. 2025-03-06 10:31:17 +11:00
Ryan Dick
e82393f7ed Add FLUX Redux to starter models list. 2025-03-06 10:31:17 +11:00
Ryan Dick
d5211a8088 Add FluxRedux model type and probing logic. 2025-03-06 10:31:17 +11:00
Ryan Dick
3b095b5945 Add SigLIP starter model. 2025-03-06 10:31:17 +11:00
Ryan Dick
34959ef573 Add SigLIP model type and probing. 2025-03-06 10:31:17 +11:00
jazzhaiku
7f10f8f96a Ruff upgrade (#7741)
## Summary

Upgrade ruff version to 0.9.9 and format existing code.

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-06 10:06:02 +11:00
Billy
f2689598c0 Formatting 2025-03-06 09:11:00 +11:00
Billy
551c78d9f3 Update ruff version 2025-03-06 09:10:50 +11:00
psychedelicious
0cfd713b93 fix(ui): typo 2025-03-06 08:52:10 +11:00
psychedelicious
45f5d7617a chore: bump version to v5.7.0 2025-03-06 08:38:59 +11:00
psychedelicious
f49df7d327 chore(ui): update whats new 2025-03-06 08:38:59 +11:00
Linos
87ed0ed48a translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1802 of 1802 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-03-06 08:00:35 +11:00
Riccardo Giovanetti
d445c88e4c translationBot(ui): update translation (Italian)
Currently translated at 98.8% (1782 of 1802 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.8% (1782 of 1802 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-06 08:00:35 +11:00
Riku
c15c43ed2a translationBot(ui): update translation (German)
Currently translated at 67.2% (1212 of 1802 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-03-06 08:00:35 +11:00
psychedelicious
d2f8db9745 tidy: remove unused utils 2025-03-06 07:49:35 +11:00
psychedelicious
c1cf01a038 tests: use dangerously_run_function_in_subprocess to fix configure_torch_cuda_allocator tests 2025-03-06 07:49:35 +11:00
psychedelicious
2bfb4fc79c tests: add util to run a function in separate process
This allows our tests to run in an isolated environment. For tests taht implicitly depend on import behaviour, this can prevent side-effects.

The function should only be used for tests.
2025-03-06 07:49:35 +11:00
psychedelicious
d037d8f9aa tests: update tests for configure_torch_cuda_allocator 2025-03-06 07:49:35 +11:00
psychedelicious
d5401e8443 tests: add testing utils to set/unset env var 2025-03-06 07:49:35 +11:00
psychedelicious
d193e4f02a feat(app): log warning instead of raising if PYTORCH_CUDA_ALLOC_CONF is already set 2025-03-06 07:49:35 +11:00
psychedelicious
ec493e30ee feat(app): make logger a required arg in configure_torch_cuda_allocator 2025-03-06 07:49:35 +11:00
Jonathan
081b931edf Update util.py
Changed string to a literal
2025-03-05 14:39:17 +11:00
Jonathan
8cd7035494 Fixed validation of begin and end steps
Fixed logic to match the error message - begin should be <= end.
2025-03-05 14:39:17 +11:00
Eugene Brodsky
4de6fd3ae6 chore(docker): reduce size between docker builds (#7571)
by adding a layer with all the pytorch dependencies that don't change
most of the time.

## Summary

Every time the [`main` docker
images](https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai)
rebuild and I pull `main-cuda`, it gets another 3+ GB, which seems like
about a zillion times too much since most things don't change from one
commit on `main` to the next.

This is an attempt to follow the guidance in [Using uv in Docker:
Intermediate
Layers](https://docs.astral.sh/uv/guides/integration/docker/#intermediate-layers)
so there's one layer that installs all the dependencies—including
PyTorch with its bundled nvidia libraries—_before_ the project's own
frequently-changing files are copied in to the image.


## Related Issues / Discussions

- [Improved docker layer cache with
uv](https://discord.com/channels/1020123559063990373/1329975172022927370)
- [astral: Can `uv pip install` torch, but not `uv sync`
it](https://discord.com/channels/1039017663004942429/1329986610770612347)


## QA Instructions

Hopefully the CI system building the docker images is sufficient.

But there is one change to `pyproject.toml` related to xformers, so it'd
be worth checking that `python -m xformers.info` still says it has
triton on the platforms that expect it.


## Merge Plan

I don't expect this to be a disruptive merge.

(An earlier revision of this PR moved the venv, but I've reverted that
change at ebr's recommendation.)


## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-03-04 20:42:28 -05:00
Eugene Brodsky
3feb1a6600 Merge branch 'main' into build/docker-dependency-layer 2025-03-04 20:33:24 -05:00
psychedelicious
ea2320c57b feat(ui): add button ref image layer empty state to pull bbox 2025-03-05 08:00:20 +11:00
psychedelicious
0ad0016c2d chore: bump version to v5.7.2rc2 2025-03-04 08:48:28 +11:00
psychedelicious
c2a3c66e49 feat(app): avoid nested cursors in workflow_records service 2025-03-04 08:33:42 +11:00
psychedelicious
c0a0d20935 feat(app): avoid nested cursors in style_preset_records service 2025-03-04 08:33:42 +11:00
psychedelicious
028d8d8ead feat(app): avoid nested cursors in model_records service 2025-03-04 08:33:42 +11:00
psychedelicious
657095d2e2 feat(app): avoid nested cursors in image_records service 2025-03-04 08:33:42 +11:00
psychedelicious
1c47dc997e feat(app): avoid nested cursors in board_records service 2025-03-04 08:33:42 +11:00
psychedelicious
a3de6b6165 feat(app): avoid nested cursors in board_image_records service 2025-03-04 08:33:42 +11:00
psychedelicious
e57f0ff055 experiment(app): avoid nested cursors in session_queue service
SQLite cursors are meant to be lightweight and not reused. For whatever reason, we reuse one per service for the entire app lifecycle.

This can cause issues where a cursor is used twice at the same time in different transactions.

This experiment makes the session queue use a fresh cursor for each method, hopefully fixing the issue.
2025-03-04 08:33:42 +11:00
Eugene Brodsky
0362bd5a06 Merge branch 'main' into build/docker-dependency-layer 2025-03-03 09:32:04 -05:00
Linos
feee4c49a2 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1798 of 1798 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-03-03 14:50:08 +11:00
Riccardo Giovanetti
42e052d6f2 translationBot(ui): update translation (Italian)
Currently translated at 98.8% (1777 of 1798 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-03-03 14:50:08 +11:00
psychedelicious
b03e429b26 fix(ui): add missing builder translations 2025-03-03 14:43:23 +11:00
psychedelicious
7399909029 feat(app): use simpler syntax for enqueue_batch threaded execution 2025-03-03 14:40:48 +11:00
psychedelicious
c8aaf5e76b tidy(app): remove extraneous class attr type annotations 2025-03-03 14:40:48 +11:00
psychedelicious
0cdf7a7048 Revert "experiment(app): simulate very long enqueue operations (15s)"
This reverts commit eb6a323d0b70004732de493d6530e08eb5ca8acf.
2025-03-03 14:40:48 +11:00
psychedelicious
41985487d3 Revert "experiment(app): make socketio server ping every 1s"
This reverts commit ddf00bf260167092a3bc2afdce1244c6b116ebfb.
2025-03-03 14:40:48 +11:00
psychedelicious
41d5a17114 fix(ui): set RTKQ tag invalidationBehaviour to immediate
This allows tags to be invalidated while mutations are executing, resolving an issue in this situation:
- A long-running mutation starts.
- A tag is invalidated; for example, user edits a board name, and the boards list query tag is invalidated.
- The boards list query isn't fired, and the board name isn't updated.
- The long-running mutation finishes.
- Finally, the boards list query fires and the board name is updated.

This is the "delayed" behaviour. The "immediately" behaviour has the fires requests from tag invalidation immediately, without waiting for all mutations to finish.

It may cause extra network requests and stale data if we are mutating a lot of things very quickly. I don't think it will be an issue in practice and the improved responsiveness will be a net benefit.
2025-03-03 14:40:48 +11:00
psychedelicious
14f9d5b6bc experiment(app): remove db locking logic
Rely on WAL mode and the busy timeout.

Also changed:
- Remove extraneous rollbacks when we were only doing a `SELECT`
- Remove try/catch blocks that were made extraneous when removing the extraneous rollbacks
2025-03-03 14:40:48 +11:00
psychedelicious
eec4bdb038 experiment(app): enable WAL mode and set busy_timeout
This allows for read and write concurrency without using a global mutex. Operations may still fail they take longer than the busy timeout (5s).

If we get a database lock error after waiting 5s for an operation, we have a problem. So, I think it's actually better to use a busy timeout instead of a global mutex.

Alternatively, we could add a timeout to the global mutex.
2025-03-03 14:40:48 +11:00
psychedelicious
f3dd44044a experiment(app): run enqueue_batch async in a thread 2025-03-03 14:40:48 +11:00
psychedelicious
61a22eb8cb experiment(app): make socketio server ping every 1s 2025-03-03 14:40:48 +11:00
psychedelicious
03ca83fe13 experiment(app): simulate very long enqueue operations (15s) 2025-03-03 14:40:48 +11:00
psychedelicious
8f1e25c387 chore: bump version to v5.7.2rc1 2025-03-03 09:46:16 +11:00
Kevin Turner
29cf4bc002 feat: accept WebP uploads for assets 2025-03-02 08:50:38 -05:00
psychedelicious
9428642806 fix(ui): single or collection field rendering
Fixes an issue where fields like control weight on ControlNet nodes and image on IP Adapter nodes didn't render.

These are "single or collection" fields. They accept a single input object, or collection. They are supposed to render the UI input for a single object.

In a7a71ca935 a performance optimisation for a hot code-path inadvertently broke this.

The determination of which UI component to render for a given field was done using a type guard function for the field's template. Previously, this used a zod schema to parse the template. This is very slow, especially when the template was not the expected type.

The optimization changed the type guards to check the field name (aka its type, integer, image, etc) and cardinality directly, without any zod parsing.

It's much faster, but subtly changed the behaviour because it was a bit stricter. For some fields, it rejected "single or collection" cardinalities when it should have accepted them.

When these fields - like the aforementioned Control Weight and Image - were being rendered, none of the type guards passed and they rendered nothing.

The fix here updates the type guard functions to support multiple cardinalities. So now, when we go to render a "single or collection" field, we will render the "single" input component as it should be.
2025-03-01 10:54:31 +11:00
psychedelicious
8620572524 docs: update RELEASE.md 2025-02-28 18:43:52 -05:00
psychedelicious
f44c7e824d chore(ui): lint 2025-02-28 18:09:54 -05:00
psychedelicious
c5b8bde285 fix(ui): download button in workflow library downloads wrong workflow 2025-02-28 18:09:54 -05:00
Ryan Dick
4c86a7ecbf Update Low-VRAM docs guidance around max_cache_vram_gb. 2025-02-28 17:18:57 -05:00
Ryan Dick
b9f9d1c152 Increase the VAE decode memory estimates. to account for memory reserved by the memory allocator, but not allocated, and to generally be more conservative. 2025-02-28 17:18:57 -05:00
Ryan Dick
7567ee2adf Add pytorch_cuda_alloc_conf config to tune VRAM memory allocation (#7673)
## Summary

This PR adds a `pytorch_cuda_alloc_conf` config flag to control the
torch memory allocator behavior.

- `pytorch_cuda_alloc_conf` defaults to `None`, preserving the current
behavior.
- The configuration options are explained here:
https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf.
Tuning this configuration can reduce peak reserved VRAM and improve
performance.
- Setting `pytorch_cuda_alloc_conf: "backend:cudaMallocAsync"` in
`invokeai.yaml` is expected to work well on many systems. This is a good
first step for those looking to tune this config. (We may make this the
default in the future.)
- The optimal configuration seems to be dependent on a number of factors
such as device version, VRAM, CUDA kernel version, etc. For now, users
will have to experiment with this config to see if it hurts or helps on
their systems. In most cases, I expect it to help.

### Memory Tests

```
VAE decode memory usage comparison:

- SDXL, fp16, 1024x1024:
  - `cudaMallocAsync`: allocated=2593 MB, reserved=3200 MB
  - `native`:          allocated=2595 MB, reserved=4418 MB

- SDXL, fp32, 1024x1024:
  - `cudaMallocAsync`: allocated=3982 MB, reserved=5536 MB
  - `native`:          allocated=3982 MB, reserved=7276 MB

- SDXL, fp32, 1536x1536:
  - `cudaMallocAsync`: allocated=8643 MB, reserved=12032 MB
  - `native`:          allocated=8643 MB, reserved=15900 MB
```

## Related Issues / Discussions

N/A

## QA Instructions

- [x] Performance tests with `pytorch_cuda_alloc_conf` unset.
- [x] Performance tests with `pytorch_cuda_alloc_conf:
"backend:cudaMallocAsync"`.

## Merge Plan

- [x] Merge #7668 first and change target branch to `main`

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-02-28 16:47:01 -05:00
Ryan Dick
0e632dbc5c (minor) typo 2025-02-28 21:39:09 +00:00
Ryan Dick
49191709a0 Mark test_configure_torch_cuda_allocator_raises_if_torch_is_already_imported() to only run if CUDA is available. 2025-02-28 21:39:09 +00:00
Ryan Dick
3af7fc26fa Update low-vram docs with info abhout . 2025-02-28 21:39:09 +00:00
Ryan Dick
a36a627f83 Switch from use_cuda_malloc flag to a general pytorch_cuda_alloc_conf config field that allows full customization of the CUDA allocator. 2025-02-28 21:39:09 +00:00
Ryan Dick
b31c71f302 Simplify is_torch_cuda_malloc_enabled() implementation and add unit tests. 2025-02-28 21:39:09 +00:00
Ryan Dick
5302d4890f Add use_cuda_malloc config option. 2025-02-28 21:39:09 +00:00
Ryan Dick
766b752572 Add utils for configuring the torch CUDA allocator. 2025-02-28 21:39:09 +00:00
Eugene Brodsky
7feae5e5ce do not cache image layers in CI docker build 2025-02-28 16:24:50 -05:00
Ryan Dick
26730ca702 Tidy app entrypoint (#7668)
## Summary

Prior to this PR, most of the app setup was being done in `api_app.py`
at import time. This PR cleans this up, by:
- Splitting app setup into more modular functions
- Narrower responsibility for the `api_app.py` file - it just
initializes the `FastAPI` app

The main motivation for this changes is to make it easier to support an
upcoming torch configuration feature that requires more careful ordering
of app initialization steps.

## Related Issues / Discussions

N/A

## QA Instructions

- [x] Launch the app via invokeai-web.py and smoke test it.
- [ ] Launch the app via the installer and smoke test it.
- [x] Test that generate_openapi_schema.py produces the same result
before and after the change.
- [x] No regression in unit tests that directly interact with the app.
(test_images.py)

## Merge Plan

- [x] Check to see if there are any commercial implications to modifying
the app entrypoint.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-02-28 16:07:30 -05:00
Ryan Dick
1e2c7c51b5 Move load_custom_nodes() to run_app() entrypoint. 2025-02-28 20:54:26 +00:00
Ryan Dick
da2b6815ac Make InvokeAILogger an inline import in startup_utils.py in response to review comment. 2025-02-28 20:10:24 +00:00
Ryan Dick
68d14de3ee Split run_app.py and api_app.py so that api_app.py is more narrowly responsible for just initializing the FastAPI app. This also gives clearer control over the order of the initialization steps, which will be important as we add planned torch configurations that must be applied before torch is imported. 2025-02-28 20:10:24 +00:00
Ryan Dick
38991ffc35 Add register_mime_types() startup util. 2025-02-28 20:10:24 +00:00
Ryan Dick
f345c0fabc Create an apply_monkeypatches() start util. 2025-02-28 20:10:24 +00:00
Ryan Dick
ca23b5337e Simplify port selection logic to avoid the need for a global port variable. 2025-02-28 20:10:19 +00:00
Ryan Dick
35910d3952 Move check_cudnn() and jurigged setup to startup_utils.py. 2025-02-28 20:08:53 +00:00
Ryan Dick
6f1dcf385b Move find_port() util to its own file. 2025-02-28 20:08:53 +00:00
psychedelicious
84c9ecc83f chore: bump version to v5.7.1 2025-02-28 13:23:30 -05:00
Thomas Bolteau
52aa839b7e translationBot(ui): update translation (French)
Currently translated at 99.1% (1782 of 1797 strings)

Co-authored-by: Thomas Bolteau <thomas.bolteau50@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2025-02-28 17:07:11 +11:00
Hiroto N
316ed1d478 translationBot(ui): update translation (Japanese)
Currently translated at 42.6% (766 of 1797 strings)

Co-authored-by: Hiroto N <hironow365@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-02-28 17:07:11 +11:00
Hosted Weblate
3519e8ae39 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-02-28 17:07:11 +11:00
psychedelicious
82f645c7a1 feat(ui): add new workflow button to library menu 2025-02-28 16:06:02 +11:00
psychedelicious
cc36cfb617 feat(ui): reorg workflow menu buttons 2025-02-28 16:06:02 +11:00
psychedelicious
ded8a84284 feat(ui): increase spacing in form builder view mode 2025-02-28 16:06:02 +11:00
psychedelicious
94771ea626 feat(ui): add auto-links to text, heading, field description and workflow descriptions 2025-02-28 16:06:02 +11:00
psychedelicious
51d661023e Revert "feat(ui): increase spacing in form builder view mode"
This reverts commit 3766a3ba1e082f31bce09f794c47eb95cd76f1b1.
2025-02-28 16:06:02 +11:00
psychedelicious
d215829b91 feat(ui): increase spacing in form builder view mode 2025-02-28 16:06:02 +11:00
psychedelicious
fad6c67f01 fix(ui): workflow description cut off 2025-02-28 16:06:02 +11:00
psychedelicious
f366640d46 fix(ui): invoke button not showing loading indicator on canvas tab
On the Canvas tab, when we made the network request to enqueue a batch, we were immediately resetting the request. This effectively disabled RTKQ's tracking of the request - including the loading state.

As a result, when you click the Invoke button on the Canvas tab, it didn't show a spinner, and it was not clear that anything was happening.

The solution is simple - just await the enqueue request before resetting the tracking, same as we already did on the workflows and upscaling tabs.

I also added some extra logging messages for enqueuing, so we get the same JS console logs for each tab on success or failure.
2025-02-28 15:58:17 +11:00
skunkworxdark
36a3fba8cb Update metadata_linked.py
Fix input type of default_value on MetadataToFloatInvocation
2025-02-27 04:55:29 -05:00
psychedelicious
b2ff83092f fix(ui): form element settings obscured by container 2025-02-27 14:49:52 +11:00
psychedelicious
d2db38a5b9 chore(ui): update whats new 2025-02-27 13:01:07 +11:00
psychedelicious
fa988a6273 chore: bump version to v5.7.0 2025-02-27 13:01:07 +11:00
HAL
149f60946c translationBot(ui): update translation (Japanese)
Currently translated at 37.7% (680 of 1801 strings)

Co-authored-by: HAL <HALQME@users.noreply.hosted.weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-02-27 12:42:03 +11:00
Hiroto N
ee9d620a36 translationBot(ui): update translation (Japanese)
Currently translated at 40.3% (727 of 1801 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 37.7% (680 of 1801 strings)

Co-authored-by: Hiroto N <hironow365@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-02-27 12:42:03 +11:00
psychedelicious
4e8ce4abab feat(app): more detailed messages when loading custom nodes 2025-02-27 12:39:37 +11:00
psychedelicious
d40f2fa37c feat(app): improved custom load loading ordering
Previously, custom node loading occurred _during module imports_. A consequence of this is that when a custom node import fails (e.g. its type clobbers an existing node), the app fails to start up.

In fact, any time we import basically anything from the app, we trigger custom node imports! Not good.

This logic is now in its own function, called as the API app starts up.

If a custom node load fails for any reason, it no longer prevents the app from starting up.

One other bonus we get from this is that we can now ensure custom nodes are loaded _after_ core nodes.

Any clobbering that may occur while loading custom nodes is now guaranteed to be a custom node clobbering a core node's type - and not the other way round.
2025-02-27 12:39:37 +11:00
psychedelicious
933f4f6857 feat(app): improve error messages when registering invocations and they clobber 2025-02-27 12:39:37 +11:00
psychedelicious
f499b2db7b feat(app): add get_invocation_for_type method to BaseInvocation 2025-02-27 12:39:37 +11:00
psychedelicious
706aaf7460 tidy(app): remove unused variable 2025-02-27 12:39:37 +11:00
psychedelicious
4a706d00bb feat(app): use generic for append_list util 2025-02-27 12:28:00 +11:00
psychedelicious
2a8bff601f chore(ui): typegen 2025-02-27 12:28:00 +11:00
psychedelicious
3f0e3192f6 chore(app): mark metadata_field_extractor as deprecated 2025-02-27 12:28:00 +11:00
psychedelicious
c65147e2ff feat(app): adopt @skunkworxdark's popular metadata nodes
Thank you!
2025-02-27 12:28:00 +11:00
psychedelicious
1c14e257a3 feat(app): do not pull PIL image from disk in image primitive 2025-02-27 12:19:27 +11:00
psychedelicious
fe24217082 fix(ui): image usage checks collection fields
When deleting a board w/ images, the image usage checking logic was not checking image collection fields. This could result in a nonexistent image lingering in a node.

We already handle single image fields correctly, it's only the image collection fields taht were affected.
2025-02-27 10:24:59 +11:00
psychedelicious
aee847065c revert(ui): images from board generator only works on boards 2025-02-27 10:19:13 +11:00
psychedelicious
525da3257c chore(ui): typegen 2025-02-27 10:19:13 +11:00
psychedelicious
559654f0ca revert(app): get_all_board_image_names_for_board requires board_id 2025-02-27 10:19:13 +11:00
Eugene Brodsky
5d33874d58 fix(backend): ValuesToInsertTuple.retried_from_item_id should be an int 2025-02-27 07:35:41 +11:00
Mary Hipp
0063315139 fix(api): add new args to all uses of get_all_board_image_names_for_board 2025-02-26 15:05:40 -05:00
psychedelicious
1cbd609860 chore: bump version to v5.7.0rc2 2025-02-26 21:04:23 +11:00
psychedelicious
047c643295 tidy(app): document & clean up batch prep logic 2025-02-26 21:04:23 +11:00
psychedelicious
d1e03aa1c5 tidy(app): remove timing debug logs 2025-02-26 21:04:23 +11:00
psychedelicious
1bb8edf57e perf(app): optimise batch prep logic even more
Found another place where we deepcopy a dict, but it is safe to mutate.

Restructured the prep logic a bit to support this. Updated tests to use the new structure.
2025-02-26 21:04:23 +11:00
psychedelicious
a3e78f0db6 perf(app): optimise batch prep logic
- Avoid pydantic models when dict manipulation works
- Avoid extraneous deep copies when we can safely mutate
- Avoid NamedTuple construct and its overhead
- Fix tests to use altered function signatures
- Remove extraneous populate_graph function
2025-02-26 21:04:23 +11:00
Hosted Weblate
1ccf43aa1e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-02-26 18:27:50 +11:00
Linos
a290975fae translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1795 of 1795 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 98.2% (1763 of 1795 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-02-26 18:27:50 +11:00
psychedelicious
43c2116d64 chore(ui): lint 2025-02-26 18:25:23 +11:00
psychedelicious
9d0a24ead3 fix(ui): race condition with node-form-field relationship overlay 2025-02-26 18:25:23 +11:00
psychedelicious
d61a3d2950 chore(ui): typegen 2025-02-26 18:25:23 +11:00
psychedelicious
7b63858802 fix(ui): hide node footer on batch and generator nodes 2025-02-26 18:25:23 +11:00
psychedelicious
fae23a744f fix(ui): always check batch sizes when there is at least 1 batch node
Not sure why I had this only checking if the size was >1. Doesn't make sense...
2025-02-26 18:25:23 +11:00
psychedelicious
7c574719e5 feat(ui): image generator w/ image to board type 2025-02-26 18:25:23 +11:00
psychedelicious
43a212dd47 tidy(ui): remove generator fields' explicit "value" parameter
This was a half-baked attempt to work around the issue with async generator nodes. It's not needed; the values are never referenced.
2025-02-26 18:25:23 +11:00
psychedelicious
a103bc8a0a feat(ui): update delete boards modal logic for updated board images endpoint
The functionality is the same - just need to explicitly opt out of categories and is_intermediate constraints.
2025-02-26 18:25:23 +11:00
psychedelicious
1a42fbf541 feat(ui): update listAllImageNamesForBoard query to match updated route 2025-02-26 18:25:23 +11:00
psychedelicious
d550067dd4 chore(ui): typegen 2025-02-26 18:25:23 +11:00
psychedelicious
7003bcad62 feat(nodes): add image generator node 2025-02-26 18:25:23 +11:00
psychedelicious
ef95f4962c feat(app): extend "all image names for board" apis
The method and route now supports:
- "none" as a board ID, sentinel value for uncategorized
- Optionally specify image categories
- Optionally specify is_intermediate
2025-02-26 18:25:23 +11:00
psychedelicious
2e13bbbe1b refactor(ui): make all readiness checking async
This fixes the broken readiness checks introduced in the previous commit.

To support async batch generators, all of the validation of the generators needs to be async. This is problematic because a lot of the validation logic was in redux selectors, which are necessarily synchronous.

To resolve this, the readiness checks and related logic are restructured to be run async in response to redux state changes via `useEffect` (another option is to directly subscribe to redux store). These async functions then set some react state. The checks are debounced to prevent thrashing the UI.

See #7580 for more context about this issue.

Other changes:
- Fix a minor issue where empty collections were also checked against their min and max sizes, and errors were shown for all the checks. If a collection is empty, we don't need to do the min/max checks. If a collection is empty, we skip the other min/max checks and do not report those errors to the user.
- When a field is connected, do not attempt to check its value. This fixes an issue where collection fields with a connection could erroneously appear to be invalid.
- Improved error messages for batch nodes.
2025-02-26 18:25:23 +11:00
psychedelicious
43349cb5ce feat(ui): fix dynamic prompts generators (but break readiness checks) 2025-02-26 18:25:23 +11:00
psychedelicious
d037eea42a feat(ui): debouncedUpdateReasons is async 2025-02-26 18:25:23 +11:00
psychedelicious
42c5be16d1 tidy(ui): extract resolveBatchValues to own file 2025-02-26 18:25:23 +11:00
psychedelicious
c7c4453a92 feat(ui): add overlay to show related fields/nodes 2025-02-26 17:25:58 +11:00
psychedelicious
c71ddf6e5d perf(ui): use css to hide/show node selection borders 2025-02-26 17:25:58 +11:00
psychedelicious
c33ed68f78 perf(ui): use css to hide/show field action buttons 2025-02-26 17:25:58 +11:00
psychedelicious
48e389f155 tweak(ui): form element header hover color 2025-02-26 17:25:58 +11:00
psychedelicious
5c423fece4 fix(ui): container view mode layout 2025-02-26 17:25:58 +11:00
psychedelicious
3f86049802 fix(ui): text & heading view mode layout 2025-02-26 17:25:58 +11:00
psychedelicious
47d395d0a8 chore(ui): knip 2025-02-26 17:25:58 +11:00
psychedelicious
b666ef41ff fix(ui): various styling fixes 2025-02-26 17:25:58 +11:00
psychedelicious
375f62380b fix(ui): disable autoscroll on column layout containers 2025-02-26 17:25:58 +11:00
psychedelicious
42c4462edc refactor(ui): styling for form edit mode (maybe done?)
- Restructure components
- Let each element render its own edit mode
- arrrrghh
2025-02-26 17:25:58 +11:00
psychedelicious
7591adebd5 refactor(ui): styling for form edit mode (wip) 2025-02-26 17:25:58 +11:00
psychedelicious
9d9b2f73db feat(ui): styling for dnd buttons 2025-02-26 17:25:58 +11:00
Mary Hipp
abaae39c29 make sure notes node exists like we do for invocation nodes 2025-02-26 07:33:22 +11:00
Mary Hipp
b1c9f59c30 add actions for copying image and opening image in new tab 2025-02-25 11:55:36 -05:00
psychedelicious
7bcbe180df tests(ui): fix test to account for new board field template default 2025-02-25 11:10:06 +11:00
psychedelicious
a626387a0b feat(ui): use auto-add board as default for nodes
Board fields in the workflow editor now default to using the auto-add board by default.

**This is a change in behaviour - previously, we defaulted to no board (i.e. Uncategorized).**

There is some translation needed between the UI field values for a board and what the graph expects.

A "BoardField" is an object in the shape of `{board_id: string}`.

Valid board field values in the graph:
- undefined
- a BoardField

Value UI values and their mapping to the graph values:
- 'none' -> undefined
- 'auto' -> BoardField for the auto-add board, or if the auto-add board is Uncategorized, undefined
- undefined -> undefined (this is a fallback case with the new logic)
- a BoardField -> the same BoardField
2025-02-25 11:10:06 +11:00
psychedelicious
759229e3c8 fix(ui): reset form initial values when workflow is saved 2025-02-25 11:04:44 +11:00
Mary Hipp
ad4b81ba21 do not render Whats New until app is ready 2025-02-24 11:56:16 -05:00
Mary Hipp
637b629b95 lint 2025-02-24 11:56:16 -05:00
psychedelicious
4aaa807415 experiment(ui): show loader until studio init actions are complete 2025-02-24 11:56:16 -05:00
Riccardo Giovanetti
e884be5042 translationBot(ui): update translation (Italian)
Currently translated at 98.9% (1737 of 1755 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1735 of 1753 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1731 of 1749 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.9% (1731 of 1749 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1726 of 1749 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-02-24 08:28:55 +11:00
psychedelicious
13e129bef2 fix(ui): star button not working on Chrome
Not sure why the perf optimisation doesn't work on Chrome but I reverted it.
2025-02-24 08:01:14 +11:00
psychedelicious
157904522f feat(ui): add zoom to node button to node field headers 2025-02-21 08:21:56 -05:00
psychedelicious
3045cd7b3a tidy(ui): split up FormElementEditModeHeader components 2025-02-21 08:21:56 -05:00
psychedelicious
e9e2bab4ee feat(ui): make useZoomToNode not rely on reactflow ctx 2025-02-21 08:21:56 -05:00
psychedelicious
6cd794d860 tweak(ui): container settings popover placement @ top 2025-02-21 08:21:56 -05:00
psychedelicious
c9b0307bcd fix(ui): non-direct input field names do not block reactflow drag 2025-02-21 08:21:56 -05:00
psychedelicious
55aee034b0 fix(ui): do not zoom when double clicking switch 2025-02-21 08:21:56 -05:00
psychedelicious
e81ef0a090 tweak(ui): "Description" -> "Show Description" 2025-02-21 08:21:56 -05:00
psychedelicious
1a806739f2 fix(ui): missing translation for string field component 2025-02-21 08:21:56 -05:00
psychedelicious
067aeeac23 tweak(ui): heading and text elements editable styling 2025-02-21 08:21:56 -05:00
psychedelicious
47b37d946f fix(ui): prevent selecting edit mode header 2025-02-21 08:21:56 -05:00
psychedelicious
ddfdeca8bd tweak(ui): make editable form headers less bright 2025-02-21 08:21:56 -05:00
psychedelicious
55b2a4388d fix(ui): overflow in workflow title 2025-02-21 08:21:56 -05:00
psychedelicious
6ab2bebfa6 chore: bump version to v5.7.0rc1 2025-02-21 13:00:01 +11:00
psychedelicious
3f18bfed4e feat(ui): add loading state for builder 2025-02-21 12:24:03 +11:00
psychedelicious
012054acaa feat(ui): add dialog when loading workflow if unsaved changes 2025-02-21 12:24:03 +11:00
psychedelicious
efb7f36f28 chore(ui): typegen 2025-02-21 12:24:03 +11:00
psychedelicious
05ea1c7637 chore(ui): fix circular dep 2025-02-21 12:24:03 +11:00
psychedelicious
2ba0f920d2 feat(ui): hide workflow desc in builder edit mode 2025-02-21 12:24:03 +11:00
psychedelicious
c3ab4f4d6e feat(ui): tweak dnd button styling 2025-02-21 12:24:03 +11:00
psychedelicious
36b3089d5d feat(ui): tweak dnd element buttons styling 2025-02-21 12:24:03 +11:00
psychedelicious
6c4d002bd6 feat(ui): hide reset node field value button when value is unchanged 2025-02-21 12:24:03 +11:00
psychedelicious
b2cfa137a3 feat(ui): when migrating pre-builder workflows, hide description for node fields by default, matching prev behaviour 2025-02-21 12:24:03 +11:00
psychedelicious
9d57bc1697 feat(ui): node text areas resizable
There's a reactflow issue that prevents the size from being applied when a workflow is loaded, but at least you can resize the fields.
2025-02-21 12:24:03 +11:00
psychedelicious
e6db36d0c4 feat(ui): hide the root container frame and header 2025-02-21 12:24:03 +11:00
psychedelicious
78832e546a feat(ui): restore plus sign button to add node field to form 2025-02-21 12:24:03 +11:00
psychedelicious
6cfeadb33b feat(ui): add fake dnd node field element w/ info tooltip 2025-02-21 12:24:03 +11:00
psychedelicious
d1d3971ee3 feat(ui): make index optional when adding elements, update tests 2025-02-21 12:24:03 +11:00
psychedelicious
e9ce259d43 feat(ui): smaller buttons for builder dnd elements 2025-02-21 12:24:03 +11:00
psychedelicious
34d988063f feat(ui): change reset button to menu 2025-02-21 12:24:03 +11:00
psychedelicious
e2bdbfe721 fix(ui): use getIsFormEmpty util when validating workflow 2025-02-21 12:24:03 +11:00
psychedelicious
fe7e1958ea fix(ui): fall back to empty form if invalid during validation 2025-02-21 12:24:03 +11:00
psychedelicious
cf8f18e690 feat(ui): add getIsFormEmpty util & tests 2025-02-21 12:24:03 +11:00
psychedelicious
da7b31b2a8 fix(app): add form to Workflow pydantic schema so it gets saved 2025-02-21 12:24:03 +11:00
psychedelicious
fb82664944 fix(ui): update linear view field migration logic to work w/ new data structure 2025-02-21 12:24:03 +11:00
psychedelicious
58ae9ed8a5 feat(ui): add form structure validation and tests 2025-02-21 12:24:03 +11:00
psychedelicious
d142a94b67 chore(ui): knip 2025-02-21 12:24:03 +11:00
psychedelicious
c8135126f2 fix(ui): use "native" reactflow interaction class names 2025-02-21 12:24:03 +11:00
psychedelicious
560910ed2f feat(ui): workflows panel redesign WIP 2025-02-21 12:24:03 +11:00
psychedelicious
b78ac40a22 feat(ui): workflows panel redesign WIP 2025-02-21 12:24:03 +11:00
psychedelicious
9ecafc8706 feat(ui): workflows panel redesign WIP 2025-02-21 12:24:03 +11:00
psychedelicious
871cb54988 feat(ui): panel resize handles have grab icon 2025-02-21 12:24:03 +11:00
psychedelicious
e3069ad336 fix(ui): remove ancient node selection logic that created duplicate node selection actions 2025-02-21 12:24:03 +11:00
psychedelicious
28027702dd feat(ui): add useZoomToNode hook 2025-02-21 12:24:03 +11:00
psychedelicious
d72840620a feat(ui): remove extraneous formElementNodeFieldInitialValueChanged action 2025-02-21 12:24:03 +11:00
psychedelicious
4f2de2674e feat(ui): remove extraneous formContainerChildrenReordered action 2025-02-21 12:24:03 +11:00
psychedelicious
340c9c0697 feat(ui): make builder heading a bit smaller 2025-02-21 12:24:03 +11:00
psychedelicious
f77549dc4f feat(ui): use constants for reactflow opt-out classNames 2025-02-20 14:25:51 +11:00
psychedelicious
5653352ae8 feat(ui): double click to zoom to node
Requires a bit of fanagling to ensure the double click doesn't interfer w/ other stuff
2025-02-20 14:25:51 +11:00
psychedelicious
f1bc2ea962 fix(ui): allow pasting of collapsed edges 2025-02-20 14:25:51 +11:00
psychedelicious
2a9f7b2e38 feat(ui): abstract node/field validation logic, use error color for node title when node has errors 2025-02-20 14:25:51 +11:00
psychedelicious
c379d76844 feat(ui): add "unsafe" version of field instance selector 2025-02-20 14:25:51 +11:00
psychedelicious
6496fcdcbd feat(ui): make field names draggable, not the whole field name "bar" 2025-02-20 14:25:51 +11:00
psychedelicious
812b8fddd6 feat(ui): slimmer image component 2025-02-20 14:25:51 +11:00
psychedelicious
dc9165dfc1 chore(ui): bump vitest to latest
All but the core `vitest` package were updated recently. Tests still ran but the test UI dashboard didn't. After updating, all tests still run, seems fine.

Also tested building in app and package mode.
2025-02-20 09:08:24 +11:00
psychedelicious
59826438f6 fix(ui): failing test cases for form manip utils 2025-02-20 09:08:24 +11:00
psychedelicious
87cd52241d tests(ui): coverage for form-manipulation.ts 2025-02-20 09:08:24 +11:00
psychedelicious
7506b0e7ae feat(ui): require parentId when adding form elements 2025-02-20 09:08:24 +11:00
psychedelicious
4b29a2f395 refactor(ui): validateWorkflow takes a single object as arg 2025-02-20 09:08:24 +11:00
psychedelicious
3bcaa42309 tidy(ui): more file/variable organisation 2025-02-20 09:08:24 +11:00
psychedelicious
8e14cdb8b6 feat(ui): make dnd hooks never throw
Just log errors.
2025-02-20 09:08:24 +11:00
psychedelicious
9ef6e52ad8 tidy(ui): organize & document builder dnd logic 2025-02-20 09:08:24 +11:00
psychedelicious
148bd70a24 refactor(ui): revert to using single tree for form data 2025-02-20 09:08:24 +11:00
psychedelicious
1461c88c12 lint model 2025-02-20 09:08:24 +11:00
psychedelicious
bcfeae94d2 fix(ui): node title shows text cursor 2025-02-20 09:08:24 +11:00
psychedelicious
40eedfebf7 fix(ui): zoom reset on first interaction
Closes #7648
2025-02-20 09:08:24 +11:00
psychedelicious
d0a231d59e fix(ui): model field types not recognized as such during workflow validation and field styling 2025-02-20 09:08:24 +11:00
Mary Hipp
4bba7de070 fix omnipresent pencil 2025-02-19 09:52:37 -05:00
psychedelicious
e1f2b232c8 feat(ui): color picker improvements
- Support transparency w/ color picker. To do this, we need to hide the bg layer before sampling. In testing, this has a negligible performance impact.
- Add an RGBA value readout next to the color picker ring.
2025-02-18 15:38:50 +11:00
psychedelicious
2c5b0195fc fix(ui): straight lines drawn with shift-click get cut off when canvas moved between clicks
Need to opt-out of the clipping logic when using shift-click to not cut off the line.
2025-02-18 15:38:50 +11:00
psychedelicious
56792b2d2c fix(ui): mask layers not showing up until you zoom
Unfortunately I couldn't reliably reproduce the issue, so I'm not 100% sure this fixes it. But I think there is a race condition that results in `updateCompositingRectSize` erroneously seeing the layer has no objects and skipping the update.

To address this, the compositing rect fill/size/pos are all now force-updated when the fill/objects are changed. Theoretically it should be impossible for the issue to occur now.
2025-02-18 15:38:50 +11:00
psychedelicious
d71e8b4980 fix(ui): cursor visibility
- Fix an issue where the cursor disappeared when selecting a non-renderable entity. For example, when selecting a reference image layer and certain tools, the cursor would disappear.
- Ensure color picker works no matter what layer types are selected.

The logic for showing/hiding the cursor needed to be rearranged a bit for this fix.
2025-02-18 15:38:50 +11:00
Mary Hipp
ca50f8193c add AppFeature for retryQueueItem in case we want to easily disable 2025-02-18 09:14:03 +11:00
psychedelicious
7ee636b68b feat(ui): add retry buttons to queue tab
- Add the new HTTP endpoint to the queue client
- Add buttons to the queue items to retry them
2025-02-18 09:14:03 +11:00
psychedelicious
926f69677a chore(ui): typegen 2025-02-18 09:14:03 +11:00
psychedelicious
675ac348de feat(app): add retry queue item functionality
Retrying a queue item means cloning it, resetting all execution-related state. Retried queue items reference the item they were retried from by id. This relationship is not enforced by any DB constraints.

- Add `retried_from_item_id` to `session_queue` table in DB in a migration.
- Add `retry_items_by_id` method to session queue service. Accepts a list of queue item IDs and clones them (minus execution state). Returns a list of retried items. Items that are not in a canceled or failed state are skipped.
- Add `retry_items_by_id` HTTP endpoint that maps 1-to-1 to the queue service method.
- Add `queue_items_retried` event, which includes the list of retried items.
2025-02-18 09:14:03 +11:00
psychedelicious
62e5b9da18 docs(ui): add comments for recent perf optimizations 2025-02-17 09:28:13 +11:00
psychedelicious
65eabde297 per(ui): move field desc content to own component 2025-02-17 09:28:13 +11:00
psychedelicious
6bebd2bfc8 chore(ui): lint 2025-02-17 09:28:13 +11:00
psychedelicious
cd785ba64b perf(ui): optimize field handle/title/etc rendering 2025-02-17 09:28:13 +11:00
psychedelicious
726b4637db perf(ui): optimize workflow editor inspector panel rendering 2025-02-17 09:28:13 +11:00
psychedelicious
b50241fe6a perf(ui): make field description popver rendering lazy 2025-02-17 09:28:13 +11:00
psychedelicious
5b8735db3b perf(ui): optimize node update checking 2025-02-17 09:28:13 +11:00
psychedelicious
ce286363d0 perf(ui): optimize checking if a field value is changed by wrapping in single selector 2025-02-17 09:28:13 +11:00
psychedelicious
2fa47cf270 perf(ui): use lazy rendering for builder element settings popovers 2025-02-17 09:28:13 +11:00
psychedelicious
3446486f40 perf(ui): do not use memoized selector for control adapter state 2025-02-17 09:28:13 +11:00
psychedelicious
a0cdcdef57 perf(ui): debounce invoke readiness calculations 2025-02-17 09:28:13 +11:00
psychedelicious
abbb3609c8 fix(ui): race condition that causes non-user-facing error when handling canvas filter cancelations
The abortController could be null by the time we attempt to abort it
2025-02-17 09:28:13 +11:00
psychedelicious
700ad78f87 Revert "perf(ui): connection line issue on chrome"
This reverts commit 9d482e5fe621c2dbbde18ed17301a12b0e7f2580.
2025-02-17 09:28:13 +11:00
psychedelicious
cfb08f326e perf(ui): fix issue w/ add node cmdk component (more fixed) 2025-02-17 09:28:13 +11:00
psychedelicious
aae4fa3cca perf(ui): reduce animations which slow down reactflow 2025-02-17 09:28:13 +11:00
psychedelicious
109adc5a93 perf(ui): fix issue w/ add node cmdk component 2025-02-17 09:28:13 +11:00
psychedelicious
acb7ef8837 perf(ui): slightly more efficient gallery pagination componsts 2025-02-17 09:28:13 +11:00
psychedelicious
3c5e829c72 feat(ui): use new more efficient RTK upsert methods 2025-02-17 09:28:13 +11:00
psychedelicious
10d9e75391 fix(ui): rtk upgrade TS issues 2025-02-17 09:28:13 +11:00
psychedelicious
b6a892a673 chore(ui): bump @reduxjs/toolkit to latest 2025-02-17 09:28:13 +11:00
psychedelicious
479d5cc362 perf(ui): isolate a lot of root-level hooks in a memoized component 2025-02-17 09:28:13 +11:00
psychedelicious
01e4fd100f perf(ui): optimized invocation node component structure 2025-02-17 09:28:13 +11:00
psychedelicious
8ecf9fb7e3 perf(ui): connection line issue on chrome 2025-02-17 09:28:13 +11:00
psychedelicious
436d5ee0c6 chore(ui): lint 2025-02-17 09:28:13 +11:00
psychedelicious
0671fec844 perf(ui): workflow editor misc
- Optimize component and hook structure for input fields to reduce rerenders of component tree
- Remove memoization on some selectors where it serves no purpose (bc the object will have a stable identity until it changes, at which point we need to re-render anyways)
- Shift the connection error selector logic around to rely more on the stable identity of pending connection objects
2025-02-17 09:28:13 +11:00
Kevin Turner
80d38c0e47 chore(docker): include fewer files while installing dependencies
including just invokeai/version seems sufficient to appease uv sync here. including everything else would invalidate the cache we're trying to establish.
2025-02-16 12:31:14 -08:00
Kevin Turner
22362350dc chore(docker): revert to keeping venv in /opt/venv 2025-02-16 11:26:06 -08:00
Kevin Turner
275d891f48 Merge branch 'main' into build/docker-dependency-layer 2025-02-16 10:34:17 -08:00
Eugene Brodsky
4dbde53f9b fix(docker): use the node22 image for the frontend build 2025-02-15 17:21:34 -05:00
psychedelicious
f6c4682b99 fix(ui): builder alpha status alert not visible when many elements added 2025-02-14 15:33:02 +11:00
psychedelicious
b3288ed64e chore: bump version to v5.7.0a1 2025-02-14 15:33:02 +11:00
psychedelicious
f3dfb1b6ea chore(ui): knip 2025-02-14 14:50:56 +11:00
psychedelicious
65a37ca4ff feat(ui): give vertical dividers a min height 2025-02-14 14:50:56 +11:00
psychedelicious
9adbe31fec tweak(ui): form element edit mode styling 2025-02-14 14:50:56 +11:00
psychedelicious
0a2925f02b feat(ui): add warning about alpha status of builder 2025-02-14 14:50:56 +11:00
psychedelicious
877dcc73c3 feat(ui): check image access for image collections when loading workflows 2025-02-14 14:50:56 +11:00
psychedelicious
aec2136323 fix(ui): force refetch when checking image access to ensure stale RTK query cache isn't use 2025-02-14 14:50:56 +11:00
psychedelicious
8ef5c54ffe feat(ui): add delete button to missing image placeholder for image collection fields 2025-02-14 14:50:56 +11:00
psychedelicious
6faed4f1ec fix(ui): remove images from node image collections when deleted 2025-02-14 14:50:56 +11:00
psychedelicious
aa71db4d31 tidy(ui): remove nonfunctional conditionals 2025-02-14 14:50:56 +11:00
psychedelicious
6407ab4a2e tweak(ui): builder padding 2025-02-14 14:50:56 +11:00
psychedelicious
a91b0f25cb feat(ui): consolidate row/column dnd draggables into container 2025-02-14 14:50:56 +11:00
psychedelicious
ef664863b5 feat(ui): remove separate flag for form vs workflow edit mode 2025-02-14 14:50:56 +11:00
psychedelicious
bf8ba1bb37 feat(ui): text and heading element default content is empty string 2025-02-14 14:50:56 +11:00
psychedelicious
54747bd521 feat(ui): remove element id from edit mode header 2025-02-14 14:50:56 +11:00
psychedelicious
d040a6953f tweak(ui): styling for edit mode 2025-02-14 14:50:56 +11:00
psychedelicious
828497cf89 feat(ui): remove node field reset button from edit mode header 2025-02-14 14:50:56 +11:00
psychedelicious
28950a4891 fix(ui): ignore dropping on self 2025-02-14 14:50:56 +11:00
psychedelicious
1c92838bf9 tidy(ui): builder dnd monitor logic rearrange 2025-02-14 14:50:56 +11:00
psychedelicious
71f6737e19 feat(ui): remove the showLabel flag for node fields 2025-02-14 14:50:56 +11:00
psychedelicious
dcac65f46b feat(ui): add initial values for builder fields 2025-02-14 14:50:56 +11:00
psychedelicious
46f549a57a feat(ui): better placeholders for text/heading 2025-02-14 14:50:56 +11:00
psychedelicious
fb93101085 tweak(ui): layout of workflow builder field settings 2025-02-14 14:50:56 +11:00
psychedelicious
9aabcfa4b8 feat(ui): default form field settings 2025-02-14 14:50:56 +11:00
psychedelicious
64587b37db refactor(ui): remove confusing containerId from various builder actions 2025-02-14 14:50:56 +11:00
psychedelicious
c673b6e11d feat(ui): demote dnd logs to trace 2025-02-14 14:50:56 +11:00
psychedelicious
a3a49ddda0 tidy(ui): useNodeFieldDnd 2025-02-14 14:50:56 +11:00
psychedelicious
330a0f0028 tidy(ui): extract util in dnd 2025-02-14 14:50:56 +11:00
psychedelicious
1104d2a00f feat(ui): initial values for form fields (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
aed802fa74 feat(ui): rearrange builder buttons to be less annoying 2025-02-14 14:50:56 +11:00
psychedelicious
498d99c828 fix(ui): handle form fields not existing on node on workflow load 2025-02-14 14:50:56 +11:00
psychedelicious
3d19b98208 chore(ui): lint 2025-02-14 14:50:56 +11:00
psychedelicious
85f5bb4a02 fix(ui): incorrect node data used during update 2025-02-14 14:50:56 +11:00
psychedelicious
269f718d2c tidy(ui): node description components 2025-02-14 14:50:56 +11:00
psychedelicious
211bb8a204 feat(ui): auto-update nodes on loading workflow 2025-02-14 14:50:56 +11:00
psychedelicious
ef0ef875dd feat(ui): migrated linear view exposed fields to builder form on load 2025-02-14 14:50:56 +11:00
psychedelicious
9c62648283 fix(ui): do not error in node/field selectors are used outside field gate components 2025-02-14 14:50:56 +11:00
psychedelicious
4ca45f7651 feat(ui): be double extra sure migrated workflows are parsed before loading 2025-02-14 14:50:56 +11:00
psychedelicious
2abe2f52f7 feat(ui): workflow builder layout 2025-02-14 14:50:56 +11:00
psychedelicious
6f1c814af4 revert(ui): code lint that broke stuff 2025-02-14 14:50:56 +11:00
psychedelicious
1ad6ccc426 tidy(ui): dnd code lint 2025-02-14 14:50:56 +11:00
psychedelicious
aedee536a0 tidy(ui): rename builder dnd file 2025-02-14 14:50:56 +11:00
psychedelicious
d2b15fba12 tidy(ui): improve dnd hook names 2025-02-14 14:50:56 +11:00
psychedelicious
a674e781a1 tidy(ui): dnd logic formatting 2025-02-14 14:50:56 +11:00
psychedelicious
0db74f0cde refactor(ui): add vars in dnd logic for conciseness 2025-02-14 14:50:56 +11:00
psychedelicious
d66db67d1a refactor(ui): clean up dnd logic 2025-02-14 14:50:56 +11:00
psychedelicious
2507a7f674 tidy(ui): rename root utils in dnd 2025-02-14 14:50:56 +11:00
psychedelicious
145503a0a0 refactor(ui): add dispatchAndFlash util for dnd 2025-02-14 14:50:56 +11:00
psychedelicious
32e8dd5647 fix(ui): divider rendering 2025-02-14 14:50:56 +11:00
psychedelicious
fe87adcb52 feat(ui): builder edit/view buttons 2025-02-14 14:50:56 +11:00
psychedelicious
e95255f6e8 feat(ui): make drop targets that are in root sticky 2025-02-14 14:50:56 +11:00
psychedelicious
efec224523 fix(ui): remove node field from form correctly when node is deleted 2025-02-14 14:50:56 +11:00
psychedelicious
e948e236e7 feat(ui): iterate on builder data structure 2025-02-14 14:50:56 +11:00
psychedelicious
189eb85663 feat(ui): delete form elements when node is deleted from workflow 2025-02-14 14:50:56 +11:00
psychedelicious
94f90f4082 feat(ui): string field settings 2025-02-14 14:50:56 +11:00
psychedelicious
1eb491fdaa feat(ui): builder empty state (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
176248a023 feat(ui): empty state for drop containers 2025-02-14 14:50:56 +11:00
psychedelicious
3c676ed11a fix(ui): drop target jank 2025-02-14 14:50:56 +11:00
psychedelicious
7a9340b850 fix(ui): tsc issues 2025-02-14 14:50:56 +11:00
psychedelicious
2c0b474f55 feat(ui): editable node form field labels & descriptions 2025-02-14 14:50:56 +11:00
psychedelicious
74c76611a9 feat(ui): add float field display settings 2025-02-14 14:50:56 +11:00
psychedelicious
1c7176b3f4 feat(ui): use useEditable in builder 2025-02-14 14:50:56 +11:00
psychedelicious
30363a0018 feat(ui): builder field settings (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
b46dbcc76d fix(ui): divider layout 2025-02-14 14:50:56 +11:00
psychedelicious
09879f4e19 feat(ui): builder field settings (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
4daa82c912 feat(ui): builder field settings (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
1cb04d9a4a refactor(ui): updated component structure for input and output fields 2025-02-14 14:50:56 +11:00
psychedelicious
3e6969128c feat(ui): remove sizes from text & heading 2025-02-14 14:50:56 +11:00
psychedelicious
e14c490ac6 fix(ui): drop indicator getting greyed out when dragging over self 2025-02-14 14:50:56 +11:00
psychedelicious
3ef3b97c58 feat(ui): editable heading and text elements 2025-02-14 14:50:56 +11:00
psychedelicious
3baaefb0cc chore(ui): bump @invoke-ai/ui-library 2025-02-14 14:50:56 +11:00
psychedelicious
98b0a8ffb2 feat(ui): plumbing for editable form elements 2025-02-14 14:50:56 +11:00
psychedelicious
4f85bf078a tidy(ui): import reactflow css in main theme provider 2025-02-14 14:50:56 +11:00
psychedelicious
f0563d41db fix(ui): circular dep 2025-02-14 14:50:56 +11:00
psychedelicious
a7a71ca935 perf(ui): faster InputFieldRenderer
Use non-zod type guards for input field types and fail early when possible
2025-02-14 14:50:56 +11:00
psychedelicious
c04822054b chore(ui): lint 2025-02-14 14:50:56 +11:00
psychedelicious
132e9bebd7 chore(ui): lint 2025-02-14 14:50:56 +11:00
psychedelicious
0dc45ac903 fix(ui): node-autoconnect showing invalid connection options 2025-02-14 14:50:56 +11:00
psychedelicious
4f9d81917c fix(ui): do not render dashed edges unless animation is enabled 2025-02-14 14:50:56 +11:00
psychedelicious
d3c22eceaf tweak(ui): node selection colors 2025-02-14 14:50:56 +11:00
psychedelicious
fb77d271ab refactor(ui): edge rendering
- Fix issues with positioning of labels
- Optimize styling to be less reliant on JS
2025-02-14 14:50:56 +11:00
psychedelicious
0371881349 chore(ui): upgrade reactflow to v12 2025-02-14 14:50:56 +11:00
psychedelicious
4b178fdeca fix(ui): hide nonfunctional delete button on root form element 2025-02-14 14:50:56 +11:00
psychedelicious
b53e36aaaa tidy(ui): remove unused mock form builder data 2025-02-14 14:50:56 +11:00
psychedelicious
c061cd5e54 fix(ui): use redux store for form 2025-02-14 14:50:56 +11:00
psychedelicious
ddda915ebd fix(ui): start workflow w/ single column as root 2025-02-14 14:50:56 +11:00
psychedelicious
9a2d8844a2 fix(ui): allow root element to be drop target 2025-02-14 14:50:56 +11:00
psychedelicious
48583df02e feat(ui): support adding form elements and node fields with dnd 2025-02-14 14:50:56 +11:00
psychedelicious
f9432d10d2 feat(ui): improved drop target styling 2025-02-14 14:50:56 +11:00
psychedelicious
0d28cd7ebe fix(ui): do not allow reparenting to self 2025-02-14 14:50:56 +11:00
psychedelicious
c9f9a2f2d4 feat(ui): dnd drop target styling 2025-02-14 14:50:56 +11:00
psychedelicious
a05d10f648 feat(ui): improved dnd hitbox for edges when center drop is allowed 2025-02-14 14:50:56 +11:00
psychedelicious
14845932fb feat(ui): dnd almost fully working (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
2aa1fc9301 feat(ui): dnd mostly working (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
98139562f3 feat(ui): dim form element while dragging 2025-02-14 14:50:56 +11:00
psychedelicious
8365bba5ba feat(ui): hacking on dnd (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
9f07e83a23 feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
1f995d0257 feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
6ae2d5ef9d feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
55973b4c66 feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
d8c6531b70 feat(ui): getPrefixedId supports custom separator 2025-02-14 14:50:56 +11:00
psychedelicious
81e385a756 feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
f6cb1a455f feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
bf60be99dc feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
bee0e8248f feat(ui): iterate on builder (WIP) 2025-02-14 14:50:56 +11:00
psychedelicious
1e658cf9e7 chore(ui): lint 2025-02-14 14:50:56 +11:00
psychedelicious
f130fa4d66 feat(ui): rough out workflow builder data structure 2025-02-14 14:50:56 +11:00
psychedelicious
02a47a6806 refactor(ui): split integer, float and string field components in prep for builder 2025-02-14 14:50:56 +11:00
psychedelicious
1063498458 revert(ui): rip out linear view config stuff 2025-02-14 14:50:56 +11:00
psychedelicious
e9a13ec882 refactor(ui): split up float and integer field renderers 2025-02-14 14:50:56 +11:00
psychedelicious
bd0765b744 feat(ui): rough out workflow builder data structure & dummy data 2025-02-14 14:50:56 +11:00
psychedelicious
6e1388f4fc fix(ui): dynamic prompts infinite recursion (wip) 2025-02-14 14:50:56 +11:00
psychedelicious
2a9f2b2fe2 feat(ui): use workflows view context 2025-02-14 14:50:56 +11:00
psychedelicious
0a6b0dc3bf feat(ui): get configurable notes display working 2025-02-14 14:50:56 +11:00
psychedelicious
8753406a6c fix(ui): color field component layout 2025-02-14 14:50:56 +11:00
psychedelicious
e2b09bed62 refactor(ui): continued reorg of components & hooks 2025-02-14 14:50:56 +11:00
psychedelicious
011910a08c refactor(ui): continued reorg of components & hooks 2025-02-14 14:50:56 +11:00
psychedelicious
bfd70be50b fix(ui): remove accidental change to zFieldInput schema 2025-02-14 14:50:56 +11:00
psychedelicious
9c53bd6a3b refactor(ui): workflows left panel internal components structure 2025-02-14 14:50:56 +11:00
psychedelicious
e479cb5fe4 refactor(ui): workflows component structure (WIP)
- Simplify and de-insane-ify component structure, hooks, selectors, etc.
- Some perf improvements by using data attributes for styling instead of dynamic CSS-in-JS.
- Add field notes and start of linear view config, got blocked when I ran into deeper layout issues that made it very difficult to handle field configs. So those are WIP in this commit.
2025-02-14 14:50:56 +11:00
psychedelicious
52947f40c3 perf(ui): use data attribute for input field wrapper styles 2025-02-14 14:50:56 +11:00
psychedelicious
bce9a23b25 feat(ui): add ViewContext so components can know where they are being rendered (user-linear view, editor-linear view, or editor-nodes view) 2025-02-14 14:50:56 +11:00
psychedelicious
2d05579568 feat(ui): clean up user-linear view styling 2025-02-14 14:50:56 +11:00
psychedelicious
11aabb5693 feat(ui): show notes icon on user-linear view, replacing info icon 2025-02-14 14:50:56 +11:00
psychedelicious
1e1e31d5b7 feat(ui): show notes icon on editor linear view 2025-02-14 14:50:56 +11:00
psychedelicious
fe86cf6d99 feat(ui): add notes popover to field title bar 2025-02-14 14:50:56 +11:00
psychedelicious
cfb63c1b81 feat(ui): add notes state to fields 2025-02-14 14:50:56 +11:00
Ryan Dick
b44415415a Use a default tile size of 1024 for VAE encode/decode operations in upscaling workflows. Previously, the model default was used (512 for SD1, 1024 for SDXL). Larger tile sizes help to prevent tiling artifacts. 2025-02-14 14:23:42 +11:00
Kevin Turner
3848e1926b chore(docker): reduce size between docker builds
by adding a layer with all the pytorch dependencies that don't change most of the time.
2025-01-18 09:10:54 -08:00
879 changed files with 39746 additions and 17348 deletions

View File

@@ -1,9 +1,11 @@
*
!invokeai
!pyproject.toml
!uv.lock
!docker/docker-entrypoint.sh
!LICENSE
**/dist
**/node_modules
**/__pycache__
**/*.egg-info
**/*.egg-info

View File

@@ -1,2 +1,5 @@
b3dccfaeb636599c02effc377cdd8a87d658256c
218b6d0546b990fc449c876fb99f44b50c4daa35
182580ff6970caed400be178c5b888514b75d7f2
8e9d5c1187b0d36da80571ce4c8ba9b3a37b6c46
99aac5870e1092b182e6c5f21abcaab6936a4ad1

3
.gitattributes vendored
View File

@@ -2,4 +2,5 @@
# Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto
docker/** text eol=lf
docker/** text eol=lf
tests/test_model_probe/stripped_models/** filter=lfs diff=lfs merge=lfs -text

10
.github/CODEOWNERS vendored
View File

@@ -1,12 +1,12 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr @jazzhaiku
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @Millu
/docs/ @lstein @blessedcoolant @hipsterusername @psychedelicious
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @psychedelicious
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant @psychedelicious @brandonrising @hipsterusername
/invokeai/app/ @blessedcoolant @psychedelicious @brandonrising @hipsterusername @jazzhaiku
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
@@ -22,7 +22,7 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
# generation, model management, postprocessing
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising @ryanjdick @hipsterusername
/invokeai/backend @lstein @blessedcoolant @brandonrising @hipsterusername @jazzhaiku
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername

View File

@@ -76,9 +76,6 @@ jobs:
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
@@ -100,10 +97,12 @@ jobs:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
build-args: |
GPU_DRIVER=${{ matrix.gpu-driver }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# cache-from: |
# type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# type=gha,scope=main-${{ matrix.gpu-driver }}
# cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}

View File

@@ -1,6 +1,6 @@
# Builds and uploads the installer and python build artifacts.
# Builds and uploads python build artifacts.
name: build installer
name: build wheel
on:
workflow_dispatch:
@@ -17,7 +17,7 @@ jobs:
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
python-version: '3.12'
cache: pip
cache-dependency-path: pyproject.toml
@@ -27,19 +27,12 @@ jobs:
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: build wheel
id: build_wheel
run: ./scripts/build_wheel.sh
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: installer
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}
path: ${{ steps.build_wheel.outputs.DIST_PATH }}

View File

@@ -44,7 +44,12 @@ jobs:
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
frontend:

View File

@@ -44,7 +44,12 @@ jobs:
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
frontend:

View File

@@ -34,6 +34,9 @@ on:
jobs:
python-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
@@ -43,7 +46,12 @@ jobs:
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
python:
@@ -52,25 +60,19 @@ jobs:
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
- name: setup uv
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
uses: astral-sh/setup-uv@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff==0.6.0
shell: bash
version: '0.6.10'
enable-cache: true
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff check --output-format=github .
run: uv tool run ruff@0.11.2 check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff format --check .
run: uv tool run ruff@0.11.2 format --check .
shell: bash

View File

@@ -39,24 +39,15 @@ jobs:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
- '3.12'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
os: ubuntu-24.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
@@ -70,14 +61,22 @@ jobs:
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
UV_SYSTEM_PYTHON: 1
steps:
- name: checkout
uses: actions/checkout@v4
# https://github.com/nschloe/action-cached-lfs-checkout
uses: nschloe/action-cached-lfs-checkout@f46300cd8952454b9f0a21a3d133d4bd5684cfc2
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
python:
@@ -86,20 +85,25 @@ jobs:
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: ${{ matrix.python-version }}
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable ".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}

View File

@@ -49,7 +49,7 @@ jobs:
always_run: true
build:
uses: ./.github/workflows/build-installer.yml
uses: ./.github/workflows/build-wheel.yml
publish-testpypi:
runs-on: ubuntu-latest

View File

@@ -42,24 +42,37 @@ jobs:
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: '3.11'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
python-version: '3.11'
- name: install python dependencies
- name: install dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: pip3 install --use-pep517 --editable="."
env:
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable .
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
@@ -72,7 +85,7 @@ jobs:
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: make frontend-typegen
run: cd invokeai/frontend/web && uv run ../../../scripts/generate_openapi_schema.py | pnpm typegen
shell: bash
- name: compare files

68
.github/workflows/uv-lock-checks.yml vendored Normal file
View File

@@ -0,0 +1,68 @@
# Check the `uv` lockfile for consistency with `pyproject.toml`.
#
# If this check fails, you should run `uv lock` to update the lockfile.
name: 'uv lock checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
uv-lock-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
uvlock-pyprojecttoml:
- 'pyproject.toml'
- 'uv.lock'
- name: setup uv
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
- name: check lockfile
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
run: uv lock --locked # this will exit with 1 if the lockfile is not consistent with pyproject.toml
shell: bash

2
.nvmrc
View File

@@ -1 +1 @@
v22.12.0
v22.14.0

View File

@@ -4,21 +4,29 @@ repos:
hooks:
- id: black
name: black
stages: [commit]
stages: [pre-commit]
language: system
entry: black
types: [python]
- id: flake8
name: flake8
stages: [commit]
stages: [pre-commit]
language: system
entry: flake8
types: [python]
- id: isort
name: isort
stages: [commit]
stages: [pre-commit]
language: system
entry: isort
types: [python]
types: [python]
- id: uvlock
name: uv lock
stages: [pre-commit]
language: system
entry: uv lock
files: ^pyproject\.toml$
pass_filenames: false

View File

@@ -16,7 +16,7 @@ help:
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "wheel Build the wheel for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
@echo "docs Serve the mkdocs site with live reload"
@@ -64,13 +64,13 @@ frontend-dev:
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
wheel:
cd scripts && ./build_wheel.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh
cd scripts && ./tag_release.sh
# Generate the OpenAPI Schema for the app
openapi:

View File

@@ -1,64 +1,8 @@
# syntax=docker/dockerfile:1.4
## Builder stage
#### Web UI ------------------------------------
FROM library/ubuntu:24.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
build-essential \
git
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
ENV VIRTUAL_ENV=/opt/venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV INVOKEAI_SRC=/opt/invokeai
ENV PYTHON_VERSION=3.11
ENV UV_COMPILE_BYTECODE=1
ENV UV_LINK_MODE=copy
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
RUN mkdir -p ${VIRTUAL_ENV} && \
mkdir -p ${INVOKEAI_SRC} && \
chmod -R a+w /opt
USER ubuntu
# Install python and create the venv
RUN uv python install ${PYTHON_VERSION} && \
uv venv --relocatable --prompt "invoke" --python ${PYTHON_VERSION} ${VIRTUAL_ENV}
WORKDIR ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
fi && \
uv pip install --python ${PYTHON_VERSION} $extra_index_url_arg -e "."
#### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
@@ -70,68 +14,100 @@ RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
#### Runtime stage ---------------------------------------
## Backend ---------------------------------------
FROM library/ubuntu:24.04 AS runtime
FROM library/ubuntu:24.04
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
magic-wormhole \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
UV_INDEX="https://download.pytorch.org/whl/cu124" \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv
ENV PYTHON_VERSION=3.11
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
ARG GPU_DRIVER=cuda
# Install `uv` for package management
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
USER ubuntu
RUN uv python install ${PYTHON_VERSION}
USER root
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then UV_INDEX="https://download.pytorch.org/whl/rocm6.2"; \
fi && \
uv sync --frozen
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then UV_INDEX="https://download.pytorch.org/whl/rocm6.2"; \
fi && \
uv pip install -e .

View File

@@ -1,41 +1,50 @@
# Release Process
The app is published in twice, in different build formats.
The Invoke application is published as a python package on [PyPI]. This includes both a source distribution and built distribution (a wheel).
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
Most users install it with the [Launcher](https://github.com/invoke-ai/launcher/), others with `pip`.
The launcher uses GitHub as the source of truth for available releases.
## Broad Strokes
- Merge all changes and bump the version in the codebase.
- Tag the release commit.
- Wait for the release workflow to complete.
- Approve the PyPI publish jobs.
- Write GH release notes.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
Make a developer call-out for PRs to merge. Merge and test things out. Bump the version by editing `invokeai/version/invokeai_version.py`.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
It is triggered on **tag push**, when the tag matches `v*`.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
Ensure all commits that should be in the release are merged, and you have pulled them locally.
The release may also be dispatched [manually].
Double-check that you have checked out the commit that will represent the release (typically the latest commit on `main`).
Run `make tag-release` to tag the current commit and kick off the workflow. You will be prompted to provide a message - use the version specifier.
If this version's tag already exists for some reason (maybe you had to make a last minute change), the script will overwrite it.
> In case you cannot use the Make target, the release may also be dispatched [manually] via GH.
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The workflow consists of a number of concurrently-run checks and tests, then two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job ensures that the `invokeai` python package version specifier matches the tag for the release. The version specifier is pulled from the `__version__` variable in `invokeai/version/invokeai_version.py`.
This job uses [samuelcolvin/check-python-version].
@@ -43,62 +52,47 @@ This job uses [samuelcolvin/check-python-version].
#### Check and Test Jobs
Next, these jobs run and must pass. They are the same jobs that are run for every PR.
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
- **`typegen-checks`**: ensures the frontend and backend types are synced
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
#### `build-wheel` Job
> **TODO** We should add an end-to-end test job that generates an image.
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `./scripts/build_wheel.sh` and uploads `dist.zip`, which contains the wheel and unarchived build.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
You don't need to download or test these artifacts.
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval. Time to test the installer.
At this point, the release workflow pauses as the remaining publish jobs require approval.
Because the installer pulls from PyPI, and we haven't published to PyPI yet, you will need to install from the wheel:
It's possible to test the python package before it gets published to PyPI. We've never had problems with it, so it's not necessary to do this.
- Download and unzip `dist.zip` and the installer from the **Summary** tab of the workflow
- Run the installer script using the `--wheel` CLI arg, pointing at the wheel:
But, if you want to be extra-super careful, here's how to test it:
```sh
./install.sh --wheel ../InvokeAI-4.0.0rc6-py3-none-any.whl
```
- Install to a temporary directory so you get the new user experience
- Download a model and generate
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation as if the installer got the wheel from PyPI.
- Download the `dist.zip` build artifact from the `build-wheel` job
- Unzip it and find the wheel file
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/) - but instead of installing from PyPI, install from the wheel
- Test the app
##### Something isn't right
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?).
Now you can start from the top:
- Fix the issues and PR the fixes per usual
- Get the PR approved and merged per usual
- Switch to `main` and pull in the fixes
- Run `make tag-release` to move the tag to `HEAD` (which has the fixes) and kick off the release workflow again
- Re-do the sanity check
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?) and start over.
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
The publish jobs will not run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
Both jobs require a @hipsterusername or @psychedelicious to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Select the environment (either `testpypi` or `pypi` - typically you select both)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
@@ -113,46 +107,33 @@ If there are no incidents, contact @hipsterusername or @lstein, who have owner a
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release for some reason:
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
- Approve this publish job without approving the prod publish
- Let it finish
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/), making sure to use the Test PyPI index URL: `https://test.pypi.org/simple/`
- Test the app
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
It's a good idea to wait to approve and run this job until you have the release notes ready!
Once the release is published to PyPI, it's time to publish the GitHub release.
## Prep and publish the GitHub Release
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
1. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
1. Use `scripts/get_external_contributions.py` to get a list of external contributions to shout out in the release notes.
1. Upload the zip file created in **`build`** job into the Assets section of the release notes.
1. Check **Set as a pre-release** if it's a pre-release.
1. Check **Create a discussion for this release**.
1. Publish the release.
1. Announce the release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
2. The **Generate release notes** button automatically inserts the changelog and new contributors. Make sure to select the correct tags for this release and the last stable release. GH often selects the wrong tags - do this manually.
3. Write the release notes, describing important changes. Contributions from community members should be shouted out. Use the GH-generated changelog to see all contributors. If there are Weblate translation updates, open that PR and shout out every person who contributed a translation.
4. Check **Set as a pre-release** if it's a pre-release.
5. Approve and wait for the `publish-pypi` job to finish if you haven't already.
6. Publish the GH release.
7. Post the release in Discord in the [releases](https://discord.com/channels/1020123559063990373/1149260708098359327) channel with abbreviated notes. For example:
> Invoke v5.7.0 (stable): <https://github.com/invoke-ai/InvokeAI/releases/tag/v5.7.0>
>
> It's a pretty big one - Form Builder, Metadata Nodes (thanks @SkunkWorxDark!), and much more.
8. Right click the message in releases and copy the link to it. Then, post that link in the [new-release-discussion](https://discord.com/channels/1020123559063990373/1149506274971631688) channel. For example:
> Invoke v5.7.0 (stable): <https://discord.com/channels/1020123559063990373/1149260708098359327/1344521744916021248>
## Manual Release
@@ -160,12 +141,10 @@ The `release` workflow can be dispatched manually. You must dispatch the workflo
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version

View File

@@ -18,9 +18,19 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
3. This repository uses Git LFS to manage large files. To ensure all assets are downloaded:
- Install git-lfs → [Download here](https://git-lfs.com/)
- Enable automatic LFS fetching for this repository:
```shell
git config lfs.fetchinclude "*"
```
- Fetch files from LFS (only needs to be done once; subsequent `git pull` will fetch changes automatically):
```
git lfs pull
```
4. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Follow the [manual install][manual install link] guide, with some modifications to the install command:
5. Follow the [manual install][manual install link] guide, with some modifications to the install command:
- Use `.` instead of `invokeai` to install from the current directory. You don't need to specify the version.
@@ -31,22 +41,22 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
With the modifications made, the install command should look something like this:
```sh
uv pip install -e ".[dev,test,docs,xformers]" --python 3.11 --python-preference only-managed --index=https://download.pytorch.org/whl/cu124 --reinstall
uv pip install -e ".[dev,test,docs,xformers]" --python 3.12 --python-preference only-managed --index=https://download.pytorch.org/whl/cu126 --reinstall
```
5. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
6. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
This is because the UI build is not distributed with the source code. You need to build it manually. End the running server instance.
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
6. Install the frontend dev toolchain:
7. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
7. Do a production build of the frontend:
8. Do a production build of the frontend:
```sh
cd <PATH_TO_INVOKEAI_REPO>/invokeai/frontend/web
@@ -54,7 +64,7 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
pnpm build
```
8. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
9. Restart the server and navigate to the URL. You should get a UI. After making changes to the python code, restart the server to see those changes.
## Updating the UI

View File

@@ -31,6 +31,7 @@ It is possible to fine-tune the settings for best performance or if you still ge
Low-VRAM mode involves 4 features, each of which can be configured or fine-tuned:
- Partial model loading (`enable_partial_loading`)
- PyTorch CUDA allocator config (`pytorch_cuda_alloc_conf`)
- Dynamic RAM and VRAM cache sizes (`max_cache_ram_gb`, `max_cache_vram_gb`)
- Working memory (`device_working_mem_gb`)
- Keeping a RAM weight copy (`keep_ram_copy_of_weights`)
@@ -51,6 +52,16 @@ As described above, you can enable partial model loading by adding this line to
enable_partial_loading: true
```
### PyTorch CUDA allocator config
The PyTorch CUDA allocator's behavior can be configured using the `pytorch_cuda_alloc_conf` config. Tuning the allocator configuration can help to reduce the peak reserved VRAM. The optimal configuration is dependent on many factors (e.g. device type, VRAM, CUDA driver version, etc.), but switching from PyTorch's native allocator to using CUDA's built-in allocator works well on many systems. To try this, add the following line to your `invokeai.yaml` file:
```yaml
pytorch_cuda_alloc_conf: "backend:cudaMallocAsync"
```
A more complete explanation of the available configuration options is [here](https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf).
### Dynamic RAM and VRAM cache sizes
Loading models from disk is slow and can be a major bottleneck for performance. Invoke uses two model caches - RAM and VRAM - to reduce loading from disk to a minimum.
@@ -75,24 +86,26 @@ But, if your GPU has enough VRAM to hold models fully, you might get a perf boos
# As an example, if your system has 32GB of RAM and no other heavy processes, setting the `max_cache_ram_gb` to 28GB
# might be a good value to achieve aggressive model caching.
max_cache_ram_gb: 28
# The default max cache VRAM size is adjusted dynamically based on the amount of available VRAM (taking into
# consideration the VRAM used by other processes).
# You can override the default value by setting `max_cache_vram_gb`. Note that this value takes precedence over the
# `device_working_mem_gb`.
# It is recommended to set the VRAM cache size to be as large as possible while leaving enough room for the working
# memory of the tasks you will be doing. For example, on a 24GB GPU that will be running unquantized FLUX without any
# auxiliary models, 18GB might be a good value.
max_cache_vram_gb: 18
# You can override the default value by setting `max_cache_vram_gb`.
# CAUTION: Most users should not manually set this value. See warning below.
max_cache_vram_gb: 16
```
!!! tip "Max safe value for `max_cache_vram_gb`"
!!! warning "Max safe value for `max_cache_vram_gb`"
To determine the max safe value for `max_cache_vram_gb`, subtract `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
Most users should not manually configure the `max_cache_vram_gb`. This configuration value takes precedence over the `device_working_mem_gb` and any operations that explicitly reserve additional working memory (e.g. VAE decode). As such, manually configuring it increases the likelihood of encountering out-of-memory errors.
For users who wish to configure `max_cache_vram_gb`, the max safe value can be determined by subtracting `device_working_mem_gb` from your GPU's VRAM. As described below, the default for `device_working_mem_gb` is 3GB.
For example, if you have a 12GB GPU, the max safe value for `max_cache_vram_gb` is `12GB - 3GB = 9GB`.
If you had increased `device_working_mem_gb` to 4GB, then the max safe value for `max_cache_vram_gb` is `12GB - 4GB = 8GB`.
Most users who override `max_cache_vram_gb` are doing so because they wish to use significantly less VRAM, and should be setting `max_cache_vram_gb` to a value significantly less than the 'max safe value'.
### Working memory
Invoke cannot use _all_ of your VRAM for model caching and loading. It requires some VRAM to use as working memory for various operations.

View File

@@ -1,121 +0,0 @@
# Legacy Scripts
!!! warning "Legacy Scripts"
We recommend using the Invoke Launcher to install and update Invoke. It's a desktop application for Windows, macOS and Linux. It takes care of a lot of nitty gritty details for you.
Follow the [quick start guide](./quick_start.md) to get started.
!!! tip "Use the installer to update"
Using the installer for updates will not erase any of your data (images, models, boards, etc). It only updates the core libraries used to run Invoke.
Simply use the same path you installed to originally to update your existing installation.
Both release and pre-release versions can be installed using the installer. It also supports install through a wheel if needed.
Be sure to review the [installation requirements] and ensure your system has everything it needs to install Invoke.
## Getting the Latest Installer
Download the `InvokeAI-installer-vX.Y.Z.zip` file from the [latest release] page. It is at the bottom of the page, under **Assets**.
After unzipping the installer, you should have a `InvokeAI-Installer` folder with some files inside, including `install.bat` and `install.sh`.
## Running the Installer
!!! tip
Windows users should first double-click the `WinLongPathsEnabled.reg` file to prevent a failed installation due to long file paths.
Double-click the install script:
=== "Windows"
```sh
install.bat
```
=== "Linux/macOS"
```sh
install.sh
```
!!! info "Running the Installer from the commandline"
You can also run the install script from cmd/powershell (Windows) or terminal (Linux/macOS).
!!! warning "Untrusted Publisher (Windows)"
You may get a popup saying the file comes from an `Untrusted Publisher`. Click `More Info` and `Run Anyway` to get past this.
The installation process is simple, with a few prompts:
- Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version).
- Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements].
- Select a GPU device.
!!! info "Slow Installation"
The installer needs to download several GB of data and install it all. It may appear to get stuck at 99.9% when installing `pytorch` or during a step labeled "Installing collected packages".
If it is stuck for over 10 minutes, something has probably gone wrong and you should close the window and restart.
## Running the Application
Find the install location you selected earlier. Double-click the launcher script to run the app:
=== "Windows"
```sh
invoke.bat
```
=== "Linux/macOS"
```sh
invoke.sh
```
Choose the first option to run the UI. After a series of startup messages, you'll see something like this:
```sh
Uvicorn running on http://127.0.0.1:9090 (Press CTRL+C to quit)
```
Copy the URL into your browser and you should see the UI.
## Improved Outpainting with PatchMatch
PatchMatch is an extra add-on that can improve outpainting. Windows users are in luck - it works out of the box.
On macOS and Linux, a few extra steps are needed to set it up. See the [PatchMatch installation guide](./patchmatch.md).
## First-time Setup
You will need to [install some models] before you can generate.
Check the [configuration docs] for details on configuring the application.
## Updating
Updating is exactly the same as installing - download the latest installer, choose the latest version, enter your existing installation path, and the app will update. None of your data (images, models, boards, etc) will be erased.
!!! info "Dependency Resolution Issues"
We've found that pip's dependency resolution can cause issues when upgrading packages. One very common problem was pip "downgrading" torch from CUDA to CPU, but things broke in other novel ways.
The installer doesn't have this kind of problem, so we use it for updating as well.
## Installation Issues
If you have installation issues, please review the [FAQ]. You can also [create an issue] or ask for help on [discord].
[installation requirements]: ./requirements.md
[FAQ]: ../faq.md
[install some models]: ./models.md
[configuration docs]: ../configuration.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy

View File

@@ -43,10 +43,10 @@ The following commands vary depending on the version of Invoke being installed a
3. Create a virtual environment in that directory:
```sh
uv venv --relocatable --prompt invoke --python 3.11 --python-preference only-managed .venv
uv venv --relocatable --prompt invoke --python 3.12 --python-preference only-managed .venv
```
This command creates a portable virtual environment at `.venv` complete with a portable python 3.11. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
This command creates a portable virtual environment at `.venv` complete with a portable python 3.12. It doesn't matter if your system has no python installed, or has a different version - `uv` will handle everything.
4. Activate the virtual environment:
@@ -64,14 +64,21 @@ The following commands vary depending on the version of Invoke being installed a
5. Choose a version to install. Review the [GitHub releases page](https://github.com/invoke-ai/InvokeAI/releases).
6. Determine the package package specifier to use when installing. This is a performance optimization.
6. Determine the package specifier to use when installing. This is a performance optimization.
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
=== "Invoke v5 or later"
=== "Invoke v5.10.0 and later"
- If you are on Windows or Linux with an Nvidia GPU, use `https://download.pytorch.org/whl/cu126`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.2.4`.
- **In all other cases, do not use an index.**
=== "Invoke v5.0.0 to v5.9.1"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
@@ -88,13 +95,13 @@ The following commands vary depending on the version of Invoke being installed a
8. Install the `invokeai` package. Substitute the package specifier and version.
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --force-reinstall
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --force-reinstall
```
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.11 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
```
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:

View File

@@ -49,9 +49,9 @@ If you have an existing Invoke installation, you can select it and let the launc
!!! warning "Problem running the launcher on macOS"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can either use the [legacy scripts](./legacy_scripts.md) to install, or manually flag the launcher as safe:
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can manually flag the launcher as safe:
- Open the **Invoke-Installer-mac-arm64.dmg** file.
- Open the **Invoke Community Edition.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
@@ -117,7 +117,6 @@ If you still have problems, ask for help on the Invoke [discord](https://discord
- You can install the Invoke application as a python package. See our [manual install](./manual.md) docs.
- You can run Invoke with docker. See our [docker install](./docker.md) docs.
- You can still use our legacy scripts to install and run Invoke. See the [legacy scripts](./legacy_scripts.md) docs.
## Need Help?

View File

@@ -41,7 +41,7 @@ The requirements below are rough guidelines for best performance. GPUs with less
You don't need to do this if you are installing with the [Invoke Launcher](./quick_start.md).
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Invoke requires python 3.10 through 3.12. If you don't already have one of these versions installed, we suggest installing 3.12, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python3 --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
@@ -49,19 +49,19 @@ Check that your system has an up-to-date Python installed by running `python3 --
=== "Windows"
- Install python 3.11 with [an official installer].
- Install python with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
=== "macOS"
- Install python 3.11 with [an official installer].
- Install python with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
=== "Linux"
- Installing python varies depending on your system. On Ubuntu, you can use the [deadsnakes PPA](https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa).
- Installing python varies depending on your system. We recommend [using `uv` to manage your python installation](https://docs.astral.sh/uv/concepts/python-versions/#installing-a-python-version).
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers

Binary file not shown.

View File

@@ -1,128 +0,0 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
@rem This script requires the user to install Python 3.10 or higher. All other
@rem requirements are downloaded as needed.
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
@rem Config
@rem The version in the next line is replaced by an up to date release number
@rem when create_installer.sh is run. Change the release number there.
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/help/FAQ/
set PYTHON_URL=https://www.python.org/downloads/windows/
set MINIMUM_PYTHON_VERSION=3.10.0
set PYTHON_URL=https://www.python.org/downloads/release/python-3109/
set err_msg=An error has occurred and the script could not continue.
@rem --------------------------- Intro -------------------------------
echo This script will install InvokeAI and its dependencies.
echo.
echo BEFORE YOU START PLEASE MAKE SURE TO DO THE FOLLOWING
echo 1. Install python 3.10 or 3.11. Python version 3.9 is no longer supported.
echo 2. Double-click on the file WinLongPathsEnabled.reg in order to
echo enable long path support on your system.
echo 3. Install the Visual C++ core libraries.
echo Please download and install the libraries from:
echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
echo.
echo See %INSTRUCTIONS% for more details.
echo.
echo FOR THE BEST USER EXPERIENCE WE SUGGEST MAXIMIZING THIS WINDOW NOW.
pause
@rem ---------------------------- check Python version ---------------
echo ***** Checking and Updating Python *****
call python --version >.tmp1 2>.tmp2
if %errorlevel% == 1 (
set err_msg=Please install Python 3.10-11. See %INSTRUCTIONS% for details.
goto err_exit
)
for /f "tokens=2" %%i in (.tmp1) do set python_version=%%i
if "%python_version%" == "" (
set err_msg=No python was detected on your system. Please install Python version %MINIMUM_PYTHON_VERSION% or higher. We recommend Python 3.10.12 from %PYTHON_URL%
goto err_exit
)
call :compareVersions %MINIMUM_PYTHON_VERSION% %python_version%
if %errorlevel% == 1 (
set err_msg=Your version of Python is too low. You need at least %MINIMUM_PYTHON_VERSION% but you have %python_version%. We recommend Python 3.10.12 from %PYTHON_URL%
goto err_exit
)
@rem Cleanup
del /q .tmp1 .tmp2
@rem -------------- Install and Configure ---------------
call python .\lib\main.py
pause
exit /b
@rem ------------------------ Subroutines ---------------
@rem routine to do comparison of semantic version numbers
@rem found at https://stackoverflow.com/questions/15807762/compare-version-numbers-in-batch-file
:compareVersions
::
:: Compares two version numbers and returns the result in the ERRORLEVEL
::
:: Returns 1 if version1 > version2
:: 0 if version1 = version2
:: -1 if version1 < version2
::
:: The nodes must be delimited by . or , or -
::
:: Nodes are normally strictly numeric, without a 0 prefix. A letter suffix
:: is treated as a separate node
::
setlocal enableDelayedExpansion
set "v1=%~1"
set "v2=%~2"
call :divideLetters v1
call :divideLetters v2
:loop
call :parseNode "%v1%" n1 v1
call :parseNode "%v2%" n2 v2
if %n1% gtr %n2% exit /b 1
if %n1% lss %n2% exit /b -1
if not defined v1 if not defined v2 exit /b 0
if not defined v1 exit /b -1
if not defined v2 exit /b 1
goto :loop
:parseNode version nodeVar remainderVar
for /f "tokens=1* delims=.,-" %%A in ("%~1") do (
set "%~2=%%A"
set "%~3=%%B"
)
exit /b
:divideLetters versionVar
for %%C in (a b c d e f g h i j k l m n o p q r s t u v w x y z) do set "%~1=!%~1:%%C=.%%C!"
exit /b
:err_exit
echo %err_msg%
echo The installer will exit now.
pause
exit /b
pause
:Trim
SetLocal EnableDelayedExpansion
set Params=%*
for /f "tokens=1*" %%a in ("!Params!") do EndLocal & set %1=%%b
exit /b

View File

@@ -1,40 +0,0 @@
#!/bin/bash
# make sure we are not already in a venv
# (don't need to check status)
deactivate >/dev/null 2>&1
scriptdir=$(dirname "$0")
cd $scriptdir
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
MINIMUM_PYTHON_VERSION=3.10.0
MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON=""
for candidate in python3.11 python3.10 python3 python ; do
if ppath=`which $candidate 2>/dev/null`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
python_version=$($ppath -V | awk '{ print $2 }')
if [ $(version $python_version) -ge $(version "$MINIMUM_PYTHON_VERSION") ]; then
if [ $(version $python_version) -le $(version "$MAXIMUM_PYTHON_VERSION") ]; then
PYTHON=$ppath
break
fi
fi
fi
done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
read -p "Press any key to exit"
exit -1
fi
echo "For the best user experience we suggest enlarging or maximizing this window now."
exec $PYTHON ./lib/main.py ${@}
read -p "Press any key to exit"

View File

@@ -1,438 +0,0 @@
# Copyright (c) 2023 Eugene Brodsky (https://github.com/ebr)
"""
InvokeAI installer script
"""
import locale
import os
import platform
import re
import shutil
import subprocess
import sys
import venv
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Tuple
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
DOCS_URL = "https://invoke-ai.github.io/InvokeAI/"
DISCORD_URL = "https://discord.gg/ZmtBAhwWhy"
OS = platform.uname().system
ARCH = platform.uname().machine
VERSION = "latest"
def get_version_from_wheel_filename(wheel_filename: str) -> str:
match = re.search(r"-(\d+\.\d+\.\d+)", wheel_filename)
if match:
version = match.group(1)
return version
else:
raise ValueError(f"Could not extract version from wheel filename: {wheel_filename}")
class Installer:
"""
Deploys an InvokeAI installation into a given path
"""
reqs: list[str] = INSTALLER_REQS
def __init__(self) -> None:
if os.getenv("VIRTUAL_ENV") is not None:
print("A virtual environment is already activated. Please 'deactivate' before installation.")
sys.exit(-1)
self.bootstrap()
self.available_releases = get_github_releases()
def mktemp_venv(self) -> TemporaryDirectory[str]:
"""
Creates a temporary virtual environment for the installer itself
:return: path to the created virtual environment directory
:rtype: TemporaryDirectory
"""
# Cleaning up temporary directories on Windows results in a race condition
# and a stack trace.
# `ignore_cleanup_errors` was only added in Python 3.10
if OS == "Windows" and int(platform.python_version_tuple()[1]) >= 10:
venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX, ignore_cleanup_errors=True)
else:
venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX)
venv.create(venv_dir.name, with_pip=True)
self.venv_dir = venv_dir
set_sys_path(Path(venv_dir.name))
return venv_dir
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory[str] | None:
"""
Bootstrap the installer venv with packages required at install time
"""
print("Initializing the installer. This may take a minute - please wait...")
venv_dir = self.mktemp_venv()
pip = get_pip_from_venv(Path(venv_dir.name))
cmd = [pip, "install", "--require-virtualenv", "--use-pep517"]
cmd.extend(self.reqs)
try:
# upgrade pip to the latest version to avoid a confusing message
res = upgrade_pip(Path(venv_dir.name))
if verbose:
print(res)
# run the install prerequisites installation
res = subprocess.check_output(cmd).decode()
if verbose:
print(res)
return venv_dir
except subprocess.CalledProcessError as e:
print(e)
def app_venv(self, venv_parent: Path) -> Path:
"""
Create a virtualenv for the InvokeAI installation
"""
venv_dir = venv_parent / ".venv"
# Prefer to copy python executables
# so that updates to system python don't break InvokeAI
try:
venv.create(venv_dir, with_pip=True)
# If installing over an existing environment previously created with symlinks,
# the executables will fail to copy. Keep symlinks in that case
except shutil.SameFileError:
venv.create(venv_dir, with_pip=True, symlinks=True)
return venv_dir
def install(
self,
root: str = "~/invokeai",
yes_to_all: bool = False,
find_links: Optional[str] = None,
wheel: Optional[Path] = None,
) -> None:
"""Install the InvokeAI application into the given runtime path
Args:
root: Destination path for the installation
yes_to_all: Accept defaults to all questions
find_links: A local directory to search for requirement wheels before going to remote indexes
wheel: A wheel file to install
"""
import messages
if wheel:
messages.installing_from_wheel(wheel.name)
version = get_version_from_wheel_filename(wheel.name)
else:
messages.welcome(self.available_releases)
version = messages.choose_version(self.available_releases)
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
destination = auto_dest if yes_to_all else messages.dest_path(root)
if destination is None:
print("Could not find or create the destination directory. Installation cancelled.")
sys.exit(0)
# create the venv for the app
self.venv = self.app_venv(venv_parent=destination)
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version)
# install dependencies and the InvokeAI application
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
self.instance.install(extra_index_url, optional_modules, find_links, wheel)
# install the launch/update scripts into the runtime directory
self.instance.install_user_scripts()
message = f"""
*** Installation Successful ***
To start the application, run:
{destination}/invoke.{"bat" if sys.platform == "win32" else "sh"}
For more information, troubleshooting and support, visit our docs at:
{DOCS_URL}
Join the community on Discord:
{DISCORD_URL}
"""
print(message)
class InvokeAiInstance:
"""
Manages an installed instance of InvokeAI, comprising a virtual environment and a runtime directory.
The virtual environment *may* reside within the runtime directory.
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
"""
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None:
self.runtime = runtime
self.venv = venv
self.pip = get_pip_from_venv(venv)
self.version = version
set_sys_path(venv)
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
upgrade_pip(venv)
def get(self) -> tuple[Path, Path]:
"""
Get the location of the virtualenv directory for this installation
:return: Paths of the runtime and the venv directory
:rtype: tuple[Path, Path]
"""
return (self.runtime, self.venv)
def install(
self,
extra_index_url: Optional[str] = None,
optional_modules: Optional[str] = None,
find_links: Optional[str] = None,
wheel: Optional[Path] = None,
):
"""Install the package from PyPi or a wheel, if provided.
Args:
extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
optional_modules: optional modules to install using "[module1,module2]" format.
find_links: path to a directory containing wheels to be searched prior to going to the internet
wheel: a wheel file to install
"""
import messages
# not currently used, but may be useful for "install most recent version" option
if self.version == "prerelease":
version = None
pre_flag = "--pre"
elif self.version == "stable":
version = None
pre_flag = None
else:
version = self.version
pre_flag = None
src = "invokeai"
if optional_modules:
src += optional_modules
if version:
src += f"=={version}"
messages.simple_banner("Installing the InvokeAI Application :art:")
from plumbum import FG, ProcessExecutionError, local
pip = local[self.pip]
# Uninstall xformers if it is present; the correct version of it will be reinstalled if needed
_ = pip["uninstall", "-yqq", "xformers"] & FG
pipeline = pip[
"install",
"--require-virtualenv",
"--force-reinstall",
"--use-pep517",
str(src) if not wheel else str(wheel),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre_flag if not wheel else None, # Ignore the flag if we are installing a wheel
]
try:
_ = pipeline & FG
except ProcessExecutionError as e:
print(f"Error: {e}")
print(
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
)
sys.exit(1)
def install_user_scripts(self):
"""
Copy the launch and update scripts to the runtime dir
"""
ext = "bat" if OS == "Windows" else "sh"
scripts = ["invoke"]
for script in scripts:
src = Path(__file__).parent / ".." / "templates" / f"{script}.{ext}.in"
dest = self.runtime / f"{script}.{ext}"
shutil.copy(src, dest)
os.chmod(dest, 0o0755)
### Utility functions ###
def get_pip_from_venv(venv_path: Path) -> str:
"""
Given a path to a virtual environment, get the absolute path to the `pip` executable
in a cross-platform fashion. Does not validate that the pip executable
actually exists in the virtualenv.
:param venv_path: Path to the virtual environment
:type venv_path: Path
:return: Absolute path to the pip executable
:rtype: str
"""
pip = "Scripts\\pip.exe" if OS == "Windows" else "bin/pip"
return str(venv_path.expanduser().resolve() / pip)
def upgrade_pip(venv_path: Path) -> str | None:
"""
Upgrade the pip executable in the given virtual environment
"""
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode(
encoding=locale.getpreferredencoding()
)
except subprocess.CalledProcessError as e:
print(e)
result = None
return result
def set_sys_path(venv_path: Path) -> None:
"""
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
such that packages from the given venv may be imported in the current process.
Ensure that the packages from system environment are not visible (emulate
the virtual env 'activate' script) - this doesn't work on Windows yet.
:param venv_path: Path to the virtual environment
:type venv_path: Path
"""
# filter out any paths in sys.path that may be system- or user-wide
# but leave the temporary bootstrap virtualenv as it contains packages we
# temporarily need at install time
sys.path = list(filter(lambda p: not p.endswith("-packages") or p.find(BOOTSTRAP_VENV_PREFIX) != -1, sys.path))
# determine site-packages/lib directory location for the venv
lib = "Lib" if OS == "Windows" else f"lib/python{sys.version_info.major}.{sys.version_info.minor}"
# add the site-packages location to the venv
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_github_releases() -> tuple[list[str], list[str]] | None:
"""
Query Github for published (pre-)release versions.
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
Return None if the query fails for any reason.
"""
import requests
## get latest releases using github api
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
releases: list[str] = []
pre_releases: list[str] = []
try:
res = requests.get(url)
res.raise_for_status()
tag_info = res.json()
for tag in tag_info:
if not tag["prerelease"]:
releases.append(tag["tag_name"].lstrip("v"))
else:
pre_releases.append(tag["tag_name"].lstrip("v"))
except requests.HTTPError as e:
print(f"Error: {e}")
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
return
except Exception as e:
print(f"Error: {e}")
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
return
releases.sort(reverse=True)
pre_releases.sort(reverse=True)
return releases, pre_releases
def get_torch_source() -> Tuple[str | None, str | None]:
"""
Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use.
This is only applicable to Windows and Linux, since PyTorch does not
offer accelerated builds for macOS.
Prefer CUDA-enabled wheels if the user wasn't sure of their GPU, as it will fallback to CPU if possible.
A NoneType return means just go to PyPi.
:return: tuple consisting of (extra index url or None, optional modules to load or None)
:rtype: list
"""
from messages import GpuType, select_gpu
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
# The correct extra index URLs for torch are inconsistent, see https://pytorch.org/get-started/locally/#start-locally
url = None
optional_modules: str | None = None
if OS == "Linux":
if device == GpuType.ROCM:
url = "https://download.pytorch.org/whl/rocm6.1"
elif device == GpuType.CPU:
url = "https://download.pytorch.org/whl/cpu"
elif device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif OS == "Windows":
if device == GpuType.CUDA:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[onnx-cuda]"
elif device == GpuType.CUDA_WITH_XFORMERS:
url = "https://download.pytorch.org/whl/cu124"
optional_modules = "[xformers,onnx-cuda]"
elif device.value == "cpu":
# CPU uses the default PyPi index, no optional modules
pass
elif OS == "Darwin":
# macOS uses the default PyPi index, no optional modules
pass
# Fall back to defaults
return (url, optional_modules)

View File

@@ -1,57 +0,0 @@
"""
InvokeAI Installer
"""
import argparse
import os
from pathlib import Path
from installer import Installer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--root",
dest="root",
type=str,
help="Destination path for installation",
default=os.environ.get("INVOKEAI_ROOT") or "~/invokeai",
)
parser.add_argument(
"-y",
"--yes",
"--yes-to-all",
dest="yes_to_all",
action="store_true",
help="Assume default answers to all questions",
default=False,
)
parser.add_argument(
"--find-links",
dest="find_links",
help="Specifies a directory of local wheel files to be searched prior to searching the online repositories.",
type=Path,
default=None,
)
parser.add_argument(
"--wheel",
dest="wheel",
help="Specifies a wheel for the InvokeAI package. Used for troubleshooting or testing prereleases.",
type=Path,
default=None,
)
args = parser.parse_args()
inst = Installer()
try:
inst.install(**args.__dict__)
except KeyboardInterrupt:
print("\n")
print("Ctrl-C pressed. Aborting.")
print("Come back soon!")

View File

@@ -1,342 +0,0 @@
# Copyright (c) 2023 Eugene Brodsky (https://github.com/ebr)
"""
Installer user interaction
"""
import os
import platform
from enum import Enum
from pathlib import Path
from typing import Optional
from prompt_toolkit import prompt
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter
from prompt_toolkit.validation import Validator
from rich import box, print
from rich.console import Console, Group, group
from rich.panel import Panel
from rich.prompt import Confirm
from rich.style import Style
from rich.syntax import Syntax
from rich.text import Text
OS = platform.uname().system
ARCH = platform.uname().machine
if OS == "Windows":
# Windows terminals look better without a background colour
console = Console(style=Style(color="grey74"))
else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def welcome(available_releases: tuple[list[str], list[str]] | None = None) -> None:
@group()
def text():
if (platform_specific := _platform_specific_help()) is not None:
yield platform_specific
yield ""
yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
if available_releases is not None:
latest_stable = available_releases[0][0]
last_pre = available_releases[1][0]
yield ""
yield Text.from_markup(
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
)
yield Text.from_markup(
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
)
console.rule()
print(
Panel(
title="[bold wheat1]Welcome to the InvokeAI Installer",
renderable=text(),
box=box.DOUBLE,
expand=True,
padding=(1, 2),
style=Style(bgcolor="grey23", color="orange1"),
subtitle=f"[bold grey39]{OS}-{ARCH}",
)
)
console.line()
def installing_from_wheel(wheel_filename: str) -> None:
"""Display a message about installing from a wheel"""
@group()
def text():
yield Text.from_markup(f"You are installing from a wheel file: [bold]{wheel_filename}\n")
yield Text.from_markup(
"[bold orange3]If you are not sure why you are doing this, you should cancel and install InvokeAI normally."
)
console.print(
Panel(
title="Installing from Wheel",
renderable=text(),
box=box.DOUBLE,
expand=True,
padding=(1, 2),
)
)
should_proceed = Confirm.ask("Do you want to proceed?")
if not should_proceed:
console.print("Installation cancelled.")
exit()
def choose_version(available_releases: tuple[list[str], list[str]] | None = None) -> str:
"""
Prompt the user to choose an Invoke version to install
"""
# short circuit if we couldn't get a version list
# still try to install the latest stable version
if available_releases is None:
return "stable"
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
choices = available_releases[0] + available_releases[1]
response = prompt(
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
console.line()
return "stable" if response == "" else response
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":stop_sign: Directory {dest} already exists!")
print(" Is this location correct?")
default = False
else:
print(f":file_folder: InvokeAI will be installed in {dest}")
default = True
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
console.line()
return dest_confirmed
def dest_path(dest: Optional[str | Path] = None) -> Path | None:
"""
Prompt the user for the destination path and create the path
:param dest: a filesystem path, defaults to None
:type dest: str, optional
:return: absolute path to the created installation directory
:rtype: Path
"""
if dest is not None:
dest = Path(dest).expanduser().resolve()
else:
dest = Path.cwd().expanduser().resolve()
prev_dest = init_path = dest
dest_confirmed = False
while not dest_confirmed:
browse_start = (dest or Path.cwd()).expanduser().resolve()
path_completer = PathCompleter(
only_directories=True,
expanduser=True,
get_paths=lambda: [str(browse_start)], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
)
console.line()
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
selected = prompt(
">>> ",
complete_in_thread=True,
completer=path_completer,
default=str(browse_start) + os.sep,
vi_mode=True,
complete_while_typing=True,
# Test that this is not needed on Windows
# complete_style=CompleteStyle.READLINE_LIKE,
)
prev_dest = dest
dest = Path(selected)
console.line()
dest_confirmed = confirm_install(dest.expanduser().resolve())
if not dest_confirmed:
dest = prev_dest
dest = dest.expanduser().resolve()
try:
dest.mkdir(exist_ok=True, parents=True)
return dest
except PermissionError:
console.print(
f"Failed to create directory {dest} due to insufficient permissions",
style=Style(color="red"),
highlight=True,
)
except OSError:
console.print_exception()
if Confirm.ask("Would you like to try again?"):
dest_path(init_path)
else:
console.rule("Goodbye!")
class GpuType(Enum):
CUDA_WITH_XFORMERS = "xformers"
CUDA = "cuda"
ROCM = "rocm"
CPU = "cpu"
def select_gpu() -> GpuType:
"""
Prompt the user to select the GPU driver
"""
if ARCH == "arm64" and OS != "Darwin":
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
return GpuType.CPU
nvidia = (
"an [gold1 b]NVIDIA[/] RTX 3060 or newer GPU using CUDA",
GpuType.CUDA,
)
vintage_nvidia = (
"an [gold1 b]NVIDIA[/] RTX 20xx or older GPU using CUDA+xFormers",
GpuType.CUDA_WITH_XFORMERS,
)
amd = (
"an [gold1 b]AMD[/] GPU using ROCm",
GpuType.ROCM,
)
cpu = (
"Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU,
)
options = []
if OS == "Windows":
options = [nvidia, vintage_nvidia, cpu]
if OS == "Linux":
options = [nvidia, vintage_nvidia, amd, cpu]
elif OS == "Darwin":
options = [cpu]
if len(options) == 1:
return options[0][1]
options = {str(i): opt for i, opt in enumerate(options, 1)}
console.rule(":space_invader: GPU (Graphics Card) selection :space_invader:")
console.print(
Panel(
Group(
"\n".join(
[
f"Detected the [gold1]{OS}-{ARCH}[/] platform",
"",
"See [deep_sky_blue1]https://invoke-ai.github.io/InvokeAI/installation/requirements/[/] to ensure your system meets the minimum requirements.",
"",
"[red3]🠶[/] [b]Your GPU drivers must be correctly installed before using InvokeAI![/] [red3]🠴[/]",
]
),
"",
"Please select the type of GPU installed in your computer.",
Panel(
"\n".join([f"[dark_goldenrod b i]{i}[/] [dark_red]🢒[/]{opt[0]}" for (i, opt) in options.items()]),
box=box.MINIMAL,
),
),
box=box.MINIMAL,
padding=(1, 1),
)
)
choice = prompt(
"Please make your selection: ",
validator=Validator.from_callable(
lambda n: n in options.keys(), error_message="Please select one the above options"
),
)
return options[choice][1]
def simple_banner(message: str) -> None:
"""
A simple banner with a message, defined here for styling consistency
:param message: The message to display
:type message: str
"""
console.rule(message)
# TODO this does not yet work correctly
def windows_long_paths_registry() -> None:
"""
Display a message about applying the Windows long paths registry fix
"""
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit")
console.print(
Panel(
Group(
"\n".join(
[
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
"",
"This is the change that will be applied:",
str(syntax),
]
)
),
title="Windows Long Paths registry fix",
box=box.HORIZONTALS,
padding=(1, 1),
)
)
def _platform_specific_help() -> Text | None:
if OS == "Darwin":
text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
)
elif OS == "Windows":
text = Text.from_markup(
"""[b wheat1]Windows Users![/]\n\nBefore you start, please do the following:
1. Double-click on the file [b wheat1]WinLongPathsEnabled.reg[/] in order to
enable long path support on your system.
2. Make sure you have the [b wheat1]Visual C++ core libraries[/] installed. If not, install from
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else:
return
return text

View File

@@ -1,52 +0,0 @@
InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Preparations:
You will need to install Python 3.10 or higher for this installer
to work. Instructions are given here:
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
Before you start the installer, please open up your system's command
line window (Terminal or Command) and type the commands:
python --version
If all is well, it will print "Python 3.X.X", where the version number
is at least 3.10.*, and not higher than 3.11.*.
If this works, check the version of the Python package manager, pip:
pip --version
You should get a message that indicates that the pip package
installer was derived from Python 3.10 or 3.11. For example:
"pip 22.0.1 from /usr/bin/pip (python 3.10)"
Long Paths on Windows:
If you are on Windows, you will need to enable Windows Long Paths to
run InvokeAI successfully. If you're not sure what this is, you
almost certainly need to do this.
Simply double-click the "WinLongPathsEnabled.reg" file located in
this directory, and approve the Windows warnings. Note that you will
need to have admin privileges in order to do this.
Launching the installer:
Windows: double-click the 'install.bat' file (while keeping it inside
the InvokeAI-Installer folder).
Linux and Mac: Please open the terminal application and run
'./install.sh' (while keeping it inside the InvokeAI-Installer
folder).
The installer will create a directory of your choice and install the
InvokeAI application within it. This directory contains everything you need to run
invokeai. Once InvokeAI is up and running, you may delete the
InvokeAI-Installer folder at your convenience.
For more information, please see
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/

View File

@@ -1,54 +0,0 @@
@echo off
PUSHD "%~dp0"
setlocal
call .venv\Scripts\activate.bat
set INVOKEAI_ROOT=.
:start
echo Desired action:
echo 1. Generate images with the browser-based interface
echo 2. Open the developer console
echo 3. Command-line help
echo Q - Quit
echo.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
echo.
set /P choice="Please enter 1-4, Q: [1] "
if not defined choice set choice=1
IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %*
) ELSE IF /I "%choice%" == "2" (
echo Developer Console
echo Python command is:
where python
echo Python version is:
python --version
echo *************************
echo You are now in the system shell, with the local InvokeAI Python virtual environment activated,
echo so that you can troubleshoot this InvokeAI installation as necessary.
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%choice%" == "3" (
echo Displaying command line help...
python .venv\Scripts\invokeai-web.exe --help %*
pause
exit /b
) ELSE IF /I "%choice%" == "q" (
echo Goodbye!
goto ending
) ELSE (
echo Invalid selection
pause
exit /b
)
goto start
endlocal
pause
:ending
exit /b

View File

@@ -1,87 +0,0 @@
#!/bin/bash
# MIT License
# Coauthored by Lincoln Stein, Eugene Brodsky and Joshua Kimsey
# Copyright 2023, The InvokeAI Development Team
####
# This launch script assumes that:
# 1. it is located in the runtime directory,
# 2. the .venv is also located in the runtime directory and is named exactly that
#
# If both of the above are not true, this script will likely not work as intended.
# Activate the virtual environment and run `invoke.py` directly.
####
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname $(readlink -f "$0"))
cd "$scriptdir"
. .venv/bin/activate
export INVOKEAI_ROOT="$scriptdir"
# Stash the CLI args - when we prompt for user input, `$@` is overwritten
PARAMS=$@
# This setting allows torch to fall back to CPU for operations that are not supported by MPS on macOS.
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
# Primary function for the case statement to determine user input
do_choice() {
case $1 in
1)
clear
printf "Generate images with a browser-based interface\n"
invokeai-web $PARAMS
;;
2)
clear
printf "Open the developer console\n"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
3)
clear
printf "Command-line help\n"
invokeai-web --help
;;
*)
clear
printf "Exiting...\n"
exit
;;
esac
clear
}
# Command-line interface for launching Invoke functions
do_line_input() {
clear
printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n"
printf "2: Open the developer console\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest\n\n"
read -p "Please enter 1-4, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice
clear
}
# Main IF statement for launching Invoke, and for checking if the user is in the developer console
if [ "$0" != "bash" ]; then
while true; do
do_line_input
done
else # in developer console
python --version
printf "Press ^D to exit\n"
export PS1="(InvokeAI) \u@\h \w> "
fi

View File

@@ -36,7 +36,15 @@ from invokeai.app.services.style_preset_images.style_preset_images_disk import S
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_disk import WorkflowThumbnailFileStorageDisk
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
CogView4ConditioningInfo,
ConditioningFieldData,
FLUXConditioningInfo,
SD3ConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -83,6 +91,7 @@ class ApiDependencies:
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
workflow_thumbnails_folder = config.workflow_thumbnails_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -99,10 +108,25 @@ class ApiDependencies:
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
tensors = ObjectSerializerForwardCache(
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True)
ObjectSerializerDisk[torch.Tensor](
output_folder / "tensors",
safe_globals=[torch.Tensor],
ephemeral=True,
),
)
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
ObjectSerializerDisk[ConditioningFieldData](
output_folder / "conditioning",
safe_globals=[
ConditioningFieldData,
BasicConditioningInfo,
SDXLConditioningInfo,
FLUXConditioningInfo,
SD3ConditioningInfo,
CogView4ConditioningInfo,
],
ephemeral=True,
),
)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
@@ -120,6 +144,7 @@ class ApiDependencies:
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
workflow_thumbnails = WorkflowThumbnailFileStorageDisk(workflow_thumbnails_folder)
services = InvocationServices(
board_image_records=board_image_records,
@@ -147,6 +172,7 @@ class ApiDependencies:
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
workflow_thumbnails=workflow_thumbnails,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -0,0 +1,124 @@
import json
import logging
from dataclasses import dataclass
from PIL import Image
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutIDValidator
@dataclass
class ExtractedMetadata:
invokeai_metadata: str | None
invokeai_workflow: str | None
invokeai_graph: str | None
def extract_metadata_from_image(
pil_image: Image.Image,
invokeai_metadata_override: str | None,
invokeai_workflow_override: str | None,
invokeai_graph_override: str | None,
logger: logging.Logger,
) -> ExtractedMetadata:
"""
Extracts the "invokeai_metadata", "invokeai_workflow", and "invokeai_graph" data embedded in the PIL Image.
These items are stored as stringified JSON in the image file's metadata, so we need to do some parsing to validate
them. Once parsed, the values are returned as they came (as strings), or None if they are not present or invalid.
In some situations, we may prefer to override the values extracted from the image file with some other values.
For example, when uploading an image via API, the client can optionally provide the metadata directly in the request,
as opposed to embedding it in the image file. In this case, the client-provided metadata will be used instead of the
metadata embedded in the image file.
Args:
pil_image: The PIL Image object.
invokeai_metadata_override: The metadata override provided by the client.
invokeai_workflow_override: The workflow override provided by the client.
invokeai_graph_override: The graph override provided by the client.
logger: The logger to use for debug logging.
Returns:
ExtractedMetadata: The extracted metadata, workflow, and graph.
"""
# The fallback value for metadata is None.
stringified_metadata: str | None = None
# Use the metadata override if provided, else attempt to extract it from the image file.
metadata_raw = invokeai_metadata_override or pil_image.info.get("invokeai_metadata", None)
# If the metadata is present in the image file, we will attempt to parse it as JSON. When we create images,
# we always store metadata as a stringified JSON dict. So, we expect it to be a string here.
if isinstance(metadata_raw, str):
try:
# Must be a JSON string
metadata_parsed = json.loads(metadata_raw)
# Must be a dict
if isinstance(metadata_parsed, dict):
# Looks good, overwrite the fallback value
stringified_metadata = metadata_raw
except Exception as e:
logger.debug(f"Failed to parse metadata for uploaded image, {e}")
pass
# We expect the workflow, if embedded in the image, to be a JSON-stringified WorkflowWithoutID. We will store it
# as a string.
workflow_raw: str | None = invokeai_workflow_override or pil_image.info.get("invokeai_workflow", None)
# The fallback value for workflow is None.
stringified_workflow: str | None = None
# If the workflow is present in the image file, we will attempt to parse it as JSON. When we create images, we
# always store workflows as a stringified JSON WorkflowWithoutID. So, we expect it to be a string here.
if isinstance(workflow_raw, str):
try:
# Validate the workflow JSON before storing it
WorkflowWithoutIDValidator.validate_json(workflow_raw)
# Looks good, overwrite the fallback value
stringified_workflow = workflow_raw
except Exception:
logger.debug("Failed to parse workflow for uploaded image")
pass
# We expect the workflow, if embedded in the image, to be a JSON-stringified Graph. We will store it as a
# string.
graph_raw: str | None = invokeai_graph_override or pil_image.info.get("invokeai_graph", None)
# The fallback value for graph is None.
stringified_graph: str | None = None
# If the graph is present in the image file, we will attempt to parse it as JSON. When we create images, we
# always store graphs as a stringified JSON Graph. So, we expect it to be a string here.
if isinstance(graph_raw, str):
try:
# TODO(psyche): Due to pydantic's handling of None values, it is possible for the graph to fail validation,
# even if it is a direct dump of a valid graph. Node fields in the graph are allowed to have be unset if
# they have incoming connections, but something about the ser/de process cannot adequately handle this.
#
# In lieu of fixing the graph validation, we will just do a simple check here to see if the graph is dict
# with the correct keys. This is not a perfect solution, but it should be good enough for now.
# FIX ME: Validate the graph JSON before storing it
# Graph.model_validate_json(graph_raw)
# Crappy workaround to validate JSON
graph_parsed = json.loads(graph_raw)
if not isinstance(graph_parsed, dict):
raise ValueError("Not a dict")
if not isinstance(graph_parsed.get("nodes", None), dict):
raise ValueError("'nodes' is not a dict")
if not isinstance(graph_parsed.get("edges", None), list):
raise ValueError("'edges' is not a list")
# Looks good, overwrite the fallback value
stringified_graph = graph_raw
except Exception as e:
logger.debug(f"Failed to parse graph for uploaded image, {e}")
pass
return ExtractedMetadata(
invokeai_metadata=stringified_metadata, invokeai_workflow=stringified_workflow, invokeai_graph=stringified_graph
)

View File

@@ -12,6 +12,7 @@ from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.util.logging import logging
@@ -99,7 +100,7 @@ async def get_app_deps() -> AppDependencyVersions:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
async def get_config_() -> AppConfig:
infill_methods = ["lama", "tile", "cv2", "color"] # TODO: add mosaic back
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")
@@ -121,6 +122,21 @@ async def get_config() -> AppConfig:
)
class InvokeAIAppConfigWithSetFields(BaseModel):
"""InvokeAI App Config with model fields set"""
set_fields: set[str] = Field(description="The set fields")
config: InvokeAIAppConfig = Field(description="The InvokeAI App Config")
@app_router.get(
"/runtime_config", operation_id="get_runtime_config", status_code=200, response_model=InvokeAIAppConfigWithSetFields
)
async def get_runtime_config() -> InvokeAIAppConfigWithSetFields:
config = get_config()
return InvokeAIAppConfigWithSetFields(set_fields=config.model_fields_set, config=config)
@app_router.get(
"/logging",
operation_id="get_log_level",

View File

@@ -7,6 +7,7 @@ from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecordOrderBy
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
@@ -87,7 +88,9 @@ async def delete_board(
try:
if include_images is True:
deleted_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id
board_id=board_id,
categories=None,
is_intermediate=None,
)
ApiDependencies.invoker.services.images.delete_images_on_board(board_id=board_id)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
@@ -98,7 +101,9 @@ async def delete_board(
)
else:
deleted_board_images = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id=board_id
board_id=board_id,
categories=None,
is_intermediate=None,
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
return DeleteBoardResult(
@@ -142,10 +147,14 @@ async def list_boards(
)
async def list_all_board_image_names(
board_id: str = Path(description="The id of the board"),
categories: list[ImageCategory] | None = Query(default=None, description="The categories of image to include."),
is_intermediate: bool | None = Query(default=None, description="Whether to list intermediate images."),
) -> list[str]:
"""Gets a list of images for a board"""
image_names = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
board_id,
categories,
is_intermediate,
)
return image_names

View File

@@ -6,9 +6,10 @@ from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request,
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, JsonValue
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.extract_metadata_from_image import extract_metadata_from_image
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
@@ -45,18 +46,16 @@ async def upload_image(
board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
metadata: Optional[JsonValue] = Body(
default=None, description="The metadata to associate with the image", embed=True
metadata: Optional[str] = Body(
default=None,
description="The metadata to associate with the image, must be a stringified JSON dict",
embed=True,
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type or not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
_metadata = None
_workflow = None
_graph = None
contents = await file.read()
try:
pil_image = Image.open(io.BytesIO(contents))
@@ -67,30 +66,13 @@ async def upload_image(
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
# TODO: retain non-invokeai metadata on upload?
# attempt to parse metadata from image
metadata_raw = metadata if isinstance(metadata, str) else pil_image.info.get("invokeai_metadata", None)
if isinstance(metadata_raw, str):
_metadata = metadata_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse metadata for uploaded image")
pass
# attempt to parse workflow from image
workflow_raw = pil_image.info.get("invokeai_workflow", None)
if isinstance(workflow_raw, str):
_workflow = workflow_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse workflow for uploaded image")
pass
# attempt to extract graph from image
graph_raw = pil_image.info.get("invokeai_graph", None)
if isinstance(graph_raw, str):
_graph = graph_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse graph for uploaded image")
pass
extracted_metadata = extract_metadata_from_image(
pil_image=pil_image,
invokeai_metadata_override=metadata,
invokeai_workflow_override=None,
invokeai_graph_override=None,
logger=ApiDependencies.invoker.services.logger,
)
try:
image_dto = ApiDependencies.invoker.services.images.create(
@@ -99,9 +81,9 @@ async def upload_image(
image_category=image_category,
session_id=session_id,
board_id=board_id,
metadata=_metadata,
workflow=_workflow,
graph=_graph,
metadata=extracted_metadata.invokeai_metadata,
workflow=extracted_metadata.invokeai_workflow,
graph=extracted_metadata.invokeai_graph,
is_intermediate=is_intermediate,
)
@@ -114,6 +96,22 @@ async def upload_image(
raise HTTPException(status_code=500, detail="Failed to create image")
class ImageUploadEntry(BaseModel):
image_dto: ImageDTO = Body(description="The image DTO")
presigned_url: str = Body(description="The URL to get the presigned URL for the image upload")
@images_router.post("/", operation_id="create_image_upload_entry")
async def create_image_upload_entry(
width: int = Body(description="The width of the image"),
height: int = Body(description="The height of the image"),
board_id: Optional[str] = Body(default=None, description="The board to add this image to, if any"),
) -> ImageUploadEntry:
"""Uploads an image from a URL, not implemented"""
raise HTTPException(status_code=501, detail="Not implemented")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),

View File

@@ -28,12 +28,10 @@ from invokeai.app.services.model_records import (
UnknownModelException,
)
from invokeai.app.util.suppress_output import SuppressOutput
from invokeai.backend.model_manager import BaseModelType, ModelFormat, ModelType
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
MainCheckpointConfig,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.cache_stats import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
@@ -87,6 +85,7 @@ example_model_config = {
"config_path": "string",
"key": "string",
"hash": "string",
"file_size": 1,
"description": "string",
"source": "string",
"converted_at": 0,

View File

@@ -2,7 +2,7 @@ from typing import Optional
from fastapi import Body, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
@@ -15,7 +15,9 @@ from invokeai.app.services.session_queue.session_queue_common import (
CancelByDestinationResult,
ClearResult,
EnqueueBatchResult,
FieldIdentifier,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
@@ -33,6 +35,12 @@ class SessionQueueAndProcessorStatus(BaseModel):
processor: SessionProcessorStatus
class ValidationRunData(BaseModel):
workflow_id: str = Field(description="The id of the workflow being published.")
input_fields: list[FieldIdentifier] = Body(description="The input fields for the published workflow")
output_fields: list[FieldIdentifier] = Body(description="The output fields for the published workflow")
@session_queue_router.post(
"/{queue_id}/enqueue_batch",
operation_id="enqueue_batch",
@@ -44,10 +52,16 @@ async def enqueue_batch(
queue_id: str = Path(description="The queue id to perform this operation on"),
batch: Batch = Body(description="Batch to process"),
prepend: bool = Body(default=False, description="Whether or not to prepend this batch in the queue"),
validation_run_data: Optional[ValidationRunData] = Body(
default=None,
description="The validation run data to use for this batch. This is only used if this is a validation run.",
),
) -> EnqueueBatchResult:
"""Processes a batch and enqueues the output graphs for execution."""
return ApiDependencies.invoker.services.session_queue.enqueue_batch(queue_id=queue_id, batch=batch, prepend=prepend)
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
@session_queue_router.get(
@@ -135,6 +149,19 @@ async def cancel_by_destination(
)
@session_queue_router.put(
"/{queue_id}/retry_items_by_id",
operation_id="retry_items_by_id",
responses={200: {"model": RetryItemsResult}},
)
async def retry_items_by_id(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_ids: list[int] = Body(description="The queue item ids to retry"),
) -> RetryItemsResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
@session_queue_router.put(
"/{queue_id}/clear",
operation_id="clear",

View File

@@ -1,6 +1,10 @@
import io
import traceback
from typing import Optional
from fastapi import APIRouter, Body, HTTPException, Path, Query
from fastapi import APIRouter, Body, File, HTTPException, Path, Query, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.shared.pagination import PaginatedResults
@@ -10,11 +14,14 @@ from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowCategory,
WorkflowNotFoundError,
WorkflowRecordDTO,
WorkflowRecordListItemDTO,
WorkflowRecordListItemWithThumbnailDTO,
WorkflowRecordOrderBy,
WorkflowRecordWithThumbnailDTO,
WorkflowWithoutID,
)
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_common import WorkflowThumbnailFileNotFoundException
IMAGE_MAX_AGE = 31536000
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
@@ -22,15 +29,17 @@ workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
"/i/{workflow_id}",
operation_id="get_workflow",
responses={
200: {"model": WorkflowRecordDTO},
200: {"model": WorkflowRecordWithThumbnailDTO},
},
)
async def get_workflow(
workflow_id: str = Path(description="The workflow to get"),
) -> WorkflowRecordDTO:
) -> WorkflowRecordWithThumbnailDTO:
"""Gets a workflow"""
try:
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)
thumbnail_url = ApiDependencies.invoker.services.workflow_thumbnails.get_url(workflow_id)
workflow = ApiDependencies.invoker.services.workflow_records.get(workflow_id)
return WorkflowRecordWithThumbnailDTO(thumbnail_url=thumbnail_url, **workflow.model_dump())
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
@@ -57,6 +66,11 @@ async def delete_workflow(
workflow_id: str = Path(description="The workflow to delete"),
) -> None:
"""Deletes a workflow"""
try:
ApiDependencies.invoker.services.workflow_thumbnails.delete(workflow_id)
except WorkflowThumbnailFileNotFoundException:
# It's OK if the workflow has no thumbnail file. We can still delete the workflow.
pass
ApiDependencies.invoker.services.workflow_records.delete(workflow_id)
@@ -78,7 +92,7 @@ async def create_workflow(
"/",
operation_id="list_workflows",
responses={
200: {"model": PaginatedResults[WorkflowRecordListItemDTO]},
200: {"model": PaginatedResults[WorkflowRecordListItemWithThumbnailDTO]},
},
)
async def list_workflows(
@@ -88,10 +102,160 @@ async def list_workflows(
default=WorkflowRecordOrderBy.Name, description="The attribute to order by"
),
direction: SQLiteDirection = Query(default=SQLiteDirection.Ascending, description="The direction to order by"),
category: WorkflowCategory = Query(default=WorkflowCategory.User, description="The category of workflow to get"),
categories: Optional[list[WorkflowCategory]] = Query(default=None, description="The categories of workflow to get"),
tags: Optional[list[str]] = Query(default=None, description="The tags of workflow to get"),
query: Optional[str] = Query(default=None, description="The text to query by (matches name and description)"),
) -> PaginatedResults[WorkflowRecordListItemDTO]:
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
is_published: Optional[bool] = Query(default=None, description="Whether to include/exclude published workflows"),
) -> PaginatedResults[WorkflowRecordListItemWithThumbnailDTO]:
"""Gets a page of workflows"""
return ApiDependencies.invoker.services.workflow_records.get_many(
order_by=order_by, direction=direction, page=page, per_page=per_page, query=query, category=category
workflows_with_thumbnails: list[WorkflowRecordListItemWithThumbnailDTO] = []
workflows = ApiDependencies.invoker.services.workflow_records.get_many(
order_by=order_by,
direction=direction,
page=page,
per_page=per_page,
query=query,
categories=categories,
tags=tags,
has_been_opened=has_been_opened,
is_published=is_published,
)
for workflow in workflows.items:
workflows_with_thumbnails.append(
WorkflowRecordListItemWithThumbnailDTO(
thumbnail_url=ApiDependencies.invoker.services.workflow_thumbnails.get_url(workflow.workflow_id),
**workflow.model_dump(),
)
)
return PaginatedResults[WorkflowRecordListItemWithThumbnailDTO](
items=workflows_with_thumbnails,
total=workflows.total,
page=workflows.page,
pages=workflows.pages,
per_page=workflows.per_page,
)
@workflows_router.put(
"/i/{workflow_id}/thumbnail",
operation_id="set_workflow_thumbnail",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def set_workflow_thumbnail(
workflow_id: str = Path(description="The workflow to update"),
image: UploadFile = File(description="The image file to upload"),
):
"""Sets a workflow's thumbnail image"""
try:
ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.workflow_thumbnails.save(workflow_id, pil_image)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@workflows_router.delete(
"/i/{workflow_id}/thumbnail",
operation_id="delete_workflow_thumbnail",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def delete_workflow_thumbnail(
workflow_id: str = Path(description="The workflow to update"),
):
"""Removes a workflow's thumbnail image"""
try:
ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
try:
ApiDependencies.invoker.services.workflow_thumbnails.delete(workflow_id)
except ValueError as e:
raise HTTPException(status_code=500, detail=str(e))
@workflows_router.get(
"/i/{workflow_id}/thumbnail",
operation_id="get_workflow_thumbnail",
responses={
200: {
"description": "The workflow thumbnail was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The workflow thumbnail could not be found"},
},
status_code=200,
)
async def get_workflow_thumbnail(
workflow_id: str = Path(description="The id of the workflow thumbnail to get"),
) -> FileResponse:
"""Gets a workflow's thumbnail image"""
try:
path = ApiDependencies.invoker.services.workflow_thumbnails.get_path(workflow_id)
response = FileResponse(
path,
media_type="image/png",
filename=workflow_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@workflows_router.get("/counts_by_tag", operation_id="get_counts_by_tag")
async def get_counts_by_tag(
tags: list[str] = Query(description="The tags to get counts for"),
categories: Optional[list[WorkflowCategory]] = Query(default=None, description="The categories to include"),
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
) -> dict[str, int]:
"""Counts workflows by tag"""
return ApiDependencies.invoker.services.workflow_records.counts_by_tag(
tags=tags, categories=categories, has_been_opened=has_been_opened
)
@workflows_router.get("/counts_by_category", operation_id="counts_by_category")
async def counts_by_category(
categories: list[WorkflowCategory] = Query(description="The categories to include"),
has_been_opened: Optional[bool] = Query(default=None, description="Whether to include/exclude recent workflows"),
) -> dict[str, int]:
"""Counts workflows by category"""
return ApiDependencies.invoker.services.workflow_records.counts_by_category(
categories=categories, has_been_opened=has_been_opened
)
@workflows_router.put(
"/i/{workflow_id}/opened_at",
operation_id="update_opened_at",
)
async def update_opened_at(
workflow_id: str = Path(description="The workflow to update"),
) -> None:
"""Updates the opened_at field of a workflow"""
ApiDependencies.invoker.services.workflow_records.update_opened_at(workflow_id)

View File

@@ -1,12 +1,8 @@
import asyncio
import logging
import mimetypes
import socket
from contextlib import asynccontextmanager
from pathlib import Path
import torch
import uvicorn
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
@@ -15,11 +11,7 @@ from fastapi.responses import HTMLResponse, RedirectResponse
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint
from torch.backends.mps import is_available as is_mps_available
# for PyCharm:
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
@@ -38,31 +30,13 @@ from invokeai.app.api.routers import (
from invokeai.app.api.sockets import SocketIO
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.custom_openapi import get_openapi_func
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
app_config = get_config()
if is_mps_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
logger = InvokeAILogger.get_logger(config=app_config)
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
# We may change the port if the default is in use, this global variable is used to store the port so that we can log
# the correct port when the server starts in the lifespan handler.
port = app_config.port
@asynccontextmanager
async def lifespan(app: FastAPI):
@@ -71,7 +45,7 @@ async def lifespan(app: FastAPI):
# Log the server address when it starts - in case the network log level is not high enough to see the startup log
proto = "https" if app_config.ssl_certfile else "http"
msg = f"Invoke running on {proto}://{app_config.host}:{port} (Press CTRL+C to quit)"
msg = f"Invoke running on {proto}://{app_config.host}:{app_config.port} (Press CTRL+C to quit)"
# Logging this way ignores the logger's log level and _always_ logs the message
record = logger.makeRecord(
@@ -186,73 +160,3 @@ except RuntimeError:
app.mount(
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
) # docs favicon is in here
def check_cudnn(logger: logging.Logger) -> None:
"""Check for cuDNN issues that could be causing degraded performance."""
if torch.backends.cudnn.is_available():
try:
# Note: At the time of writing (torch 2.2.1), torch.backends.cudnn.version() only raises an error the first
# time it is called. Subsequent calls will return the version number without complaining about a mismatch.
cudnn_version = torch.backends.cudnn.version()
logger.info(f"cuDNN version: {cudnn_version}")
except RuntimeError as e:
logger.warning(
"Encountered a cuDNN version issue. This may result in degraded performance. This issue is usually "
"caused by an incompatible cuDNN version installed in your python environment, or on the host "
f"system. Full error message:\n{e}"
)
def invoke_api() -> None:
def find_port(port: int) -> int:
"""Find a port not in use starting at given port"""
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(1)
if s.connect_ex(("localhost", port)) == 0:
return find_port(port=port + 1)
else:
return port
if app_config.dev_reload:
try:
import jurigged
except ImportError as e:
logger.error(
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
exc_info=e,
)
else:
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
global port
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
check_cudnn(logger)
config = uvicorn.Config(
app=app,
host=app_config.host,
port=port,
loop="asyncio",
log_level=app_config.log_level_network,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

@@ -1,33 +1,5 @@
import shutil
import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.app.services.config.config_default import get_config
custom_nodes_path = Path(get_config().custom_nodes_path)
custom_nodes_path.mkdir(parents=True, exist_ok=True)
custom_nodes_init_path = str(custom_nodes_path / "__init__.py")
custom_nodes_readme_path = str(custom_nodes_path / "README.md")
# copy our custom nodes __init__.py to the custom nodes directory
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
# set the same permissions as the destination directory, in case our source is read-only,
# so that the files are user-writable
for p in custom_nodes_path.glob("**/*"):
p.chmod(custom_nodes_path.stat().st_mode)
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
if spec is None or spec.loader is None:
raise RuntimeError(f"Could not load custom nodes from {custom_nodes_init_path}")
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
# add core nodes to __all__
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
__all__ = [f.stem for f in python_files] # type: ignore

View File

@@ -8,6 +8,7 @@ import sys
import warnings
from abc import ABC, abstractmethod
from enum import Enum
from functools import lru_cache
from inspect import signature
from typing import (
TYPE_CHECKING,
@@ -27,7 +28,6 @@ import semver
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefined
from typing_extensions import TypeAliasType
from invokeai.app.invocations.fields import (
FieldKind,
@@ -44,8 +44,6 @@ if TYPE_CHECKING:
logger = InvokeAILogger.get_logger()
CUSTOM_NODE_PACK_SUFFIX = "__invokeai-custom-node"
class InvalidVersionError(ValueError):
pass
@@ -102,37 +100,6 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
"""
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def register_output(cls, output: BaseInvocationOutput) -> None:
"""Registers an invocation output."""
cls._output_classes.add(output)
cls._typeadapter_needs_update = True
@classmethod
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocationOutput = TypeAliasType(
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def get_output_types(cls) -> Iterable[str]:
"""Gets all invocation output types."""
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
@@ -175,66 +142,11 @@ class BaseInvocation(ABC, BaseModel):
All invocations must use the `@invocation` decorator to provide their unique type.
"""
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def get_type(cls) -> str:
"""Gets the invocation's type, as provided by the `@invocation` decorator."""
return cls.model_fields["type"].default
@classmethod
def register_invocation(cls, invocation: BaseInvocation) -> None:
"""Registers an invocation."""
cls._invocation_classes.add(invocation)
cls._typeadapter_needs_update = True
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls.get_invocations())], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
def invalidate_typeadapter(cls) -> None:
"""Invalidates the typeadapter, forcing it to be rebuilt on next access. If the invocation allowlist or
denylist is changed, this should be called to ensure the typeadapter is updated and validation respects
the updated allowlist and denylist."""
cls._typeadapter_needs_update = True
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
"""Gets all invocations, respecting the allowlist and denylist."""
app_config = get_config()
allowed_invocations: set[BaseInvocation] = set()
for sc in cls._invocation_classes:
invocation_type = sc.get_type()
is_in_allowlist = (
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
)
is_in_denylist = (
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
)
if is_in_allowlist and not is_in_denylist:
allowed_invocations.add(sc)
return allowed_invocations
@classmethod
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
"""Gets a map of all invocation types to their invocation classes."""
return {i.get_type(): i for i in BaseInvocation.get_invocations()}
@classmethod
def get_invocation_types(cls) -> Iterable[str]:
"""Gets all invocation types."""
return (i.get_type() for i in BaseInvocation.get_invocations())
@classmethod
def get_output_annotation(cls) -> BaseInvocationOutput:
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
@@ -337,6 +249,105 @@ class BaseInvocation(ABC, BaseModel):
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
class InvocationRegistry:
_invocation_classes: ClassVar[set[type[BaseInvocation]]] = set()
_output_classes: ClassVar[set[type[BaseInvocationOutput]]] = set()
@classmethod
def register_invocation(cls, invocation: type[BaseInvocation]) -> None:
"""Registers an invocation."""
cls._invocation_classes.add(invocation)
cls.invalidate_invocation_typeadapter()
@classmethod
@lru_cache(maxsize=1)
def get_invocation_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantic TypeAdapter for the union of all invocation types.
This is used to parse serialized invocations into the correct invocation class.
This method is cached to avoid rebuilding the TypeAdapter on every access. If the invocation allowlist or
denylist is changed, the cache should be cleared to ensure the TypeAdapter is updated and validation respects
the updated allowlist and denylist.
@see https://docs.pydantic.dev/latest/concepts/type_adapter/
"""
return TypeAdapter(Annotated[Union[tuple(cls.get_invocation_classes())], Field(discriminator="type")])
@classmethod
def invalidate_invocation_typeadapter(cls) -> None:
"""Invalidates the cached invocation type adapter."""
cls.get_invocation_typeadapter.cache_clear()
@classmethod
def get_invocation_classes(cls) -> Iterable[type[BaseInvocation]]:
"""Gets all invocations, respecting the allowlist and denylist."""
app_config = get_config()
allowed_invocations: set[type[BaseInvocation]] = set()
for sc in cls._invocation_classes:
invocation_type = sc.get_type()
is_in_allowlist = (
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
)
is_in_denylist = (
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
)
if is_in_allowlist and not is_in_denylist:
allowed_invocations.add(sc)
return allowed_invocations
@classmethod
def get_invocations_map(cls) -> dict[str, type[BaseInvocation]]:
"""Gets a map of all invocation types to their invocation classes."""
return {i.get_type(): i for i in cls.get_invocation_classes()}
@classmethod
def get_invocation_types(cls) -> Iterable[str]:
"""Gets all invocation types."""
return (i.get_type() for i in cls.get_invocation_classes())
@classmethod
def get_invocation_for_type(cls, invocation_type: str) -> type[BaseInvocation] | None:
"""Gets the invocation class for a given invocation type."""
return cls.get_invocations_map().get(invocation_type)
@classmethod
def register_output(cls, output: "type[TBaseInvocationOutput]") -> None:
"""Registers an invocation output."""
cls._output_classes.add(output)
cls.invalidate_output_typeadapter()
@classmethod
def get_output_classes(cls) -> Iterable[type[BaseInvocationOutput]]:
"""Gets all invocation outputs."""
return cls._output_classes
@classmethod
@lru_cache(maxsize=1)
def get_output_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantic TypeAdapter for the union of all invocation output types.
This is used to parse serialized invocation outputs into the correct invocation output class.
This method is cached to avoid rebuilding the TypeAdapter on every access. If the invocation allowlist or
denylist is changed, the cache should be cleared to ensure the TypeAdapter is updated and validation respects
the updated allowlist and denylist.
@see https://docs.pydantic.dev/latest/concepts/type_adapter/
"""
return TypeAdapter(Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")])
@classmethod
def invalidate_output_typeadapter(cls) -> None:
"""Invalidates the cached invocation output type adapter."""
cls.get_output_typeadapter.cache_clear()
@classmethod
def get_output_types(cls) -> Iterable[str]:
"""Gets all invocation output types."""
return (i.get_type() for i in cls.get_output_classes())
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"id",
"is_intermediate",
@@ -414,7 +425,7 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
ui_type = field.json_schema_extra.get("ui_type", None)
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
logger.warn(f"\"UIType.{ui_type.split('_')[-1]}\" is deprecated, ignoring")
logger.warn(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
field.json_schema_extra.pop("ui_type")
return None
@@ -446,8 +457,27 @@ def invocation(
if re.compile(r"^\S+$").match(invocation_type) is None:
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
if invocation_type in BaseInvocation.get_invocation_types():
raise ValueError(f'Invocation type "{invocation_type}" already exists')
# The node pack is the module name - will be "invokeai" for built-in nodes
node_pack = cls.__module__.split(".")[0]
# Handle the case where an existing node is being clobbered by the one we are registering
if invocation_type in InvocationRegistry.get_invocation_types():
clobbered_invocation = InvocationRegistry.get_invocation_for_type(invocation_type)
# This should always be true - we just checked if the invocation type was in the set
assert clobbered_invocation is not None
clobbered_node_pack = clobbered_invocation.UIConfig.node_pack
if clobbered_node_pack == "invokeai":
# The node being clobbered is a core node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a core node with the same type already exists'
)
else:
# The node being clobbered is a custom node
raise ValueError(
f'Cannot load node "{invocation_type}" from node pack "{node_pack}" - a node with the same type already exists in node pack "{clobbered_node_pack}"'
)
validate_fields(cls.model_fields, invocation_type)
@@ -457,8 +487,7 @@ def invocation(
uiconfig["tags"] = tags
uiconfig["category"] = category
uiconfig["classification"] = classification
# The node pack is the module name - will be "invokeai" for built-in nodes
uiconfig["node_pack"] = cls.__module__.split(".")[0]
uiconfig["node_pack"] = node_pack
if version is not None:
try:
@@ -518,8 +547,7 @@ def invocation(
)
cls.__doc__ = docstring
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
BaseInvocation.register_invocation(cls) # type: ignore
InvocationRegistry.register_invocation(cls)
return cls
@@ -544,7 +572,7 @@ def invocation_output(
if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
if output_type in BaseInvocationOutput.get_output_types():
if output_type in InvocationRegistry.get_output_types():
raise ValueError(f'Invocation type "{output_type}" already exists')
validate_fields(cls.model_fields, output_type)
@@ -565,7 +593,7 @@ def invocation_output(
)
cls.__doc__ = docstring
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly?
InvocationRegistry.register_output(cls)
return cls

View File

@@ -64,13 +64,50 @@ class ImageBatchInvocation(BaseBatchInvocation):
"""Create a batched generation, where the workflow is executed once for each image in the batch."""
images: list[ImageField] = InputField(
default=[], min_length=1, description="The images to batch over", input=Input.Direct
default=[],
min_length=1,
description="The images to batch over",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
raise NotExecutableNodeError()
@invocation_output("image_generator_output")
class ImageGeneratorOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of boards"""
images: list[ImageField] = OutputField(description="The generated images")
class ImageGeneratorField(BaseModel):
pass
@invocation(
"image_generator",
title="Image Generator",
tags=["primitives", "board", "image", "batch", "special"],
category="primitives",
version="1.0.0",
classification=Classification.Special,
)
class ImageGenerator(BaseInvocation):
"""Generated a collection of images for use in a batched generation"""
generator: ImageGeneratorField = InputField(
description="The image generator.",
input=Input.Direct,
title="Generator Type",
)
def __init__(self):
raise NotExecutableNodeError()
def invoke(self, context: InvocationContext) -> ImageGeneratorOutput:
raise NotExecutableNodeError()
@invocation(
"string_batch",
title="String Batch",

View File

@@ -0,0 +1,363 @@
from typing import Callable, Optional
import torch
import torchvision.transforms as tv_transforms
from diffusers.models.transformers.transformer_cogview4 import CogView4Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
CogView4ConditioningField,
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import CogView4ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"cogview4_denoise",
title="Denoise - CogView4",
tags=["image", "cogview4"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run the denoising process with a CogView4 model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.cogview4_model, input=Input.Connection, title="Transformer"
)
positive_conditioning: CogView4ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: CogView4ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
cfg_scale: float | list[float] = InputField(default=3.5, description=FieldDescriptions.cfg_scale, title="CFG Scale")
width: int = InputField(default=1024, multiple_of=32, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=32, description="Height of the generated image.")
steps: int = InputField(default=25, gt=0, description=FieldDescriptions.steps)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. Used to determine the target shape, device, and dtype for the
inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask. Values of 0.0 represent the regions to be fully denoised, and 1.0
represent the regions to be preserved.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
# The input denoise_mask contains values in [0, 1], where 0.0 represents the regions to be fully denoised, and
# 1.0 represents the regions to be preserved.
# We invert the mask so that the regions to be preserved are 0.0 and the regions to be denoised are 1.0.
mask = 1.0 - mask
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
return mask
def _load_text_conditioning(
self,
context: InvocationContext,
conditioning_name: str,
dtype: torch.dtype,
device: torch.device,
) -> torch.Tensor:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
cogview4_conditioning = cond_data.conditionings[0]
assert isinstance(cogview4_conditioning, CogView4ConditioningInfo)
cogview4_conditioning = cogview4_conditioning.to(dtype=dtype, device=device)
return cogview4_conditioning.glm_embeds
def _get_noise(
self,
batch_size: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
seed: int,
) -> torch.Tensor:
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
batch_size,
num_channels_latents,
int(height) // LATENT_SCALE_FACTOR,
int(width) // LATENT_SCALE_FACTOR,
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def _prepare_cfg_scale(self, num_timesteps: int) -> list[float]:
"""Prepare the CFG scale list.
Args:
num_timesteps (int): The number of timesteps in the scheduler. Could be different from num_steps depending
on the scheduler used (e.g. higher order schedulers).
Returns:
list[float]: _description_
"""
if isinstance(self.cfg_scale, float):
cfg_scale = [self.cfg_scale] * num_timesteps
elif isinstance(self.cfg_scale, list):
assert len(self.cfg_scale) == num_timesteps
cfg_scale = self.cfg_scale
else:
raise ValueError(f"Invalid CFG scale type: {type(self.cfg_scale)}")
return cfg_scale
def _convert_timesteps_to_sigmas(self, image_seq_len: int, timesteps: torch.Tensor) -> list[float]:
# The logic to prepare the timestep / sigma schedule is based on:
# https://github.com/huggingface/diffusers/blob/b38450d5d2e5b87d5ff7088ee5798c85587b9635/src/diffusers/pipelines/cogview4/pipeline_cogview4.py#L575-L595
# The default FlowMatchEulerDiscreteScheduler configs are based on:
# https://huggingface.co/THUDM/CogView4-6B/blob/fb6f57289c73ac6d139e8d81bd5a4602d1877847/scheduler/scheduler_config.json
# This implementation differs slightly from the original for the sake of simplicity (differs in terminal value
# handling, not quantizing timesteps to integers, etc.).
def calculate_timestep_shift(
image_seq_len: int, base_seq_len: int = 256, base_shift: float = 0.25, max_shift: float = 0.75
) -> float:
m = (image_seq_len / base_seq_len) ** 0.5
mu = m * max_shift + base_shift
return mu
def time_shift_linear(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
return mu / (mu + (1 / t - 1) ** sigma)
mu = calculate_timestep_shift(image_seq_len)
sigmas = time_shift_linear(mu, 1.0, timesteps)
return sigmas.tolist()
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
device = TorchDevice.choose_torch_device()
transformer_info = context.models.load(self.transformer.transformer)
assert isinstance(transformer_info.model, CogView4Transformer2DModel)
# Load/process the conditioning data.
# TODO(ryand): Make CFG optional.
do_classifier_free_guidance = True
pos_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.positive_conditioning.conditioning_name,
dtype=inference_dtype,
device=device,
)
neg_prompt_embeds = self._load_text_conditioning(
context=context,
conditioning_name=self.negative_conditioning.conditioning_name,
dtype=inference_dtype,
device=device,
)
# Prepare misc. conditioning variables.
# TODO(ryand): We could expose these as params (like with SDXL). But, we should experiment to see if they are
# useful first.
original_size = torch.tensor([(self.height, self.width)], dtype=pos_prompt_embeds.dtype, device=device)
target_size = torch.tensor([(self.height, self.width)], dtype=pos_prompt_embeds.dtype, device=device)
crops_coords_top_left = torch.tensor([(0, 0)], dtype=pos_prompt_embeds.dtype, device=device)
# Prepare the timestep / sigma schedule.
patch_size = transformer_info.model.config.patch_size # type: ignore
assert isinstance(patch_size, int)
image_seq_len = ((self.height // LATENT_SCALE_FACTOR) * (self.width // LATENT_SCALE_FACTOR)) // (patch_size**2)
# We add an extra step to the end to account for the final timestep of 0.0.
timesteps: list[float] = torch.linspace(1, 0, self.steps + 1).tolist()
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule_fractional(timesteps, self.denoising_start, self.denoising_end)
sigmas = self._convert_timesteps_to_sigmas(image_seq_len, torch.tensor(timesteps))
total_steps = len(timesteps) - 1
# Prepare the CFG scale list.
cfg_scale = self._prepare_cfg_scale(total_steps)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=device, dtype=inference_dtype)
# Generate initial latent noise.
num_channels_latents = transformer_info.model.config.in_channels # type: ignore
assert isinstance(num_channels_latents, int)
noise = self._get_noise(
batch_size=1,
num_channels_latents=num_channels_latents,
height=self.height,
width=self.width,
dtype=inference_dtype,
device=device,
seed=self.seed,
)
# Prepare input latent image.
if init_latents is not None:
# Noise the init_latents by the appropriate amount for the first timestep.
s_0 = sigmas[0]
latents = s_0 * noise + (1.0 - s_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
latents = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return latents
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
step_callback = self._build_step_callback(context)
step_callback(
PipelineIntermediateState(
step=0,
order=1,
total_steps=total_steps,
timestep=int(timesteps[0]),
latents=latents,
),
)
with transformer_info.model_on_device() as (_, transformer):
assert isinstance(transformer, CogView4Transformer2DModel)
# Denoising loop
for step_idx in tqdm(range(total_steps)):
t_curr = timesteps[step_idx]
sigma_curr = sigmas[step_idx]
sigma_prev = sigmas[step_idx + 1]
# Expand the timestep to match the latent model input.
# Multiply by 1000 to match the default FlowMatchEulerDiscreteScheduler num_train_timesteps.
timestep = torch.tensor([t_curr * 1000], device=device).expand(latents.shape[0])
# TODO(ryand): Support both sequential and batched CFG inference.
noise_pred_cond = transformer(
hidden_states=latents,
encoder_hidden_states=pos_prompt_embeds,
timestep=timestep,
original_size=original_size,
target_size=target_size,
crop_coords=crops_coords_top_left,
return_dict=False,
)[0]
# Apply CFG.
if do_classifier_free_guidance:
noise_pred_uncond = transformer(
hidden_states=latents,
encoder_hidden_states=neg_prompt_embeds,
timestep=timestep,
original_size=original_size,
target_size=target_size,
crop_coords=crops_coords_top_left,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + cfg_scale[step_idx] * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_cond
# Compute the previous noisy sample x_t -> x_t-1.
latents_dtype = latents.dtype
# TODO(ryand): Is casting to float32 necessary for precision/stability? I copied this from SD3.
latents = latents.to(dtype=torch.float32)
latents = latents + (sigma_prev - sigma_curr) * noise_pred
latents = latents.to(dtype=latents_dtype)
if inpaint_extension is not None:
latents = inpaint_extension.merge_intermediate_latents_with_init_latents(latents, sigma_prev)
step_callback(
PipelineIntermediateState(
step=step_idx + 1,
order=1,
total_steps=total_steps,
timestep=int(t_curr),
latents=latents,
),
)
return latents
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, BaseModelType.CogView4)
return step_callback

View File

@@ -0,0 +1,69 @@
import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
# TODO(ryand): This is effectively a copy of SD3ImageToLatentsInvocation and a subset of ImageToLatentsInvocation. We
# should refactor to avoid this duplication.
@invocation(
"cogview4_i2l",
title="Image to Latents - CogView4",
tags=["image", "latents", "vae", "i2l", "cogview4"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""
image: ImageField = InputField(description="The image to encode.")
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
# TODO: Use seed to make sampling reproducible.
latents: torch.Tensor = image_tensor_dist.sample().to(dtype=vae.dtype)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -0,0 +1,86 @@
from contextlib import nullcontext
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
# TODO(ryand): This is effectively a copy of SD3LatentsToImageInvocation and a subset of LatentsToImageInvocation. We
# should refactor to avoid this duplication.
@invocation(
"cogview4_l2i",
title="Latents to Image - CogView4",
tags=["latents", "image", "vae", "l2i", "cogview4"],
category="latents",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
):
context.util.signal_progress("Running VAE")
assert isinstance(vae, (AutoencoderKL))
latents = latents.to(TorchDevice.choose_torch_device())
vae.disable_tiling()
tiling_context = nullcontext()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
img = vae.decode(latents, return_dict=False)[0]
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
TorchDevice.empty_cache()
image_dto = context.images.save(image=img_pil)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,55 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import (
GlmEncoderField,
ModelIdentifierField,
TransformerField,
VAEField,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
@invocation_output("cogview4_model_loader_output")
class CogView4ModelLoaderOutput(BaseInvocationOutput):
"""CogView4 base model loader output."""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
glm_encoder: GlmEncoderField = OutputField(description=FieldDescriptions.glm_encoder, title="GLM Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"cogview4_model_loader",
title="Main Model - CogView4",
tags=["model", "cogview4"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4ModelLoaderInvocation(BaseInvocation):
"""Loads a CogView4 base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.cogview4_model,
ui_type=UIType.CogView4MainModel,
input=Input.Direct,
)
def invoke(self, context: InvocationContext) -> CogView4ModelLoaderOutput:
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
glm_tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
glm_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
return CogView4ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
glm_encoder=GlmEncoderField(tokenizer=glm_tokenizer, text_encoder=glm_encoder),
vae=VAEField(vae=vae),
)

View File

@@ -0,0 +1,92 @@
import torch
from transformers import GlmModel, PreTrainedTokenizerFast
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, UIComponent
from invokeai.app.invocations.model import GlmEncoderField
from invokeai.app.invocations.primitives import CogView4ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
CogView4ConditioningInfo,
ConditioningFieldData,
)
from invokeai.backend.util.devices import TorchDevice
# The CogView4 GLM Text Encoder max sequence length set based on the default in diffusers.
COGVIEW4_GLM_MAX_SEQ_LEN = 1024
@invocation(
"cogview4_text_encoder",
title="Prompt - CogView4",
tags=["prompt", "conditioning", "cogview4"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class CogView4TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a cogview4 image."""
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
glm_encoder: GlmEncoderField = InputField(
title="GLM Encoder",
description=FieldDescriptions.glm_encoder,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CogView4ConditioningOutput:
glm_embeds = self._glm_encode(context, max_seq_len=COGVIEW4_GLM_MAX_SEQ_LEN)
conditioning_data = ConditioningFieldData(conditionings=[CogView4ConditioningInfo(glm_embeds=glm_embeds)])
conditioning_name = context.conditioning.save(conditioning_data)
return CogView4ConditioningOutput.build(conditioning_name)
def _glm_encode(self, context: InvocationContext, max_seq_len: int) -> torch.Tensor:
prompt = [self.prompt]
# TODO(ryand): Add model inputs to the invocation rather than hard-coding.
with (
context.models.load(self.glm_encoder.text_encoder).model_on_device() as (_, glm_text_encoder),
context.models.load(self.glm_encoder.tokenizer).model_on_device() as (_, glm_tokenizer),
):
context.util.signal_progress("Running GLM text encoder")
assert isinstance(glm_text_encoder, GlmModel)
assert isinstance(glm_tokenizer, PreTrainedTokenizerFast)
text_inputs = glm_tokenizer(
prompt,
padding="longest",
max_length=max_seq_len,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = glm_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
assert isinstance(text_input_ids, torch.Tensor)
assert isinstance(untruncated_ids, torch.Tensor)
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = glm_tokenizer.batch_decode(untruncated_ids[:, max_seq_len - 1 : -1])
context.logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_seq_len} tokens: {removed_text}"
)
current_length = text_input_ids.shape[1]
pad_length = (16 - (current_length % 16)) % 16
if pad_length > 0:
pad_ids = torch.full(
(text_input_ids.shape[0], pad_length),
fill_value=glm_tokenizer.pad_token_id,
dtype=text_input_ids.dtype,
device=text_input_ids.device,
)
text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1)
prompt_embeds = glm_text_encoder(
text_input_ids.to(TorchDevice.choose_torch_device()), output_hidden_states=True
).hidden_states[-2]
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds

View File

@@ -40,10 +40,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"compel",
title="Prompt",
title="Prompt - SD1.5",
tags=["prompt", "compel"],
category="conditioning",
version="1.2.0",
version="1.2.1",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@@ -233,10 +233,10 @@ class SDXLPromptInvocationBase:
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
title="Prompt - SDXL",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.2.0",
version="1.2.1",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -327,10 +327,10 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@invocation(
"sdxl_refiner_compel_prompt",
title="SDXL Refiner Prompt",
title="Prompt - SDXL Refiner",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.1.1",
version="1.1.2",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -376,10 +376,10 @@ class CLIPSkipInvocationOutput(BaseInvocationOutput):
@invocation(
"clip_skip",
title="CLIP Skip",
title="Apply CLIP Skip - SD1.5, SDXL",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.1.0",
version="1.1.1",
)
class CLIPSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
@@ -513,7 +513,7 @@ def log_tokenization_for_text(
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"\n>> [TOKENLOG] Tokens {display_label or ''} ({usedTokens}):")
print(f"{tokenized}\x1b[0m")
if discarded != "":

View File

@@ -0,0 +1,128 @@
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
from typing import List, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)
@invocation(
"heuristic_resize",
title="Heuristic Resize",
tags=["image, controlnet"],
category="image",
version="1.0.1",
classification=Classification.Prototype,
)
class HeuristicResizeInvocation(BaseInvocation):
"""Resize an image using a heuristic method. Preserves edge maps."""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_np(image)
np_resized = heuristic_resize(np_img, (self.width, self.height))
resized = np_to_pil(np_resized)
image_dto = context.images.save(image=resized)
return ImageOutput.build(image_dto)

View File

@@ -1,716 +0,0 @@
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
import numpy as np
from controlnet_aux import (
ContentShuffleDetector,
LeresDetector,
MediapipeFaceDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelIdentifierField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.2")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)
# This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process")
def run_processor(self, image: Image.Image) -> Image.Image:
# superclass just passes through image without processing
return image
def load_image(self, context: InvocationContext) -> Image.Image:
# allows override for any special formatting specific to the preprocessor
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.images.save(image=processed_image)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
# width=processed_image.width,
width=image_dto.width,
# height=processed_image.height,
height=image_dto.height,
# mode=processed_image.mode,
)
@invocation(
"canny_image_processor",
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.3.3",
classification=Classification.Deprecated,
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
)
high_threshold: int = InputField(
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
)
def load_image(self, context: InvocationContext) -> Image.Image:
# Keep alpha channel for Canny processing to detect edges of transparent areas
return context.images.get_pil(self.image.image_name, "RGBA")
def run_processor(self, image: Image.Image) -> Image.Image:
processed_image = get_canny_edges(
image,
self.low_threshold,
self.high_threshold,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"hed_image_processor",
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# safe not supported in controlnet_aux v0.0.3
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image: Image.Image) -> Image.Image:
hed_processor = HEDProcessor()
processed_image = hed_processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
return processed_image
@invocation(
"lineart_image_processor",
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def run_processor(self, image: Image.Image) -> Image.Image:
lineart_processor = LineartProcessor()
processed_image = lineart_processor.run(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
)
return processed_image
@invocation(
"lineart_anime_image_processor",
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
processor = LineartAnimeProcessor()
processed_image = processor.run(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"midas_depth_image_processor",
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image: Image.Image) -> Image.Image:
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(
image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
return processed_image
@invocation(
"normalbae_image_processor",
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
)
return processed_image
@invocation(
"mlsd_image_processor",
title="MLSD Processor",
tags=["controlnet", "mlsd"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image: Image.Image) -> Image.Image:
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d,
)
return processed_image
@invocation(
"pidi_image_processor",
title="PIDI Processor",
tags=["controlnet", "pidi"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image: Image.Image) -> Image.Image:
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble,
)
return processed_image
@invocation(
"content_shuffle_image_processor",
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image: Image.Image) -> Image.Image:
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f,
)
return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
@invocation(
"zoe_depth_image_processor",
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
def run_processor(self, image: Image.Image) -> Image.Image:
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
@invocation(
"mediapipe_face_processor",
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image,
max_faces=self.max_faces,
min_confidence=self.min_confidence,
image_resolution=self.image_resolution,
detect_resolution=self.detect_resolution,
)
return processed_image
@invocation(
"leres_image_processor",
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
boost: bool = InputField(default=False, description="Whether to use boost mode")
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
@invocation(
"tile_image_processor",
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(
self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
H, W, C = np_img.shape
H = int(float(H) / float(down_sampling_rate))
W = int(float(W) / float(down_sampling_rate))
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, image: Image.Image) -> Image.Image:
np_img = np.array(image, dtype=np.uint8)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
down_sampling_rate=self.down_sampling_rate,
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
@invocation(
"segment_anything_processor",
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.4",
classification=Classification.Deprecated,
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints"
)
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(
np_img, image_resolution=self.image_resolution, detect_resolution=self.detect_resolution
)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
# so using ADE20k color palette instead
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
h, w = anns[0]["segmentation"].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann["segmentation"]
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)
@invocation(
"color_map_image_processor",
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.3",
classification=Classification.Deprecated,
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image) -> Image.Image:
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
width_tile_size = min(self.color_map_tile_size, width)
height_tile_size = min(self.color_map_tile_size, height)
color_map = cv2.resize(
np_image,
(width // width_tile_size, height // height_tile_size),
interpolation=cv2.INTER_CUBIC,
)
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
color_map = Image.fromarray(color_map)
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
"depth_anything_image_processor",
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.3",
classification=Classification.Deprecated,
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
@invocation(
"dw_openpose_image_processor",
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.1.1",
classification=Classification.Deprecated,
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
processed_image = dw_openpose(
image,
draw_face=self.draw_face,
draw_hands=self.draw_hands,
draw_body=self.draw_body,
resolution=self.image_resolution,
)
return processed_image
@invocation(
"heuristic_resize",
title="Heuristic Resize",
tags=["image, controlnet"],
category="image",
version="1.0.1",
classification=Classification.Prototype,
)
class HeuristicResizeInvocation(BaseInvocation):
"""Resize an image using a heuristic method. Preserves edge maps."""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_np(image)
np_resized = heuristic_resize(np_img, (self.width, self.height))
resized = np_to_pil(np_resized)
image_dto = context.images.save(image=resized)
return ImageOutput.build(image_dto)

View File

@@ -19,7 +19,8 @@ from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.model_manager.config import MainConfigBase
from invokeai.backend.model_manager.taxonomy import ModelVariantType
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor

View File

@@ -1,58 +0,0 @@
"""
Invoke-managed custom node loader. See README.md for more information.
"""
import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
loaded_count = 0
for d in Path(__file__).parent.iterdir():
# skip files
if not d.is_dir():
continue
# skip hidden directories
if d.name.startswith("_") or d.name.startswith("."):
continue
# skip directories without an `__init__.py`
init = d / "__init__.py"
if not init.exists():
continue
module_name = init.parent.stem
# skip if already imported
if module_name in globals():
continue
# load the module, appending adding a suffix to identify it as a custom node pack
spec = spec_from_file_location(module_name, init.absolute())
if spec is None or spec.loader is None:
logger.warn(f"Could not load {init}")
continue
logger.info(f"Loading node pack {module_name}")
try:
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_count += 1
except Exception:
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name}:\n{full_error}")
del init, module_name
if loaded_count > 0:
logger.info(f"Loaded {loaded_count} node packs from {Path(__file__).parent}")

View File

@@ -22,7 +22,7 @@ from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.controlnet import ControlField
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
@@ -39,8 +39,8 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -127,10 +127,10 @@ def get_scheduler(
@invocation(
"denoise_latents",
title="Denoise Latents",
title="Denoise - SD1.5, SDXL",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.3",
version="1.5.4",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""

View File

@@ -4,7 +4,7 @@ from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector2
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
@invocation(
@@ -25,20 +25,20 @@ class DWOpenposeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
onnx_det_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_det())
onnx_pose_path = context.models.download_and_cache_model(DWOpenposeDetector2.get_model_url_pose())
onnx_det_path = context.models.download_and_cache_model(DWOpenposeDetector.get_model_url_det())
onnx_pose_path = context.models.download_and_cache_model(DWOpenposeDetector.get_model_url_pose())
loaded_session_det = context.models.load_local_model(
onnx_det_path, DWOpenposeDetector2.create_onnx_inference_session
onnx_det_path, DWOpenposeDetector.create_onnx_inference_session
)
loaded_session_pose = context.models.load_local_model(
onnx_pose_path, DWOpenposeDetector2.create_onnx_inference_session
onnx_pose_path, DWOpenposeDetector.create_onnx_inference_session
)
with loaded_session_det as session_det, loaded_session_pose as session_pose:
assert isinstance(session_det, ort.InferenceSession)
assert isinstance(session_pose, ort.InferenceSession)
detector = DWOpenposeDetector2(session_det=session_det, session_pose=session_pose)
detector = DWOpenposeDetector(session_det=session_det, session_pose=session_pose)
detected_image = detector.run(
image,
draw_face=self.draw_face,

View File

@@ -40,6 +40,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
CogView4MainModel = "CogView4MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
@@ -57,6 +58,9 @@ class UIType(str, Enum, metaclass=MetaEnum):
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
# endregion
# region Misc Field Types
@@ -134,6 +138,7 @@ class FieldDescriptions:
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
glm_encoder = "GLM (THUDM) tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
clip_g_model = "CLIP-G Embed loader"
unet = "UNet (scheduler, LoRAs)"
@@ -148,10 +153,12 @@ class FieldDescriptions:
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sd3_model = "SD3 model (MMDiTX) to load"
cogview4_model = "CogView4 model (Transformer) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
spandrel_image_to_image_model = "Image-to-Image model"
vllm_model = "VLLM model"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
@@ -201,6 +208,9 @@ class FieldDescriptions:
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
instantx_control_mode = "The control mode for InstantX ControlNet union models. Ignored for other ControlNet models. The standard mapping is: canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6). Negative values will be treated as 'None'."
flux_redux_conditioning = "FLUX Redux conditioning tensor"
vllm_model = "The VLLM model to use"
flux_fill_conditioning = "FLUX Fill conditioning tensor"
class ImageField(BaseModel):
@@ -259,12 +269,36 @@ class FluxConditioningField(BaseModel):
)
class FluxReduxConditioningField(BaseModel):
"""A FLUX Redux conditioning tensor primitive value"""
conditioning: TensorField = Field(description="The Redux image conditioning tensor.")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class FluxFillConditioningField(BaseModel):
"""A FLUX Fill conditioning field."""
image: ImageField = Field(description="The FLUX Fill reference image.")
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class CogView4ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""

View File

@@ -1,7 +1,6 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -21,11 +20,10 @@ class FluxControlLoRALoaderOutput(BaseInvocationOutput):
@invocation(
"flux_control_lora_loader",
title="Flux Control LoRA",
title="Control LoRA - FLUX",
tags=["lora", "model", "flux"],
category="model",
version="1.1.0",
classification=Classification.Prototype,
version="1.1.1",
)
class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""

View File

@@ -3,7 +3,6 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -52,7 +51,6 @@ class FluxControlNetOutput(BaseInvocationOutput):
tags=["controlnet", "flux"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxControlNetInvocation(BaseInvocation):
"""Collect FLUX ControlNet info to pass to other nodes."""

View File

@@ -10,11 +10,13 @@ from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
InputField,
@@ -31,7 +33,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
@@ -46,11 +47,12 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.flux.text_conditioning import FluxReduxConditioning, FluxTextConditioning
from invokeai.backend.model_manager.taxonomy import ModelFormat, ModelVariantType
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -61,8 +63,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.2",
classification=Classification.Prototype,
version="3.3.0",
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a FLUX transformer model."""
@@ -103,6 +104,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
)
redux_conditioning: FluxReduxConditioningField | list[FluxReduxConditioningField] | None = InputField(
default=None,
description="FLUX Redux conditioning tensor.",
input=Input.Connection,
)
fill_conditioning: FluxFillConditioningField | None = InputField(
default=None,
description="FLUX Fill conditioning.",
input=Input.Connection,
)
cfg_scale: float | list[float] = InputField(default=1.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
cfg_scale_start_step: int = InputField(
default=0,
@@ -190,11 +201,23 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
redux_conditionings: list[FluxReduxConditioning] = self._load_redux_conditioning(
context=context,
redux_cond_field=self.redux_conditioning,
packed_height=packed_h,
packed_width=packed_w,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
text_conditioning=pos_text_conditionings,
redux_conditioning=redux_conditionings,
img_seq_len=packed_h * packed_w,
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
RegionalPromptingExtension.from_text_conditioning(
text_conditioning=neg_text_conditionings, redux_conditioning=[], img_seq_len=packed_h * packed_w
)
if neg_text_conditionings
else None
)
@@ -243,8 +266,19 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
if is_schnell and self.control_lora:
raise ValueError("Control LoRAs cannot be used with FLUX Schnell")
# Prepare the extra image conditioning tensor if a FLUX structural control image is provided.
img_cond = self._prep_structural_control_img_cond(context)
# Prepare the extra image conditioning tensor (img_cond) for either FLUX structural control or FLUX Fill.
img_cond: torch.Tensor | None = None
is_flux_fill = transformer_config.variant == ModelVariantType.Inpaint # type: ignore
if is_flux_fill:
img_cond = self._prep_flux_fill_img_cond(
context, device=TorchDevice.choose_torch_device(), dtype=inference_dtype
)
else:
if self.fill_conditioning is not None:
raise ValueError("fill_conditioning was provided, but the model is not a FLUX Fill model.")
if self.control_lora is not None:
img_cond = self._prep_structural_control_img_cond(context)
inpaint_mask = self._prep_inpaint_mask(context, x)
@@ -253,7 +287,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
img_cond = pack(img_cond) if img_cond is not None else None
noise = pack(noise)
x = pack(x)
@@ -262,10 +295,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
@@ -400,6 +433,42 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return text_conditionings
def _load_redux_conditioning(
self,
context: InvocationContext,
redux_cond_field: FluxReduxConditioningField | list[FluxReduxConditioningField] | None,
packed_height: int,
packed_width: int,
device: torch.device,
dtype: torch.dtype,
) -> list[FluxReduxConditioning]:
# Normalize to a list of FluxReduxConditioningFields.
if redux_cond_field is None:
return []
redux_cond_list = (
[redux_cond_field] if isinstance(redux_cond_field, FluxReduxConditioningField) else redux_cond_field
)
redux_conditionings: list[FluxReduxConditioning] = []
for redux_cond_field in redux_cond_list:
# Load the Redux conditioning tensor.
redux_cond_data = context.tensors.load(redux_cond_field.conditioning.tensor_name)
redux_cond_data.to(device=device, dtype=dtype)
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if redux_cond_field.mask is not None:
mask = context.tensors.load(redux_cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
redux_conditionings.append(FluxReduxConditioning(redux_embeddings=redux_cond_data, mask=mask))
return redux_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int
@@ -610,7 +679,70 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
img_cond = einops.rearrange(img_cond, "h w c -> 1 c h w")
vae_info = context.models.load(self.controlnet_vae.vae)
return FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
img_cond = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=img_cond)
return pack(img_cond)
def _prep_flux_fill_img_cond(
self, context: InvocationContext, device: torch.device, dtype: torch.dtype
) -> torch.Tensor:
"""Prepare the FLUX Fill conditioning. This method should be called iff the model is a FLUX Fill model.
This logic is based on:
https://github.com/black-forest-labs/flux/blob/716724eb276d94397be99710a0a54d352664e23b/src/flux/sampling.py#L107-L157
"""
# Validate inputs.
if self.fill_conditioning is None:
raise ValueError("A FLUX Fill model is being used without fill_conditioning.")
# TODO(ryand): We should probable rename controlnet_vae. It's used for more than just ControlNets.
if self.controlnet_vae is None:
raise ValueError("A FLUX Fill model is being used without controlnet_vae.")
if self.control_lora is not None:
raise ValueError(
"A FLUX Fill model is being used, but a control_lora was provided. Control LoRAs are not compatible with FLUX Fill models."
)
# Log input warnings related to FLUX Fill usage.
if self.denoise_mask is not None:
context.logger.warning(
"Both fill_conditioning and a denoise_mask were provided. You probably meant to use one or the other."
)
if self.guidance < 25.0:
context.logger.warning("A guidance value of ~30.0 is recommended for FLUX Fill models.")
# Load the conditioning image and resize it to the target image size.
cond_img = context.images.get_pil(self.fill_conditioning.image.image_name, mode="RGB")
cond_img = cond_img.resize((self.width, self.height), Image.Resampling.BICUBIC)
cond_img = np.array(cond_img)
cond_img = torch.from_numpy(cond_img).float() / 127.5 - 1.0
cond_img = einops.rearrange(cond_img, "h w c -> 1 c h w")
cond_img = cond_img.to(device=device, dtype=dtype)
# Load the mask and resize it to the target image size.
mask = context.tensors.load(self.fill_conditioning.mask.tensor_name)
# We expect mask to be a bool tensor with shape [1, H, W].
assert mask.dtype == torch.bool
assert mask.dim() == 3
assert mask.shape[0] == 1
mask = tv_resize(mask, size=[self.height, self.width], interpolation=tv_transforms.InterpolationMode.NEAREST)
mask = mask.to(device=device, dtype=dtype)
mask = einops.rearrange(mask, "1 h w -> 1 1 h w")
# Prepare image conditioning.
cond_img = cond_img * (1 - mask)
vae_info = context.models.load(self.controlnet_vae.vae)
cond_img = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=cond_img)
cond_img = pack(cond_img)
# Prepare mask conditioning.
mask = mask[:, 0, :, :]
# Rearrange mask to a 16-channel representation that matches the shape of the VAE-encoded latent space.
mask = einops.rearrange(mask, "b (h ph) (w pw) -> b (ph pw) h w", ph=8, pw=8)
mask = pack(mask)
# Merge image and mask conditioning.
img_cond = torch.cat((cond_img, mask), dim=-1)
return img_cond
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:

View File

@@ -0,0 +1,46 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxFillConditioningField,
InputField,
OutputField,
TensorField,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_fill_output")
class FluxFillOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Fill invocation."""
fill_cond: FluxFillConditioningField = OutputField(
description=FieldDescriptions.flux_redux_conditioning, title="Conditioning"
)
@invocation(
"flux_fill",
title="FLUX Fill Conditioning",
tags=["inpaint"],
category="inpaint",
version="1.0.0",
classification=Classification.Beta,
)
class FluxFillInvocation(BaseInvocation):
"""Prepare the FLUX Fill conditioning data."""
image: ImageField = InputField(description="The FLUX Fill reference image.")
mask: TensorField = InputField(
description="The bool inpainting mask. Excluded regions should be set to "
"False, included regions should be set to True.",
)
def invoke(self, context: InvocationContext) -> FluxFillOutput:
return FluxFillOutput(fill_cond=FluxFillConditioningField(image=self.image, mask=self.mask))

View File

@@ -4,7 +4,7 @@ from typing import List, Literal, Union
from pydantic import field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, UIType
from invokeai.app.invocations.ip_adapter import (
CLIP_VISION_MODEL_MAP,
@@ -28,7 +28,6 @@ from invokeai.backend.model_manager.config import (
tags=["ip_adapter", "control"],
category="ip_adapter",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxIPAdapterInvocation(BaseInvocation):
"""Collects FLUX IP-Adapter info to pass to other nodes."""

View File

@@ -3,14 +3,13 @@ from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType
@invocation_output("flux_lora_loader_output")
@@ -28,11 +27,10 @@ class FluxLoRALoaderOutput(BaseInvocationOutput):
@invocation(
"flux_lora_loader",
title="FLUX LoRA",
title="Apply LoRA - FLUX",
tags=["lora", "model", "flux"],
category="model",
version="1.2.0",
classification=Classification.Prototype,
version="1.2.1",
)
class FluxLoRALoaderInvocation(BaseInvocation):
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
@@ -107,11 +105,10 @@ class FluxLoRALoaderInvocation(BaseInvocation):
@invocation(
"flux_lora_collection_loader",
title="FLUX LoRA Collection Loader",
title="Apply LoRA Collection - FLUX",
tags=["lora", "model", "flux"],
category="model",
version="1.3.0",
classification=Classification.Prototype,
version="1.3.1",
)
class FLUXLoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to a FLUX transformer."""

View File

@@ -3,7 +3,6 @@ from typing import Literal
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -17,8 +16,8 @@ from invokeai.app.util.t5_model_identifier import (
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
SubModelType,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
@invocation_output("flux_model_loader_output")
@@ -37,11 +36,10 @@ class FluxModelLoaderOutput(BaseInvocationOutput):
@invocation(
"flux_model_loader",
title="Flux Main Model",
title="Main Model - FLUX",
tags=["model", "flux"],
category="model",
version="1.0.5",
classification=Classification.Prototype,
version="1.0.6",
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""

View File

@@ -0,0 +1,159 @@
import math
from typing import Literal, Optional
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxReduxConditioningField,
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.redux.flux_redux_model import FluxReduxModel
from invokeai.backend.model_manager import BaseModelType, ModelType
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.starter_models import siglip
from invokeai.backend.sig_lip.sig_lip_pipeline import SigLipPipeline
from invokeai.backend.util.devices import TorchDevice
@invocation_output("flux_redux_output")
class FluxReduxOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Redux invocation."""
redux_cond: FluxReduxConditioningField = OutputField(
description=FieldDescriptions.flux_redux_conditioning, title="Conditioning"
)
DOWNSAMPLING_FUNCTIONS = Literal["nearest", "bilinear", "bicubic", "area", "nearest-exact"]
@invocation(
"flux_redux",
title="FLUX Redux",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="2.1.0",
classification=Classification.Beta,
)
class FluxReduxInvocation(BaseInvocation):
"""Runs a FLUX Redux model to generate a conditioning tensor."""
image: ImageField = InputField(description="The FLUX Redux image prompt.")
mask: Optional[TensorField] = InputField(
default=None,
description="The bool mask associated with this FLUX Redux image prompt. Excluded regions should be set to "
"False, included regions should be set to True.",
)
redux_model: ModelIdentifierField = InputField(
description="The FLUX Redux model to use.",
title="FLUX Redux Model",
ui_type=UIType.FluxReduxModel,
)
downsampling_factor: int = InputField(
ge=1,
le=9,
default=1,
description="Redux Downsampling Factor (1-9)",
)
downsampling_function: DOWNSAMPLING_FUNCTIONS = InputField(
default="area",
description="Redux Downsampling Function",
)
weight: float = InputField(
ge=0,
le=1,
default=1.0,
description="Redux weight (0.0-1.0)",
)
def invoke(self, context: InvocationContext) -> FluxReduxOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
encoded_x = self._siglip_encode(context, image)
redux_conditioning = self._flux_redux_encode(context, encoded_x)
if self.downsampling_factor > 1 or self.weight != 1.0:
redux_conditioning = self._downsample_weight(context, redux_conditioning)
tensor_name = context.tensors.save(redux_conditioning)
return FluxReduxOutput(
redux_cond=FluxReduxConditioningField(conditioning=TensorField(tensor_name=tensor_name), mask=self.mask)
)
@torch.no_grad()
def _downsample_weight(self, context: InvocationContext, redux_conditioning: torch.Tensor) -> torch.Tensor:
# Downsampling derived from https://github.com/kaibioinfo/ComfyUI_AdvancedRefluxControl
(b, t, h) = redux_conditioning.shape
m = int(math.sqrt(t))
if self.downsampling_factor > 1:
redux_conditioning = redux_conditioning.view(b, m, m, h)
redux_conditioning = torch.nn.functional.interpolate(
redux_conditioning.transpose(1, -1),
size=(m // self.downsampling_factor, m // self.downsampling_factor),
mode=self.downsampling_function,
)
redux_conditioning = redux_conditioning.transpose(1, -1).reshape(b, -1, h)
if self.weight != 1.0:
redux_conditioning = redux_conditioning * self.weight * self.weight
return redux_conditioning
@torch.no_grad()
def _siglip_encode(self, context: InvocationContext, image: Image.Image) -> torch.Tensor:
siglip_model_config = self._get_siglip_model(context)
with context.models.load(siglip_model_config.key).model_on_device() as (_, siglip_pipeline):
assert isinstance(siglip_pipeline, SigLipPipeline)
return siglip_pipeline.encode_image(
x=image, device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
@torch.no_grad()
def _flux_redux_encode(self, context: InvocationContext, encoded_x: torch.Tensor) -> torch.Tensor:
with context.models.load(self.redux_model).model_on_device() as (_, flux_redux):
assert isinstance(flux_redux, FluxReduxModel)
dtype = next(flux_redux.parameters()).dtype
encoded_x = encoded_x.to(dtype=dtype)
return flux_redux(encoded_x)
def _get_siglip_model(self, context: InvocationContext) -> AnyModelConfig:
siglip_models = context.models.search_by_attrs(name=siglip.name, base=BaseModelType.Any, type=ModelType.SigLIP)
if not len(siglip_models) > 0:
context.logger.warning(
f"The SigLIP model required by FLUX Redux ({siglip.name}) is not installed. Downloading and installing now. This may take a while."
)
# TODO(psyche): Can the probe reliably determine the type of the model? Just hardcoding it bc I don't want to experiment now
config_overrides = ModelRecordChanges(name=siglip.name, type=ModelType.SigLIP)
# Queue the job
job = context._services.model_manager.install.heuristic_import(siglip.source, config=config_overrides)
# Wait for up to 10 minutes - model is ~3.5GB
context._services.model_manager.install.wait_for_job(job, timeout=600)
siglip_models = context.models.search_by_attrs(
name=siglip.name,
base=BaseModelType.Any,
type=ModelType.SigLIP,
)
if len(siglip_models) == 0:
context.logger.error("Error while fetching SigLIP for FLUX Redux")
assert len(siglip_models) == 1
return siglip_models[0]

View File

@@ -4,7 +4,7 @@ from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
@@ -17,7 +17,7 @@ from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.model_manager import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX, FLUX_LORA_T5_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -26,11 +26,10 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
@invocation(
"flux_text_encoder",
title="FLUX Text Encoding",
title="Prompt - FLUX",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.1",
classification=Classification.Prototype,
version="1.1.2",
)
class FluxTextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a flux image."""

View File

@@ -22,10 +22,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_decode",
title="FLUX Latents to Image",
title="Latents to Image - FLUX",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.1",
version="1.0.2",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -41,16 +41,11 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1090 # Determined experimentally.
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:

View File

@@ -19,10 +19,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_encode",
title="FLUX Image to Latents",
title="Image to Latents - FLUX",
tags=["latents", "image", "vae", "i2l", "flux"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class FluxVaeEncodeInvocation(BaseInvocation):
"""Encodes an image into latents."""

View File

@@ -6,7 +6,7 @@ from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import UNetField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType
@invocation_output("ideal_size_output")
@@ -19,9 +19,9 @@ class IdealSizeOutput(BaseInvocationOutput):
@invocation(
"ideal_size",
title="Ideal Size",
title="Ideal Size - SD1.5, SDXL",
tags=["latents", "math", "ideal_size"],
version="1.0.4",
version="1.0.5",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""

View File

@@ -355,7 +355,6 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
tags=["image", "unsharp_mask"],
category="image",
version="1.2.2",
classification=Classification.Beta,
)
class UnsharpMaskInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies an unsharp mask filter to an image"""
@@ -1051,7 +1050,7 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
classification=Classification.Internal,
classification=Classification.Deprecated,
)
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Handles Canvas V2 image output masking and cropping"""
@@ -1089,6 +1088,131 @@ class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
return ImageOutput.build(image_dto)
@invocation(
"expand_mask_with_fade", title="Expand Mask with Fade", tags=["image", "mask"], category="image", version="1.0.1"
)
class ExpandMaskWithFadeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Expands a mask with a fade effect. The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
The mask is thresholded to create a binary mask, and then a distance transform is applied to create a fade effect.
The fade size is specified in pixels, and the mask is expanded by that amount. The result is a mask with a smooth transition from black to white.
If the fade size is 0, the mask is returned as-is.
"""
mask: ImageField = InputField(description="The mask to expand")
threshold: int = InputField(default=0, ge=0, le=255, description="The threshold for the binary mask (0-255)")
fade_size_px: int = InputField(default=32, ge=0, description="The size of the fade in pixels")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_mask = context.images.get_pil(self.mask.image_name, mode="L")
if self.fade_size_px == 0:
# If the fade size is 0, just return the mask as-is.
image_dto = context.images.save(image=pil_mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
np_mask = numpy.array(pil_mask)
# Threshold the mask to create a binary mask - 0 for black, 255 for white
# If we don't threshold we can get some weird artifacts
np_mask = numpy.where(np_mask > self.threshold, 255, 0).astype(numpy.uint8)
# Create a mask for the black region (1 where black, 0 otherwise)
black_mask = (np_mask == 0).astype(numpy.uint8)
# Invert the black region
bg_mask = 1 - black_mask
# Create a distance transform of the inverted mask
dist = cv2.distanceTransform(bg_mask, cv2.DIST_L2, 5)
# Normalize distances so that pixels <fade_size_px become a linear gradient (0 to 1)
d_norm = numpy.clip(dist / self.fade_size_px, 0, 1)
# Control points: x values (normalized distance) and corresponding fade pct y values.
# There are some magic numbers here that are used to create a smooth transition:
# - The first point is at 0% of fade size from edge of mask (meaning the edge of the mask), and is 0% fade (black)
# - The second point is 1px from the edge of the mask and also has 0% fade, effectively expanding the mask
# by 1px. This fixes an issue where artifacts can occur at the edge of the mask
# - The third point is at 20% of the fade size from the edge of the mask and has 20% fade
# - The fourth point is at 80% of the fade size from the edge of the mask and has 90% fade
# - The last point is at 100% of the fade size from the edge of the mask and has 100% fade (white)
# x values: 0 = mask edge, 1 = fade_size_px from edge
x_control = numpy.array([0.0, 1.0 / self.fade_size_px, 0.2, 0.8, 1.0])
# y values: 0 = black, 1 = white
y_control = numpy.array([0.0, 0.0, 0.2, 0.9, 1.0])
# Fit a cubic polynomial that smoothly passes through the control points
coeffs = numpy.polyfit(x_control, y_control, 3)
poly = numpy.poly1d(coeffs)
# Evaluate the polynomial
feather = poly(d_norm)
# The polynomial fit isn't perfect. Points beyond the fade distance are likely to be slightly less than 1.0,
# even though the control points indicate that they should be exactly 1.0. This is due to the nature of the
# polynomial fit, which is a best approximation of the control points but not an exact match.
# When this occurs, the area outside the mask and fade-out will not be 100% transparent. For example, it may
# have an alpha value of 1 instead of 0. So we must force pixels at or beyond the fade distance to exactly 1.0.
# Force pixels at or beyond the fade distance to exactly 1.0
feather = numpy.where(d_norm >= 1.0, 1.0, feather)
# Clip any other values to ensure they're in the valid range [0,1]
feather = numpy.clip(feather, 0, 1)
# Build final image.
np_result = numpy.where(black_mask == 1, 0, (feather * 255).astype(numpy.uint8))
# Convert back to PIL, grayscale
pil_result = Image.fromarray(np_result.astype(numpy.uint8), mode="L")
image_dto = context.images.save(image=pil_result, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@invocation(
"apply_mask_to_image",
title="Apply Mask to Image",
tags=["image", "mask", "blend"],
category="image",
version="1.0.0",
)
class ApplyMaskToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""
Extracts a region from a generated image using a mask and blends it seamlessly onto a source image.
The mask uses black to indicate areas to keep from the generated image and white for areas to discard.
"""
image: ImageField = InputField(description="The image from which to extract the masked region")
mask: ImageField = InputField(description="The mask defining the region (black=keep, white=discard)")
invert_mask: bool = InputField(
default=False,
description="Whether to invert the mask before applying it",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load images
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = context.images.get_pil(self.mask.image_name, mode="L")
if self.invert_mask:
# Invert the mask if requested
mask = ImageOps.invert(mask.copy())
# Combine the mask as the alpha channel of the image
r, g, b, _ = image.split() # Split the image into RGB and alpha channels
result_image = Image.merge("RGBA", (r, g, b, mask)) # Use the mask as the new alpha channel
# Save the resulting image
image_dto = context.images.save(image=result_image)
return ImageOutput.build(image_dto)
@invocation(
"img_noise",
title="Add Image Noise",
@@ -1159,7 +1283,6 @@ class ImageNoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
category="image",
version="1.0.0",
tags=["image", "crop"],
classification=Classification.Beta,
)
class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Crop an image to the given bounding box. If the bounding box is omitted, the image is cropped to the non-transparent pixels."""
@@ -1186,7 +1309,6 @@ class CropImageToBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
category="image",
version="1.0.0",
tags=["image", "crop"],
classification=Classification.Beta,
)
class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Paste the source image into the target image at the given bounding box.

View File

@@ -31,10 +31,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"i2l",
title="Image to Latents",
title="Image to Latents - SD1.5, SDXL",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.1.0",
version="1.1.1",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""

View File

@@ -127,13 +127,16 @@ class InfillPatchMatchInvocation(InfillImageProcessorInvocation):
return infilled
LAMA_MODEL_URL = "https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt"
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image):
with self._context.models.load_remote_model(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
source=LAMA_MODEL_URL,
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)

View File

@@ -13,10 +13,8 @@ from invokeai.app.services.model_records.model_records_base import ModelRecordCh
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
ModelType,
)
from invokeai.backend.model_manager.starter_models import (
StarterModel,
@@ -24,6 +22,7 @@ from invokeai.backend.model_manager.starter_models import (
ip_adapter_sd_image_encoder,
ip_adapter_sdxl_image_encoder,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class IPAdapterField(BaseModel):
@@ -69,7 +68,13 @@ CLIP_VISION_MODEL_MAP: dict[Literal["ViT-L", "ViT-H", "ViT-G"], StarterModel] =
}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.5.0")
@invocation(
"ip_adapter",
title="IP-Adapter - SD1.5, SDXL",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="1.5.1",
)
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""

View File

@@ -31,10 +31,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"l2i",
title="Latents to Image",
title="Latents to Image - SD1.5, SDXL",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.1",
version="1.3.2",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -60,7 +60,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 960 # Determined experimentally.
scaling_constant = 2200 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
@@ -84,9 +84,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
# We add 20% to the working memory estimate to be safe.
working_memory = int(working_memory * 1.2)
return working_memory
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:

View File

@@ -0,0 +1,67 @@
from typing import Any
import torch
from PIL.Image import Image
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_model import LlavaOnevisionModel
from invokeai.backend.util.devices import TorchDevice
@invocation(
"llava_onevision_vllm",
title="LLaVA OneVision VLLM",
tags=["vllm"],
category="vllm",
version="1.0.0",
classification=Classification.Beta,
)
class LlavaOnevisionVllmInvocation(BaseInvocation):
"""Run a LLaVA OneVision VLLM model."""
images: list[ImageField] | ImageField | None = InputField(default=None, max_length=3, description="Input image.")
prompt: str = InputField(
default="",
description="Input text prompt.",
ui_component=UIComponent.Textarea,
)
vllm_model: ModelIdentifierField = InputField(
title="LLaVA Model Type",
description=FieldDescriptions.vllm_model,
ui_type=UIType.LlavaOnevisionModel,
)
@field_validator("images", mode="before")
def listify_images(cls, v: Any) -> list:
if v is None:
return v
if not isinstance(v, list):
return [v]
return v
def _get_images(self, context: InvocationContext) -> list[Image]:
if self.images is None:
return []
image_fields = self.images if isinstance(self.images, list) else [self.images]
return [context.images.get_pil(image_field.image_name, "RGB") for image_field in image_fields]
@torch.no_grad()
def invoke(self, context: InvocationContext) -> StringOutput:
images = self._get_images(context)
with context.models.load(self.vllm_model) as vllm_model:
assert isinstance(vllm_model, LlavaOnevisionModel)
output = vllm_model.run(
prompt=self.prompt,
images=images,
device=TorchDevice.choose_torch_device(),
dtype=TorchDevice.choose_torch_dtype(),
)
return StringOutput(value=output)

View File

@@ -0,0 +1,83 @@
import logging
import shutil
import sys
import traceback
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
def load_custom_nodes(custom_nodes_path: Path, logger: logging.Logger):
"""
Loads all custom nodes from the custom_nodes_path directory.
If custom_nodes_path does not exist, it creates it.
It also copies the custom_nodes/README.md file to the custom_nodes_path directory. Because this file may change,
it is _always_ copied to the custom_nodes_path directory.
Then, it crawls the custom_nodes_path directory and imports all top-level directories as python modules.
If the directory does not contain an __init__.py file or starts with an `_` or `.`, it is skipped.
"""
# create the custom nodes directory if it does not exist
custom_nodes_path.mkdir(parents=True, exist_ok=True)
# Copy the README file to the custom nodes directory
source_custom_nodes_readme_path = Path(__file__).parent / "custom_nodes/README.md"
target_custom_nodes_readme_path = Path(custom_nodes_path) / "README.md"
# copy our custom nodes README to the custom nodes directory
shutil.copy(source_custom_nodes_readme_path, target_custom_nodes_readme_path)
loaded_packs: list[str] = []
failed_packs: list[str] = []
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
for d in custom_nodes_path.iterdir():
# skip files
if not d.is_dir():
continue
# skip hidden directories
if d.name.startswith("_") or d.name.startswith("."):
continue
# skip directories without an `__init__.py`
init = d / "__init__.py"
if not init.exists():
continue
module_name = init.parent.stem
# skip if already imported
if module_name in globals():
continue
# load the module
spec = spec_from_file_location(module_name, init.absolute())
if spec is None or spec.loader is None:
logger.warning(f"Could not load {init}")
continue
logger.info(f"Loading node pack {module_name}")
try:
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_packs.append(module_name)
except Exception:
failed_packs.append(module_name)
full_error = traceback.format_exc()
logger.error(f"Failed to load node pack {module_name} (may have partially loaded):\n{full_error}")
del init, module_name
loaded_count = len(loaded_packs)
if loaded_count > 0:
logger.info(
f"Loaded {loaded_count} node pack{'s' if loaded_count != 1 else ''} from {custom_nodes_path}: {', '.join(loaded_packs)}"
)

View File

@@ -4,7 +4,6 @@ from PIL import Image
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
Classification,
InvocationContext,
invocation,
)
@@ -58,7 +57,6 @@ class RectangleMaskInvocation(BaseInvocation, WithMetadata):
tags=["conditioning"],
category="conditioning",
version="1.0.0",
classification=Classification.Beta,
)
class AlphaMaskToTensorInvocation(BaseInvocation):
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
@@ -67,7 +65,7 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name)
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
@@ -87,7 +85,6 @@ class AlphaMaskToTensorInvocation(BaseInvocation):
tags=["conditioning"],
category="conditioning",
version="1.1.0",
classification=Classification.Beta,
)
class InvertTensorMaskInvocation(BaseInvocation):
"""Inverts a tensor mask."""
@@ -234,7 +231,6 @@ WHITE = ColorField(r=255, g=255, b=255, a=255)
tags=["mask"],
category="mask",
version="1.0.0",
classification=Classification.Beta,
)
class GetMaskBoundingBoxInvocation(BaseInvocation):
"""Gets the bounding box of the given mask image."""

View File

@@ -152,6 +152,10 @@ GENERATION_MODES = Literal[
"sd3_img2img",
"sd3_inpaint",
"sd3_outpaint",
"cogview4_txt2img",
"cogview4_img2img",
"cogview4_inpaint",
"cogview4_outpaint",
]
@@ -284,6 +288,7 @@ class CoreMetadataInvocation(BaseInvocation):
tags=["metadata"],
category="metadata",
version="1.0.0",
classification=Classification.Deprecated,
)
class MetadataFieldExtractorInvocation(BaseInvocation):
"""Extracts the text value from an image's metadata given a key.

File diff suppressed because it is too large Load Diff

View File

@@ -6,7 +6,6 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -15,10 +14,8 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
class ModelIdentifierField(BaseModel):
@@ -71,6 +68,11 @@ class T5EncoderField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class GlmEncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@@ -122,11 +124,10 @@ class ModelIdentifierOutput(BaseInvocationOutput):
@invocation(
"model_identifier",
title="Model identifier",
title="Any Model",
tags=["model"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
version="1.0.1",
)
class ModelIdentifierInvocation(BaseInvocation):
"""Selects any model, outputting it its identifier. Be careful with this one! The identifier will be accepted as
@@ -144,10 +145,10 @@ class ModelIdentifierInvocation(BaseInvocation):
@invocation(
"main_model_loader",
title="Main Model",
title="Main Model - SD1.5",
tags=["model"],
category="model",
version="1.0.3",
version="1.0.4",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@@ -181,7 +182,7 @@ class LoRALoaderOutput(BaseInvocationOutput):
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.3")
@invocation("lora_loader", title="Apply LoRA - SD1.5", tags=["model"], category="model", version="1.0.4")
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
@@ -244,7 +245,7 @@ class LoRASelectorOutput(BaseInvocationOutput):
lora: LoRAField = OutputField(description="LoRA model and weight", title="LoRA")
@invocation("lora_selector", title="LoRA Selector", tags=["model"], category="model", version="1.0.1")
@invocation("lora_selector", title="Select LoRA", tags=["model"], category="model", version="1.0.3")
class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
@@ -257,7 +258,9 @@ class LoRASelectorInvocation(BaseInvocation):
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.1.0")
@invocation(
"lora_collection_loader", title="Apply LoRA Collection - SD1.5", tags=["model"], category="model", version="1.1.2"
)
class LoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
@@ -320,10 +323,10 @@ class SDXLLoRALoaderOutput(BaseInvocationOutput):
@invocation(
"sdxl_lora_loader",
title="SDXL LoRA",
title="Apply LoRA - SDXL",
tags=["lora", "model"],
category="model",
version="1.0.3",
version="1.0.5",
)
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
@@ -400,10 +403,10 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
@invocation(
"sdxl_lora_collection_loader",
title="SDXL LoRA Collection Loader",
title="Apply LoRA Collection - SDXL",
tags=["model"],
category="model",
version="1.1.0",
version="1.1.2",
)
class SDXLLoRACollectionLoader(BaseInvocation):
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
@@ -469,7 +472,9 @@ class SDXLLoRACollectionLoader(BaseInvocation):
return output
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.3")
@invocation(
"vae_loader", title="VAE Model - SD1.5, SDXL, SD3, FLUX", tags=["vae", "model"], category="model", version="1.0.4"
)
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
@@ -496,10 +501,10 @@ class SeamlessModeOutput(BaseInvocationOutput):
@invocation(
"seamless",
title="Seamless",
title="Apply Seamless - SD1.5, SDXL",
tags=["seamless", "model"],
category="model",
version="1.0.1",
version="1.0.2",
)
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
@@ -539,7 +544,7 @@ class SeamlessModeInvocation(BaseInvocation):
return SeamlessModeOutput(unet=unet, vae=vae)
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.1")
@invocation("freeu", title="Apply FreeU - SD1.5, SDXL", tags=["freeu"], category="unet", version="1.0.2")
class FreeUInvocation(BaseInvocation):
"""
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):

View File

@@ -72,10 +72,10 @@ class NoiseOutput(BaseInvocationOutput):
@invocation(
"noise",
title="Noise",
title="Create Latent Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.2",
version="1.0.3",
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""

View File

@@ -13,6 +13,7 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
CogView4ConditioningField,
ColorField,
ConditioningField,
DenoiseMaskField,
@@ -265,13 +266,9 @@ class ImageInvocation(BaseInvocation):
image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name)
image_dto = context.images.get_dto(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
return ImageOutput.build(image_dto=image_dto)
@invocation(
@@ -444,6 +441,17 @@ class SD3ConditioningOutput(BaseInvocationOutput):
return cls(conditioning=SD3ConditioningField(conditioning_name=conditioning_name))
@invocation_output("cogview4_conditioning_output")
class CogView4ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
conditioning: CogView4ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "CogView4ConditioningOutput":
return cls(conditioning=CogView4ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""

View File

@@ -6,7 +6,7 @@ from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from torchvision.transforms.functional import resize as tv_resize
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
DenoiseMaskField,
@@ -23,8 +23,8 @@ from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.sd3_text_encoder import SD3_T5_MAX_SEQ_LEN
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule_fractional
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.sd3.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.rectified_flow.rectified_flow_inpaint_extension import RectifiedFlowInpaintExtension
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import SD3ConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -32,11 +32,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_denoise",
title="SD3 Denoise",
title="Denoise - SD3",
tags=["image", "sd3"],
category="image",
version="1.1.0",
classification=Classification.Prototype,
version="1.1.1",
)
class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a SD3 model."""
@@ -264,10 +263,10 @@ class SD3DenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# Prepare inpaint extension.
inpaint_mask = self._prep_inpaint_mask(context, latents)
inpaint_extension: InpaintExtension | None = None
inpaint_extension: RectifiedFlowInpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
inpaint_extension = RectifiedFlowInpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,

View File

@@ -2,7 +2,7 @@ import einops
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -21,11 +21,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_i2l",
title="SD3 Image to Latents",
title="Image to Latents - SD3",
tags=["image", "latents", "vae", "i2l", "sd3"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
version="1.0.1",
)
class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates latents from an image."""

View File

@@ -24,10 +24,10 @@ from invokeai.backend.util.devices import TorchDevice
@invocation(
"sd3_l2i",
title="SD3 Latents to Image",
title="Latents to Image - SD3",
tags=["latents", "image", "vae", "l2i", "sd3"],
category="latents",
version="1.3.1",
version="1.3.2",
)
class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
@@ -43,16 +43,11 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision).
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 1230 # Determined experimentally.
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
# We add a 20% buffer to the working memory estimate to be safe.
working_memory = working_memory * 1.2
return int(working_memory)
@torch.no_grad()

View File

@@ -3,7 +3,6 @@ from typing import Optional
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -14,7 +13,7 @@ from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.taxonomy import SubModelType
@invocation_output("sd3_model_loader_output")
@@ -30,11 +29,10 @@ class Sd3ModelLoaderOutput(BaseInvocationOutput):
@invocation(
"sd3_model_loader",
title="SD3 Main Model",
title="Main Model - SD3",
tags=["model", "sd3"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
version="1.0.1",
)
class Sd3ModelLoaderInvocation(BaseInvocation):
"""Loads a SD3 base model, outputting its submodels."""

View File

@@ -11,12 +11,12 @@ from transformers import (
T5TokenizerFast,
)
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import SD3ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import ModelFormat
from invokeai.backend.model_manager.taxonomy import ModelFormat
from invokeai.backend.patches.layer_patcher import LayerPatcher
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_CLIP_PREFIX
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
@@ -29,11 +29,10 @@ SD3_T5_MAX_SEQ_LEN = 256
@invocation(
"sd3_text_encoder",
title="SD3 Text Encoding",
title="Prompt - SD3",
tags=["prompt", "conditioning", "sd3"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
version="1.0.1",
)
class Sd3TextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a SD3 image."""

View File

@@ -2,7 +2,7 @@ from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocati
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from invokeai.backend.model_manager.taxonomy import SubModelType
@invocation_output("sdxl_model_loader_output")
@@ -24,7 +24,7 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.3")
@invocation("sdxl_model_loader", title="Main Model - SDXL", tags=["model", "sdxl"], category="model", version="1.0.4")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
@@ -58,10 +58,10 @@ class SDXLModelLoaderInvocation(BaseInvocation):
@invocation(
"sdxl_refiner_model_loader",
title="SDXL Refiner Model",
title="Refiner Model - SDXL",
tags=["model", "sdxl", "refiner"],
category="model",
version="1.0.3",
version="1.0.4",
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""

View File

@@ -185,9 +185,9 @@ class SegmentAnythingInvocation(BaseInvocation):
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
assert (
bounding_boxes is not None
), "Bounding boxes must be provided to use the 'highest_box_score' mask filter."
assert bounding_boxes is not None, (
"Bounding boxes must be provided to use the 'highest_box_score' mask filter."
)
assert len(masks) == len(bounding_boxes)
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most

View File

@@ -45,7 +45,11 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.3"
"t2i_adapter",
title="T2I-Adapter - SD1.5, SDXL",
tags=["t2i_adapter", "control"],
category="t2i_adapter",
version="1.0.4",
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""

View File

@@ -7,9 +7,9 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.controlnet import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
@@ -53,11 +53,10 @@ def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> C
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise Latents",
title="Tiled Multi-Diffusion Denoise - SD1.5, SDXL",
tags=["upscale", "denoise"],
category="latents",
classification=Classification.Beta,
version="1.0.0",
version="1.0.1",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@@ -40,7 +39,6 @@ class CalculateImageTilesOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -74,7 +72,6 @@ class CalculateImageTilesInvocation(BaseInvocation):
tags=["tiles"],
category="tiles",
version="1.1.1",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -117,7 +114,6 @@ class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -168,7 +164,6 @@ class TileToPropertiesOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
@@ -201,7 +196,6 @@ class PairTileImageOutput(BaseInvocationOutput):
tags=["tiles"],
category="tiles",
version="1.0.1",
classification=Classification.Beta,
)
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
@@ -230,7 +224,6 @@ BLEND_MODES = Literal["Linear", "Seam"]
tags=["tiles"],
category="tiles",
version="1.1.1",
classification=Classification.Beta,
)
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Merge multiple tile images into a single image."""

View File

@@ -9,6 +9,6 @@ def validate_weights(weights: Union[float, list[float]]) -> None:
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
"""Validate that begin_step_percent is less than end_step_percent"""
if begin_step_percent >= end_step_percent:
"""Validate that begin_step_percent is less than or equal to end_step_percent"""
if begin_step_percent > end_step_percent:
raise ValueError("Begin step percent must be less than or equal to end step percent")

View File

@@ -1,12 +1,92 @@
"""This is a wrapper around the main app entrypoint, to allow for CLI args to be parsed before running the app."""
import uvicorn
from invokeai.app.invocations.load_custom_nodes import load_custom_nodes
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
def get_app():
"""Import the app and event loop. We wrap this in a function to more explicitly control when it happens, because
importing from api_app does a bunch of stuff - it's more like calling a function than importing a module.
"""
from invokeai.app.api_app import app, loop
return app, loop
def run_app() -> None:
# Before doing _anything_, parse CLI args!
from invokeai.frontend.cli.arg_parser import InvokeAIArgs
"""The main entrypoint for the app."""
# Parse the CLI arguments.
InvokeAIArgs.parse_args()
from invokeai.app.api_app import invoke_api
# Load config.
app_config = get_config()
invoke_api()
logger = InvokeAILogger.get_logger(config=app_config)
# Configure the torch CUDA memory allocator.
# NOTE: It is important that this happens before torch is imported.
if app_config.pytorch_cuda_alloc_conf:
configure_torch_cuda_allocator(app_config.pytorch_cuda_alloc_conf, logger)
# This import must happen after configure_torch_cuda_allocator() is called, because the module imports torch.
from invokeai.backend.util.devices import TorchDevice
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
# Import from startup_utils here to avoid importing torch before configure_torch_cuda_allocator() is called.
from invokeai.app.util.startup_utils import (
apply_monkeypatches,
check_cudnn,
enable_dev_reload,
find_open_port,
register_mime_types,
)
# Find an open port, and modify the config accordingly.
first_open_port = find_open_port(app_config.port)
if app_config.port != first_open_port:
orig_config_port = app_config.port
app_config.port = first_open_port
logger.warning(f"Port {orig_config_port} is already in use. Using port {app_config.port}.")
# Miscellaneous startup tasks.
apply_monkeypatches()
register_mime_types()
check_cudnn(logger)
# Initialize the app and event loop.
app, loop = get_app()
# Load custom nodes. This must be done after importing the Graph class, which itself imports all modules from the
# invocations module. The ordering here is implicit, but important - we want to load custom nodes after all the
# core nodes have been imported so that we can catch when a custom node clobbers a core node.
load_custom_nodes(custom_nodes_path=app_config.custom_nodes_path, logger=logger)
if app_config.dev_reload:
# load_custom_nodes seems to bypass jurrigged's import sniffer, so be sure to call it *after* they're already
# imported.
enable_dev_reload(custom_nodes_path=app_config.custom_nodes_path)
# Start the server.
config = uvicorn.Config(
app=app,
host=app_config.host,
port=app_config.port,
loop="asyncio",
log_level=app_config.log_level_network,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)
# replace uvicorn's loggers with InvokeAI's for consistent appearance
uvicorn_logger = InvokeAILogger.get_logger("uvicorn")
uvicorn_logger.handlers.clear()
for hdlr in logger.handlers:
uvicorn_logger.addHandler(hdlr)
loop.run_until_complete(server.serve())

View File

@@ -1,6 +1,8 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.image_records.image_records_common import ImageCategory
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@@ -26,6 +28,8 @@ class BoardImageRecordStorageBase(ABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass

View File

@@ -1,23 +1,20 @@
import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
deserialize_image_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.RLock
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def add_image_to_board(
self,
@@ -25,8 +22,8 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
VALUES (?, ?)
@@ -38,16 +35,14 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def remove_image_from_board(
self,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
cursor = self._conn.cursor()
cursor.execute(
"""--sql
DELETE FROM board_images
WHERE image_name = ?;
@@ -58,8 +53,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_images_for_board(
self,
@@ -68,96 +61,108 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def get_all_board_image_names_for_board(self, board_id: str) -> list[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name
FROM board_images
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
params: list[str | bool] = []
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
AND board_images.board_id = ?
"""
params.append(board_id)
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Put a ring on it
stmt += ";"
# Execute the query
cursor = self._conn.cursor()
cursor.execute(stmt, params)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = self._cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
(image_name,),
)
result = cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
def get_image_count_for_board(self, board_id: str) -> int:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
AND board_images.board_id = ?;
""",
(board_id,),
)
count = cast(int, self._cursor.fetchone()[0])
return count
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
(board_id,),
)
count = cast(int, cursor.fetchone()[0])
return count

View File

@@ -1,6 +1,8 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.image_records.image_records_common import ImageCategory
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@@ -26,6 +28,8 @@ class BoardImagesServiceABC(ABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass

View File

@@ -1,6 +1,7 @@
from typing import Optional
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.invoker import Invoker
@@ -26,8 +27,14 @@ class BoardImagesService(BoardImagesServiceABC):
def get_all_board_image_names_for_board(
self,
board_id: str,
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(
board_id,
categories,
is_intermediate,
)
def get_board_for_image(
self,

View File

@@ -1,5 +1,4 @@
import sqlite3
import threading
from typing import Union, cast
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
@@ -19,20 +18,14 @@ from invokeai.app.util.misc import uuid_string
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.RLock
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
cursor = self._conn.cursor()
cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
@@ -40,14 +33,9 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
(board_id,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
@@ -55,8 +43,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
) -> BoardRecord:
try:
board_id = uuid_string()
self._lock.acquire()
self._cursor.execute(
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
@@ -67,8 +55,6 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get(
@@ -76,8 +62,8 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
board_id: str,
) -> BoardRecord:
try:
self._lock.acquire()
self._cursor.execute(
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM boards
@@ -86,12 +72,9 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
(board_id,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordNotFoundException from e
finally:
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
@@ -102,11 +85,10 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
changes: BoardChanges,
) -> BoardRecord:
try:
self._lock.acquire()
cursor = self._conn.cursor()
# Change the name of a board
if changes.board_name is not None:
self._cursor.execute(
cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
@@ -117,7 +99,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the cover image of a board
if changes.cover_image_name is not None:
self._cursor.execute(
cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
@@ -128,7 +110,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the archived status of a board
if changes.archived is not None:
self._cursor.execute(
cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
@@ -141,8 +123,6 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get_many(
@@ -153,11 +133,10 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
cursor = self._conn.cursor()
# Build base query
base_query = """
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
@@ -165,81 +144,67 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
LIMIT ? OFFSET ?;
"""
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
self._cursor.execute(count_query)
# Execute count query
cursor.execute(count_query)
count = cast(int, self._cursor.fetchone()[0])
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
try:
self._lock.acquire()
if order_by == BoardRecordOrderBy.Name:
base_query = """
cursor = self._conn.cursor()
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
archived_filter = "" if include_archived else "WHERE archived = 0"
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
self._cursor.execute(final_query)
cursor.execute(final_query)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return boards

Some files were not shown because too many files have changed in this diff Show More